2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag;
41 //#define DEBUG_SIGNAL
43 void cpu_loop_exit(void)
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
48 longjmp(env->jmp_env, 1);
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
82 TranslationBlock *tb, **ptb1;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
119 ptb1 = &tb->phys_hash_next;
122 /* if no translated code available, then translate it now */
125 /* flush must be done */
127 /* cannot fail at this point */
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
134 tb->cs_base = cs_base;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
163 #if defined(TARGET_I386)
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 flags |= env->intercept;
167 cs_base = env->segs[R_CS].base;
168 pc = cs_base + env->eip;
169 #elif defined(TARGET_ARM)
170 flags = env->thumb | (env->vfp.vec_len << 1)
171 | (env->vfp.vec_stride << 4);
172 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
174 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
178 #elif defined(TARGET_SPARC)
179 #ifdef TARGET_SPARC64
180 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
184 // FPU enable . Supervisor
185 flags = (env->psref << 4) | env->psrs;
189 #elif defined(TARGET_PPC)
193 #elif defined(TARGET_MIPS)
194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196 pc = env->PC[env->current_tc];
197 #elif defined(TARGET_M68K)
198 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
199 | (env->sr & SR_S) /* Bit 13 */
200 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
203 #elif defined(TARGET_SH4)
204 flags = env->sr & (SR_MD | SR_RB);
205 cs_base = 0; /* XXXXX */
207 #elif defined(TARGET_ALPHA)
211 #elif defined(TARGET_CRIS)
216 #error unsupported CPU
218 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
219 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
220 tb->flags != flags, 0)) {
221 tb = tb_find_slow(pc, cs_base, flags);
222 /* Note: we do it here to avoid a gcc bug on Mac OS X when
223 doing it in tb_find_slow */
224 if (tb_invalidated_flag) {
225 /* as some TB could have been invalidated because
226 of memory exceptions while generating the code, we
227 must recompute the hash index here */
235 /* main execution loop */
237 int cpu_exec(CPUState *env1)
239 #define DECLARE_HOST_REGS 1
240 #include "hostregs_helper.h"
241 #if defined(TARGET_SPARC)
242 #if defined(reg_REGWPTR)
243 uint32_t *saved_regwptr;
246 #if defined(__sparc__) && !defined(HOST_SOLARIS)
250 int ret, interrupt_request;
251 void (*gen_func)(void);
252 TranslationBlock *tb;
255 if (cpu_halted(env1) == EXCP_HALTED)
258 cpu_single_env = env1;
260 /* first we save global registers */
261 #define SAVE_HOST_REGS 1
262 #include "hostregs_helper.h"
264 #if defined(__sparc__) && !defined(HOST_SOLARIS)
265 /* we also save i7 because longjmp may not restore it */
266 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
270 #if defined(TARGET_I386)
271 /* put eflags in CPU temporary format */
272 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273 DF = 1 - (2 * ((env->eflags >> 10) & 1));
274 CC_OP = CC_OP_EFLAGS;
275 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
276 #elif defined(TARGET_SPARC)
277 #if defined(reg_REGWPTR)
278 saved_regwptr = REGWPTR;
280 #elif defined(TARGET_M68K)
281 env->cc_op = CC_OP_FLAGS;
282 env->cc_dest = env->sr & 0xf;
283 env->cc_x = (env->sr >> 4) & 1;
284 #elif defined(TARGET_ALPHA)
285 #elif defined(TARGET_ARM)
286 #elif defined(TARGET_PPC)
287 #elif defined(TARGET_MIPS)
288 #elif defined(TARGET_SH4)
289 #elif defined(TARGET_CRIS)
292 #error unsupported target CPU
294 env->exception_index = -1;
296 /* prepare setjmp context for exception handling */
298 if (setjmp(env->jmp_env) == 0) {
299 env->current_tb = NULL;
300 /* if an exception is pending, we execute it here */
301 if (env->exception_index >= 0) {
302 if (env->exception_index >= EXCP_INTERRUPT) {
303 /* exit request from the cpu execution loop */
304 ret = env->exception_index;
306 } else if (env->user_mode_only) {
307 /* if user mode only, we simulate a fake exception
308 which will be handled outside the cpu execution
310 #if defined(TARGET_I386)
311 do_interrupt_user(env->exception_index,
312 env->exception_is_int,
314 env->exception_next_eip);
316 ret = env->exception_index;
319 #if defined(TARGET_I386)
320 /* simulate a real cpu exception. On i386, it can
321 trigger new exceptions, but we do not handle
322 double or triple faults yet. */
323 do_interrupt(env->exception_index,
324 env->exception_is_int,
326 env->exception_next_eip, 0);
327 /* successfully delivered */
328 env->old_exception = -1;
329 #elif defined(TARGET_PPC)
331 #elif defined(TARGET_MIPS)
333 #elif defined(TARGET_SPARC)
334 do_interrupt(env->exception_index);
335 #elif defined(TARGET_ARM)
337 #elif defined(TARGET_SH4)
339 #elif defined(TARGET_ALPHA)
341 #elif defined(TARGET_CRIS)
343 #elif defined(TARGET_M68K)
347 env->exception_index = -1;
350 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
352 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
353 ret = kqemu_cpu_exec(env);
354 /* put eflags in CPU temporary format */
355 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
356 DF = 1 - (2 * ((env->eflags >> 10) & 1));
357 CC_OP = CC_OP_EFLAGS;
358 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
361 longjmp(env->jmp_env, 1);
362 } else if (ret == 2) {
363 /* softmmu execution needed */
365 if (env->interrupt_request != 0) {
366 /* hardware interrupt will be executed just after */
368 /* otherwise, we restart */
369 longjmp(env->jmp_env, 1);
375 T0 = 0; /* force lookup of first TB */
377 #if defined(__sparc__) && !defined(HOST_SOLARIS)
378 /* g1 can be modified by some libc? functions */
381 interrupt_request = env->interrupt_request;
382 if (__builtin_expect(interrupt_request, 0)
383 #if defined(TARGET_I386)
384 && env->hflags & HF_GIF_MASK
387 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
388 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
389 env->exception_index = EXCP_DEBUG;
392 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
393 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
394 if (interrupt_request & CPU_INTERRUPT_HALT) {
395 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
397 env->exception_index = EXCP_HLT;
401 #if defined(TARGET_I386)
402 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
403 !(env->hflags & HF_SMM_MASK)) {
404 svm_check_intercept(SVM_EXIT_SMI);
405 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
407 #if defined(__sparc__) && !defined(HOST_SOLARIS)
412 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
413 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
414 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
416 svm_check_intercept(SVM_EXIT_INTR);
417 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
418 intno = cpu_get_pic_interrupt(env);
419 if (loglevel & CPU_LOG_TB_IN_ASM) {
420 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
422 do_interrupt(intno, 0, 0, 0, 1);
423 /* ensure that no TB jump will be modified as
424 the program flow was changed */
425 #if defined(__sparc__) && !defined(HOST_SOLARIS)
430 #if !defined(CONFIG_USER_ONLY)
431 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
432 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
434 /* FIXME: this should respect TPR */
435 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
436 svm_check_intercept(SVM_EXIT_VINTR);
437 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
438 if (loglevel & CPU_LOG_TB_IN_ASM)
439 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
440 do_interrupt(intno, 0, 0, -1, 1);
441 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
442 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
443 #if defined(__sparc__) && !defined(HOST_SOLARIS)
450 #elif defined(TARGET_PPC)
452 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
456 if (interrupt_request & CPU_INTERRUPT_HARD) {
457 ppc_hw_interrupt(env);
458 if (env->pending_interrupts == 0)
459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
460 #if defined(__sparc__) && !defined(HOST_SOLARIS)
466 #elif defined(TARGET_MIPS)
467 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
468 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
469 (env->CP0_Status & (1 << CP0St_IE)) &&
470 !(env->CP0_Status & (1 << CP0St_EXL)) &&
471 !(env->CP0_Status & (1 << CP0St_ERL)) &&
472 !(env->hflags & MIPS_HFLAG_DM)) {
474 env->exception_index = EXCP_EXT_INTERRUPT;
477 #if defined(__sparc__) && !defined(HOST_SOLARIS)
483 #elif defined(TARGET_SPARC)
484 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
486 int pil = env->interrupt_index & 15;
487 int type = env->interrupt_index & 0xf0;
489 if (((type == TT_EXTINT) &&
490 (pil == 15 || pil > env->psrpil)) ||
492 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
493 do_interrupt(env->interrupt_index);
494 env->interrupt_index = 0;
495 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
498 #if defined(__sparc__) && !defined(HOST_SOLARIS)
504 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
505 //do_interrupt(0, 0, 0, 0, 0);
506 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
508 #elif defined(TARGET_ARM)
509 if (interrupt_request & CPU_INTERRUPT_FIQ
510 && !(env->uncached_cpsr & CPSR_F)) {
511 env->exception_index = EXCP_FIQ;
514 if (interrupt_request & CPU_INTERRUPT_HARD
515 && !(env->uncached_cpsr & CPSR_I)) {
516 env->exception_index = EXCP_IRQ;
519 #elif defined(TARGET_SH4)
521 #elif defined(TARGET_ALPHA)
522 if (interrupt_request & CPU_INTERRUPT_HARD) {
525 #elif defined(TARGET_CRIS)
526 if (interrupt_request & CPU_INTERRUPT_HARD) {
528 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
530 #elif defined(TARGET_M68K)
531 if (interrupt_request & CPU_INTERRUPT_HARD
532 && ((env->sr & SR_I) >> SR_I_SHIFT)
533 < env->pending_level) {
534 /* Real hardware gets the interrupt vector via an
535 IACK cycle at this point. Current emulated
536 hardware doesn't rely on this, so we
537 provide/save the vector when the interrupt is
539 env->exception_index = env->pending_vector;
543 /* Don't use the cached interupt_request value,
544 do_interrupt may have updated the EXITTB flag. */
545 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
546 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547 /* ensure that no TB jump will be modified as
548 the program flow was changed */
549 #if defined(__sparc__) && !defined(HOST_SOLARIS)
555 if (interrupt_request & CPU_INTERRUPT_EXIT) {
556 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
557 env->exception_index = EXCP_INTERRUPT;
562 if ((loglevel & CPU_LOG_TB_CPU)) {
563 /* restore flags in standard format */
565 #if defined(TARGET_I386)
566 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
567 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
568 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
569 #elif defined(TARGET_ARM)
570 cpu_dump_state(env, logfile, fprintf, 0);
571 #elif defined(TARGET_SPARC)
572 REGWPTR = env->regbase + (env->cwp * 16);
573 env->regwptr = REGWPTR;
574 cpu_dump_state(env, logfile, fprintf, 0);
575 #elif defined(TARGET_PPC)
576 cpu_dump_state(env, logfile, fprintf, 0);
577 #elif defined(TARGET_M68K)
578 cpu_m68k_flush_flags(env, env->cc_op);
579 env->cc_op = CC_OP_FLAGS;
580 env->sr = (env->sr & 0xffe0)
581 | env->cc_dest | (env->cc_x << 4);
582 cpu_dump_state(env, logfile, fprintf, 0);
583 #elif defined(TARGET_MIPS)
584 cpu_dump_state(env, logfile, fprintf, 0);
585 #elif defined(TARGET_SH4)
586 cpu_dump_state(env, logfile, fprintf, 0);
587 #elif defined(TARGET_ALPHA)
588 cpu_dump_state(env, logfile, fprintf, 0);
589 #elif defined(TARGET_CRIS)
590 cpu_dump_state(env, logfile, fprintf, 0);
592 #error unsupported target CPU
598 if ((loglevel & CPU_LOG_EXEC)) {
599 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
600 (long)tb->tc_ptr, tb->pc,
601 lookup_symbol(tb->pc));
604 #if defined(__sparc__) && !defined(HOST_SOLARIS)
607 /* see if we can patch the calling TB. When the TB
608 spans two pages, we cannot safely do a direct
613 (env->kqemu_enabled != 2) &&
615 tb->page_addr[1] == -1) {
617 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
618 spin_unlock(&tb_lock);
622 env->current_tb = tb;
623 /* execute the generated code */
624 gen_func = (void *)tc_ptr;
625 #if defined(__sparc__)
626 __asm__ __volatile__("call %0\n\t"
630 : "i0", "i1", "i2", "i3", "i4", "i5",
631 "o0", "o1", "o2", "o3", "o4", "o5",
632 "l0", "l1", "l2", "l3", "l4", "l5",
634 #elif defined(__arm__)
635 asm volatile ("mov pc, %0\n\t"
636 ".global exec_loop\n\t"
640 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
641 #elif defined(__ia64)
648 fp.gp = code_gen_buffer + 2 * (1 << 20);
649 (*(void (*)(void)) &fp)();
653 env->current_tb = NULL;
654 /* reset soft MMU for next block (it can currently
655 only be set by a memory fault) */
656 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
657 if (env->hflags & HF_SOFTMMU_MASK) {
658 env->hflags &= ~HF_SOFTMMU_MASK;
659 /* do not allow linking to another block */
663 #if defined(USE_KQEMU)
664 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
665 if (kqemu_is_ok(env) &&
666 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
677 #if defined(TARGET_I386)
678 /* restore flags in standard format */
679 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
680 #elif defined(TARGET_ARM)
681 /* XXX: Save/restore host fpu exception state?. */
682 #elif defined(TARGET_SPARC)
683 #if defined(reg_REGWPTR)
684 REGWPTR = saved_regwptr;
686 #elif defined(TARGET_PPC)
687 #elif defined(TARGET_M68K)
688 cpu_m68k_flush_flags(env, env->cc_op);
689 env->cc_op = CC_OP_FLAGS;
690 env->sr = (env->sr & 0xffe0)
691 | env->cc_dest | (env->cc_x << 4);
692 #elif defined(TARGET_MIPS)
693 #elif defined(TARGET_SH4)
694 #elif defined(TARGET_ALPHA)
695 #elif defined(TARGET_CRIS)
698 #error unsupported target CPU
701 /* restore global registers */
702 #if defined(__sparc__) && !defined(HOST_SOLARIS)
703 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
705 #include "hostregs_helper.h"
707 /* fail safe : never use cpu_single_env outside cpu_exec() */
708 cpu_single_env = NULL;
712 /* must only be called from the generated code as an exception can be
714 void tb_invalidate_page_range(target_ulong start, target_ulong end)
716 /* XXX: cannot enable it yet because it yields to MMU exception
717 where NIP != read address on PowerPC */
719 target_ulong phys_addr;
720 phys_addr = get_phys_addr_code(env, start);
721 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
725 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
727 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
729 CPUX86State *saved_env;
733 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
735 cpu_x86_load_seg_cache(env, seg_reg, selector,
736 (selector << 4), 0xffff, 0);
738 load_seg(seg_reg, selector);
743 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
745 CPUX86State *saved_env;
750 helper_fsave((target_ulong)ptr, data32);
755 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
757 CPUX86State *saved_env;
762 helper_frstor((target_ulong)ptr, data32);
767 #endif /* TARGET_I386 */
769 #if !defined(CONFIG_SOFTMMU)
771 #if defined(TARGET_I386)
773 /* 'pc' is the host PC at which the exception was raised. 'address' is
774 the effective address of the memory exception. 'is_write' is 1 if a
775 write caused the exception and otherwise 0'. 'old_set' is the
776 signal set which should be restored */
777 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
778 int is_write, sigset_t *old_set,
781 TranslationBlock *tb;
785 env = cpu_single_env; /* XXX: find a correct solution for multithread */
786 #if defined(DEBUG_SIGNAL)
787 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
788 pc, address, is_write, *(unsigned long *)old_set);
790 /* XXX: locking issue */
791 if (is_write && page_unprotect(h2g(address), pc, puc)) {
795 /* see if it is an MMU fault */
796 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
798 return 0; /* not an MMU fault */
800 return 1; /* the MMU fault was handled without causing real CPU fault */
801 /* now we have a real cpu fault */
804 /* the PC is inside the translated code. It means that we have
805 a virtual CPU fault */
806 cpu_restore_state(tb, env, pc, puc);
810 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
811 env->eip, env->cr[2], env->error_code);
813 /* we restore the process signal mask as the sigreturn should
814 do it (XXX: use sigsetjmp) */
815 sigprocmask(SIG_SETMASK, old_set, NULL);
816 raise_exception_err(env->exception_index, env->error_code);
818 /* activate soft MMU for this block */
819 env->hflags |= HF_SOFTMMU_MASK;
820 cpu_resume_from_signal(env, puc);
822 /* never comes here */
826 #elif defined(TARGET_ARM)
827 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
828 int is_write, sigset_t *old_set,
831 TranslationBlock *tb;
835 env = cpu_single_env; /* XXX: find a correct solution for multithread */
836 #if defined(DEBUG_SIGNAL)
837 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
838 pc, address, is_write, *(unsigned long *)old_set);
840 /* XXX: locking issue */
841 if (is_write && page_unprotect(h2g(address), pc, puc)) {
844 /* see if it is an MMU fault */
845 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
847 return 0; /* not an MMU fault */
849 return 1; /* the MMU fault was handled without causing real CPU fault */
850 /* now we have a real cpu fault */
853 /* the PC is inside the translated code. It means that we have
854 a virtual CPU fault */
855 cpu_restore_state(tb, env, pc, puc);
857 /* we restore the process signal mask as the sigreturn should
858 do it (XXX: use sigsetjmp) */
859 sigprocmask(SIG_SETMASK, old_set, NULL);
862 #elif defined(TARGET_SPARC)
863 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
864 int is_write, sigset_t *old_set,
867 TranslationBlock *tb;
871 env = cpu_single_env; /* XXX: find a correct solution for multithread */
872 #if defined(DEBUG_SIGNAL)
873 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
874 pc, address, is_write, *(unsigned long *)old_set);
876 /* XXX: locking issue */
877 if (is_write && page_unprotect(h2g(address), pc, puc)) {
880 /* see if it is an MMU fault */
881 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
883 return 0; /* not an MMU fault */
885 return 1; /* the MMU fault was handled without causing real CPU fault */
886 /* now we have a real cpu fault */
889 /* the PC is inside the translated code. It means that we have
890 a virtual CPU fault */
891 cpu_restore_state(tb, env, pc, puc);
893 /* we restore the process signal mask as the sigreturn should
894 do it (XXX: use sigsetjmp) */
895 sigprocmask(SIG_SETMASK, old_set, NULL);
898 #elif defined (TARGET_PPC)
899 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
900 int is_write, sigset_t *old_set,
903 TranslationBlock *tb;
907 env = cpu_single_env; /* XXX: find a correct solution for multithread */
908 #if defined(DEBUG_SIGNAL)
909 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
910 pc, address, is_write, *(unsigned long *)old_set);
912 /* XXX: locking issue */
913 if (is_write && page_unprotect(h2g(address), pc, puc)) {
917 /* see if it is an MMU fault */
918 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
920 return 0; /* not an MMU fault */
922 return 1; /* the MMU fault was handled without causing real CPU fault */
924 /* now we have a real cpu fault */
927 /* the PC is inside the translated code. It means that we have
928 a virtual CPU fault */
929 cpu_restore_state(tb, env, pc, puc);
933 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
934 env->nip, env->error_code, tb);
936 /* we restore the process signal mask as the sigreturn should
937 do it (XXX: use sigsetjmp) */
938 sigprocmask(SIG_SETMASK, old_set, NULL);
939 do_raise_exception_err(env->exception_index, env->error_code);
941 /* activate soft MMU for this block */
942 cpu_resume_from_signal(env, puc);
944 /* never comes here */
948 #elif defined(TARGET_M68K)
949 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
950 int is_write, sigset_t *old_set,
953 TranslationBlock *tb;
957 env = cpu_single_env; /* XXX: find a correct solution for multithread */
958 #if defined(DEBUG_SIGNAL)
959 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
960 pc, address, is_write, *(unsigned long *)old_set);
962 /* XXX: locking issue */
963 if (is_write && page_unprotect(address, pc, puc)) {
966 /* see if it is an MMU fault */
967 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
969 return 0; /* not an MMU fault */
971 return 1; /* the MMU fault was handled without causing real CPU fault */
972 /* now we have a real cpu fault */
975 /* the PC is inside the translated code. It means that we have
976 a virtual CPU fault */
977 cpu_restore_state(tb, env, pc, puc);
979 /* we restore the process signal mask as the sigreturn should
980 do it (XXX: use sigsetjmp) */
981 sigprocmask(SIG_SETMASK, old_set, NULL);
983 /* never comes here */
987 #elif defined (TARGET_MIPS)
988 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
989 int is_write, sigset_t *old_set,
992 TranslationBlock *tb;
996 env = cpu_single_env; /* XXX: find a correct solution for multithread */
997 #if defined(DEBUG_SIGNAL)
998 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
999 pc, address, is_write, *(unsigned long *)old_set);
1001 /* XXX: locking issue */
1002 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1006 /* see if it is an MMU fault */
1007 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1009 return 0; /* not an MMU fault */
1011 return 1; /* the MMU fault was handled without causing real CPU fault */
1013 /* now we have a real cpu fault */
1014 tb = tb_find_pc(pc);
1016 /* the PC is inside the translated code. It means that we have
1017 a virtual CPU fault */
1018 cpu_restore_state(tb, env, pc, puc);
1022 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1023 env->PC, env->error_code, tb);
1025 /* we restore the process signal mask as the sigreturn should
1026 do it (XXX: use sigsetjmp) */
1027 sigprocmask(SIG_SETMASK, old_set, NULL);
1028 do_raise_exception_err(env->exception_index, env->error_code);
1030 /* activate soft MMU for this block */
1031 cpu_resume_from_signal(env, puc);
1033 /* never comes here */
1037 #elif defined (TARGET_SH4)
1038 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1039 int is_write, sigset_t *old_set,
1042 TranslationBlock *tb;
1046 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1047 #if defined(DEBUG_SIGNAL)
1048 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1049 pc, address, is_write, *(unsigned long *)old_set);
1051 /* XXX: locking issue */
1052 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1056 /* see if it is an MMU fault */
1057 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1059 return 0; /* not an MMU fault */
1061 return 1; /* the MMU fault was handled without causing real CPU fault */
1063 /* now we have a real cpu fault */
1064 tb = tb_find_pc(pc);
1066 /* the PC is inside the translated code. It means that we have
1067 a virtual CPU fault */
1068 cpu_restore_state(tb, env, pc, puc);
1071 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1072 env->nip, env->error_code, tb);
1074 /* we restore the process signal mask as the sigreturn should
1075 do it (XXX: use sigsetjmp) */
1076 sigprocmask(SIG_SETMASK, old_set, NULL);
1078 /* never comes here */
1082 #elif defined (TARGET_ALPHA)
1083 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1084 int is_write, sigset_t *old_set,
1087 TranslationBlock *tb;
1091 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1092 #if defined(DEBUG_SIGNAL)
1093 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1094 pc, address, is_write, *(unsigned long *)old_set);
1096 /* XXX: locking issue */
1097 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1101 /* see if it is an MMU fault */
1102 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1104 return 0; /* not an MMU fault */
1106 return 1; /* the MMU fault was handled without causing real CPU fault */
1108 /* now we have a real cpu fault */
1109 tb = tb_find_pc(pc);
1111 /* the PC is inside the translated code. It means that we have
1112 a virtual CPU fault */
1113 cpu_restore_state(tb, env, pc, puc);
1116 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1117 env->nip, env->error_code, tb);
1119 /* we restore the process signal mask as the sigreturn should
1120 do it (XXX: use sigsetjmp) */
1121 sigprocmask(SIG_SETMASK, old_set, NULL);
1123 /* never comes here */
1126 #elif defined (TARGET_CRIS)
1127 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1128 int is_write, sigset_t *old_set,
1131 TranslationBlock *tb;
1135 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1136 #if defined(DEBUG_SIGNAL)
1137 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1138 pc, address, is_write, *(unsigned long *)old_set);
1140 /* XXX: locking issue */
1141 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1145 /* see if it is an MMU fault */
1146 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1148 return 0; /* not an MMU fault */
1150 return 1; /* the MMU fault was handled without causing real CPU fault */
1152 /* now we have a real cpu fault */
1153 tb = tb_find_pc(pc);
1155 /* the PC is inside the translated code. It means that we have
1156 a virtual CPU fault */
1157 cpu_restore_state(tb, env, pc, puc);
1160 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1161 env->nip, env->error_code, tb);
1163 /* we restore the process signal mask as the sigreturn should
1164 do it (XXX: use sigsetjmp) */
1165 sigprocmask(SIG_SETMASK, old_set, NULL);
1167 /* never comes here */
1172 #error unsupported target CPU
1175 #if defined(__i386__)
1177 #if defined(__APPLE__)
1178 # include <sys/ucontext.h>
1180 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1181 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1182 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1184 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1185 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1186 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1189 int cpu_signal_handler(int host_signum, void *pinfo,
1192 siginfo_t *info = pinfo;
1193 struct ucontext *uc = puc;
1201 #define REG_TRAPNO TRAPNO
1204 trapno = TRAP_sig(uc);
1205 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1207 (ERROR_sig(uc) >> 1) & 1 : 0,
1208 &uc->uc_sigmask, puc);
1211 #elif defined(__x86_64__)
1213 int cpu_signal_handler(int host_signum, void *pinfo,
1216 siginfo_t *info = pinfo;
1217 struct ucontext *uc = puc;
1220 pc = uc->uc_mcontext.gregs[REG_RIP];
1221 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1222 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1223 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1224 &uc->uc_sigmask, puc);
1227 #elif defined(__powerpc__)
1229 /***********************************************************************
1230 * signal context platform-specific definitions
1234 /* All Registers access - only for local access */
1235 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1236 /* Gpr Registers access */
1237 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1238 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1239 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1240 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1241 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1242 # define LR_sig(context) REG_sig(link, context) /* Link register */
1243 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1244 /* Float Registers access */
1245 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1246 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1247 /* Exception Registers access */
1248 # define DAR_sig(context) REG_sig(dar, context)
1249 # define DSISR_sig(context) REG_sig(dsisr, context)
1250 # define TRAP_sig(context) REG_sig(trap, context)
1254 # include <sys/ucontext.h>
1255 typedef struct ucontext SIGCONTEXT;
1256 /* All Registers access - only for local access */
1257 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1258 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1259 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1260 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1261 /* Gpr Registers access */
1262 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1263 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1264 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1265 # define CTR_sig(context) REG_sig(ctr, context)
1266 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1267 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1268 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1269 /* Float Registers access */
1270 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1271 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1272 /* Exception Registers access */
1273 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1274 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1275 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1276 #endif /* __APPLE__ */
1278 int cpu_signal_handler(int host_signum, void *pinfo,
1281 siginfo_t *info = pinfo;
1282 struct ucontext *uc = puc;
1290 if (DSISR_sig(uc) & 0x00800000)
1293 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1296 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1297 is_write, &uc->uc_sigmask, puc);
1300 #elif defined(__alpha__)
1302 int cpu_signal_handler(int host_signum, void *pinfo,
1305 siginfo_t *info = pinfo;
1306 struct ucontext *uc = puc;
1307 uint32_t *pc = uc->uc_mcontext.sc_pc;
1308 uint32_t insn = *pc;
1311 /* XXX: need kernel patch to get write flag faster */
1312 switch (insn >> 26) {
1327 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1328 is_write, &uc->uc_sigmask, puc);
1330 #elif defined(__sparc__)
1332 int cpu_signal_handler(int host_signum, void *pinfo,
1335 siginfo_t *info = pinfo;
1336 uint32_t *regs = (uint32_t *)(info + 1);
1337 void *sigmask = (regs + 20);
1342 /* XXX: is there a standard glibc define ? */
1344 /* XXX: need kernel patch to get write flag faster */
1346 insn = *(uint32_t *)pc;
1347 if ((insn >> 30) == 3) {
1348 switch((insn >> 19) & 0x3f) {
1360 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1361 is_write, sigmask, NULL);
1364 #elif defined(__arm__)
1366 int cpu_signal_handler(int host_signum, void *pinfo,
1369 siginfo_t *info = pinfo;
1370 struct ucontext *uc = puc;
1374 pc = uc->uc_mcontext.gregs[R15];
1375 /* XXX: compute is_write */
1377 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1379 &uc->uc_sigmask, puc);
1382 #elif defined(__mc68000)
1384 int cpu_signal_handler(int host_signum, void *pinfo,
1387 siginfo_t *info = pinfo;
1388 struct ucontext *uc = puc;
1392 pc = uc->uc_mcontext.gregs[16];
1393 /* XXX: compute is_write */
1395 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1397 &uc->uc_sigmask, puc);
1400 #elif defined(__ia64)
1403 /* This ought to be in <bits/siginfo.h>... */
1404 # define __ISR_VALID 1
1407 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1409 siginfo_t *info = pinfo;
1410 struct ucontext *uc = puc;
1414 ip = uc->uc_mcontext.sc_ip;
1415 switch (host_signum) {
1421 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1422 /* ISR.W (write-access) is bit 33: */
1423 is_write = (info->si_isr >> 33) & 1;
1429 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1431 &uc->uc_sigmask, puc);
1434 #elif defined(__s390__)
1436 int cpu_signal_handler(int host_signum, void *pinfo,
1439 siginfo_t *info = pinfo;
1440 struct ucontext *uc = puc;
1444 pc = uc->uc_mcontext.psw.addr;
1445 /* XXX: compute is_write */
1447 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1448 is_write, &uc->uc_sigmask, puc);
1451 #elif defined(__mips__)
1453 int cpu_signal_handler(int host_signum, void *pinfo,
1456 siginfo_t *info = pinfo;
1457 struct ucontext *uc = puc;
1458 greg_t pc = uc->uc_mcontext.pc;
1461 /* XXX: compute is_write */
1463 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1464 is_write, &uc->uc_sigmask, puc);
1469 #error host CPU specific signal handler needed
1473 #endif /* !defined(CONFIG_SOFTMMU) */