2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/arm/virt.h"
35 #include "hw/devices.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/device_tree.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/kvm.h"
41 #include "hw/boards.h"
42 #include "hw/loader.h"
43 #include "exec/address-spaces.h"
44 #include "qemu/bitops.h"
45 #include "qemu/error-report.h"
46 #include "hw/pci-host/gpex.h"
47 #include "hw/arm/virt-acpi-build.h"
48 #include "hw/arm/sysbus-fdt.h"
49 #include "hw/platform-bus.h"
51 /* Number of external interrupt lines to configure the GIC with */
54 #define GIC_FDT_IRQ_TYPE_SPI 0
55 #define GIC_FDT_IRQ_TYPE_PPI 1
57 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
58 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
59 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
60 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
62 #define GIC_FDT_IRQ_PPI_CPU_START 8
63 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
65 #define PLATFORM_BUS_NUM_IRQS 64
67 static ARMPlatformBusSystemParams platform_bus_params;
69 typedef struct VirtBoardInfo {
70 struct arm_boot_info bootinfo;
71 const char *cpu_model;
72 const MemMapEntry *memmap;
77 uint32_t clock_phandle;
84 VirtBoardInfo *daughterboard;
92 #define TYPE_VIRT_MACHINE "virt"
93 #define VIRT_MACHINE(obj) \
94 OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
95 #define VIRT_MACHINE_GET_CLASS(obj) \
96 OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
97 #define VIRT_MACHINE_CLASS(klass) \
98 OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
100 /* Addresses and sizes of our components.
101 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
102 * 128MB..256MB is used for miscellaneous device I/O.
103 * 256MB..1GB is reserved for possible future PCI support (ie where the
104 * PCI memory window will go if we add a PCI host controller).
105 * 1GB and up is RAM (which may happily spill over into the
106 * high memory region beyond 4GB).
107 * This represents a compromise between how much RAM can be given to
108 * a 32 bit VM and leaving space for expansion and in particular for PCI.
109 * Note that devices should generally be placed at multiples of 0x10000,
110 * to accommodate guests using 64K pages.
112 static const MemMapEntry a15memmap[] = {
113 /* Space up to 0x8000000 is reserved for a boot ROM */
114 [VIRT_FLASH] = { 0, 0x08000000 },
115 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
116 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
117 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
118 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
119 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
120 [VIRT_UART] = { 0x09000000, 0x00001000 },
121 [VIRT_RTC] = { 0x09010000, 0x00001000 },
122 [VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
123 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
124 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
125 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
126 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
127 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
128 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
129 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
132 static const int a15irqmap[] = {
135 [VIRT_PCIE] = 3, /* ... to 6 */
136 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
137 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
138 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
141 static VirtBoardInfo machines[] = {
143 .cpu_model = "cortex-a15",
148 .cpu_model = "cortex-a57",
159 static VirtBoardInfo *find_machine_info(const char *cpu)
163 for (i = 0; i < ARRAY_SIZE(machines); i++) {
164 if (strcmp(cpu, machines[i].cpu_model) == 0) {
171 static void create_fdt(VirtBoardInfo *vbi)
173 void *fdt = create_device_tree(&vbi->fdt_size);
176 error_report("create_device_tree() failed");
183 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
184 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
185 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
188 * /chosen and /memory nodes must exist for load_dtb
189 * to fill in necessary properties later
191 qemu_fdt_add_subnode(fdt, "/chosen");
192 qemu_fdt_add_subnode(fdt, "/memory");
193 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
195 /* Clock node, for the benefit of the UART. The kernel device tree
196 * binding documentation claims the PL011 node clock properties are
197 * optional but in practice if you omit them the kernel refuses to
198 * probe for the device.
200 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
201 qemu_fdt_add_subnode(fdt, "/apb-pclk");
202 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
203 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
204 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
205 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
207 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
211 static void fdt_add_psci_node(const VirtBoardInfo *vbi)
213 uint32_t cpu_suspend_fn;
217 void *fdt = vbi->fdt;
218 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
220 qemu_fdt_add_subnode(fdt, "/psci");
221 if (armcpu->psci_version == 2) {
222 const char comp[] = "arm,psci-0.2\0arm,psci";
223 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
225 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
226 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
227 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
228 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
229 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
231 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
232 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
233 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
236 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
238 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
239 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
240 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
241 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
244 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
245 * to the instruction that should be used to invoke PSCI functions.
246 * However, the device tree binding uses 'method' instead, so that is
247 * what we should use here.
249 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
251 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
252 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
253 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
254 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
257 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
259 /* Note that on A15 h/w these interrupts are level-triggered,
260 * but for the GIC implementation provided by both QEMU and KVM
261 * they are edge-triggered.
264 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
266 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
267 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
269 qemu_fdt_add_subnode(vbi->fdt, "/timer");
271 armcpu = ARM_CPU(qemu_get_cpu(0));
272 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
273 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
274 qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
275 compat, sizeof(compat));
277 qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
280 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
281 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
282 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
283 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
284 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
287 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
291 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
292 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
293 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
295 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
296 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
297 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
299 qemu_fdt_add_subnode(vbi->fdt, nodename);
300 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
301 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
302 armcpu->dtb_compatible);
304 if (vbi->smp_cpus > 1) {
305 qemu_fdt_setprop_string(vbi->fdt, nodename,
306 "enable-method", "psci");
309 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
314 static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
316 vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
317 qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
318 qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
319 "arm,gic-v2m-frame");
320 qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
321 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
322 2, vbi->memmap[VIRT_GIC_V2M].base,
323 2, vbi->memmap[VIRT_GIC_V2M].size);
324 qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
327 static void fdt_add_gic_node(VirtBoardInfo *vbi)
329 vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
330 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
332 qemu_fdt_add_subnode(vbi->fdt, "/intc");
333 /* 'cortex-a15-gic' means 'GIC v2' */
334 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
335 "arm,cortex-a15-gic");
336 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
337 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
338 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
339 2, vbi->memmap[VIRT_GIC_DIST].base,
340 2, vbi->memmap[VIRT_GIC_DIST].size,
341 2, vbi->memmap[VIRT_GIC_CPU].base,
342 2, vbi->memmap[VIRT_GIC_CPU].size);
343 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
344 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
345 qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
346 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
349 static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
352 int irq = vbi->irqmap[VIRT_GIC_V2M];
355 dev = qdev_create(NULL, "arm-gicv2m");
356 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
357 qdev_prop_set_uint32(dev, "base-spi", irq);
358 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
359 qdev_init_nofail(dev);
361 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
362 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
365 fdt_add_v2m_gic_node(vbi);
368 static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
370 /* We create a standalone GIC v2 */
372 SysBusDevice *gicbusdev;
373 const char *gictype = "arm_gic";
376 if (kvm_irqchip_in_kernel()) {
377 gictype = "kvm-arm-gic";
380 gicdev = qdev_create(NULL, gictype);
381 qdev_prop_set_uint32(gicdev, "revision", 2);
382 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
383 /* Note that the num-irq property counts both internal and external
384 * interrupts; there are always 32 of the former (mandated by GIC spec).
386 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
387 qdev_init_nofail(gicdev);
388 gicbusdev = SYS_BUS_DEVICE(gicdev);
389 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
390 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
392 /* Wire the outputs from each CPU's generic timer to the
393 * appropriate GIC PPI inputs, and the GIC's IRQ output to
394 * the CPU's IRQ input.
396 for (i = 0; i < smp_cpus; i++) {
397 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
398 int ppibase = NUM_IRQS + i * 32;
399 /* physical timer; we wire it up to the non-secure timer's ID,
400 * since a real A15 always has TrustZone but QEMU doesn't.
402 qdev_connect_gpio_out(cpudev, 0,
403 qdev_get_gpio_in(gicdev, ppibase + 30));
405 qdev_connect_gpio_out(cpudev, 1,
406 qdev_get_gpio_in(gicdev, ppibase + 27));
408 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
409 sysbus_connect_irq(gicbusdev, i + smp_cpus,
410 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
413 for (i = 0; i < NUM_IRQS; i++) {
414 pic[i] = qdev_get_gpio_in(gicdev, i);
417 fdt_add_gic_node(vbi);
419 create_v2m(vbi, pic);
422 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
425 hwaddr base = vbi->memmap[VIRT_UART].base;
426 hwaddr size = vbi->memmap[VIRT_UART].size;
427 int irq = vbi->irqmap[VIRT_UART];
428 const char compat[] = "arm,pl011\0arm,primecell";
429 const char clocknames[] = "uartclk\0apb_pclk";
431 sysbus_create_simple("pl011", base, pic[irq]);
433 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
434 qemu_fdt_add_subnode(vbi->fdt, nodename);
435 /* Note that we can't use setprop_string because of the embedded NUL */
436 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
437 compat, sizeof(compat));
438 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
440 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
441 GIC_FDT_IRQ_TYPE_SPI, irq,
442 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
443 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
444 vbi->clock_phandle, vbi->clock_phandle);
445 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
446 clocknames, sizeof(clocknames));
448 qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
452 static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
455 hwaddr base = vbi->memmap[VIRT_RTC].base;
456 hwaddr size = vbi->memmap[VIRT_RTC].size;
457 int irq = vbi->irqmap[VIRT_RTC];
458 const char compat[] = "arm,pl031\0arm,primecell";
460 sysbus_create_simple("pl031", base, pic[irq]);
462 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
463 qemu_fdt_add_subnode(vbi->fdt, nodename);
464 qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
465 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
467 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
468 GIC_FDT_IRQ_TYPE_SPI, irq,
469 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
470 qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
471 qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
475 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
478 hwaddr size = vbi->memmap[VIRT_MMIO].size;
480 /* We create the transports in forwards order. Since qbus_realize()
481 * prepends (not appends) new child buses, the incrementing loop below will
482 * create a list of virtio-mmio buses with decreasing base addresses.
484 * When a -device option is processed from the command line,
485 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
486 * order. The upshot is that -device options in increasing command line
487 * order are mapped to virtio-mmio buses with decreasing base addresses.
489 * When this code was originally written, that arrangement ensured that the
490 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
491 * the first -device on the command line. (The end-to-end order is a
492 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
493 * guest kernel's name-to-address assignment strategy.)
495 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
496 * the message, if not necessarily the code, of commit 70161ff336.
497 * Therefore the loop now establishes the inverse of the original intent.
499 * Unfortunately, we can't counteract the kernel change by reversing the
500 * loop; it would break existing command lines.
502 * In any case, the kernel makes no guarantee about the stability of
503 * enumeration order of virtio devices (as demonstrated by it changing
504 * between kernel versions). For reliable and stable identification
505 * of disks users must use UUIDs or similar mechanisms.
507 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
508 int irq = vbi->irqmap[VIRT_MMIO] + i;
509 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
511 sysbus_create_simple("virtio-mmio", base, pic[irq]);
514 /* We add dtb nodes in reverse order so that they appear in the finished
515 * device tree lowest address first.
517 * Note that this mapping is independent of the loop above. The previous
518 * loop influences virtio device to virtio transport assignment, whereas
519 * this loop controls how virtio transports are laid out in the dtb.
521 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
523 int irq = vbi->irqmap[VIRT_MMIO] + i;
524 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
526 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
527 qemu_fdt_add_subnode(vbi->fdt, nodename);
528 qemu_fdt_setprop_string(vbi->fdt, nodename,
529 "compatible", "virtio,mmio");
530 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
532 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
533 GIC_FDT_IRQ_TYPE_SPI, irq,
534 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
539 static void create_one_flash(const char *name, hwaddr flashbase,
542 /* Create and map a single flash device. We use the same
543 * parameters as the flash devices on the Versatile Express board.
545 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
546 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
547 const uint64_t sectorlength = 256 * 1024;
550 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
554 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
555 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
556 qdev_prop_set_uint8(dev, "width", 4);
557 qdev_prop_set_uint8(dev, "device-width", 2);
558 qdev_prop_set_bit(dev, "big-endian", false);
559 qdev_prop_set_uint16(dev, "id0", 0x89);
560 qdev_prop_set_uint16(dev, "id1", 0x18);
561 qdev_prop_set_uint16(dev, "id2", 0x00);
562 qdev_prop_set_uint16(dev, "id3", 0x00);
563 qdev_prop_set_string(dev, "name", name);
564 qdev_init_nofail(dev);
566 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
569 static void create_flash(const VirtBoardInfo *vbi)
571 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
572 * Any file passed via -bios goes in the first of these.
574 hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
575 hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
582 if (drive_get(IF_PFLASH, 0, 0)) {
583 error_report("The contents of the first flash device may be "
584 "specified with -bios or with -drive if=pflash... "
585 "but you cannot use both options at once");
588 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
590 error_report("Could not find ROM image '%s'", bios_name);
593 image_size = load_image_targphys(fn, flashbase, flashsize);
595 if (image_size < 0) {
596 error_report("Could not load ROM image '%s'", bios_name);
601 create_one_flash("virt.flash0", flashbase, flashsize);
602 create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
604 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
605 qemu_fdt_add_subnode(vbi->fdt, nodename);
606 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
607 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
608 2, flashbase, 2, flashsize,
609 2, flashbase + flashsize, 2, flashsize);
610 qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
614 static void create_fw_cfg(const VirtBoardInfo *vbi)
616 hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
617 hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
620 fw_cfg_init_mem_wide(base + 8, base, 8);
622 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
623 qemu_fdt_add_subnode(vbi->fdt, nodename);
624 qemu_fdt_setprop_string(vbi->fdt, nodename,
625 "compatible", "qemu,fw-cfg-mmio");
626 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
631 static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
632 int first_irq, const char *nodename)
635 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
636 uint32_t *irq_map = full_irq_map;
638 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
639 for (pin = 0; pin < 4; pin++) {
640 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
641 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
642 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
646 devfn << 8, 0, 0, /* devfn */
647 pin + 1, /* PCI pin */
648 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
650 /* Convert map to big endian */
651 for (i = 0; i < 10; i++) {
652 irq_map[i] = cpu_to_be32(map[i]);
658 qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
659 full_irq_map, sizeof(full_irq_map));
661 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
662 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
666 static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
668 hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
669 hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
670 hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
671 hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
672 hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
673 hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
674 hwaddr base = base_mmio;
675 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
676 int irq = vbi->irqmap[VIRT_PCIE];
677 MemoryRegion *mmio_alias;
678 MemoryRegion *mmio_reg;
679 MemoryRegion *ecam_alias;
680 MemoryRegion *ecam_reg;
685 dev = qdev_create(NULL, TYPE_GPEX_HOST);
686 qdev_init_nofail(dev);
688 /* Map only the first size_ecam bytes of ECAM space */
689 ecam_alias = g_new0(MemoryRegion, 1);
690 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
691 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
692 ecam_reg, 0, size_ecam);
693 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
695 /* Map the MMIO window into system address space so as to expose
696 * the section of PCI MMIO space which starts at the same base address
697 * (ie 1:1 mapping for that part of PCI MMIO space visible through
700 mmio_alias = g_new0(MemoryRegion, 1);
701 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
702 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
703 mmio_reg, base_mmio, size_mmio);
704 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
706 /* Map IO port space */
707 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
709 for (i = 0; i < GPEX_NUM_IRQS; i++) {
710 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
713 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
714 qemu_fdt_add_subnode(vbi->fdt, nodename);
715 qemu_fdt_setprop_string(vbi->fdt, nodename,
716 "compatible", "pci-host-ecam-generic");
717 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
718 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
719 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
720 qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
723 qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
725 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
726 2, base_ecam, 2, size_ecam);
727 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
728 1, FDT_PCI_RANGE_IOPORT, 2, 0,
729 2, base_pio, 2, size_pio,
730 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
731 2, base_mmio, 2, size_mmio);
733 qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
734 create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
739 static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
744 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
745 MemoryRegion *sysmem = get_system_memory();
747 platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
748 platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
749 platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
750 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
752 fdt_params->system_params = &platform_bus_params;
753 fdt_params->binfo = &vbi->bootinfo;
754 fdt_params->intc = "/intc";
756 * register a machine init done notifier that creates the device tree
757 * nodes of the platform bus and its children dynamic sysbus devices
759 arm_register_platform_bus_fdt_creator(fdt_params);
761 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
762 dev->id = TYPE_PLATFORM_BUS_DEVICE;
763 qdev_prop_set_uint32(dev, "num_irqs",
764 platform_bus_params.platform_bus_num_irqs);
765 qdev_prop_set_uint32(dev, "mmio_size",
766 platform_bus_params.platform_bus_size);
767 qdev_init_nofail(dev);
768 s = SYS_BUS_DEVICE(dev);
770 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
771 int irqn = platform_bus_params.platform_bus_first_irq + i;
772 sysbus_connect_irq(s, i, pic[irqn]);
775 memory_region_add_subregion(sysmem,
776 platform_bus_params.platform_bus_base,
777 sysbus_mmio_get_region(s, 0));
780 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
782 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
784 *fdt_size = board->fdt_size;
789 void virt_guest_info_machine_done(Notifier *notifier, void *data)
791 VirtGuestInfoState *guest_info_state = container_of(notifier,
792 VirtGuestInfoState, machine_done);
793 virt_acpi_setup(&guest_info_state->info);
796 static void machvirt_init(MachineState *machine)
798 VirtMachineState *vms = VIRT_MACHINE(machine);
799 qemu_irq pic[NUM_IRQS];
800 MemoryRegion *sysmem = get_system_memory();
802 MemoryRegion *ram = g_new(MemoryRegion, 1);
803 const char *cpu_model = machine->cpu_model;
805 VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
806 VirtGuestInfo *guest_info = &guest_info_state->info;
810 cpu_model = "cortex-a15";
813 /* Separate the actual CPU model name from any appended features */
814 cpustr = g_strsplit(cpu_model, ",", 2);
816 vbi = find_machine_info(cpustr[0]);
819 error_report("mach-virt: CPU %s not supported", cpustr[0]);
823 vbi->smp_cpus = smp_cpus;
825 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
826 error_report("mach-virt: cannot model more than 30GB RAM");
832 for (n = 0; n < smp_cpus; n++) {
833 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
834 CPUClass *cc = CPU_CLASS(oc);
837 char *cpuopts = g_strdup(cpustr[1]);
840 fprintf(stderr, "Unable to find CPU definition\n");
843 cpuobj = object_new(object_class_get_name(oc));
845 /* Handle any CPU options specified by the user */
846 cc->parse_features(CPU(cpuobj), cpuopts, &err);
849 error_report_err(err);
854 object_property_set_bool(cpuobj, false, "has_el3", NULL);
857 object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
860 /* Secondary CPUs start in PSCI powered-down state */
862 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
865 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
866 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
867 "reset-cbar", &error_abort);
870 object_property_set_bool(cpuobj, true, "realized", NULL);
873 fdt_add_timer_nodes(vbi);
874 fdt_add_cpu_nodes(vbi);
875 fdt_add_psci_node(vbi);
877 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
879 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
883 create_gic(vbi, pic);
885 create_uart(vbi, pic);
887 create_rtc(vbi, pic);
889 create_pcie(vbi, pic);
891 /* Create mmio transports, so the user can create virtio backends
892 * (which will be automatically plugged in to the transports). If
893 * no backend is created the transport will just sit harmlessly idle.
895 create_virtio_devices(vbi, pic);
898 rom_set_fw(fw_cfg_find());
900 guest_info->smp_cpus = smp_cpus;
901 guest_info->fw_cfg = fw_cfg_find();
902 guest_info->memmap = vbi->memmap;
903 guest_info->irqmap = vbi->irqmap;
904 guest_info_state->machine_done.notify = virt_guest_info_machine_done;
905 qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
907 vbi->bootinfo.ram_size = machine->ram_size;
908 vbi->bootinfo.kernel_filename = machine->kernel_filename;
909 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
910 vbi->bootinfo.initrd_filename = machine->initrd_filename;
911 vbi->bootinfo.nb_cpus = smp_cpus;
912 vbi->bootinfo.board_id = -1;
913 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
914 vbi->bootinfo.get_dtb = machvirt_dtb;
915 vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
916 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
919 * arm_load_kernel machine init done notifier registration must
920 * happen before the platform_bus_create call. In this latter,
921 * another notifier is registered which adds platform bus nodes.
922 * Notifiers are executed in registration reverse order.
924 create_platform_bus(vbi, pic);
927 static bool virt_get_secure(Object *obj, Error **errp)
929 VirtMachineState *vms = VIRT_MACHINE(obj);
934 static void virt_set_secure(Object *obj, bool value, Error **errp)
936 VirtMachineState *vms = VIRT_MACHINE(obj);
941 static void virt_instance_init(Object *obj)
943 VirtMachineState *vms = VIRT_MACHINE(obj);
945 /* EL3 is enabled by default on virt */
947 object_property_add_bool(obj, "secure", virt_get_secure,
948 virt_set_secure, NULL);
949 object_property_set_description(obj, "secure",
950 "Set on/off to enable/disable the ARM "
951 "Security Extensions (TrustZone)",
955 static void virt_class_init(ObjectClass *oc, void *data)
957 MachineClass *mc = MACHINE_CLASS(oc);
959 mc->name = TYPE_VIRT_MACHINE;
960 mc->desc = "ARM Virtual Machine",
961 mc->init = machvirt_init;
963 mc->has_dynamic_sysbus = true;
966 static const TypeInfo machvirt_info = {
967 .name = TYPE_VIRT_MACHINE,
968 .parent = TYPE_MACHINE,
969 .instance_size = sizeof(VirtMachineState),
970 .instance_init = virt_instance_init,
971 .class_size = sizeof(VirtMachineClass),
972 .class_init = virt_class_init,
975 static void machvirt_machine_init(void)
977 type_register_static(&machvirt_info);
980 machine_init(machvirt_machine_init);