]> Git Repo - qemu.git/blob - softmmu/memory.c
Merge remote-tracking branch 'remotes/ehabkost-gl/tags/machine-next-pull-request...
[qemu.git] / softmmu / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <[email protected]>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "qemu/osdep.h"
17 #include "qemu/log.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace.h"
27
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
36
37 //#define DEBUG_UNASSIGNED
38
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 bool global_dirty_log;
43
44 static QTAILQ_HEAD(, MemoryListener) memory_listeners
45     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
46
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48     = QTAILQ_HEAD_INITIALIZER(address_spaces);
49
50 static GHashTable *flat_views;
51
52 typedef struct AddrRange AddrRange;
53
54 /*
55  * Note that signed integers are needed for negative offsetting in aliases
56  * (large MemoryRegion::alias_offset).
57  */
58 struct AddrRange {
59     Int128 start;
60     Int128 size;
61 };
62
63 static AddrRange addrrange_make(Int128 start, Int128 size)
64 {
65     return (AddrRange) { start, size };
66 }
67
68 static bool addrrange_equal(AddrRange r1, AddrRange r2)
69 {
70     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
71 }
72
73 static Int128 addrrange_end(AddrRange r)
74 {
75     return int128_add(r.start, r.size);
76 }
77
78 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
79 {
80     int128_addto(&range.start, delta);
81     return range;
82 }
83
84 static bool addrrange_contains(AddrRange range, Int128 addr)
85 {
86     return int128_ge(addr, range.start)
87         && int128_lt(addr, addrrange_end(range));
88 }
89
90 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
91 {
92     return addrrange_contains(r1, r2.start)
93         || addrrange_contains(r2, r1.start);
94 }
95
96 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
97 {
98     Int128 start = int128_max(r1.start, r2.start);
99     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
100     return addrrange_make(start, int128_sub(end, start));
101 }
102
103 enum ListenerDirection { Forward, Reverse };
104
105 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
106     do {                                                                \
107         MemoryListener *_listener;                                      \
108                                                                         \
109         switch (_direction) {                                           \
110         case Forward:                                                   \
111             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
112                 if (_listener->_callback) {                             \
113                     _listener->_callback(_listener, ##_args);           \
114                 }                                                       \
115             }                                                           \
116             break;                                                      \
117         case Reverse:                                                   \
118             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
119                 if (_listener->_callback) {                             \
120                     _listener->_callback(_listener, ##_args);           \
121                 }                                                       \
122             }                                                           \
123             break;                                                      \
124         default:                                                        \
125             abort();                                                    \
126         }                                                               \
127     } while (0)
128
129 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130     do {                                                                \
131         MemoryListener *_listener;                                      \
132                                                                         \
133         switch (_direction) {                                           \
134         case Forward:                                                   \
135             QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) {     \
136                 if (_listener->_callback) {                             \
137                     _listener->_callback(_listener, _section, ##_args); \
138                 }                                                       \
139             }                                                           \
140             break;                                                      \
141         case Reverse:                                                   \
142             QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
143                 if (_listener->_callback) {                             \
144                     _listener->_callback(_listener, _section, ##_args); \
145                 }                                                       \
146             }                                                           \
147             break;                                                      \
148         default:                                                        \
149             abort();                                                    \
150         }                                                               \
151     } while (0)
152
153 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
154 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
155     do {                                                                \
156         MemoryRegionSection mrs = section_from_flat_range(fr,           \
157                 address_space_to_flatview(as));                         \
158         MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args);         \
159     } while(0)
160
161 struct CoalescedMemoryRange {
162     AddrRange addr;
163     QTAILQ_ENTRY(CoalescedMemoryRange) link;
164 };
165
166 struct MemoryRegionIoeventfd {
167     AddrRange addr;
168     bool match_data;
169     uint64_t data;
170     EventNotifier *e;
171 };
172
173 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
174                                            MemoryRegionIoeventfd *b)
175 {
176     if (int128_lt(a->addr.start, b->addr.start)) {
177         return true;
178     } else if (int128_gt(a->addr.start, b->addr.start)) {
179         return false;
180     } else if (int128_lt(a->addr.size, b->addr.size)) {
181         return true;
182     } else if (int128_gt(a->addr.size, b->addr.size)) {
183         return false;
184     } else if (a->match_data < b->match_data) {
185         return true;
186     } else  if (a->match_data > b->match_data) {
187         return false;
188     } else if (a->match_data) {
189         if (a->data < b->data) {
190             return true;
191         } else if (a->data > b->data) {
192             return false;
193         }
194     }
195     if (a->e < b->e) {
196         return true;
197     } else if (a->e > b->e) {
198         return false;
199     }
200     return false;
201 }
202
203 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
204                                           MemoryRegionIoeventfd *b)
205 {
206     if (int128_eq(a->addr.start, b->addr.start) &&
207         (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
208          (int128_eq(a->addr.size, b->addr.size) &&
209           (a->match_data == b->match_data) &&
210           ((a->match_data && (a->data == b->data)) || !a->match_data) &&
211           (a->e == b->e))))
212         return true;
213
214     return false;
215 }
216
217 /* Range of memory in the global map.  Addresses are absolute. */
218 struct FlatRange {
219     MemoryRegion *mr;
220     hwaddr offset_in_region;
221     AddrRange addr;
222     uint8_t dirty_log_mask;
223     bool romd_mode;
224     bool readonly;
225     bool nonvolatile;
226 };
227
228 #define FOR_EACH_FLAT_RANGE(var, view)          \
229     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
230
231 static inline MemoryRegionSection
232 section_from_flat_range(FlatRange *fr, FlatView *fv)
233 {
234     return (MemoryRegionSection) {
235         .mr = fr->mr,
236         .fv = fv,
237         .offset_within_region = fr->offset_in_region,
238         .size = fr->addr.size,
239         .offset_within_address_space = int128_get64(fr->addr.start),
240         .readonly = fr->readonly,
241         .nonvolatile = fr->nonvolatile,
242     };
243 }
244
245 static bool flatrange_equal(FlatRange *a, FlatRange *b)
246 {
247     return a->mr == b->mr
248         && addrrange_equal(a->addr, b->addr)
249         && a->offset_in_region == b->offset_in_region
250         && a->romd_mode == b->romd_mode
251         && a->readonly == b->readonly
252         && a->nonvolatile == b->nonvolatile;
253 }
254
255 static FlatView *flatview_new(MemoryRegion *mr_root)
256 {
257     FlatView *view;
258
259     view = g_new0(FlatView, 1);
260     view->ref = 1;
261     view->root = mr_root;
262     memory_region_ref(mr_root);
263     trace_flatview_new(view, mr_root);
264
265     return view;
266 }
267
268 /* Insert a range into a given position.  Caller is responsible for maintaining
269  * sorting order.
270  */
271 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
272 {
273     if (view->nr == view->nr_allocated) {
274         view->nr_allocated = MAX(2 * view->nr, 10);
275         view->ranges = g_realloc(view->ranges,
276                                     view->nr_allocated * sizeof(*view->ranges));
277     }
278     memmove(view->ranges + pos + 1, view->ranges + pos,
279             (view->nr - pos) * sizeof(FlatRange));
280     view->ranges[pos] = *range;
281     memory_region_ref(range->mr);
282     ++view->nr;
283 }
284
285 static void flatview_destroy(FlatView *view)
286 {
287     int i;
288
289     trace_flatview_destroy(view, view->root);
290     if (view->dispatch) {
291         address_space_dispatch_free(view->dispatch);
292     }
293     for (i = 0; i < view->nr; i++) {
294         memory_region_unref(view->ranges[i].mr);
295     }
296     g_free(view->ranges);
297     memory_region_unref(view->root);
298     g_free(view);
299 }
300
301 static bool flatview_ref(FlatView *view)
302 {
303     return qatomic_fetch_inc_nonzero(&view->ref) > 0;
304 }
305
306 void flatview_unref(FlatView *view)
307 {
308     if (qatomic_fetch_dec(&view->ref) == 1) {
309         trace_flatview_destroy_rcu(view, view->root);
310         assert(view->root);
311         call_rcu(view, flatview_destroy, rcu);
312     }
313 }
314
315 static bool can_merge(FlatRange *r1, FlatRange *r2)
316 {
317     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
318         && r1->mr == r2->mr
319         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
320                                 r1->addr.size),
321                      int128_make64(r2->offset_in_region))
322         && r1->dirty_log_mask == r2->dirty_log_mask
323         && r1->romd_mode == r2->romd_mode
324         && r1->readonly == r2->readonly
325         && r1->nonvolatile == r2->nonvolatile;
326 }
327
328 /* Attempt to simplify a view by merging adjacent ranges */
329 static void flatview_simplify(FlatView *view)
330 {
331     unsigned i, j, k;
332
333     i = 0;
334     while (i < view->nr) {
335         j = i + 1;
336         while (j < view->nr
337                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
338             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
339             ++j;
340         }
341         ++i;
342         for (k = i; k < j; k++) {
343             memory_region_unref(view->ranges[k].mr);
344         }
345         memmove(&view->ranges[i], &view->ranges[j],
346                 (view->nr - j) * sizeof(view->ranges[j]));
347         view->nr -= j - i;
348     }
349 }
350
351 static bool memory_region_big_endian(MemoryRegion *mr)
352 {
353 #ifdef TARGET_WORDS_BIGENDIAN
354     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
355 #else
356     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
357 #endif
358 }
359
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
361 {
362     if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
363         switch (op & MO_SIZE) {
364         case MO_8:
365             break;
366         case MO_16:
367             *data = bswap16(*data);
368             break;
369         case MO_32:
370             *data = bswap32(*data);
371             break;
372         case MO_64:
373             *data = bswap64(*data);
374             break;
375         default:
376             g_assert_not_reached();
377         }
378     }
379 }
380
381 static inline void memory_region_shift_read_access(uint64_t *value,
382                                                    signed shift,
383                                                    uint64_t mask,
384                                                    uint64_t tmp)
385 {
386     if (shift >= 0) {
387         *value |= (tmp & mask) << shift;
388     } else {
389         *value |= (tmp & mask) >> -shift;
390     }
391 }
392
393 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
394                                                         signed shift,
395                                                         uint64_t mask)
396 {
397     uint64_t tmp;
398
399     if (shift >= 0) {
400         tmp = (*value >> shift) & mask;
401     } else {
402         tmp = (*value << -shift) & mask;
403     }
404
405     return tmp;
406 }
407
408 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
409 {
410     MemoryRegion *root;
411     hwaddr abs_addr = offset;
412
413     abs_addr += mr->addr;
414     for (root = mr; root->container; ) {
415         root = root->container;
416         abs_addr += root->addr;
417     }
418
419     return abs_addr;
420 }
421
422 static int get_cpu_index(void)
423 {
424     if (current_cpu) {
425         return current_cpu->cpu_index;
426     }
427     return -1;
428 }
429
430 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
431                                                 hwaddr addr,
432                                                 uint64_t *value,
433                                                 unsigned size,
434                                                 signed shift,
435                                                 uint64_t mask,
436                                                 MemTxAttrs attrs)
437 {
438     uint64_t tmp;
439
440     tmp = mr->ops->read(mr->opaque, addr, size);
441     if (mr->subpage) {
442         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
443     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
444         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
445         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
446     }
447     memory_region_shift_read_access(value, shift, mask, tmp);
448     return MEMTX_OK;
449 }
450
451 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
452                                                           hwaddr addr,
453                                                           uint64_t *value,
454                                                           unsigned size,
455                                                           signed shift,
456                                                           uint64_t mask,
457                                                           MemTxAttrs attrs)
458 {
459     uint64_t tmp = 0;
460     MemTxResult r;
461
462     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
463     if (mr->subpage) {
464         trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
465     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
466         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
467         trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
468     }
469     memory_region_shift_read_access(value, shift, mask, tmp);
470     return r;
471 }
472
473 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
474                                                 hwaddr addr,
475                                                 uint64_t *value,
476                                                 unsigned size,
477                                                 signed shift,
478                                                 uint64_t mask,
479                                                 MemTxAttrs attrs)
480 {
481     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
482
483     if (mr->subpage) {
484         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
485     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
486         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
487         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
488     }
489     mr->ops->write(mr->opaque, addr, tmp, size);
490     return MEMTX_OK;
491 }
492
493 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
494                                                            hwaddr addr,
495                                                            uint64_t *value,
496                                                            unsigned size,
497                                                            signed shift,
498                                                            uint64_t mask,
499                                                            MemTxAttrs attrs)
500 {
501     uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
502
503     if (mr->subpage) {
504         trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
505     } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
506         hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
507         trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
508     }
509     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
510 }
511
512 static MemTxResult access_with_adjusted_size(hwaddr addr,
513                                       uint64_t *value,
514                                       unsigned size,
515                                       unsigned access_size_min,
516                                       unsigned access_size_max,
517                                       MemTxResult (*access_fn)
518                                                   (MemoryRegion *mr,
519                                                    hwaddr addr,
520                                                    uint64_t *value,
521                                                    unsigned size,
522                                                    signed shift,
523                                                    uint64_t mask,
524                                                    MemTxAttrs attrs),
525                                       MemoryRegion *mr,
526                                       MemTxAttrs attrs)
527 {
528     uint64_t access_mask;
529     unsigned access_size;
530     unsigned i;
531     MemTxResult r = MEMTX_OK;
532
533     if (!access_size_min) {
534         access_size_min = 1;
535     }
536     if (!access_size_max) {
537         access_size_max = 4;
538     }
539
540     /* FIXME: support unaligned access? */
541     access_size = MAX(MIN(size, access_size_max), access_size_min);
542     access_mask = MAKE_64BIT_MASK(0, access_size * 8);
543     if (memory_region_big_endian(mr)) {
544         for (i = 0; i < size; i += access_size) {
545             r |= access_fn(mr, addr + i, value, access_size,
546                         (size - access_size - i) * 8, access_mask, attrs);
547         }
548     } else {
549         for (i = 0; i < size; i += access_size) {
550             r |= access_fn(mr, addr + i, value, access_size, i * 8,
551                         access_mask, attrs);
552         }
553     }
554     return r;
555 }
556
557 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
558 {
559     AddressSpace *as;
560
561     while (mr->container) {
562         mr = mr->container;
563     }
564     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
565         if (mr == as->root) {
566             return as;
567         }
568     }
569     return NULL;
570 }
571
572 /* Render a memory region into the global view.  Ranges in @view obscure
573  * ranges in @mr.
574  */
575 static void render_memory_region(FlatView *view,
576                                  MemoryRegion *mr,
577                                  Int128 base,
578                                  AddrRange clip,
579                                  bool readonly,
580                                  bool nonvolatile)
581 {
582     MemoryRegion *subregion;
583     unsigned i;
584     hwaddr offset_in_region;
585     Int128 remain;
586     Int128 now;
587     FlatRange fr;
588     AddrRange tmp;
589
590     if (!mr->enabled) {
591         return;
592     }
593
594     int128_addto(&base, int128_make64(mr->addr));
595     readonly |= mr->readonly;
596     nonvolatile |= mr->nonvolatile;
597
598     tmp = addrrange_make(base, mr->size);
599
600     if (!addrrange_intersects(tmp, clip)) {
601         return;
602     }
603
604     clip = addrrange_intersection(tmp, clip);
605
606     if (mr->alias) {
607         int128_subfrom(&base, int128_make64(mr->alias->addr));
608         int128_subfrom(&base, int128_make64(mr->alias_offset));
609         render_memory_region(view, mr->alias, base, clip,
610                              readonly, nonvolatile);
611         return;
612     }
613
614     /* Render subregions in priority order. */
615     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
616         render_memory_region(view, subregion, base, clip,
617                              readonly, nonvolatile);
618     }
619
620     if (!mr->terminates) {
621         return;
622     }
623
624     offset_in_region = int128_get64(int128_sub(clip.start, base));
625     base = clip.start;
626     remain = clip.size;
627
628     fr.mr = mr;
629     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
630     fr.romd_mode = mr->romd_mode;
631     fr.readonly = readonly;
632     fr.nonvolatile = nonvolatile;
633
634     /* Render the region itself into any gaps left by the current view. */
635     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
636         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
637             continue;
638         }
639         if (int128_lt(base, view->ranges[i].addr.start)) {
640             now = int128_min(remain,
641                              int128_sub(view->ranges[i].addr.start, base));
642             fr.offset_in_region = offset_in_region;
643             fr.addr = addrrange_make(base, now);
644             flatview_insert(view, i, &fr);
645             ++i;
646             int128_addto(&base, now);
647             offset_in_region += int128_get64(now);
648             int128_subfrom(&remain, now);
649         }
650         now = int128_sub(int128_min(int128_add(base, remain),
651                                     addrrange_end(view->ranges[i].addr)),
652                          base);
653         int128_addto(&base, now);
654         offset_in_region += int128_get64(now);
655         int128_subfrom(&remain, now);
656     }
657     if (int128_nz(remain)) {
658         fr.offset_in_region = offset_in_region;
659         fr.addr = addrrange_make(base, remain);
660         flatview_insert(view, i, &fr);
661     }
662 }
663
664 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
665 {
666     FlatRange *fr;
667
668     assert(fv);
669     assert(cb);
670
671     FOR_EACH_FLAT_RANGE(fr, fv) {
672         if (cb(fr->addr.start, fr->addr.size, fr->mr,
673                fr->offset_in_region, opaque)) {
674             break;
675         }
676     }
677 }
678
679 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
680 {
681     while (mr->enabled) {
682         if (mr->alias) {
683             if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
684                 /* The alias is included in its entirety.  Use it as
685                  * the "real" root, so that we can share more FlatViews.
686                  */
687                 mr = mr->alias;
688                 continue;
689             }
690         } else if (!mr->terminates) {
691             unsigned int found = 0;
692             MemoryRegion *child, *next = NULL;
693             QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
694                 if (child->enabled) {
695                     if (++found > 1) {
696                         next = NULL;
697                         break;
698                     }
699                     if (!child->addr && int128_ge(mr->size, child->size)) {
700                         /* A child is included in its entirety.  If it's the only
701                          * enabled one, use it in the hope of finding an alias down the
702                          * way. This will also let us share FlatViews.
703                          */
704                         next = child;
705                     }
706                 }
707             }
708             if (found == 0) {
709                 return NULL;
710             }
711             if (next) {
712                 mr = next;
713                 continue;
714             }
715         }
716
717         return mr;
718     }
719
720     return NULL;
721 }
722
723 /* Render a memory topology into a list of disjoint absolute ranges. */
724 static FlatView *generate_memory_topology(MemoryRegion *mr)
725 {
726     int i;
727     FlatView *view;
728
729     view = flatview_new(mr);
730
731     if (mr) {
732         render_memory_region(view, mr, int128_zero(),
733                              addrrange_make(int128_zero(), int128_2_64()),
734                              false, false);
735     }
736     flatview_simplify(view);
737
738     view->dispatch = address_space_dispatch_new(view);
739     for (i = 0; i < view->nr; i++) {
740         MemoryRegionSection mrs =
741             section_from_flat_range(&view->ranges[i], view);
742         flatview_add_to_dispatch(view, &mrs);
743     }
744     address_space_dispatch_compact(view->dispatch);
745     g_hash_table_replace(flat_views, mr, view);
746
747     return view;
748 }
749
750 static void address_space_add_del_ioeventfds(AddressSpace *as,
751                                              MemoryRegionIoeventfd *fds_new,
752                                              unsigned fds_new_nb,
753                                              MemoryRegionIoeventfd *fds_old,
754                                              unsigned fds_old_nb)
755 {
756     unsigned iold, inew;
757     MemoryRegionIoeventfd *fd;
758     MemoryRegionSection section;
759
760     /* Generate a symmetric difference of the old and new fd sets, adding
761      * and deleting as necessary.
762      */
763
764     iold = inew = 0;
765     while (iold < fds_old_nb || inew < fds_new_nb) {
766         if (iold < fds_old_nb
767             && (inew == fds_new_nb
768                 || memory_region_ioeventfd_before(&fds_old[iold],
769                                                   &fds_new[inew]))) {
770             fd = &fds_old[iold];
771             section = (MemoryRegionSection) {
772                 .fv = address_space_to_flatview(as),
773                 .offset_within_address_space = int128_get64(fd->addr.start),
774                 .size = fd->addr.size,
775             };
776             MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
777                                  fd->match_data, fd->data, fd->e);
778             ++iold;
779         } else if (inew < fds_new_nb
780                    && (iold == fds_old_nb
781                        || memory_region_ioeventfd_before(&fds_new[inew],
782                                                          &fds_old[iold]))) {
783             fd = &fds_new[inew];
784             section = (MemoryRegionSection) {
785                 .fv = address_space_to_flatview(as),
786                 .offset_within_address_space = int128_get64(fd->addr.start),
787                 .size = fd->addr.size,
788             };
789             MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
790                                  fd->match_data, fd->data, fd->e);
791             ++inew;
792         } else {
793             ++iold;
794             ++inew;
795         }
796     }
797 }
798
799 FlatView *address_space_get_flatview(AddressSpace *as)
800 {
801     FlatView *view;
802
803     RCU_READ_LOCK_GUARD();
804     do {
805         view = address_space_to_flatview(as);
806         /* If somebody has replaced as->current_map concurrently,
807          * flatview_ref returns false.
808          */
809     } while (!flatview_ref(view));
810     return view;
811 }
812
813 static void address_space_update_ioeventfds(AddressSpace *as)
814 {
815     FlatView *view;
816     FlatRange *fr;
817     unsigned ioeventfd_nb = 0;
818     unsigned ioeventfd_max;
819     MemoryRegionIoeventfd *ioeventfds;
820     AddrRange tmp;
821     unsigned i;
822
823     /*
824      * It is likely that the number of ioeventfds hasn't changed much, so use
825      * the previous size as the starting value, with some headroom to avoid
826      * gratuitous reallocations.
827      */
828     ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
829     ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
830
831     view = address_space_get_flatview(as);
832     FOR_EACH_FLAT_RANGE(fr, view) {
833         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
834             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
835                                   int128_sub(fr->addr.start,
836                                              int128_make64(fr->offset_in_region)));
837             if (addrrange_intersects(fr->addr, tmp)) {
838                 ++ioeventfd_nb;
839                 if (ioeventfd_nb > ioeventfd_max) {
840                     ioeventfd_max = MAX(ioeventfd_max * 2, 4);
841                     ioeventfds = g_realloc(ioeventfds,
842                             ioeventfd_max * sizeof(*ioeventfds));
843                 }
844                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
845                 ioeventfds[ioeventfd_nb-1].addr = tmp;
846             }
847         }
848     }
849
850     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
851                                      as->ioeventfds, as->ioeventfd_nb);
852
853     g_free(as->ioeventfds);
854     as->ioeventfds = ioeventfds;
855     as->ioeventfd_nb = ioeventfd_nb;
856     flatview_unref(view);
857 }
858
859 /*
860  * Notify the memory listeners about the coalesced IO change events of
861  * range `cmr'.  Only the part that has intersection of the specified
862  * FlatRange will be sent.
863  */
864 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
865                                            CoalescedMemoryRange *cmr, bool add)
866 {
867     AddrRange tmp;
868
869     tmp = addrrange_shift(cmr->addr,
870                           int128_sub(fr->addr.start,
871                                      int128_make64(fr->offset_in_region)));
872     if (!addrrange_intersects(tmp, fr->addr)) {
873         return;
874     }
875     tmp = addrrange_intersection(tmp, fr->addr);
876
877     if (add) {
878         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
879                                       int128_get64(tmp.start),
880                                       int128_get64(tmp.size));
881     } else {
882         MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
883                                       int128_get64(tmp.start),
884                                       int128_get64(tmp.size));
885     }
886 }
887
888 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
889 {
890     CoalescedMemoryRange *cmr;
891
892     QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
893         flat_range_coalesced_io_notify(fr, as, cmr, false);
894     }
895 }
896
897 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
898 {
899     MemoryRegion *mr = fr->mr;
900     CoalescedMemoryRange *cmr;
901
902     if (QTAILQ_EMPTY(&mr->coalesced)) {
903         return;
904     }
905
906     QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
907         flat_range_coalesced_io_notify(fr, as, cmr, true);
908     }
909 }
910
911 static void address_space_update_topology_pass(AddressSpace *as,
912                                                const FlatView *old_view,
913                                                const FlatView *new_view,
914                                                bool adding)
915 {
916     unsigned iold, inew;
917     FlatRange *frold, *frnew;
918
919     /* Generate a symmetric difference of the old and new memory maps.
920      * Kill ranges in the old map, and instantiate ranges in the new map.
921      */
922     iold = inew = 0;
923     while (iold < old_view->nr || inew < new_view->nr) {
924         if (iold < old_view->nr) {
925             frold = &old_view->ranges[iold];
926         } else {
927             frold = NULL;
928         }
929         if (inew < new_view->nr) {
930             frnew = &new_view->ranges[inew];
931         } else {
932             frnew = NULL;
933         }
934
935         if (frold
936             && (!frnew
937                 || int128_lt(frold->addr.start, frnew->addr.start)
938                 || (int128_eq(frold->addr.start, frnew->addr.start)
939                     && !flatrange_equal(frold, frnew)))) {
940             /* In old but not in new, or in both but attributes changed. */
941
942             if (!adding) {
943                 flat_range_coalesced_io_del(frold, as);
944                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
945             }
946
947             ++iold;
948         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
949             /* In both and unchanged (except logging may have changed) */
950
951             if (adding) {
952                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
953                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
954                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
955                                                   frold->dirty_log_mask,
956                                                   frnew->dirty_log_mask);
957                 }
958                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
959                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
960                                                   frold->dirty_log_mask,
961                                                   frnew->dirty_log_mask);
962                 }
963             }
964
965             ++iold;
966             ++inew;
967         } else {
968             /* In new */
969
970             if (adding) {
971                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
972                 flat_range_coalesced_io_add(frnew, as);
973             }
974
975             ++inew;
976         }
977     }
978 }
979
980 static void flatviews_init(void)
981 {
982     static FlatView *empty_view;
983
984     if (flat_views) {
985         return;
986     }
987
988     flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
989                                        (GDestroyNotify) flatview_unref);
990     if (!empty_view) {
991         empty_view = generate_memory_topology(NULL);
992         /* We keep it alive forever in the global variable.  */
993         flatview_ref(empty_view);
994     } else {
995         g_hash_table_replace(flat_views, NULL, empty_view);
996         flatview_ref(empty_view);
997     }
998 }
999
1000 static void flatviews_reset(void)
1001 {
1002     AddressSpace *as;
1003
1004     if (flat_views) {
1005         g_hash_table_unref(flat_views);
1006         flat_views = NULL;
1007     }
1008     flatviews_init();
1009
1010     /* Render unique FVs */
1011     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1012         MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1013
1014         if (g_hash_table_lookup(flat_views, physmr)) {
1015             continue;
1016         }
1017
1018         generate_memory_topology(physmr);
1019     }
1020 }
1021
1022 static void address_space_set_flatview(AddressSpace *as)
1023 {
1024     FlatView *old_view = address_space_to_flatview(as);
1025     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1026     FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1027
1028     assert(new_view);
1029
1030     if (old_view == new_view) {
1031         return;
1032     }
1033
1034     if (old_view) {
1035         flatview_ref(old_view);
1036     }
1037
1038     flatview_ref(new_view);
1039
1040     if (!QTAILQ_EMPTY(&as->listeners)) {
1041         FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1042
1043         if (!old_view2) {
1044             old_view2 = &tmpview;
1045         }
1046         address_space_update_topology_pass(as, old_view2, new_view, false);
1047         address_space_update_topology_pass(as, old_view2, new_view, true);
1048     }
1049
1050     /* Writes are protected by the BQL.  */
1051     qatomic_rcu_set(&as->current_map, new_view);
1052     if (old_view) {
1053         flatview_unref(old_view);
1054     }
1055
1056     /* Note that all the old MemoryRegions are still alive up to this
1057      * point.  This relieves most MemoryListeners from the need to
1058      * ref/unref the MemoryRegions they get---unless they use them
1059      * outside the iothread mutex, in which case precise reference
1060      * counting is necessary.
1061      */
1062     if (old_view) {
1063         flatview_unref(old_view);
1064     }
1065 }
1066
1067 static void address_space_update_topology(AddressSpace *as)
1068 {
1069     MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1070
1071     flatviews_init();
1072     if (!g_hash_table_lookup(flat_views, physmr)) {
1073         generate_memory_topology(physmr);
1074     }
1075     address_space_set_flatview(as);
1076 }
1077
1078 void memory_region_transaction_begin(void)
1079 {
1080     qemu_flush_coalesced_mmio_buffer();
1081     ++memory_region_transaction_depth;
1082 }
1083
1084 void memory_region_transaction_commit(void)
1085 {
1086     AddressSpace *as;
1087
1088     assert(memory_region_transaction_depth);
1089     assert(qemu_mutex_iothread_locked());
1090
1091     --memory_region_transaction_depth;
1092     if (!memory_region_transaction_depth) {
1093         if (memory_region_update_pending) {
1094             flatviews_reset();
1095
1096             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1097
1098             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1099                 address_space_set_flatview(as);
1100                 address_space_update_ioeventfds(as);
1101             }
1102             memory_region_update_pending = false;
1103             ioeventfd_update_pending = false;
1104             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1105         } else if (ioeventfd_update_pending) {
1106             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1107                 address_space_update_ioeventfds(as);
1108             }
1109             ioeventfd_update_pending = false;
1110         }
1111    }
1112 }
1113
1114 static void memory_region_destructor_none(MemoryRegion *mr)
1115 {
1116 }
1117
1118 static void memory_region_destructor_ram(MemoryRegion *mr)
1119 {
1120     qemu_ram_free(mr->ram_block);
1121 }
1122
1123 static bool memory_region_need_escape(char c)
1124 {
1125     return c == '/' || c == '[' || c == '\\' || c == ']';
1126 }
1127
1128 static char *memory_region_escape_name(const char *name)
1129 {
1130     const char *p;
1131     char *escaped, *q;
1132     uint8_t c;
1133     size_t bytes = 0;
1134
1135     for (p = name; *p; p++) {
1136         bytes += memory_region_need_escape(*p) ? 4 : 1;
1137     }
1138     if (bytes == p - name) {
1139        return g_memdup(name, bytes + 1);
1140     }
1141
1142     escaped = g_malloc(bytes + 1);
1143     for (p = name, q = escaped; *p; p++) {
1144         c = *p;
1145         if (unlikely(memory_region_need_escape(c))) {
1146             *q++ = '\\';
1147             *q++ = 'x';
1148             *q++ = "0123456789abcdef"[c >> 4];
1149             c = "0123456789abcdef"[c & 15];
1150         }
1151         *q++ = c;
1152     }
1153     *q = 0;
1154     return escaped;
1155 }
1156
1157 static void memory_region_do_init(MemoryRegion *mr,
1158                                   Object *owner,
1159                                   const char *name,
1160                                   uint64_t size)
1161 {
1162     mr->size = int128_make64(size);
1163     if (size == UINT64_MAX) {
1164         mr->size = int128_2_64();
1165     }
1166     mr->name = g_strdup(name);
1167     mr->owner = owner;
1168     mr->ram_block = NULL;
1169
1170     if (name) {
1171         char *escaped_name = memory_region_escape_name(name);
1172         char *name_array = g_strdup_printf("%s[*]", escaped_name);
1173
1174         if (!owner) {
1175             owner = container_get(qdev_get_machine(), "/unattached");
1176         }
1177
1178         object_property_add_child(owner, name_array, OBJECT(mr));
1179         object_unref(OBJECT(mr));
1180         g_free(name_array);
1181         g_free(escaped_name);
1182     }
1183 }
1184
1185 void memory_region_init(MemoryRegion *mr,
1186                         Object *owner,
1187                         const char *name,
1188                         uint64_t size)
1189 {
1190     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1191     memory_region_do_init(mr, owner, name, size);
1192 }
1193
1194 static void memory_region_get_container(Object *obj, Visitor *v,
1195                                         const char *name, void *opaque,
1196                                         Error **errp)
1197 {
1198     MemoryRegion *mr = MEMORY_REGION(obj);
1199     char *path = (char *)"";
1200
1201     if (mr->container) {
1202         path = object_get_canonical_path(OBJECT(mr->container));
1203     }
1204     visit_type_str(v, name, &path, errp);
1205     if (mr->container) {
1206         g_free(path);
1207     }
1208 }
1209
1210 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1211                                                const char *part)
1212 {
1213     MemoryRegion *mr = MEMORY_REGION(obj);
1214
1215     return OBJECT(mr->container);
1216 }
1217
1218 static void memory_region_get_priority(Object *obj, Visitor *v,
1219                                        const char *name, void *opaque,
1220                                        Error **errp)
1221 {
1222     MemoryRegion *mr = MEMORY_REGION(obj);
1223     int32_t value = mr->priority;
1224
1225     visit_type_int32(v, name, &value, errp);
1226 }
1227
1228 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1229                                    void *opaque, Error **errp)
1230 {
1231     MemoryRegion *mr = MEMORY_REGION(obj);
1232     uint64_t value = memory_region_size(mr);
1233
1234     visit_type_uint64(v, name, &value, errp);
1235 }
1236
1237 static void memory_region_initfn(Object *obj)
1238 {
1239     MemoryRegion *mr = MEMORY_REGION(obj);
1240     ObjectProperty *op;
1241
1242     mr->ops = &unassigned_mem_ops;
1243     mr->enabled = true;
1244     mr->romd_mode = true;
1245     mr->destructor = memory_region_destructor_none;
1246     QTAILQ_INIT(&mr->subregions);
1247     QTAILQ_INIT(&mr->coalesced);
1248
1249     op = object_property_add(OBJECT(mr), "container",
1250                              "link<" TYPE_MEMORY_REGION ">",
1251                              memory_region_get_container,
1252                              NULL, /* memory_region_set_container */
1253                              NULL, NULL);
1254     op->resolve = memory_region_resolve_container;
1255
1256     object_property_add_uint64_ptr(OBJECT(mr), "addr",
1257                                    &mr->addr, OBJ_PROP_FLAG_READ);
1258     object_property_add(OBJECT(mr), "priority", "uint32",
1259                         memory_region_get_priority,
1260                         NULL, /* memory_region_set_priority */
1261                         NULL, NULL);
1262     object_property_add(OBJECT(mr), "size", "uint64",
1263                         memory_region_get_size,
1264                         NULL, /* memory_region_set_size, */
1265                         NULL, NULL);
1266 }
1267
1268 static void iommu_memory_region_initfn(Object *obj)
1269 {
1270     MemoryRegion *mr = MEMORY_REGION(obj);
1271
1272     mr->is_iommu = true;
1273 }
1274
1275 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1276                                     unsigned size)
1277 {
1278 #ifdef DEBUG_UNASSIGNED
1279     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1280 #endif
1281     return 0;
1282 }
1283
1284 static void unassigned_mem_write(void *opaque, hwaddr addr,
1285                                  uint64_t val, unsigned size)
1286 {
1287 #ifdef DEBUG_UNASSIGNED
1288     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1289 #endif
1290 }
1291
1292 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1293                                    unsigned size, bool is_write,
1294                                    MemTxAttrs attrs)
1295 {
1296     return false;
1297 }
1298
1299 const MemoryRegionOps unassigned_mem_ops = {
1300     .valid.accepts = unassigned_mem_accepts,
1301     .endianness = DEVICE_NATIVE_ENDIAN,
1302 };
1303
1304 static uint64_t memory_region_ram_device_read(void *opaque,
1305                                               hwaddr addr, unsigned size)
1306 {
1307     MemoryRegion *mr = opaque;
1308     uint64_t data = (uint64_t)~0;
1309
1310     switch (size) {
1311     case 1:
1312         data = *(uint8_t *)(mr->ram_block->host + addr);
1313         break;
1314     case 2:
1315         data = *(uint16_t *)(mr->ram_block->host + addr);
1316         break;
1317     case 4:
1318         data = *(uint32_t *)(mr->ram_block->host + addr);
1319         break;
1320     case 8:
1321         data = *(uint64_t *)(mr->ram_block->host + addr);
1322         break;
1323     }
1324
1325     trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1326
1327     return data;
1328 }
1329
1330 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1331                                            uint64_t data, unsigned size)
1332 {
1333     MemoryRegion *mr = opaque;
1334
1335     trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1336
1337     switch (size) {
1338     case 1:
1339         *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1340         break;
1341     case 2:
1342         *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1343         break;
1344     case 4:
1345         *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1346         break;
1347     case 8:
1348         *(uint64_t *)(mr->ram_block->host + addr) = data;
1349         break;
1350     }
1351 }
1352
1353 static const MemoryRegionOps ram_device_mem_ops = {
1354     .read = memory_region_ram_device_read,
1355     .write = memory_region_ram_device_write,
1356     .endianness = DEVICE_HOST_ENDIAN,
1357     .valid = {
1358         .min_access_size = 1,
1359         .max_access_size = 8,
1360         .unaligned = true,
1361     },
1362     .impl = {
1363         .min_access_size = 1,
1364         .max_access_size = 8,
1365         .unaligned = true,
1366     },
1367 };
1368
1369 bool memory_region_access_valid(MemoryRegion *mr,
1370                                 hwaddr addr,
1371                                 unsigned size,
1372                                 bool is_write,
1373                                 MemTxAttrs attrs)
1374 {
1375     if (mr->ops->valid.accepts
1376         && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1377         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1378                                        "0x%" HWADDR_PRIX ", size %u, "
1379                                        "region '%s', reason: rejected\n",
1380                       addr, size, memory_region_name(mr));
1381         return false;
1382     }
1383
1384     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1385         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1386                                        "0x%" HWADDR_PRIX ", size %u, "
1387                                        "region '%s', reason: unaligned\n",
1388                       addr, size, memory_region_name(mr));
1389         return false;
1390     }
1391
1392     /* Treat zero as compatibility all valid */
1393     if (!mr->ops->valid.max_access_size) {
1394         return true;
1395     }
1396
1397     if (size > mr->ops->valid.max_access_size
1398         || size < mr->ops->valid.min_access_size) {
1399         qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1400                                        "0x%" HWADDR_PRIX ", size %u, "
1401                                        "region '%s', reason: invalid size "
1402                                        "(min:%u max:%u)\n",
1403                       addr, size, memory_region_name(mr),
1404                       mr->ops->valid.min_access_size,
1405                       mr->ops->valid.max_access_size);
1406         return false;
1407     }
1408     return true;
1409 }
1410
1411 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1412                                                 hwaddr addr,
1413                                                 uint64_t *pval,
1414                                                 unsigned size,
1415                                                 MemTxAttrs attrs)
1416 {
1417     *pval = 0;
1418
1419     if (mr->ops->read) {
1420         return access_with_adjusted_size(addr, pval, size,
1421                                          mr->ops->impl.min_access_size,
1422                                          mr->ops->impl.max_access_size,
1423                                          memory_region_read_accessor,
1424                                          mr, attrs);
1425     } else {
1426         return access_with_adjusted_size(addr, pval, size,
1427                                          mr->ops->impl.min_access_size,
1428                                          mr->ops->impl.max_access_size,
1429                                          memory_region_read_with_attrs_accessor,
1430                                          mr, attrs);
1431     }
1432 }
1433
1434 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1435                                         hwaddr addr,
1436                                         uint64_t *pval,
1437                                         MemOp op,
1438                                         MemTxAttrs attrs)
1439 {
1440     unsigned size = memop_size(op);
1441     MemTxResult r;
1442
1443     if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1444         *pval = unassigned_mem_read(mr, addr, size);
1445         return MEMTX_DECODE_ERROR;
1446     }
1447
1448     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1449     adjust_endianness(mr, pval, op);
1450     return r;
1451 }
1452
1453 /* Return true if an eventfd was signalled */
1454 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1455                                                     hwaddr addr,
1456                                                     uint64_t data,
1457                                                     unsigned size,
1458                                                     MemTxAttrs attrs)
1459 {
1460     MemoryRegionIoeventfd ioeventfd = {
1461         .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1462         .data = data,
1463     };
1464     unsigned i;
1465
1466     for (i = 0; i < mr->ioeventfd_nb; i++) {
1467         ioeventfd.match_data = mr->ioeventfds[i].match_data;
1468         ioeventfd.e = mr->ioeventfds[i].e;
1469
1470         if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1471             event_notifier_set(ioeventfd.e);
1472             return true;
1473         }
1474     }
1475
1476     return false;
1477 }
1478
1479 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1480                                          hwaddr addr,
1481                                          uint64_t data,
1482                                          MemOp op,
1483                                          MemTxAttrs attrs)
1484 {
1485     unsigned size = memop_size(op);
1486
1487     if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1488         unassigned_mem_write(mr, addr, data, size);
1489         return MEMTX_DECODE_ERROR;
1490     }
1491
1492     adjust_endianness(mr, &data, op);
1493
1494     if ((!kvm_eventfds_enabled()) &&
1495         memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1496         return MEMTX_OK;
1497     }
1498
1499     if (mr->ops->write) {
1500         return access_with_adjusted_size(addr, &data, size,
1501                                          mr->ops->impl.min_access_size,
1502                                          mr->ops->impl.max_access_size,
1503                                          memory_region_write_accessor, mr,
1504                                          attrs);
1505     } else {
1506         return
1507             access_with_adjusted_size(addr, &data, size,
1508                                       mr->ops->impl.min_access_size,
1509                                       mr->ops->impl.max_access_size,
1510                                       memory_region_write_with_attrs_accessor,
1511                                       mr, attrs);
1512     }
1513 }
1514
1515 void memory_region_init_io(MemoryRegion *mr,
1516                            Object *owner,
1517                            const MemoryRegionOps *ops,
1518                            void *opaque,
1519                            const char *name,
1520                            uint64_t size)
1521 {
1522     memory_region_init(mr, owner, name, size);
1523     mr->ops = ops ? ops : &unassigned_mem_ops;
1524     mr->opaque = opaque;
1525     mr->terminates = true;
1526 }
1527
1528 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1529                                       Object *owner,
1530                                       const char *name,
1531                                       uint64_t size,
1532                                       Error **errp)
1533 {
1534     memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1535 }
1536
1537 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1538                                             Object *owner,
1539                                             const char *name,
1540                                             uint64_t size,
1541                                             uint32_t ram_flags,
1542                                             Error **errp)
1543 {
1544     Error *err = NULL;
1545     memory_region_init(mr, owner, name, size);
1546     mr->ram = true;
1547     mr->terminates = true;
1548     mr->destructor = memory_region_destructor_ram;
1549     mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1550     if (err) {
1551         mr->size = int128_zero();
1552         object_unparent(OBJECT(mr));
1553         error_propagate(errp, err);
1554     }
1555 }
1556
1557 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1558                                        Object *owner,
1559                                        const char *name,
1560                                        uint64_t size,
1561                                        uint64_t max_size,
1562                                        void (*resized)(const char*,
1563                                                        uint64_t length,
1564                                                        void *host),
1565                                        Error **errp)
1566 {
1567     Error *err = NULL;
1568     memory_region_init(mr, owner, name, size);
1569     mr->ram = true;
1570     mr->terminates = true;
1571     mr->destructor = memory_region_destructor_ram;
1572     mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1573                                               mr, &err);
1574     if (err) {
1575         mr->size = int128_zero();
1576         object_unparent(OBJECT(mr));
1577         error_propagate(errp, err);
1578     }
1579 }
1580
1581 #ifdef CONFIG_POSIX
1582 void memory_region_init_ram_from_file(MemoryRegion *mr,
1583                                       Object *owner,
1584                                       const char *name,
1585                                       uint64_t size,
1586                                       uint64_t align,
1587                                       uint32_t ram_flags,
1588                                       const char *path,
1589                                       bool readonly,
1590                                       Error **errp)
1591 {
1592     Error *err = NULL;
1593     memory_region_init(mr, owner, name, size);
1594     mr->ram = true;
1595     mr->readonly = readonly;
1596     mr->terminates = true;
1597     mr->destructor = memory_region_destructor_ram;
1598     mr->align = align;
1599     mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1600                                              readonly, &err);
1601     if (err) {
1602         mr->size = int128_zero();
1603         object_unparent(OBJECT(mr));
1604         error_propagate(errp, err);
1605     }
1606 }
1607
1608 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1609                                     Object *owner,
1610                                     const char *name,
1611                                     uint64_t size,
1612                                     uint32_t ram_flags,
1613                                     int fd,
1614                                     ram_addr_t offset,
1615                                     Error **errp)
1616 {
1617     Error *err = NULL;
1618     memory_region_init(mr, owner, name, size);
1619     mr->ram = true;
1620     mr->terminates = true;
1621     mr->destructor = memory_region_destructor_ram;
1622     mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1623                                            false, &err);
1624     if (err) {
1625         mr->size = int128_zero();
1626         object_unparent(OBJECT(mr));
1627         error_propagate(errp, err);
1628     }
1629 }
1630 #endif
1631
1632 void memory_region_init_ram_ptr(MemoryRegion *mr,
1633                                 Object *owner,
1634                                 const char *name,
1635                                 uint64_t size,
1636                                 void *ptr)
1637 {
1638     memory_region_init(mr, owner, name, size);
1639     mr->ram = true;
1640     mr->terminates = true;
1641     mr->destructor = memory_region_destructor_ram;
1642
1643     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1644     assert(ptr != NULL);
1645     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1646 }
1647
1648 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1649                                        Object *owner,
1650                                        const char *name,
1651                                        uint64_t size,
1652                                        void *ptr)
1653 {
1654     memory_region_init(mr, owner, name, size);
1655     mr->ram = true;
1656     mr->terminates = true;
1657     mr->ram_device = true;
1658     mr->ops = &ram_device_mem_ops;
1659     mr->opaque = mr;
1660     mr->destructor = memory_region_destructor_ram;
1661
1662     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1663     assert(ptr != NULL);
1664     mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1665 }
1666
1667 void memory_region_init_alias(MemoryRegion *mr,
1668                               Object *owner,
1669                               const char *name,
1670                               MemoryRegion *orig,
1671                               hwaddr offset,
1672                               uint64_t size)
1673 {
1674     memory_region_init(mr, owner, name, size);
1675     mr->alias = orig;
1676     mr->alias_offset = offset;
1677 }
1678
1679 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1680                                       Object *owner,
1681                                       const char *name,
1682                                       uint64_t size,
1683                                       Error **errp)
1684 {
1685     memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1686     mr->readonly = true;
1687 }
1688
1689 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1690                                              Object *owner,
1691                                              const MemoryRegionOps *ops,
1692                                              void *opaque,
1693                                              const char *name,
1694                                              uint64_t size,
1695                                              Error **errp)
1696 {
1697     Error *err = NULL;
1698     assert(ops);
1699     memory_region_init(mr, owner, name, size);
1700     mr->ops = ops;
1701     mr->opaque = opaque;
1702     mr->terminates = true;
1703     mr->rom_device = true;
1704     mr->destructor = memory_region_destructor_ram;
1705     mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1706     if (err) {
1707         mr->size = int128_zero();
1708         object_unparent(OBJECT(mr));
1709         error_propagate(errp, err);
1710     }
1711 }
1712
1713 void memory_region_init_iommu(void *_iommu_mr,
1714                               size_t instance_size,
1715                               const char *mrtypename,
1716                               Object *owner,
1717                               const char *name,
1718                               uint64_t size)
1719 {
1720     struct IOMMUMemoryRegion *iommu_mr;
1721     struct MemoryRegion *mr;
1722
1723     object_initialize(_iommu_mr, instance_size, mrtypename);
1724     mr = MEMORY_REGION(_iommu_mr);
1725     memory_region_do_init(mr, owner, name, size);
1726     iommu_mr = IOMMU_MEMORY_REGION(mr);
1727     mr->terminates = true;  /* then re-forwards */
1728     QLIST_INIT(&iommu_mr->iommu_notify);
1729     iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1730 }
1731
1732 static void memory_region_finalize(Object *obj)
1733 {
1734     MemoryRegion *mr = MEMORY_REGION(obj);
1735
1736     assert(!mr->container);
1737
1738     /* We know the region is not visible in any address space (it
1739      * does not have a container and cannot be a root either because
1740      * it has no references, so we can blindly clear mr->enabled.
1741      * memory_region_set_enabled instead could trigger a transaction
1742      * and cause an infinite loop.
1743      */
1744     mr->enabled = false;
1745     memory_region_transaction_begin();
1746     while (!QTAILQ_EMPTY(&mr->subregions)) {
1747         MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1748         memory_region_del_subregion(mr, subregion);
1749     }
1750     memory_region_transaction_commit();
1751
1752     mr->destructor(mr);
1753     memory_region_clear_coalescing(mr);
1754     g_free((char *)mr->name);
1755     g_free(mr->ioeventfds);
1756 }
1757
1758 Object *memory_region_owner(MemoryRegion *mr)
1759 {
1760     Object *obj = OBJECT(mr);
1761     return obj->parent;
1762 }
1763
1764 void memory_region_ref(MemoryRegion *mr)
1765 {
1766     /* MMIO callbacks most likely will access data that belongs
1767      * to the owner, hence the need to ref/unref the owner whenever
1768      * the memory region is in use.
1769      *
1770      * The memory region is a child of its owner.  As long as the
1771      * owner doesn't call unparent itself on the memory region,
1772      * ref-ing the owner will also keep the memory region alive.
1773      * Memory regions without an owner are supposed to never go away;
1774      * we do not ref/unref them because it slows down DMA sensibly.
1775      */
1776     if (mr && mr->owner) {
1777         object_ref(mr->owner);
1778     }
1779 }
1780
1781 void memory_region_unref(MemoryRegion *mr)
1782 {
1783     if (mr && mr->owner) {
1784         object_unref(mr->owner);
1785     }
1786 }
1787
1788 uint64_t memory_region_size(MemoryRegion *mr)
1789 {
1790     if (int128_eq(mr->size, int128_2_64())) {
1791         return UINT64_MAX;
1792     }
1793     return int128_get64(mr->size);
1794 }
1795
1796 const char *memory_region_name(const MemoryRegion *mr)
1797 {
1798     if (!mr->name) {
1799         ((MemoryRegion *)mr)->name =
1800             g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1801     }
1802     return mr->name;
1803 }
1804
1805 bool memory_region_is_ram_device(MemoryRegion *mr)
1806 {
1807     return mr->ram_device;
1808 }
1809
1810 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1811 {
1812     uint8_t mask = mr->dirty_log_mask;
1813     RAMBlock *rb = mr->ram_block;
1814
1815     if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1816                              memory_region_is_iommu(mr))) {
1817         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1818     }
1819
1820     if (tcg_enabled() && rb) {
1821         /* TCG only cares about dirty memory logging for RAM, not IOMMU.  */
1822         mask |= (1 << DIRTY_MEMORY_CODE);
1823     }
1824     return mask;
1825 }
1826
1827 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1828 {
1829     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1830 }
1831
1832 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1833                                                    Error **errp)
1834 {
1835     IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1836     IOMMUNotifier *iommu_notifier;
1837     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1838     int ret = 0;
1839
1840     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1841         flags |= iommu_notifier->notifier_flags;
1842     }
1843
1844     if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1845         ret = imrc->notify_flag_changed(iommu_mr,
1846                                         iommu_mr->iommu_notify_flags,
1847                                         flags, errp);
1848     }
1849
1850     if (!ret) {
1851         iommu_mr->iommu_notify_flags = flags;
1852     }
1853     return ret;
1854 }
1855
1856 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1857                                            uint64_t page_size_mask,
1858                                            Error **errp)
1859 {
1860     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1861     int ret = 0;
1862
1863     if (imrc->iommu_set_page_size_mask) {
1864         ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1865     }
1866     return ret;
1867 }
1868
1869 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1870                                           IOMMUNotifier *n, Error **errp)
1871 {
1872     IOMMUMemoryRegion *iommu_mr;
1873     int ret;
1874
1875     if (mr->alias) {
1876         return memory_region_register_iommu_notifier(mr->alias, n, errp);
1877     }
1878
1879     /* We need to register for at least one bitfield */
1880     iommu_mr = IOMMU_MEMORY_REGION(mr);
1881     assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1882     assert(n->start <= n->end);
1883     assert(n->iommu_idx >= 0 &&
1884            n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1885
1886     QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1887     ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1888     if (ret) {
1889         QLIST_REMOVE(n, node);
1890     }
1891     return ret;
1892 }
1893
1894 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1895 {
1896     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1897
1898     if (imrc->get_min_page_size) {
1899         return imrc->get_min_page_size(iommu_mr);
1900     }
1901     return TARGET_PAGE_SIZE;
1902 }
1903
1904 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1905 {
1906     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1907     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1908     hwaddr addr, granularity;
1909     IOMMUTLBEntry iotlb;
1910
1911     /* If the IOMMU has its own replay callback, override */
1912     if (imrc->replay) {
1913         imrc->replay(iommu_mr, n);
1914         return;
1915     }
1916
1917     granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1918
1919     for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1920         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1921         if (iotlb.perm != IOMMU_NONE) {
1922             n->notify(n, &iotlb);
1923         }
1924
1925         /* if (2^64 - MR size) < granularity, it's possible to get an
1926          * infinite loop here.  This should catch such a wraparound */
1927         if ((addr + granularity) < addr) {
1928             break;
1929         }
1930     }
1931 }
1932
1933 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1934                                              IOMMUNotifier *n)
1935 {
1936     IOMMUMemoryRegion *iommu_mr;
1937
1938     if (mr->alias) {
1939         memory_region_unregister_iommu_notifier(mr->alias, n);
1940         return;
1941     }
1942     QLIST_REMOVE(n, node);
1943     iommu_mr = IOMMU_MEMORY_REGION(mr);
1944     memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1945 }
1946
1947 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1948                                     IOMMUTLBEvent *event)
1949 {
1950     IOMMUTLBEntry *entry = &event->entry;
1951     hwaddr entry_end = entry->iova + entry->addr_mask;
1952     IOMMUTLBEntry tmp = *entry;
1953
1954     if (event->type == IOMMU_NOTIFIER_UNMAP) {
1955         assert(entry->perm == IOMMU_NONE);
1956     }
1957
1958     /*
1959      * Skip the notification if the notification does not overlap
1960      * with registered range.
1961      */
1962     if (notifier->start > entry_end || notifier->end < entry->iova) {
1963         return;
1964     }
1965
1966     if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1967         /* Crop (iova, addr_mask) to range */
1968         tmp.iova = MAX(tmp.iova, notifier->start);
1969         tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1970     } else {
1971         assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1972     }
1973
1974     if (event->type & notifier->notifier_flags) {
1975         notifier->notify(notifier, &tmp);
1976     }
1977 }
1978
1979 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1980                                 int iommu_idx,
1981                                 IOMMUTLBEvent event)
1982 {
1983     IOMMUNotifier *iommu_notifier;
1984
1985     assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1986
1987     IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1988         if (iommu_notifier->iommu_idx == iommu_idx) {
1989             memory_region_notify_iommu_one(iommu_notifier, &event);
1990         }
1991     }
1992 }
1993
1994 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1995                                  enum IOMMUMemoryRegionAttr attr,
1996                                  void *data)
1997 {
1998     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1999
2000     if (!imrc->get_attr) {
2001         return -EINVAL;
2002     }
2003
2004     return imrc->get_attr(iommu_mr, attr, data);
2005 }
2006
2007 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2008                                        MemTxAttrs attrs)
2009 {
2010     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2011
2012     if (!imrc->attrs_to_index) {
2013         return 0;
2014     }
2015
2016     return imrc->attrs_to_index(iommu_mr, attrs);
2017 }
2018
2019 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2020 {
2021     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2022
2023     if (!imrc->num_indexes) {
2024         return 1;
2025     }
2026
2027     return imrc->num_indexes(iommu_mr);
2028 }
2029
2030 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2031 {
2032     if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
2033         return NULL;
2034     }
2035     return mr->rdm;
2036 }
2037
2038 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2039                                            RamDiscardManager *rdm)
2040 {
2041     g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
2042     g_assert(!rdm || !mr->rdm);
2043     mr->rdm = rdm;
2044 }
2045
2046 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2047                                                  const MemoryRegion *mr)
2048 {
2049     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2050
2051     g_assert(rdmc->get_min_granularity);
2052     return rdmc->get_min_granularity(rdm, mr);
2053 }
2054
2055 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2056                                       const MemoryRegionSection *section)
2057 {
2058     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2059
2060     g_assert(rdmc->is_populated);
2061     return rdmc->is_populated(rdm, section);
2062 }
2063
2064 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2065                                          MemoryRegionSection *section,
2066                                          ReplayRamPopulate replay_fn,
2067                                          void *opaque)
2068 {
2069     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2070
2071     g_assert(rdmc->replay_populated);
2072     return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2073 }
2074
2075 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2076                                            RamDiscardListener *rdl,
2077                                            MemoryRegionSection *section)
2078 {
2079     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2080
2081     g_assert(rdmc->register_listener);
2082     rdmc->register_listener(rdm, rdl, section);
2083 }
2084
2085 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2086                                              RamDiscardListener *rdl)
2087 {
2088     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2089
2090     g_assert(rdmc->unregister_listener);
2091     rdmc->unregister_listener(rdm, rdl);
2092 }
2093
2094 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2095 {
2096     uint8_t mask = 1 << client;
2097     uint8_t old_logging;
2098
2099     assert(client == DIRTY_MEMORY_VGA);
2100     old_logging = mr->vga_logging_count;
2101     mr->vga_logging_count += log ? 1 : -1;
2102     if (!!old_logging == !!mr->vga_logging_count) {
2103         return;
2104     }
2105
2106     memory_region_transaction_begin();
2107     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2108     memory_region_update_pending |= mr->enabled;
2109     memory_region_transaction_commit();
2110 }
2111
2112 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2113                              hwaddr size)
2114 {
2115     assert(mr->ram_block);
2116     cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2117                                         size,
2118                                         memory_region_get_dirty_log_mask(mr));
2119 }
2120
2121 /*
2122  * If memory region `mr' is NULL, do global sync.  Otherwise, sync
2123  * dirty bitmap for the specified memory region.
2124  */
2125 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2126 {
2127     MemoryListener *listener;
2128     AddressSpace *as;
2129     FlatView *view;
2130     FlatRange *fr;
2131
2132     /* If the same address space has multiple log_sync listeners, we
2133      * visit that address space's FlatView multiple times.  But because
2134      * log_sync listeners are rare, it's still cheaper than walking each
2135      * address space once.
2136      */
2137     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2138         if (listener->log_sync) {
2139             as = listener->address_space;
2140             view = address_space_get_flatview(as);
2141             FOR_EACH_FLAT_RANGE(fr, view) {
2142                 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2143                     MemoryRegionSection mrs = section_from_flat_range(fr, view);
2144                     listener->log_sync(listener, &mrs);
2145                 }
2146             }
2147             flatview_unref(view);
2148         } else if (listener->log_sync_global) {
2149             /*
2150              * No matter whether MR is specified, what we can do here
2151              * is to do a global sync, because we are not capable to
2152              * sync in a finer granularity.
2153              */
2154             listener->log_sync_global(listener);
2155         }
2156     }
2157 }
2158
2159 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2160                                       hwaddr len)
2161 {
2162     MemoryRegionSection mrs;
2163     MemoryListener *listener;
2164     AddressSpace *as;
2165     FlatView *view;
2166     FlatRange *fr;
2167     hwaddr sec_start, sec_end, sec_size;
2168
2169     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2170         if (!listener->log_clear) {
2171             continue;
2172         }
2173         as = listener->address_space;
2174         view = address_space_get_flatview(as);
2175         FOR_EACH_FLAT_RANGE(fr, view) {
2176             if (!fr->dirty_log_mask || fr->mr != mr) {
2177                 /*
2178                  * Clear dirty bitmap operation only applies to those
2179                  * regions whose dirty logging is at least enabled
2180                  */
2181                 continue;
2182             }
2183
2184             mrs = section_from_flat_range(fr, view);
2185
2186             sec_start = MAX(mrs.offset_within_region, start);
2187             sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2188             sec_end = MIN(sec_end, start + len);
2189
2190             if (sec_start >= sec_end) {
2191                 /*
2192                  * If this memory region section has no intersection
2193                  * with the requested range, skip.
2194                  */
2195                 continue;
2196             }
2197
2198             /* Valid case; shrink the section if needed */
2199             mrs.offset_within_address_space +=
2200                 sec_start - mrs.offset_within_region;
2201             mrs.offset_within_region = sec_start;
2202             sec_size = sec_end - sec_start;
2203             mrs.size = int128_make64(sec_size);
2204             listener->log_clear(listener, &mrs);
2205         }
2206         flatview_unref(view);
2207     }
2208 }
2209
2210 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2211                                                             hwaddr addr,
2212                                                             hwaddr size,
2213                                                             unsigned client)
2214 {
2215     DirtyBitmapSnapshot *snapshot;
2216     assert(mr->ram_block);
2217     memory_region_sync_dirty_bitmap(mr);
2218     snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2219     memory_global_after_dirty_log_sync();
2220     return snapshot;
2221 }
2222
2223 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2224                                       hwaddr addr, hwaddr size)
2225 {
2226     assert(mr->ram_block);
2227     return cpu_physical_memory_snapshot_get_dirty(snap,
2228                 memory_region_get_ram_addr(mr) + addr, size);
2229 }
2230
2231 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2232 {
2233     if (mr->readonly != readonly) {
2234         memory_region_transaction_begin();
2235         mr->readonly = readonly;
2236         memory_region_update_pending |= mr->enabled;
2237         memory_region_transaction_commit();
2238     }
2239 }
2240
2241 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2242 {
2243     if (mr->nonvolatile != nonvolatile) {
2244         memory_region_transaction_begin();
2245         mr->nonvolatile = nonvolatile;
2246         memory_region_update_pending |= mr->enabled;
2247         memory_region_transaction_commit();
2248     }
2249 }
2250
2251 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2252 {
2253     if (mr->romd_mode != romd_mode) {
2254         memory_region_transaction_begin();
2255         mr->romd_mode = romd_mode;
2256         memory_region_update_pending |= mr->enabled;
2257         memory_region_transaction_commit();
2258     }
2259 }
2260
2261 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2262                                hwaddr size, unsigned client)
2263 {
2264     assert(mr->ram_block);
2265     cpu_physical_memory_test_and_clear_dirty(
2266         memory_region_get_ram_addr(mr) + addr, size, client);
2267 }
2268
2269 int memory_region_get_fd(MemoryRegion *mr)
2270 {
2271     int fd;
2272
2273     RCU_READ_LOCK_GUARD();
2274     while (mr->alias) {
2275         mr = mr->alias;
2276     }
2277     fd = mr->ram_block->fd;
2278
2279     return fd;
2280 }
2281
2282 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2283 {
2284     void *ptr;
2285     uint64_t offset = 0;
2286
2287     RCU_READ_LOCK_GUARD();
2288     while (mr->alias) {
2289         offset += mr->alias_offset;
2290         mr = mr->alias;
2291     }
2292     assert(mr->ram_block);
2293     ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2294
2295     return ptr;
2296 }
2297
2298 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2299 {
2300     RAMBlock *block;
2301
2302     block = qemu_ram_block_from_host(ptr, false, offset);
2303     if (!block) {
2304         return NULL;
2305     }
2306
2307     return block->mr;
2308 }
2309
2310 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2311 {
2312     return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2313 }
2314
2315 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2316 {
2317     assert(mr->ram_block);
2318
2319     qemu_ram_resize(mr->ram_block, newsize, errp);
2320 }
2321
2322 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2323 {
2324     if (mr->ram_block) {
2325         qemu_ram_msync(mr->ram_block, addr, size);
2326     }
2327 }
2328
2329 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2330 {
2331     /*
2332      * Might be extended case needed to cover
2333      * different types of memory regions
2334      */
2335     if (mr->dirty_log_mask) {
2336         memory_region_msync(mr, addr, size);
2337     }
2338 }
2339
2340 /*
2341  * Call proper memory listeners about the change on the newly
2342  * added/removed CoalescedMemoryRange.
2343  */
2344 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2345                                                  CoalescedMemoryRange *cmr,
2346                                                  bool add)
2347 {
2348     AddressSpace *as;
2349     FlatView *view;
2350     FlatRange *fr;
2351
2352     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2353         view = address_space_get_flatview(as);
2354         FOR_EACH_FLAT_RANGE(fr, view) {
2355             if (fr->mr == mr) {
2356                 flat_range_coalesced_io_notify(fr, as, cmr, add);
2357             }
2358         }
2359         flatview_unref(view);
2360     }
2361 }
2362
2363 void memory_region_set_coalescing(MemoryRegion *mr)
2364 {
2365     memory_region_clear_coalescing(mr);
2366     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2367 }
2368
2369 void memory_region_add_coalescing(MemoryRegion *mr,
2370                                   hwaddr offset,
2371                                   uint64_t size)
2372 {
2373     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2374
2375     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2376     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2377     memory_region_update_coalesced_range(mr, cmr, true);
2378     memory_region_set_flush_coalesced(mr);
2379 }
2380
2381 void memory_region_clear_coalescing(MemoryRegion *mr)
2382 {
2383     CoalescedMemoryRange *cmr;
2384
2385     if (QTAILQ_EMPTY(&mr->coalesced)) {
2386         return;
2387     }
2388
2389     qemu_flush_coalesced_mmio_buffer();
2390     mr->flush_coalesced_mmio = false;
2391
2392     while (!QTAILQ_EMPTY(&mr->coalesced)) {
2393         cmr = QTAILQ_FIRST(&mr->coalesced);
2394         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2395         memory_region_update_coalesced_range(mr, cmr, false);
2396         g_free(cmr);
2397     }
2398 }
2399
2400 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2401 {
2402     mr->flush_coalesced_mmio = true;
2403 }
2404
2405 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2406 {
2407     qemu_flush_coalesced_mmio_buffer();
2408     if (QTAILQ_EMPTY(&mr->coalesced)) {
2409         mr->flush_coalesced_mmio = false;
2410     }
2411 }
2412
2413 static bool userspace_eventfd_warning;
2414
2415 void memory_region_add_eventfd(MemoryRegion *mr,
2416                                hwaddr addr,
2417                                unsigned size,
2418                                bool match_data,
2419                                uint64_t data,
2420                                EventNotifier *e)
2421 {
2422     MemoryRegionIoeventfd mrfd = {
2423         .addr.start = int128_make64(addr),
2424         .addr.size = int128_make64(size),
2425         .match_data = match_data,
2426         .data = data,
2427         .e = e,
2428     };
2429     unsigned i;
2430
2431     if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2432                             userspace_eventfd_warning))) {
2433         userspace_eventfd_warning = true;
2434         error_report("Using eventfd without MMIO binding in KVM. "
2435                      "Suboptimal performance expected");
2436     }
2437
2438     if (size) {
2439         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2440     }
2441     memory_region_transaction_begin();
2442     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2443         if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2444             break;
2445         }
2446     }
2447     ++mr->ioeventfd_nb;
2448     mr->ioeventfds = g_realloc(mr->ioeventfds,
2449                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2450     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2451             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2452     mr->ioeventfds[i] = mrfd;
2453     ioeventfd_update_pending |= mr->enabled;
2454     memory_region_transaction_commit();
2455 }
2456
2457 void memory_region_del_eventfd(MemoryRegion *mr,
2458                                hwaddr addr,
2459                                unsigned size,
2460                                bool match_data,
2461                                uint64_t data,
2462                                EventNotifier *e)
2463 {
2464     MemoryRegionIoeventfd mrfd = {
2465         .addr.start = int128_make64(addr),
2466         .addr.size = int128_make64(size),
2467         .match_data = match_data,
2468         .data = data,
2469         .e = e,
2470     };
2471     unsigned i;
2472
2473     if (size) {
2474         adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2475     }
2476     memory_region_transaction_begin();
2477     for (i = 0; i < mr->ioeventfd_nb; ++i) {
2478         if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2479             break;
2480         }
2481     }
2482     assert(i != mr->ioeventfd_nb);
2483     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2484             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2485     --mr->ioeventfd_nb;
2486     mr->ioeventfds = g_realloc(mr->ioeventfds,
2487                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2488     ioeventfd_update_pending |= mr->enabled;
2489     memory_region_transaction_commit();
2490 }
2491
2492 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2493 {
2494     MemoryRegion *mr = subregion->container;
2495     MemoryRegion *other;
2496
2497     memory_region_transaction_begin();
2498
2499     memory_region_ref(subregion);
2500     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2501         if (subregion->priority >= other->priority) {
2502             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2503             goto done;
2504         }
2505     }
2506     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2507 done:
2508     memory_region_update_pending |= mr->enabled && subregion->enabled;
2509     memory_region_transaction_commit();
2510 }
2511
2512 static void memory_region_add_subregion_common(MemoryRegion *mr,
2513                                                hwaddr offset,
2514                                                MemoryRegion *subregion)
2515 {
2516     assert(!subregion->container);
2517     subregion->container = mr;
2518     subregion->addr = offset;
2519     memory_region_update_container_subregions(subregion);
2520 }
2521
2522 void memory_region_add_subregion(MemoryRegion *mr,
2523                                  hwaddr offset,
2524                                  MemoryRegion *subregion)
2525 {
2526     subregion->priority = 0;
2527     memory_region_add_subregion_common(mr, offset, subregion);
2528 }
2529
2530 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2531                                          hwaddr offset,
2532                                          MemoryRegion *subregion,
2533                                          int priority)
2534 {
2535     subregion->priority = priority;
2536     memory_region_add_subregion_common(mr, offset, subregion);
2537 }
2538
2539 void memory_region_del_subregion(MemoryRegion *mr,
2540                                  MemoryRegion *subregion)
2541 {
2542     memory_region_transaction_begin();
2543     assert(subregion->container == mr);
2544     subregion->container = NULL;
2545     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2546     memory_region_unref(subregion);
2547     memory_region_update_pending |= mr->enabled && subregion->enabled;
2548     memory_region_transaction_commit();
2549 }
2550
2551 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2552 {
2553     if (enabled == mr->enabled) {
2554         return;
2555     }
2556     memory_region_transaction_begin();
2557     mr->enabled = enabled;
2558     memory_region_update_pending = true;
2559     memory_region_transaction_commit();
2560 }
2561
2562 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2563 {
2564     Int128 s = int128_make64(size);
2565
2566     if (size == UINT64_MAX) {
2567         s = int128_2_64();
2568     }
2569     if (int128_eq(s, mr->size)) {
2570         return;
2571     }
2572     memory_region_transaction_begin();
2573     mr->size = s;
2574     memory_region_update_pending = true;
2575     memory_region_transaction_commit();
2576 }
2577
2578 static void memory_region_readd_subregion(MemoryRegion *mr)
2579 {
2580     MemoryRegion *container = mr->container;
2581
2582     if (container) {
2583         memory_region_transaction_begin();
2584         memory_region_ref(mr);
2585         memory_region_del_subregion(container, mr);
2586         mr->container = container;
2587         memory_region_update_container_subregions(mr);
2588         memory_region_unref(mr);
2589         memory_region_transaction_commit();
2590     }
2591 }
2592
2593 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2594 {
2595     if (addr != mr->addr) {
2596         mr->addr = addr;
2597         memory_region_readd_subregion(mr);
2598     }
2599 }
2600
2601 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2602 {
2603     assert(mr->alias);
2604
2605     if (offset == mr->alias_offset) {
2606         return;
2607     }
2608
2609     memory_region_transaction_begin();
2610     mr->alias_offset = offset;
2611     memory_region_update_pending |= mr->enabled;
2612     memory_region_transaction_commit();
2613 }
2614
2615 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2616 {
2617     return mr->align;
2618 }
2619
2620 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2621 {
2622     const AddrRange *addr = addr_;
2623     const FlatRange *fr = fr_;
2624
2625     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2626         return -1;
2627     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2628         return 1;
2629     }
2630     return 0;
2631 }
2632
2633 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2634 {
2635     return bsearch(&addr, view->ranges, view->nr,
2636                    sizeof(FlatRange), cmp_flatrange_addr);
2637 }
2638
2639 bool memory_region_is_mapped(MemoryRegion *mr)
2640 {
2641     return mr->container ? true : false;
2642 }
2643
2644 /* Same as memory_region_find, but it does not add a reference to the
2645  * returned region.  It must be called from an RCU critical section.
2646  */
2647 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2648                                                   hwaddr addr, uint64_t size)
2649 {
2650     MemoryRegionSection ret = { .mr = NULL };
2651     MemoryRegion *root;
2652     AddressSpace *as;
2653     AddrRange range;
2654     FlatView *view;
2655     FlatRange *fr;
2656
2657     addr += mr->addr;
2658     for (root = mr; root->container; ) {
2659         root = root->container;
2660         addr += root->addr;
2661     }
2662
2663     as = memory_region_to_address_space(root);
2664     if (!as) {
2665         return ret;
2666     }
2667     range = addrrange_make(int128_make64(addr), int128_make64(size));
2668
2669     view = address_space_to_flatview(as);
2670     fr = flatview_lookup(view, range);
2671     if (!fr) {
2672         return ret;
2673     }
2674
2675     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2676         --fr;
2677     }
2678
2679     ret.mr = fr->mr;
2680     ret.fv = view;
2681     range = addrrange_intersection(range, fr->addr);
2682     ret.offset_within_region = fr->offset_in_region;
2683     ret.offset_within_region += int128_get64(int128_sub(range.start,
2684                                                         fr->addr.start));
2685     ret.size = range.size;
2686     ret.offset_within_address_space = int128_get64(range.start);
2687     ret.readonly = fr->readonly;
2688     ret.nonvolatile = fr->nonvolatile;
2689     return ret;
2690 }
2691
2692 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2693                                        hwaddr addr, uint64_t size)
2694 {
2695     MemoryRegionSection ret;
2696     RCU_READ_LOCK_GUARD();
2697     ret = memory_region_find_rcu(mr, addr, size);
2698     if (ret.mr) {
2699         memory_region_ref(ret.mr);
2700     }
2701     return ret;
2702 }
2703
2704 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2705 {
2706     MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2707
2708     *tmp = *s;
2709     if (tmp->mr) {
2710         memory_region_ref(tmp->mr);
2711     }
2712     if (tmp->fv) {
2713         bool ret  = flatview_ref(tmp->fv);
2714
2715         g_assert(ret);
2716     }
2717     return tmp;
2718 }
2719
2720 void memory_region_section_free_copy(MemoryRegionSection *s)
2721 {
2722     if (s->fv) {
2723         flatview_unref(s->fv);
2724     }
2725     if (s->mr) {
2726         memory_region_unref(s->mr);
2727     }
2728     g_free(s);
2729 }
2730
2731 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2732 {
2733     MemoryRegion *mr;
2734
2735     RCU_READ_LOCK_GUARD();
2736     mr = memory_region_find_rcu(container, addr, 1).mr;
2737     return mr && mr != container;
2738 }
2739
2740 void memory_global_dirty_log_sync(void)
2741 {
2742     memory_region_sync_dirty_bitmap(NULL);
2743 }
2744
2745 void memory_global_after_dirty_log_sync(void)
2746 {
2747     MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2748 }
2749
2750 static VMChangeStateEntry *vmstate_change;
2751
2752 void memory_global_dirty_log_start(void)
2753 {
2754     if (vmstate_change) {
2755         qemu_del_vm_change_state_handler(vmstate_change);
2756         vmstate_change = NULL;
2757     }
2758
2759     global_dirty_log = true;
2760
2761     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2762
2763     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2764     memory_region_transaction_begin();
2765     memory_region_update_pending = true;
2766     memory_region_transaction_commit();
2767 }
2768
2769 static void memory_global_dirty_log_do_stop(void)
2770 {
2771     global_dirty_log = false;
2772
2773     /* Refresh DIRTY_MEMORY_MIGRATION bit.  */
2774     memory_region_transaction_begin();
2775     memory_region_update_pending = true;
2776     memory_region_transaction_commit();
2777
2778     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2779 }
2780
2781 static void memory_vm_change_state_handler(void *opaque, bool running,
2782                                            RunState state)
2783 {
2784     if (running) {
2785         memory_global_dirty_log_do_stop();
2786
2787         if (vmstate_change) {
2788             qemu_del_vm_change_state_handler(vmstate_change);
2789             vmstate_change = NULL;
2790         }
2791     }
2792 }
2793
2794 void memory_global_dirty_log_stop(void)
2795 {
2796     if (!runstate_is_running()) {
2797         if (vmstate_change) {
2798             return;
2799         }
2800         vmstate_change = qemu_add_vm_change_state_handler(
2801                                 memory_vm_change_state_handler, NULL);
2802         return;
2803     }
2804
2805     memory_global_dirty_log_do_stop();
2806 }
2807
2808 static void listener_add_address_space(MemoryListener *listener,
2809                                        AddressSpace *as)
2810 {
2811     FlatView *view;
2812     FlatRange *fr;
2813
2814     if (listener->begin) {
2815         listener->begin(listener);
2816     }
2817     if (global_dirty_log) {
2818         if (listener->log_global_start) {
2819             listener->log_global_start(listener);
2820         }
2821     }
2822
2823     view = address_space_get_flatview(as);
2824     FOR_EACH_FLAT_RANGE(fr, view) {
2825         MemoryRegionSection section = section_from_flat_range(fr, view);
2826
2827         if (listener->region_add) {
2828             listener->region_add(listener, &section);
2829         }
2830         if (fr->dirty_log_mask && listener->log_start) {
2831             listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2832         }
2833     }
2834     if (listener->commit) {
2835         listener->commit(listener);
2836     }
2837     flatview_unref(view);
2838 }
2839
2840 static void listener_del_address_space(MemoryListener *listener,
2841                                        AddressSpace *as)
2842 {
2843     FlatView *view;
2844     FlatRange *fr;
2845
2846     if (listener->begin) {
2847         listener->begin(listener);
2848     }
2849     view = address_space_get_flatview(as);
2850     FOR_EACH_FLAT_RANGE(fr, view) {
2851         MemoryRegionSection section = section_from_flat_range(fr, view);
2852
2853         if (fr->dirty_log_mask && listener->log_stop) {
2854             listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2855         }
2856         if (listener->region_del) {
2857             listener->region_del(listener, &section);
2858         }
2859     }
2860     if (listener->commit) {
2861         listener->commit(listener);
2862     }
2863     flatview_unref(view);
2864 }
2865
2866 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2867 {
2868     MemoryListener *other = NULL;
2869
2870     /* Only one of them can be defined for a listener */
2871     assert(!(listener->log_sync && listener->log_sync_global));
2872
2873     listener->address_space = as;
2874     if (QTAILQ_EMPTY(&memory_listeners)
2875         || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2876         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2877     } else {
2878         QTAILQ_FOREACH(other, &memory_listeners, link) {
2879             if (listener->priority < other->priority) {
2880                 break;
2881             }
2882         }
2883         QTAILQ_INSERT_BEFORE(other, listener, link);
2884     }
2885
2886     if (QTAILQ_EMPTY(&as->listeners)
2887         || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2888         QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2889     } else {
2890         QTAILQ_FOREACH(other, &as->listeners, link_as) {
2891             if (listener->priority < other->priority) {
2892                 break;
2893             }
2894         }
2895         QTAILQ_INSERT_BEFORE(other, listener, link_as);
2896     }
2897
2898     listener_add_address_space(listener, as);
2899 }
2900
2901 void memory_listener_unregister(MemoryListener *listener)
2902 {
2903     if (!listener->address_space) {
2904         return;
2905     }
2906
2907     listener_del_address_space(listener, listener->address_space);
2908     QTAILQ_REMOVE(&memory_listeners, listener, link);
2909     QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2910     listener->address_space = NULL;
2911 }
2912
2913 void address_space_remove_listeners(AddressSpace *as)
2914 {
2915     while (!QTAILQ_EMPTY(&as->listeners)) {
2916         memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2917     }
2918 }
2919
2920 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2921 {
2922     memory_region_ref(root);
2923     as->root = root;
2924     as->current_map = NULL;
2925     as->ioeventfd_nb = 0;
2926     as->ioeventfds = NULL;
2927     QTAILQ_INIT(&as->listeners);
2928     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2929     as->name = g_strdup(name ? name : "anonymous");
2930     address_space_update_topology(as);
2931     address_space_update_ioeventfds(as);
2932 }
2933
2934 static void do_address_space_destroy(AddressSpace *as)
2935 {
2936     assert(QTAILQ_EMPTY(&as->listeners));
2937
2938     flatview_unref(as->current_map);
2939     g_free(as->name);
2940     g_free(as->ioeventfds);
2941     memory_region_unref(as->root);
2942 }
2943
2944 void address_space_destroy(AddressSpace *as)
2945 {
2946     MemoryRegion *root = as->root;
2947
2948     /* Flush out anything from MemoryListeners listening in on this */
2949     memory_region_transaction_begin();
2950     as->root = NULL;
2951     memory_region_transaction_commit();
2952     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2953
2954     /* At this point, as->dispatch and as->current_map are dummy
2955      * entries that the guest should never use.  Wait for the old
2956      * values to expire before freeing the data.
2957      */
2958     as->root = root;
2959     call_rcu(as, do_address_space_destroy, rcu);
2960 }
2961
2962 static const char *memory_region_type(MemoryRegion *mr)
2963 {
2964     if (mr->alias) {
2965         return memory_region_type(mr->alias);
2966     }
2967     if (memory_region_is_ram_device(mr)) {
2968         return "ramd";
2969     } else if (memory_region_is_romd(mr)) {
2970         return "romd";
2971     } else if (memory_region_is_rom(mr)) {
2972         return "rom";
2973     } else if (memory_region_is_ram(mr)) {
2974         return "ram";
2975     } else {
2976         return "i/o";
2977     }
2978 }
2979
2980 typedef struct MemoryRegionList MemoryRegionList;
2981
2982 struct MemoryRegionList {
2983     const MemoryRegion *mr;
2984     QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2985 };
2986
2987 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2988
2989 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2990                            int128_sub((size), int128_one())) : 0)
2991 #define MTREE_INDENT "  "
2992
2993 static void mtree_expand_owner(const char *label, Object *obj)
2994 {
2995     DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2996
2997     qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2998     if (dev && dev->id) {
2999         qemu_printf(" id=%s", dev->id);
3000     } else {
3001         char *canonical_path = object_get_canonical_path(obj);
3002         if (canonical_path) {
3003             qemu_printf(" path=%s", canonical_path);
3004             g_free(canonical_path);
3005         } else {
3006             qemu_printf(" type=%s", object_get_typename(obj));
3007         }
3008     }
3009     qemu_printf("}");
3010 }
3011
3012 static void mtree_print_mr_owner(const MemoryRegion *mr)
3013 {
3014     Object *owner = mr->owner;
3015     Object *parent = memory_region_owner((MemoryRegion *)mr);
3016
3017     if (!owner && !parent) {
3018         qemu_printf(" orphan");
3019         return;
3020     }
3021     if (owner) {
3022         mtree_expand_owner("owner", owner);
3023     }
3024     if (parent && parent != owner) {
3025         mtree_expand_owner("parent", parent);
3026     }
3027 }
3028
3029 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3030                            hwaddr base,
3031                            MemoryRegionListHead *alias_print_queue,
3032                            bool owner, bool display_disabled)
3033 {
3034     MemoryRegionList *new_ml, *ml, *next_ml;
3035     MemoryRegionListHead submr_print_queue;
3036     const MemoryRegion *submr;
3037     unsigned int i;
3038     hwaddr cur_start, cur_end;
3039
3040     if (!mr) {
3041         return;
3042     }
3043
3044     cur_start = base + mr->addr;
3045     cur_end = cur_start + MR_SIZE(mr->size);
3046
3047     /*
3048      * Try to detect overflow of memory region. This should never
3049      * happen normally. When it happens, we dump something to warn the
3050      * user who is observing this.
3051      */
3052     if (cur_start < base || cur_end < cur_start) {
3053         qemu_printf("[DETECTED OVERFLOW!] ");
3054     }
3055
3056     if (mr->alias) {
3057         MemoryRegionList *ml;
3058         bool found = false;
3059
3060         /* check if the alias is already in the queue */
3061         QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3062             if (ml->mr == mr->alias) {
3063                 found = true;
3064             }
3065         }
3066
3067         if (!found) {
3068             ml = g_new(MemoryRegionList, 1);
3069             ml->mr = mr->alias;
3070             QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3071         }
3072         if (mr->enabled || display_disabled) {
3073             for (i = 0; i < level; i++) {
3074                 qemu_printf(MTREE_INDENT);
3075             }
3076             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3077                         " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
3078                         "-" TARGET_FMT_plx "%s",
3079                         cur_start, cur_end,
3080                         mr->priority,
3081                         mr->nonvolatile ? "nv-" : "",
3082                         memory_region_type((MemoryRegion *)mr),
3083                         memory_region_name(mr),
3084                         memory_region_name(mr->alias),
3085                         mr->alias_offset,
3086                         mr->alias_offset + MR_SIZE(mr->size),
3087                         mr->enabled ? "" : " [disabled]");
3088             if (owner) {
3089                 mtree_print_mr_owner(mr);
3090             }
3091             qemu_printf("\n");
3092         }
3093     } else {
3094         if (mr->enabled || display_disabled) {
3095             for (i = 0; i < level; i++) {
3096                 qemu_printf(MTREE_INDENT);
3097             }
3098             qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3099                         " (prio %d, %s%s): %s%s",
3100                         cur_start, cur_end,
3101                         mr->priority,
3102                         mr->nonvolatile ? "nv-" : "",
3103                         memory_region_type((MemoryRegion *)mr),
3104                         memory_region_name(mr),
3105                         mr->enabled ? "" : " [disabled]");
3106             if (owner) {
3107                 mtree_print_mr_owner(mr);
3108             }
3109             qemu_printf("\n");
3110         }
3111     }
3112
3113     QTAILQ_INIT(&submr_print_queue);
3114
3115     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3116         new_ml = g_new(MemoryRegionList, 1);
3117         new_ml->mr = submr;
3118         QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3119             if (new_ml->mr->addr < ml->mr->addr ||
3120                 (new_ml->mr->addr == ml->mr->addr &&
3121                  new_ml->mr->priority > ml->mr->priority)) {
3122                 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3123                 new_ml = NULL;
3124                 break;
3125             }
3126         }
3127         if (new_ml) {
3128             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3129         }
3130     }
3131
3132     QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3133         mtree_print_mr(ml->mr, level + 1, cur_start,
3134                        alias_print_queue, owner, display_disabled);
3135     }
3136
3137     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3138         g_free(ml);
3139     }
3140 }
3141
3142 struct FlatViewInfo {
3143     int counter;
3144     bool dispatch_tree;
3145     bool owner;
3146     AccelClass *ac;
3147 };
3148
3149 static void mtree_print_flatview(gpointer key, gpointer value,
3150                                  gpointer user_data)
3151 {
3152     FlatView *view = key;
3153     GArray *fv_address_spaces = value;
3154     struct FlatViewInfo *fvi = user_data;
3155     FlatRange *range = &view->ranges[0];
3156     MemoryRegion *mr;
3157     int n = view->nr;
3158     int i;
3159     AddressSpace *as;
3160
3161     qemu_printf("FlatView #%d\n", fvi->counter);
3162     ++fvi->counter;
3163
3164     for (i = 0; i < fv_address_spaces->len; ++i) {
3165         as = g_array_index(fv_address_spaces, AddressSpace*, i);
3166         qemu_printf(" AS \"%s\", root: %s",
3167                     as->name, memory_region_name(as->root));
3168         if (as->root->alias) {
3169             qemu_printf(", alias %s", memory_region_name(as->root->alias));
3170         }
3171         qemu_printf("\n");
3172     }
3173
3174     qemu_printf(" Root memory region: %s\n",
3175       view->root ? memory_region_name(view->root) : "(none)");
3176
3177     if (n <= 0) {
3178         qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3179         return;
3180     }
3181
3182     while (n--) {
3183         mr = range->mr;
3184         if (range->offset_in_region) {
3185             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3186                         " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3187                         int128_get64(range->addr.start),
3188                         int128_get64(range->addr.start)
3189                         + MR_SIZE(range->addr.size),
3190                         mr->priority,
3191                         range->nonvolatile ? "nv-" : "",
3192                         range->readonly ? "rom" : memory_region_type(mr),
3193                         memory_region_name(mr),
3194                         range->offset_in_region);
3195         } else {
3196             qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3197                         " (prio %d, %s%s): %s",
3198                         int128_get64(range->addr.start),
3199                         int128_get64(range->addr.start)
3200                         + MR_SIZE(range->addr.size),
3201                         mr->priority,
3202                         range->nonvolatile ? "nv-" : "",
3203                         range->readonly ? "rom" : memory_region_type(mr),
3204                         memory_region_name(mr));
3205         }
3206         if (fvi->owner) {
3207             mtree_print_mr_owner(mr);
3208         }
3209
3210         if (fvi->ac) {
3211             for (i = 0; i < fv_address_spaces->len; ++i) {
3212                 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3213                 if (fvi->ac->has_memory(current_machine, as,
3214                                         int128_get64(range->addr.start),
3215                                         MR_SIZE(range->addr.size) + 1)) {
3216                     qemu_printf(" %s", fvi->ac->name);
3217                 }
3218             }
3219         }
3220         qemu_printf("\n");
3221         range++;
3222     }
3223
3224 #if !defined(CONFIG_USER_ONLY)
3225     if (fvi->dispatch_tree && view->root) {
3226         mtree_print_dispatch(view->dispatch, view->root);
3227     }
3228 #endif
3229
3230     qemu_printf("\n");
3231 }
3232
3233 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3234                                       gpointer user_data)
3235 {
3236     FlatView *view = key;
3237     GArray *fv_address_spaces = value;
3238
3239     g_array_unref(fv_address_spaces);
3240     flatview_unref(view);
3241
3242     return true;
3243 }
3244
3245 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3246 {
3247     MemoryRegionListHead ml_head;
3248     MemoryRegionList *ml, *ml2;
3249     AddressSpace *as;
3250
3251     if (flatview) {
3252         FlatView *view;
3253         struct FlatViewInfo fvi = {
3254             .counter = 0,
3255             .dispatch_tree = dispatch_tree,
3256             .owner = owner,
3257         };
3258         GArray *fv_address_spaces;
3259         GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3260         AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3261
3262         if (ac->has_memory) {
3263             fvi.ac = ac;
3264         }
3265
3266         /* Gather all FVs in one table */
3267         QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3268             view = address_space_get_flatview(as);
3269
3270             fv_address_spaces = g_hash_table_lookup(views, view);
3271             if (!fv_address_spaces) {
3272                 fv_address_spaces = g_array_new(false, false, sizeof(as));
3273                 g_hash_table_insert(views, view, fv_address_spaces);
3274             }
3275
3276             g_array_append_val(fv_address_spaces, as);
3277         }
3278
3279         /* Print */
3280         g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3281
3282         /* Free */
3283         g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3284         g_hash_table_unref(views);
3285
3286         return;
3287     }
3288
3289     QTAILQ_INIT(&ml_head);
3290
3291     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3292         qemu_printf("address-space: %s\n", as->name);
3293         mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3294         qemu_printf("\n");
3295     }
3296
3297     /* print aliased regions */
3298     QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3299         qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3300         mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3301         qemu_printf("\n");
3302     }
3303
3304     QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3305         g_free(ml);
3306     }
3307 }
3308
3309 void memory_region_init_ram(MemoryRegion *mr,
3310                             Object *owner,
3311                             const char *name,
3312                             uint64_t size,
3313                             Error **errp)
3314 {
3315     DeviceState *owner_dev;
3316     Error *err = NULL;
3317
3318     memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3319     if (err) {
3320         error_propagate(errp, err);
3321         return;
3322     }
3323     /* This will assert if owner is neither NULL nor a DeviceState.
3324      * We only want the owner here for the purposes of defining a
3325      * unique name for migration. TODO: Ideally we should implement
3326      * a naming scheme for Objects which are not DeviceStates, in
3327      * which case we can relax this restriction.
3328      */
3329     owner_dev = DEVICE(owner);
3330     vmstate_register_ram(mr, owner_dev);
3331 }
3332
3333 void memory_region_init_rom(MemoryRegion *mr,
3334                             Object *owner,
3335                             const char *name,
3336                             uint64_t size,
3337                             Error **errp)
3338 {
3339     DeviceState *owner_dev;
3340     Error *err = NULL;
3341
3342     memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3343     if (err) {
3344         error_propagate(errp, err);
3345         return;
3346     }
3347     /* This will assert if owner is neither NULL nor a DeviceState.
3348      * We only want the owner here for the purposes of defining a
3349      * unique name for migration. TODO: Ideally we should implement
3350      * a naming scheme for Objects which are not DeviceStates, in
3351      * which case we can relax this restriction.
3352      */
3353     owner_dev = DEVICE(owner);
3354     vmstate_register_ram(mr, owner_dev);
3355 }
3356
3357 void memory_region_init_rom_device(MemoryRegion *mr,
3358                                    Object *owner,
3359                                    const MemoryRegionOps *ops,
3360                                    void *opaque,
3361                                    const char *name,
3362                                    uint64_t size,
3363                                    Error **errp)
3364 {
3365     DeviceState *owner_dev;
3366     Error *err = NULL;
3367
3368     memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3369                                             name, size, &err);
3370     if (err) {
3371         error_propagate(errp, err);
3372         return;
3373     }
3374     /* This will assert if owner is neither NULL nor a DeviceState.
3375      * We only want the owner here for the purposes of defining a
3376      * unique name for migration. TODO: Ideally we should implement
3377      * a naming scheme for Objects which are not DeviceStates, in
3378      * which case we can relax this restriction.
3379      */
3380     owner_dev = DEVICE(owner);
3381     vmstate_register_ram(mr, owner_dev);
3382 }
3383
3384 /*
3385  * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3386  * the fuzz_dma_read_cb callback
3387  */
3388 #ifdef CONFIG_FUZZ
3389 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3390                       size_t len,
3391                       MemoryRegion *mr)
3392 {
3393 }
3394 #endif
3395
3396 static const TypeInfo memory_region_info = {
3397     .parent             = TYPE_OBJECT,
3398     .name               = TYPE_MEMORY_REGION,
3399     .class_size         = sizeof(MemoryRegionClass),
3400     .instance_size      = sizeof(MemoryRegion),
3401     .instance_init      = memory_region_initfn,
3402     .instance_finalize  = memory_region_finalize,
3403 };
3404
3405 static const TypeInfo iommu_memory_region_info = {
3406     .parent             = TYPE_MEMORY_REGION,
3407     .name               = TYPE_IOMMU_MEMORY_REGION,
3408     .class_size         = sizeof(IOMMUMemoryRegionClass),
3409     .instance_size      = sizeof(IOMMUMemoryRegion),
3410     .instance_init      = iommu_memory_region_initfn,
3411     .abstract           = true,
3412 };
3413
3414 static const TypeInfo ram_discard_manager_info = {
3415     .parent             = TYPE_INTERFACE,
3416     .name               = TYPE_RAM_DISCARD_MANAGER,
3417     .class_size         = sizeof(RamDiscardManagerClass),
3418 };
3419
3420 static void memory_register_types(void)
3421 {
3422     type_register_static(&memory_region_info);
3423     type_register_static(&iommu_memory_region_info);
3424     type_register_static(&ram_discard_manager_info);
3425 }
3426
3427 type_init(memory_register_types)
This page took 0.2113 seconds and 4 git commands to generate.