2 * CFI parallel flash with Intel command set emulation
4 * Copyright (c) 2006 Thorsten Zitterell
5 * Copyright (c) 2005 Jocelyn Mayer
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
23 * Supported commands/modes are:
30 * It does not support timings
31 * It does not support flash interleaving
32 * It does not implement software data protection as found in many real chips
33 * It does not implement erase suspend/resume commands
34 * It does not implement multiple sectors erase
36 * It does not implement much more ...
40 #include "hw/block/flash.h"
41 #include "sysemu/block-backend.h"
42 #include "qemu/timer.h"
43 #include "qemu/bitops.h"
44 #include "exec/address-spaces.h"
45 #include "qemu/host-utils.h"
46 #include "hw/sysbus.h"
48 #define PFLASH_BUG(fmt, ...) \
50 fprintf(stderr, "PFLASH: Possible BUG - " fmt, ## __VA_ARGS__); \
54 /* #define PFLASH_DEBUG */
56 #define DPRINTF(fmt, ...) \
58 fprintf(stderr, "PFLASH: " fmt , ## __VA_ARGS__); \
61 #define DPRINTF(fmt, ...) do { } while (0)
64 #define TYPE_CFI_PFLASH01 "cfi.pflash01"
65 #define CFI_PFLASH01(obj) OBJECT_CHECK(pflash_t, (obj), TYPE_CFI_PFLASH01)
68 #define PFLASH_SECURE 1
72 SysBusDevice parent_obj;
79 uint8_t device_width; /* If 0, device width not specified. */
80 uint8_t max_device_width; /* max device width in bytes */
82 uint8_t wcycle; /* if 0, the flash is read normally */
91 uint8_t cfi_table[0x52];
93 unsigned int writeblock_size;
100 static int pflash_post_load(void *opaque, int version_id);
102 static const VMStateDescription vmstate_pflash = {
103 .name = "pflash_cfi01",
105 .minimum_version_id = 1,
106 .post_load = pflash_post_load,
107 .fields = (VMStateField[]) {
108 VMSTATE_UINT8(wcycle, pflash_t),
109 VMSTATE_UINT8(cmd, pflash_t),
110 VMSTATE_UINT8(status, pflash_t),
111 VMSTATE_UINT64(counter, pflash_t),
112 VMSTATE_END_OF_LIST()
116 static void pflash_timer (void *opaque)
118 pflash_t *pfl = opaque;
120 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
123 memory_region_rom_device_set_romd(&pfl->mem, true);
128 /* Perform a CFI query based on the bank width of the flash.
129 * If this code is called we know we have a device_width set for
132 static uint32_t pflash_cfi_query(pflash_t *pfl, hwaddr offset)
138 /* Adjust incoming offset to match expected device-width
139 * addressing. CFI query addresses are always specified in terms of
140 * the maximum supported width of the device. This means that x8
141 * devices and x8/x16 devices in x8 mode behave differently. For
142 * devices that are not used at their max width, we will be
143 * provided with addresses that use higher address bits than
144 * expected (based on the max width), so we will shift them lower
145 * so that they will match the addresses used when
146 * device_width==max_device_width.
148 boff = offset >> (ctz32(pfl->bank_width) +
149 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
151 if (boff > pfl->cfi_len) {
154 /* Now we will construct the CFI response generated by a single
155 * device, then replicate that for all devices that make up the
156 * bus. For wide parts used in x8 mode, CFI query responses
157 * are different than native byte-wide parts.
159 resp = pfl->cfi_table[boff];
160 if (pfl->device_width != pfl->max_device_width) {
161 /* The only case currently supported is x8 mode for a
164 if (pfl->device_width != 1 || pfl->bank_width > 4) {
165 DPRINTF("%s: Unsupported device configuration: "
166 "device_width=%d, max_device_width=%d\n",
167 __func__, pfl->device_width,
168 pfl->max_device_width);
171 /* CFI query data is repeated, rather than zero padded for
172 * wide devices used in x8 mode.
174 for (i = 1; i < pfl->max_device_width; i++) {
175 resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
178 /* Replicate responses for each device in bank. */
179 if (pfl->device_width < pfl->bank_width) {
180 for (i = pfl->device_width;
181 i < pfl->bank_width; i += pfl->device_width) {
182 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
191 /* Perform a device id query based on the bank width of the flash. */
192 static uint32_t pflash_devid_query(pflash_t *pfl, hwaddr offset)
198 /* Adjust incoming offset to match expected device-width
199 * addressing. Device ID read addresses are always specified in
200 * terms of the maximum supported width of the device. This means
201 * that x8 devices and x8/x16 devices in x8 mode behave
202 * differently. For devices that are not used at their max width,
203 * we will be provided with addresses that use higher address bits
204 * than expected (based on the max width), so we will shift them
205 * lower so that they will match the addresses used when
206 * device_width==max_device_width.
208 boff = offset >> (ctz32(pfl->bank_width) +
209 ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
211 /* Mask off upper bits which may be used in to query block
212 * or sector lock status at other addresses.
213 * Offsets 2/3 are block lock status, is not emulated.
215 switch (boff & 0xFF) {
218 DPRINTF("%s: Manufacturer Code %04x\n", __func__, resp);
222 DPRINTF("%s: Device ID Code %04x\n", __func__, resp);
225 DPRINTF("%s: Read Device Information offset=%x\n", __func__,
230 /* Replicate responses for each device in bank. */
231 if (pfl->device_width < pfl->bank_width) {
232 for (i = pfl->device_width;
233 i < pfl->bank_width; i += pfl->device_width) {
234 resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
241 static uint32_t pflash_data_read(pflash_t *pfl, hwaddr offset,
251 DPRINTF("%s: data offset " TARGET_FMT_plx " %02x\n",
252 __func__, offset, ret);
256 ret = p[offset] << 8;
257 ret |= p[offset + 1];
260 ret |= p[offset + 1] << 8;
262 DPRINTF("%s: data offset " TARGET_FMT_plx " %04x\n",
263 __func__, offset, ret);
267 ret = p[offset] << 24;
268 ret |= p[offset + 1] << 16;
269 ret |= p[offset + 2] << 8;
270 ret |= p[offset + 3];
273 ret |= p[offset + 1] << 8;
274 ret |= p[offset + 2] << 16;
275 ret |= p[offset + 3] << 24;
277 DPRINTF("%s: data offset " TARGET_FMT_plx " %08x\n",
278 __func__, offset, ret);
281 DPRINTF("BUG in %s\n", __func__);
287 static uint32_t pflash_read (pflash_t *pfl, hwaddr offset,
296 DPRINTF("%s: reading offset " TARGET_FMT_plx " under cmd %02x width %d\n",
297 __func__, offset, pfl->cmd, width);
301 /* This should never happen : reset state & treat it as a read */
302 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
305 /* fall through to read code */
307 /* Flash area read */
308 ret = pflash_data_read(pfl, offset, width, be);
310 case 0x10: /* Single byte program */
311 case 0x20: /* Block erase */
312 case 0x28: /* Block erase */
313 case 0x40: /* single byte program */
314 case 0x50: /* Clear status register */
315 case 0x60: /* Block /un)lock */
316 case 0x70: /* Status Register */
317 case 0xe8: /* Write block */
318 /* Status register read. Return status from each device in
322 if (pfl->device_width && width > pfl->device_width) {
323 int shift = pfl->device_width * 8;
324 while (shift + pfl->device_width * 8 <= width * 8) {
325 ret |= pfl->status << shift;
326 shift += pfl->device_width * 8;
328 } else if (!pfl->device_width && width > 2) {
329 /* Handle 32 bit flash cases where device width is not
330 * set. (Existing behavior before device width added.)
332 ret |= pfl->status << 16;
334 DPRINTF("%s: status %x\n", __func__, ret);
337 if (!pfl->device_width) {
338 /* Preserve old behavior if device width not specified */
339 boff = offset & 0xFF;
340 if (pfl->bank_width == 2) {
342 } else if (pfl->bank_width == 4) {
348 ret = pfl->ident0 << 8 | pfl->ident1;
349 DPRINTF("%s: Manufacturer Code %04x\n", __func__, ret);
352 ret = pfl->ident2 << 8 | pfl->ident3;
353 DPRINTF("%s: Device ID Code %04x\n", __func__, ret);
356 DPRINTF("%s: Read Device Information boff=%x\n", __func__,
362 /* If we have a read larger than the bank_width, combine multiple
363 * manufacturer/device ID queries into a single response.
366 for (i = 0; i < width; i += pfl->bank_width) {
367 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
368 pflash_devid_query(pfl,
369 offset + i * pfl->bank_width));
373 case 0x98: /* Query mode */
374 if (!pfl->device_width) {
375 /* Preserve old behavior if device width not specified */
376 boff = offset & 0xFF;
377 if (pfl->bank_width == 2) {
379 } else if (pfl->bank_width == 4) {
383 if (boff > pfl->cfi_len) {
386 ret = pfl->cfi_table[boff];
389 /* If we have a read larger than the bank_width, combine multiple
390 * CFI queries into a single response.
393 for (i = 0; i < width; i += pfl->bank_width) {
394 ret = deposit32(ret, i * 8, pfl->bank_width * 8,
395 pflash_cfi_query(pfl,
396 offset + i * pfl->bank_width));
405 /* update flash content on disk */
406 static void pflash_update(pflash_t *pfl, int offset,
411 offset_end = offset + size;
412 /* round to sectors */
413 offset = offset >> 9;
414 offset_end = (offset_end + 511) >> 9;
415 blk_write(pfl->blk, offset, pfl->storage + (offset << 9),
416 offset_end - offset);
420 static inline void pflash_data_write(pflash_t *pfl, hwaddr offset,
421 uint32_t value, int width, int be)
423 uint8_t *p = pfl->storage;
425 DPRINTF("%s: block write offset " TARGET_FMT_plx
426 " value %x counter %016" PRIx64 "\n",
427 __func__, offset, value, pfl->counter);
434 p[offset] = value >> 8;
435 p[offset + 1] = value;
438 p[offset + 1] = value >> 8;
443 p[offset] = value >> 24;
444 p[offset + 1] = value >> 16;
445 p[offset + 2] = value >> 8;
446 p[offset + 3] = value;
449 p[offset + 1] = value >> 8;
450 p[offset + 2] = value >> 16;
451 p[offset + 3] = value >> 24;
458 static void pflash_write(pflash_t *pfl, hwaddr offset,
459 uint32_t value, int width, int be)
466 DPRINTF("%s: writing offset " TARGET_FMT_plx " value %08x width %d wcycle 0x%x\n",
467 __func__, offset, value, width, pfl->wcycle);
470 /* Set the device in I/O access mode */
471 memory_region_rom_device_set_romd(&pfl->mem, false);
474 switch (pfl->wcycle) {
480 case 0x10: /* Single Byte Program */
481 case 0x40: /* Single Byte Program */
482 DPRINTF("%s: Single Byte Program\n", __func__);
484 case 0x20: /* Block erase */
486 offset &= ~(pfl->sector_len - 1);
488 DPRINTF("%s: block erase at " TARGET_FMT_plx " bytes %x\n",
489 __func__, offset, (unsigned)pfl->sector_len);
492 memset(p + offset, 0xff, pfl->sector_len);
493 pflash_update(pfl, offset, pfl->sector_len);
495 pfl->status |= 0x20; /* Block erase error */
497 pfl->status |= 0x80; /* Ready! */
499 case 0x50: /* Clear status bits */
500 DPRINTF("%s: Clear status bits\n", __func__);
503 case 0x60: /* Block (un)lock */
504 DPRINTF("%s: Block unlock\n", __func__);
506 case 0x70: /* Status Register */
507 DPRINTF("%s: Read status register\n", __func__);
510 case 0x90: /* Read Device ID */
511 DPRINTF("%s: Read Device information\n", __func__);
514 case 0x98: /* CFI query */
515 DPRINTF("%s: CFI query\n", __func__);
517 case 0xe8: /* Write to buffer */
518 DPRINTF("%s: Write to buffer\n", __func__);
519 pfl->status |= 0x80; /* Ready! */
521 case 0xf0: /* Probe for AMD flash */
522 DPRINTF("%s: Probe for AMD flash\n", __func__);
524 case 0xff: /* Read array mode */
525 DPRINTF("%s: Read array mode\n", __func__);
535 case 0x10: /* Single Byte Program */
536 case 0x40: /* Single Byte Program */
537 DPRINTF("%s: Single Byte Program\n", __func__);
539 pflash_data_write(pfl, offset, value, width, be);
540 pflash_update(pfl, offset, width);
542 pfl->status |= 0x10; /* Programming error */
544 pfl->status |= 0x80; /* Ready! */
547 case 0x20: /* Block erase */
549 if (cmd == 0xd0) { /* confirm */
552 } else if (cmd == 0xff) { /* read array mode */
559 /* Mask writeblock size based on device width, or bank width if
560 * device width not specified.
562 if (pfl->device_width) {
563 value = extract32(value, 0, pfl->device_width * 8);
565 value = extract32(value, 0, pfl->bank_width * 8);
567 DPRINTF("%s: block write of %x bytes\n", __func__, value);
568 pfl->counter = value;
575 } else if (cmd == 0x01) {
578 } else if (cmd == 0xff) {
581 DPRINTF("%s: Unknown (un)locking command\n", __func__);
589 DPRINTF("%s: leaving query mode\n", __func__);
598 case 0xe8: /* Block write */
600 pflash_data_write(pfl, offset, value, width, be);
602 pfl->status |= 0x10; /* Programming error */
608 hwaddr mask = pfl->writeblock_size - 1;
611 DPRINTF("%s: block write finished\n", __func__);
614 /* Flush the entire write buffer onto backing storage. */
615 pflash_update(pfl, offset & mask, pfl->writeblock_size);
617 pfl->status |= 0x10; /* Programming error */
627 case 3: /* Confirm mode */
629 case 0xe8: /* Block write */
634 DPRINTF("%s: unknown command for \"write block\"\n", __func__);
635 PFLASH_BUG("Write block confirm");
644 /* Should never happen */
645 DPRINTF("%s: invalid write state\n", __func__);
651 qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
652 "(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
653 "\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
656 memory_region_rom_device_set_romd(&pfl->mem, true);
663 static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
664 unsigned len, MemTxAttrs attrs)
666 pflash_t *pfl = opaque;
667 bool be = !!(pfl->features & (1 << PFLASH_BE));
669 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
670 *value = pflash_data_read(opaque, addr, len, be);
672 *value = pflash_read(opaque, addr, len, be);
677 static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
678 unsigned len, MemTxAttrs attrs)
680 pflash_t *pfl = opaque;
681 bool be = !!(pfl->features & (1 << PFLASH_BE));
683 if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
686 pflash_write(opaque, addr, value, len, be);
691 static const MemoryRegionOps pflash_cfi01_ops = {
692 .read_with_attrs = pflash_mem_read_with_attrs,
693 .write_with_attrs = pflash_mem_write_with_attrs,
694 .endianness = DEVICE_NATIVE_ENDIAN,
697 static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
699 pflash_t *pfl = CFI_PFLASH01(dev);
702 uint64_t blocks_per_device, device_len;
704 Error *local_err = NULL;
706 total_len = pfl->sector_len * pfl->nb_blocs;
708 /* These are only used to expose the parameters of each device
709 * in the cfi_table[].
711 num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
712 blocks_per_device = pfl->nb_blocs / num_devices;
713 device_len = pfl->sector_len * blocks_per_device;
715 /* XXX: to be fixed */
717 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
718 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
722 memory_region_init_rom_device(
723 &pfl->mem, OBJECT(dev),
726 pfl->name, total_len, &local_err);
728 error_propagate(errp, local_err);
732 vmstate_register_ram(&pfl->mem, DEVICE(pfl));
733 pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
734 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
737 /* read the initial flash content */
738 ret = blk_read(pfl->blk, 0, pfl->storage, total_len >> 9);
741 vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
742 error_setg(errp, "failed to read the initial flash content");
748 pfl->ro = blk_is_read_only(pfl->blk);
753 /* Default to devices being used at their maximum device width. This was
754 * assumed before the device_width support was added.
756 if (!pfl->max_device_width) {
757 pfl->max_device_width = pfl->device_width;
760 pfl->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
764 /* Hardcoded CFI table */
766 /* Standard "QRY" string */
767 pfl->cfi_table[0x10] = 'Q';
768 pfl->cfi_table[0x11] = 'R';
769 pfl->cfi_table[0x12] = 'Y';
770 /* Command set (Intel) */
771 pfl->cfi_table[0x13] = 0x01;
772 pfl->cfi_table[0x14] = 0x00;
773 /* Primary extended table address (none) */
774 pfl->cfi_table[0x15] = 0x31;
775 pfl->cfi_table[0x16] = 0x00;
776 /* Alternate command set (none) */
777 pfl->cfi_table[0x17] = 0x00;
778 pfl->cfi_table[0x18] = 0x00;
779 /* Alternate extended table (none) */
780 pfl->cfi_table[0x19] = 0x00;
781 pfl->cfi_table[0x1A] = 0x00;
783 pfl->cfi_table[0x1B] = 0x45;
785 pfl->cfi_table[0x1C] = 0x55;
786 /* Vpp min (no Vpp pin) */
787 pfl->cfi_table[0x1D] = 0x00;
788 /* Vpp max (no Vpp pin) */
789 pfl->cfi_table[0x1E] = 0x00;
791 pfl->cfi_table[0x1F] = 0x07;
792 /* Timeout for min size buffer write */
793 pfl->cfi_table[0x20] = 0x07;
794 /* Typical timeout for block erase */
795 pfl->cfi_table[0x21] = 0x0a;
796 /* Typical timeout for full chip erase (4096 ms) */
797 pfl->cfi_table[0x22] = 0x00;
799 pfl->cfi_table[0x23] = 0x04;
800 /* Max timeout for buffer write */
801 pfl->cfi_table[0x24] = 0x04;
802 /* Max timeout for block erase */
803 pfl->cfi_table[0x25] = 0x04;
804 /* Max timeout for chip erase */
805 pfl->cfi_table[0x26] = 0x00;
807 pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
808 /* Flash device interface (8 & 16 bits) */
809 pfl->cfi_table[0x28] = 0x02;
810 pfl->cfi_table[0x29] = 0x00;
811 /* Max number of bytes in multi-bytes write */
812 if (pfl->bank_width == 1) {
813 pfl->cfi_table[0x2A] = 0x08;
815 pfl->cfi_table[0x2A] = 0x0B;
817 pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
819 pfl->cfi_table[0x2B] = 0x00;
820 /* Number of erase block regions (uniform) */
821 pfl->cfi_table[0x2C] = 0x01;
822 /* Erase block region 1 */
823 pfl->cfi_table[0x2D] = blocks_per_device - 1;
824 pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
825 pfl->cfi_table[0x2F] = pfl->sector_len >> 8;
826 pfl->cfi_table[0x30] = pfl->sector_len >> 16;
829 pfl->cfi_table[0x31] = 'P';
830 pfl->cfi_table[0x32] = 'R';
831 pfl->cfi_table[0x33] = 'I';
833 pfl->cfi_table[0x34] = '1';
834 pfl->cfi_table[0x35] = '0';
836 pfl->cfi_table[0x36] = 0x00;
837 pfl->cfi_table[0x37] = 0x00;
838 pfl->cfi_table[0x38] = 0x00;
839 pfl->cfi_table[0x39] = 0x00;
841 pfl->cfi_table[0x3a] = 0x00;
843 pfl->cfi_table[0x3b] = 0x00;
844 pfl->cfi_table[0x3c] = 0x00;
846 pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
849 static Property pflash_cfi01_properties[] = {
850 DEFINE_PROP_DRIVE("drive", struct pflash_t, blk),
851 /* num-blocks is the number of blocks actually visible to the guest,
852 * ie the total size of the device divided by the sector length.
853 * If we're emulating flash devices wired in parallel the actual
854 * number of blocks per indvidual device will differ.
856 DEFINE_PROP_UINT32("num-blocks", struct pflash_t, nb_blocs, 0),
857 DEFINE_PROP_UINT64("sector-length", struct pflash_t, sector_len, 0),
858 /* width here is the overall width of this QEMU device in bytes.
859 * The QEMU device may be emulating a number of flash devices
860 * wired up in parallel; the width of each individual flash
861 * device should be specified via device-width. If the individual
862 * devices have a maximum width which is greater than the width
863 * they are being used for, this maximum width should be set via
864 * max-device-width (which otherwise defaults to device-width).
865 * So for instance a 32-bit wide QEMU flash device made from four
866 * 16-bit flash devices used in 8-bit wide mode would be configured
867 * with width = 4, device-width = 1, max-device-width = 2.
869 * If device-width is not specified we default to backwards
870 * compatible behaviour which is a bad emulation of two
871 * 16 bit devices making up a 32 bit wide QEMU device. This
872 * is deprecated for new uses of this device.
874 DEFINE_PROP_UINT8("width", struct pflash_t, bank_width, 0),
875 DEFINE_PROP_UINT8("device-width", struct pflash_t, device_width, 0),
876 DEFINE_PROP_UINT8("max-device-width", struct pflash_t, max_device_width, 0),
877 DEFINE_PROP_BIT("big-endian", struct pflash_t, features, PFLASH_BE, 0),
878 DEFINE_PROP_BIT("secure", struct pflash_t, features, PFLASH_SECURE, 0),
879 DEFINE_PROP_UINT16("id0", struct pflash_t, ident0, 0),
880 DEFINE_PROP_UINT16("id1", struct pflash_t, ident1, 0),
881 DEFINE_PROP_UINT16("id2", struct pflash_t, ident2, 0),
882 DEFINE_PROP_UINT16("id3", struct pflash_t, ident3, 0),
883 DEFINE_PROP_STRING("name", struct pflash_t, name),
884 DEFINE_PROP_END_OF_LIST(),
887 static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
889 DeviceClass *dc = DEVICE_CLASS(klass);
891 dc->realize = pflash_cfi01_realize;
892 dc->props = pflash_cfi01_properties;
893 dc->vmsd = &vmstate_pflash;
894 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
898 static const TypeInfo pflash_cfi01_info = {
899 .name = TYPE_CFI_PFLASH01,
900 .parent = TYPE_SYS_BUS_DEVICE,
901 .instance_size = sizeof(struct pflash_t),
902 .class_init = pflash_cfi01_class_init,
905 static void pflash_cfi01_register_types(void)
907 type_register_static(&pflash_cfi01_info);
910 type_init(pflash_cfi01_register_types)
912 pflash_t *pflash_cfi01_register(hwaddr base,
913 DeviceState *qdev, const char *name,
916 uint32_t sector_len, int nb_blocs,
917 int bank_width, uint16_t id0, uint16_t id1,
918 uint16_t id2, uint16_t id3, int be)
920 DeviceState *dev = qdev_create(NULL, TYPE_CFI_PFLASH01);
923 qdev_prop_set_drive(dev, "drive", blk, &error_abort);
925 qdev_prop_set_uint32(dev, "num-blocks", nb_blocs);
926 qdev_prop_set_uint64(dev, "sector-length", sector_len);
927 qdev_prop_set_uint8(dev, "width", bank_width);
928 qdev_prop_set_bit(dev, "big-endian", !!be);
929 qdev_prop_set_uint16(dev, "id0", id0);
930 qdev_prop_set_uint16(dev, "id1", id1);
931 qdev_prop_set_uint16(dev, "id2", id2);
932 qdev_prop_set_uint16(dev, "id3", id3);
933 qdev_prop_set_string(dev, "name", name);
934 qdev_init_nofail(dev);
936 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
937 return CFI_PFLASH01(dev);
940 MemoryRegion *pflash_cfi01_get_memory(pflash_t *fl)
945 static int pflash_post_load(void *opaque, int version_id)
947 pflash_t *pfl = opaque;
950 DPRINTF("%s: updating bdrv for %s\n", __func__, pfl->name);
951 pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);