2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "qapi/visitor.h"
21 #include "qemu/bitops.h"
22 #include "qemu/error-report.h"
23 #include "qemu/main-loop.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/tcg.h"
33 #include "qemu/accel.h"
34 #include "hw/boards.h"
35 #include "migration/vmstate.h"
37 //#define DEBUG_UNASSIGNED
39 static unsigned memory_region_transaction_depth;
40 static bool memory_region_update_pending;
41 static bool ioeventfd_update_pending;
42 bool global_dirty_log;
44 static QTAILQ_HEAD(, MemoryListener) memory_listeners
45 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47 static QTAILQ_HEAD(, AddressSpace) address_spaces
48 = QTAILQ_HEAD_INITIALIZER(address_spaces);
50 static GHashTable *flat_views;
52 typedef struct AddrRange AddrRange;
55 * Note that signed integers are needed for negative offsetting in aliases
56 * (large MemoryRegion::alias_offset).
63 static AddrRange addrrange_make(Int128 start, Int128 size)
65 return (AddrRange) { start, size };
68 static bool addrrange_equal(AddrRange r1, AddrRange r2)
70 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
73 static Int128 addrrange_end(AddrRange r)
75 return int128_add(r.start, r.size);
78 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
80 int128_addto(&range.start, delta);
84 static bool addrrange_contains(AddrRange range, Int128 addr)
86 return int128_ge(addr, range.start)
87 && int128_lt(addr, addrrange_end(range));
90 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
92 return addrrange_contains(r1, r2.start)
93 || addrrange_contains(r2, r1.start);
96 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
98 Int128 start = int128_max(r1.start, r2.start);
99 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
100 return addrrange_make(start, int128_sub(end, start));
103 enum ListenerDirection { Forward, Reverse };
105 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 MemoryListener *_listener; \
109 switch (_direction) { \
111 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
112 if (_listener->_callback) { \
113 _listener->_callback(_listener, ##_args); \
118 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
119 if (_listener->_callback) { \
120 _listener->_callback(_listener, ##_args); \
129 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 MemoryListener *_listener; \
133 switch (_direction) { \
135 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
142 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
143 if (_listener->_callback) { \
144 _listener->_callback(_listener, _section, ##_args); \
153 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
154 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 MemoryRegionSection mrs = section_from_flat_range(fr, \
157 address_space_to_flatview(as)); \
158 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
161 struct CoalescedMemoryRange {
163 QTAILQ_ENTRY(CoalescedMemoryRange) link;
166 struct MemoryRegionIoeventfd {
173 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
174 MemoryRegionIoeventfd *b)
176 if (int128_lt(a->addr.start, b->addr.start)) {
178 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 } else if (a->match_data < b->match_data) {
186 } else if (a->match_data > b->match_data) {
188 } else if (a->match_data) {
189 if (a->data < b->data) {
191 } else if (a->data > b->data) {
197 } else if (a->e > b->e) {
203 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
204 MemoryRegionIoeventfd *b)
206 if (int128_eq(a->addr.start, b->addr.start) &&
207 (!int128_nz(a->addr.size) || !int128_nz(b->addr.size) ||
208 (int128_eq(a->addr.size, b->addr.size) &&
209 (a->match_data == b->match_data) &&
210 ((a->match_data && (a->data == b->data)) || !a->match_data) &&
217 /* Range of memory in the global map. Addresses are absolute. */
220 hwaddr offset_in_region;
222 uint8_t dirty_log_mask;
228 #define FOR_EACH_FLAT_RANGE(var, view) \
229 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
231 static inline MemoryRegionSection
232 section_from_flat_range(FlatRange *fr, FlatView *fv)
234 return (MemoryRegionSection) {
237 .offset_within_region = fr->offset_in_region,
238 .size = fr->addr.size,
239 .offset_within_address_space = int128_get64(fr->addr.start),
240 .readonly = fr->readonly,
241 .nonvolatile = fr->nonvolatile,
245 static bool flatrange_equal(FlatRange *a, FlatRange *b)
247 return a->mr == b->mr
248 && addrrange_equal(a->addr, b->addr)
249 && a->offset_in_region == b->offset_in_region
250 && a->romd_mode == b->romd_mode
251 && a->readonly == b->readonly
252 && a->nonvolatile == b->nonvolatile;
255 static FlatView *flatview_new(MemoryRegion *mr_root)
259 view = g_new0(FlatView, 1);
261 view->root = mr_root;
262 memory_region_ref(mr_root);
263 trace_flatview_new(view, mr_root);
268 /* Insert a range into a given position. Caller is responsible for maintaining
271 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
273 if (view->nr == view->nr_allocated) {
274 view->nr_allocated = MAX(2 * view->nr, 10);
275 view->ranges = g_realloc(view->ranges,
276 view->nr_allocated * sizeof(*view->ranges));
278 memmove(view->ranges + pos + 1, view->ranges + pos,
279 (view->nr - pos) * sizeof(FlatRange));
280 view->ranges[pos] = *range;
281 memory_region_ref(range->mr);
285 static void flatview_destroy(FlatView *view)
289 trace_flatview_destroy(view, view->root);
290 if (view->dispatch) {
291 address_space_dispatch_free(view->dispatch);
293 for (i = 0; i < view->nr; i++) {
294 memory_region_unref(view->ranges[i].mr);
296 g_free(view->ranges);
297 memory_region_unref(view->root);
301 static bool flatview_ref(FlatView *view)
303 return qatomic_fetch_inc_nonzero(&view->ref) > 0;
306 void flatview_unref(FlatView *view)
308 if (qatomic_fetch_dec(&view->ref) == 1) {
309 trace_flatview_destroy_rcu(view, view->root);
311 call_rcu(view, flatview_destroy, rcu);
315 static bool can_merge(FlatRange *r1, FlatRange *r2)
317 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
319 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
321 int128_make64(r2->offset_in_region))
322 && r1->dirty_log_mask == r2->dirty_log_mask
323 && r1->romd_mode == r2->romd_mode
324 && r1->readonly == r2->readonly
325 && r1->nonvolatile == r2->nonvolatile;
328 /* Attempt to simplify a view by merging adjacent ranges */
329 static void flatview_simplify(FlatView *view)
334 while (i < view->nr) {
337 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
338 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
342 for (k = i; k < j; k++) {
343 memory_region_unref(view->ranges[k].mr);
345 memmove(&view->ranges[i], &view->ranges[j],
346 (view->nr - j) * sizeof(view->ranges[j]));
351 static bool memory_region_big_endian(MemoryRegion *mr)
353 #ifdef TARGET_WORDS_BIGENDIAN
354 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
356 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
360 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
362 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
363 switch (op & MO_SIZE) {
367 *data = bswap16(*data);
370 *data = bswap32(*data);
373 *data = bswap64(*data);
376 g_assert_not_reached();
381 static inline void memory_region_shift_read_access(uint64_t *value,
387 *value |= (tmp & mask) << shift;
389 *value |= (tmp & mask) >> -shift;
393 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
400 tmp = (*value >> shift) & mask;
402 tmp = (*value << -shift) & mask;
408 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
411 hwaddr abs_addr = offset;
413 abs_addr += mr->addr;
414 for (root = mr; root->container; ) {
415 root = root->container;
416 abs_addr += root->addr;
422 static int get_cpu_index(void)
425 return current_cpu->cpu_index;
430 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
440 tmp = mr->ops->read(mr->opaque, addr, size);
442 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
443 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
444 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
445 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
447 memory_region_shift_read_access(value, shift, mask, tmp);
451 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
462 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
464 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
465 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ)) {
466 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
467 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
469 memory_region_shift_read_access(value, shift, mask, tmp);
473 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
481 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
484 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
485 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
486 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
487 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
489 mr->ops->write(mr->opaque, addr, tmp, size);
493 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
501 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
504 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
505 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE)) {
506 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
507 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
509 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
512 static MemTxResult access_with_adjusted_size(hwaddr addr,
515 unsigned access_size_min,
516 unsigned access_size_max,
517 MemTxResult (*access_fn)
528 uint64_t access_mask;
529 unsigned access_size;
531 MemTxResult r = MEMTX_OK;
533 if (!access_size_min) {
536 if (!access_size_max) {
540 /* FIXME: support unaligned access? */
541 access_size = MAX(MIN(size, access_size_max), access_size_min);
542 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
543 if (memory_region_big_endian(mr)) {
544 for (i = 0; i < size; i += access_size) {
545 r |= access_fn(mr, addr + i, value, access_size,
546 (size - access_size - i) * 8, access_mask, attrs);
549 for (i = 0; i < size; i += access_size) {
550 r |= access_fn(mr, addr + i, value, access_size, i * 8,
557 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
561 while (mr->container) {
564 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
565 if (mr == as->root) {
572 /* Render a memory region into the global view. Ranges in @view obscure
575 static void render_memory_region(FlatView *view,
582 MemoryRegion *subregion;
584 hwaddr offset_in_region;
594 int128_addto(&base, int128_make64(mr->addr));
595 readonly |= mr->readonly;
596 nonvolatile |= mr->nonvolatile;
598 tmp = addrrange_make(base, mr->size);
600 if (!addrrange_intersects(tmp, clip)) {
604 clip = addrrange_intersection(tmp, clip);
607 int128_subfrom(&base, int128_make64(mr->alias->addr));
608 int128_subfrom(&base, int128_make64(mr->alias_offset));
609 render_memory_region(view, mr->alias, base, clip,
610 readonly, nonvolatile);
614 /* Render subregions in priority order. */
615 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
616 render_memory_region(view, subregion, base, clip,
617 readonly, nonvolatile);
620 if (!mr->terminates) {
624 offset_in_region = int128_get64(int128_sub(clip.start, base));
629 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
630 fr.romd_mode = mr->romd_mode;
631 fr.readonly = readonly;
632 fr.nonvolatile = nonvolatile;
634 /* Render the region itself into any gaps left by the current view. */
635 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
636 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
639 if (int128_lt(base, view->ranges[i].addr.start)) {
640 now = int128_min(remain,
641 int128_sub(view->ranges[i].addr.start, base));
642 fr.offset_in_region = offset_in_region;
643 fr.addr = addrrange_make(base, now);
644 flatview_insert(view, i, &fr);
646 int128_addto(&base, now);
647 offset_in_region += int128_get64(now);
648 int128_subfrom(&remain, now);
650 now = int128_sub(int128_min(int128_add(base, remain),
651 addrrange_end(view->ranges[i].addr)),
653 int128_addto(&base, now);
654 offset_in_region += int128_get64(now);
655 int128_subfrom(&remain, now);
657 if (int128_nz(remain)) {
658 fr.offset_in_region = offset_in_region;
659 fr.addr = addrrange_make(base, remain);
660 flatview_insert(view, i, &fr);
664 void flatview_for_each_range(FlatView *fv, flatview_cb cb , void *opaque)
671 FOR_EACH_FLAT_RANGE(fr, fv) {
672 if (cb(fr->addr.start, fr->addr.size, fr->mr,
673 fr->offset_in_region, opaque)) {
679 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
681 while (mr->enabled) {
683 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
684 /* The alias is included in its entirety. Use it as
685 * the "real" root, so that we can share more FlatViews.
690 } else if (!mr->terminates) {
691 unsigned int found = 0;
692 MemoryRegion *child, *next = NULL;
693 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
694 if (child->enabled) {
699 if (!child->addr && int128_ge(mr->size, child->size)) {
700 /* A child is included in its entirety. If it's the only
701 * enabled one, use it in the hope of finding an alias down the
702 * way. This will also let us share FlatViews.
723 /* Render a memory topology into a list of disjoint absolute ranges. */
724 static FlatView *generate_memory_topology(MemoryRegion *mr)
729 view = flatview_new(mr);
732 render_memory_region(view, mr, int128_zero(),
733 addrrange_make(int128_zero(), int128_2_64()),
736 flatview_simplify(view);
738 view->dispatch = address_space_dispatch_new(view);
739 for (i = 0; i < view->nr; i++) {
740 MemoryRegionSection mrs =
741 section_from_flat_range(&view->ranges[i], view);
742 flatview_add_to_dispatch(view, &mrs);
744 address_space_dispatch_compact(view->dispatch);
745 g_hash_table_replace(flat_views, mr, view);
750 static void address_space_add_del_ioeventfds(AddressSpace *as,
751 MemoryRegionIoeventfd *fds_new,
753 MemoryRegionIoeventfd *fds_old,
757 MemoryRegionIoeventfd *fd;
758 MemoryRegionSection section;
760 /* Generate a symmetric difference of the old and new fd sets, adding
761 * and deleting as necessary.
765 while (iold < fds_old_nb || inew < fds_new_nb) {
766 if (iold < fds_old_nb
767 && (inew == fds_new_nb
768 || memory_region_ioeventfd_before(&fds_old[iold],
771 section = (MemoryRegionSection) {
772 .fv = address_space_to_flatview(as),
773 .offset_within_address_space = int128_get64(fd->addr.start),
774 .size = fd->addr.size,
776 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, §ion,
777 fd->match_data, fd->data, fd->e);
779 } else if (inew < fds_new_nb
780 && (iold == fds_old_nb
781 || memory_region_ioeventfd_before(&fds_new[inew],
784 section = (MemoryRegionSection) {
785 .fv = address_space_to_flatview(as),
786 .offset_within_address_space = int128_get64(fd->addr.start),
787 .size = fd->addr.size,
789 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, §ion,
790 fd->match_data, fd->data, fd->e);
799 FlatView *address_space_get_flatview(AddressSpace *as)
803 RCU_READ_LOCK_GUARD();
805 view = address_space_to_flatview(as);
806 /* If somebody has replaced as->current_map concurrently,
807 * flatview_ref returns false.
809 } while (!flatview_ref(view));
813 static void address_space_update_ioeventfds(AddressSpace *as)
817 unsigned ioeventfd_nb = 0;
818 unsigned ioeventfd_max;
819 MemoryRegionIoeventfd *ioeventfds;
824 * It is likely that the number of ioeventfds hasn't changed much, so use
825 * the previous size as the starting value, with some headroom to avoid
826 * gratuitous reallocations.
828 ioeventfd_max = QEMU_ALIGN_UP(as->ioeventfd_nb, 4);
829 ioeventfds = g_new(MemoryRegionIoeventfd, ioeventfd_max);
831 view = address_space_get_flatview(as);
832 FOR_EACH_FLAT_RANGE(fr, view) {
833 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
834 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
835 int128_sub(fr->addr.start,
836 int128_make64(fr->offset_in_region)));
837 if (addrrange_intersects(fr->addr, tmp)) {
839 if (ioeventfd_nb > ioeventfd_max) {
840 ioeventfd_max = MAX(ioeventfd_max * 2, 4);
841 ioeventfds = g_realloc(ioeventfds,
842 ioeventfd_max * sizeof(*ioeventfds));
844 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
845 ioeventfds[ioeventfd_nb-1].addr = tmp;
850 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
851 as->ioeventfds, as->ioeventfd_nb);
853 g_free(as->ioeventfds);
854 as->ioeventfds = ioeventfds;
855 as->ioeventfd_nb = ioeventfd_nb;
856 flatview_unref(view);
860 * Notify the memory listeners about the coalesced IO change events of
861 * range `cmr'. Only the part that has intersection of the specified
862 * FlatRange will be sent.
864 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
865 CoalescedMemoryRange *cmr, bool add)
869 tmp = addrrange_shift(cmr->addr,
870 int128_sub(fr->addr.start,
871 int128_make64(fr->offset_in_region)));
872 if (!addrrange_intersects(tmp, fr->addr)) {
875 tmp = addrrange_intersection(tmp, fr->addr);
878 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
879 int128_get64(tmp.start),
880 int128_get64(tmp.size));
882 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
883 int128_get64(tmp.start),
884 int128_get64(tmp.size));
888 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
890 CoalescedMemoryRange *cmr;
892 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
893 flat_range_coalesced_io_notify(fr, as, cmr, false);
897 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
899 MemoryRegion *mr = fr->mr;
900 CoalescedMemoryRange *cmr;
902 if (QTAILQ_EMPTY(&mr->coalesced)) {
906 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
907 flat_range_coalesced_io_notify(fr, as, cmr, true);
911 static void address_space_update_topology_pass(AddressSpace *as,
912 const FlatView *old_view,
913 const FlatView *new_view,
917 FlatRange *frold, *frnew;
919 /* Generate a symmetric difference of the old and new memory maps.
920 * Kill ranges in the old map, and instantiate ranges in the new map.
923 while (iold < old_view->nr || inew < new_view->nr) {
924 if (iold < old_view->nr) {
925 frold = &old_view->ranges[iold];
929 if (inew < new_view->nr) {
930 frnew = &new_view->ranges[inew];
937 || int128_lt(frold->addr.start, frnew->addr.start)
938 || (int128_eq(frold->addr.start, frnew->addr.start)
939 && !flatrange_equal(frold, frnew)))) {
940 /* In old but not in new, or in both but attributes changed. */
943 flat_range_coalesced_io_del(frold, as);
944 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
948 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
949 /* In both and unchanged (except logging may have changed) */
952 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
953 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
954 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
955 frold->dirty_log_mask,
956 frnew->dirty_log_mask);
958 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
959 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
960 frold->dirty_log_mask,
961 frnew->dirty_log_mask);
971 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
972 flat_range_coalesced_io_add(frnew, as);
980 static void flatviews_init(void)
982 static FlatView *empty_view;
988 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
989 (GDestroyNotify) flatview_unref);
991 empty_view = generate_memory_topology(NULL);
992 /* We keep it alive forever in the global variable. */
993 flatview_ref(empty_view);
995 g_hash_table_replace(flat_views, NULL, empty_view);
996 flatview_ref(empty_view);
1000 static void flatviews_reset(void)
1005 g_hash_table_unref(flat_views);
1010 /* Render unique FVs */
1011 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1012 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1014 if (g_hash_table_lookup(flat_views, physmr)) {
1018 generate_memory_topology(physmr);
1022 static void address_space_set_flatview(AddressSpace *as)
1024 FlatView *old_view = address_space_to_flatview(as);
1025 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1026 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
1030 if (old_view == new_view) {
1035 flatview_ref(old_view);
1038 flatview_ref(new_view);
1040 if (!QTAILQ_EMPTY(&as->listeners)) {
1041 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1044 old_view2 = &tmpview;
1046 address_space_update_topology_pass(as, old_view2, new_view, false);
1047 address_space_update_topology_pass(as, old_view2, new_view, true);
1050 /* Writes are protected by the BQL. */
1051 qatomic_rcu_set(&as->current_map, new_view);
1053 flatview_unref(old_view);
1056 /* Note that all the old MemoryRegions are still alive up to this
1057 * point. This relieves most MemoryListeners from the need to
1058 * ref/unref the MemoryRegions they get---unless they use them
1059 * outside the iothread mutex, in which case precise reference
1060 * counting is necessary.
1063 flatview_unref(old_view);
1067 static void address_space_update_topology(AddressSpace *as)
1069 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1072 if (!g_hash_table_lookup(flat_views, physmr)) {
1073 generate_memory_topology(physmr);
1075 address_space_set_flatview(as);
1078 void memory_region_transaction_begin(void)
1080 qemu_flush_coalesced_mmio_buffer();
1081 ++memory_region_transaction_depth;
1084 void memory_region_transaction_commit(void)
1088 assert(memory_region_transaction_depth);
1089 assert(qemu_mutex_iothread_locked());
1091 --memory_region_transaction_depth;
1092 if (!memory_region_transaction_depth) {
1093 if (memory_region_update_pending) {
1096 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1098 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1099 address_space_set_flatview(as);
1100 address_space_update_ioeventfds(as);
1102 memory_region_update_pending = false;
1103 ioeventfd_update_pending = false;
1104 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1105 } else if (ioeventfd_update_pending) {
1106 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1107 address_space_update_ioeventfds(as);
1109 ioeventfd_update_pending = false;
1114 static void memory_region_destructor_none(MemoryRegion *mr)
1118 static void memory_region_destructor_ram(MemoryRegion *mr)
1120 qemu_ram_free(mr->ram_block);
1123 static bool memory_region_need_escape(char c)
1125 return c == '/' || c == '[' || c == '\\' || c == ']';
1128 static char *memory_region_escape_name(const char *name)
1135 for (p = name; *p; p++) {
1136 bytes += memory_region_need_escape(*p) ? 4 : 1;
1138 if (bytes == p - name) {
1139 return g_memdup(name, bytes + 1);
1142 escaped = g_malloc(bytes + 1);
1143 for (p = name, q = escaped; *p; p++) {
1145 if (unlikely(memory_region_need_escape(c))) {
1148 *q++ = "0123456789abcdef"[c >> 4];
1149 c = "0123456789abcdef"[c & 15];
1157 static void memory_region_do_init(MemoryRegion *mr,
1162 mr->size = int128_make64(size);
1163 if (size == UINT64_MAX) {
1164 mr->size = int128_2_64();
1166 mr->name = g_strdup(name);
1168 mr->ram_block = NULL;
1171 char *escaped_name = memory_region_escape_name(name);
1172 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1175 owner = container_get(qdev_get_machine(), "/unattached");
1178 object_property_add_child(owner, name_array, OBJECT(mr));
1179 object_unref(OBJECT(mr));
1181 g_free(escaped_name);
1185 void memory_region_init(MemoryRegion *mr,
1190 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1191 memory_region_do_init(mr, owner, name, size);
1194 static void memory_region_get_container(Object *obj, Visitor *v,
1195 const char *name, void *opaque,
1198 MemoryRegion *mr = MEMORY_REGION(obj);
1199 char *path = (char *)"";
1201 if (mr->container) {
1202 path = object_get_canonical_path(OBJECT(mr->container));
1204 visit_type_str(v, name, &path, errp);
1205 if (mr->container) {
1210 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1213 MemoryRegion *mr = MEMORY_REGION(obj);
1215 return OBJECT(mr->container);
1218 static void memory_region_get_priority(Object *obj, Visitor *v,
1219 const char *name, void *opaque,
1222 MemoryRegion *mr = MEMORY_REGION(obj);
1223 int32_t value = mr->priority;
1225 visit_type_int32(v, name, &value, errp);
1228 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1229 void *opaque, Error **errp)
1231 MemoryRegion *mr = MEMORY_REGION(obj);
1232 uint64_t value = memory_region_size(mr);
1234 visit_type_uint64(v, name, &value, errp);
1237 static void memory_region_initfn(Object *obj)
1239 MemoryRegion *mr = MEMORY_REGION(obj);
1242 mr->ops = &unassigned_mem_ops;
1244 mr->romd_mode = true;
1245 mr->destructor = memory_region_destructor_none;
1246 QTAILQ_INIT(&mr->subregions);
1247 QTAILQ_INIT(&mr->coalesced);
1249 op = object_property_add(OBJECT(mr), "container",
1250 "link<" TYPE_MEMORY_REGION ">",
1251 memory_region_get_container,
1252 NULL, /* memory_region_set_container */
1254 op->resolve = memory_region_resolve_container;
1256 object_property_add_uint64_ptr(OBJECT(mr), "addr",
1257 &mr->addr, OBJ_PROP_FLAG_READ);
1258 object_property_add(OBJECT(mr), "priority", "uint32",
1259 memory_region_get_priority,
1260 NULL, /* memory_region_set_priority */
1262 object_property_add(OBJECT(mr), "size", "uint64",
1263 memory_region_get_size,
1264 NULL, /* memory_region_set_size, */
1268 static void iommu_memory_region_initfn(Object *obj)
1270 MemoryRegion *mr = MEMORY_REGION(obj);
1272 mr->is_iommu = true;
1275 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1278 #ifdef DEBUG_UNASSIGNED
1279 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1284 static void unassigned_mem_write(void *opaque, hwaddr addr,
1285 uint64_t val, unsigned size)
1287 #ifdef DEBUG_UNASSIGNED
1288 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1292 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1293 unsigned size, bool is_write,
1299 const MemoryRegionOps unassigned_mem_ops = {
1300 .valid.accepts = unassigned_mem_accepts,
1301 .endianness = DEVICE_NATIVE_ENDIAN,
1304 static uint64_t memory_region_ram_device_read(void *opaque,
1305 hwaddr addr, unsigned size)
1307 MemoryRegion *mr = opaque;
1308 uint64_t data = (uint64_t)~0;
1312 data = *(uint8_t *)(mr->ram_block->host + addr);
1315 data = *(uint16_t *)(mr->ram_block->host + addr);
1318 data = *(uint32_t *)(mr->ram_block->host + addr);
1321 data = *(uint64_t *)(mr->ram_block->host + addr);
1325 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1330 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1331 uint64_t data, unsigned size)
1333 MemoryRegion *mr = opaque;
1335 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1339 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1342 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1345 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1348 *(uint64_t *)(mr->ram_block->host + addr) = data;
1353 static const MemoryRegionOps ram_device_mem_ops = {
1354 .read = memory_region_ram_device_read,
1355 .write = memory_region_ram_device_write,
1356 .endianness = DEVICE_HOST_ENDIAN,
1358 .min_access_size = 1,
1359 .max_access_size = 8,
1363 .min_access_size = 1,
1364 .max_access_size = 8,
1369 bool memory_region_access_valid(MemoryRegion *mr,
1375 if (mr->ops->valid.accepts
1376 && !mr->ops->valid.accepts(mr->opaque, addr, size, is_write, attrs)) {
1377 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1378 "0x%" HWADDR_PRIX ", size %u, "
1379 "region '%s', reason: rejected\n",
1380 addr, size, memory_region_name(mr));
1384 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1385 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1386 "0x%" HWADDR_PRIX ", size %u, "
1387 "region '%s', reason: unaligned\n",
1388 addr, size, memory_region_name(mr));
1392 /* Treat zero as compatibility all valid */
1393 if (!mr->ops->valid.max_access_size) {
1397 if (size > mr->ops->valid.max_access_size
1398 || size < mr->ops->valid.min_access_size) {
1399 qemu_log_mask(LOG_GUEST_ERROR, "Invalid access at addr "
1400 "0x%" HWADDR_PRIX ", size %u, "
1401 "region '%s', reason: invalid size "
1402 "(min:%u max:%u)\n",
1403 addr, size, memory_region_name(mr),
1404 mr->ops->valid.min_access_size,
1405 mr->ops->valid.max_access_size);
1411 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1419 if (mr->ops->read) {
1420 return access_with_adjusted_size(addr, pval, size,
1421 mr->ops->impl.min_access_size,
1422 mr->ops->impl.max_access_size,
1423 memory_region_read_accessor,
1426 return access_with_adjusted_size(addr, pval, size,
1427 mr->ops->impl.min_access_size,
1428 mr->ops->impl.max_access_size,
1429 memory_region_read_with_attrs_accessor,
1434 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1440 unsigned size = memop_size(op);
1443 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1444 *pval = unassigned_mem_read(mr, addr, size);
1445 return MEMTX_DECODE_ERROR;
1448 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1449 adjust_endianness(mr, pval, op);
1453 /* Return true if an eventfd was signalled */
1454 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1460 MemoryRegionIoeventfd ioeventfd = {
1461 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1466 for (i = 0; i < mr->ioeventfd_nb; i++) {
1467 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1468 ioeventfd.e = mr->ioeventfds[i].e;
1470 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1471 event_notifier_set(ioeventfd.e);
1479 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1485 unsigned size = memop_size(op);
1487 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1488 unassigned_mem_write(mr, addr, data, size);
1489 return MEMTX_DECODE_ERROR;
1492 adjust_endianness(mr, &data, op);
1494 if ((!kvm_eventfds_enabled()) &&
1495 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1499 if (mr->ops->write) {
1500 return access_with_adjusted_size(addr, &data, size,
1501 mr->ops->impl.min_access_size,
1502 mr->ops->impl.max_access_size,
1503 memory_region_write_accessor, mr,
1507 access_with_adjusted_size(addr, &data, size,
1508 mr->ops->impl.min_access_size,
1509 mr->ops->impl.max_access_size,
1510 memory_region_write_with_attrs_accessor,
1515 void memory_region_init_io(MemoryRegion *mr,
1517 const MemoryRegionOps *ops,
1522 memory_region_init(mr, owner, name, size);
1523 mr->ops = ops ? ops : &unassigned_mem_ops;
1524 mr->opaque = opaque;
1525 mr->terminates = true;
1528 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1534 memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1537 void memory_region_init_ram_flags_nomigrate(MemoryRegion *mr,
1545 memory_region_init(mr, owner, name, size);
1547 mr->terminates = true;
1548 mr->destructor = memory_region_destructor_ram;
1549 mr->ram_block = qemu_ram_alloc(size, ram_flags, mr, &err);
1551 mr->size = int128_zero();
1552 object_unparent(OBJECT(mr));
1553 error_propagate(errp, err);
1557 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1562 void (*resized)(const char*,
1568 memory_region_init(mr, owner, name, size);
1570 mr->terminates = true;
1571 mr->destructor = memory_region_destructor_ram;
1572 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1575 mr->size = int128_zero();
1576 object_unparent(OBJECT(mr));
1577 error_propagate(errp, err);
1582 void memory_region_init_ram_from_file(MemoryRegion *mr,
1593 memory_region_init(mr, owner, name, size);
1595 mr->readonly = readonly;
1596 mr->terminates = true;
1597 mr->destructor = memory_region_destructor_ram;
1599 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path,
1602 mr->size = int128_zero();
1603 object_unparent(OBJECT(mr));
1604 error_propagate(errp, err);
1608 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1618 memory_region_init(mr, owner, name, size);
1620 mr->terminates = true;
1621 mr->destructor = memory_region_destructor_ram;
1622 mr->ram_block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, offset,
1625 mr->size = int128_zero();
1626 object_unparent(OBJECT(mr));
1627 error_propagate(errp, err);
1632 void memory_region_init_ram_ptr(MemoryRegion *mr,
1638 memory_region_init(mr, owner, name, size);
1640 mr->terminates = true;
1641 mr->destructor = memory_region_destructor_ram;
1643 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1644 assert(ptr != NULL);
1645 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1648 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1654 memory_region_init(mr, owner, name, size);
1656 mr->terminates = true;
1657 mr->ram_device = true;
1658 mr->ops = &ram_device_mem_ops;
1660 mr->destructor = memory_region_destructor_ram;
1662 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1663 assert(ptr != NULL);
1664 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1667 void memory_region_init_alias(MemoryRegion *mr,
1674 memory_region_init(mr, owner, name, size);
1676 mr->alias_offset = offset;
1679 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1685 memory_region_init_ram_flags_nomigrate(mr, owner, name, size, 0, errp);
1686 mr->readonly = true;
1689 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1691 const MemoryRegionOps *ops,
1699 memory_region_init(mr, owner, name, size);
1701 mr->opaque = opaque;
1702 mr->terminates = true;
1703 mr->rom_device = true;
1704 mr->destructor = memory_region_destructor_ram;
1705 mr->ram_block = qemu_ram_alloc(size, 0, mr, &err);
1707 mr->size = int128_zero();
1708 object_unparent(OBJECT(mr));
1709 error_propagate(errp, err);
1713 void memory_region_init_iommu(void *_iommu_mr,
1714 size_t instance_size,
1715 const char *mrtypename,
1720 struct IOMMUMemoryRegion *iommu_mr;
1721 struct MemoryRegion *mr;
1723 object_initialize(_iommu_mr, instance_size, mrtypename);
1724 mr = MEMORY_REGION(_iommu_mr);
1725 memory_region_do_init(mr, owner, name, size);
1726 iommu_mr = IOMMU_MEMORY_REGION(mr);
1727 mr->terminates = true; /* then re-forwards */
1728 QLIST_INIT(&iommu_mr->iommu_notify);
1729 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1732 static void memory_region_finalize(Object *obj)
1734 MemoryRegion *mr = MEMORY_REGION(obj);
1736 assert(!mr->container);
1738 /* We know the region is not visible in any address space (it
1739 * does not have a container and cannot be a root either because
1740 * it has no references, so we can blindly clear mr->enabled.
1741 * memory_region_set_enabled instead could trigger a transaction
1742 * and cause an infinite loop.
1744 mr->enabled = false;
1745 memory_region_transaction_begin();
1746 while (!QTAILQ_EMPTY(&mr->subregions)) {
1747 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1748 memory_region_del_subregion(mr, subregion);
1750 memory_region_transaction_commit();
1753 memory_region_clear_coalescing(mr);
1754 g_free((char *)mr->name);
1755 g_free(mr->ioeventfds);
1758 Object *memory_region_owner(MemoryRegion *mr)
1760 Object *obj = OBJECT(mr);
1764 void memory_region_ref(MemoryRegion *mr)
1766 /* MMIO callbacks most likely will access data that belongs
1767 * to the owner, hence the need to ref/unref the owner whenever
1768 * the memory region is in use.
1770 * The memory region is a child of its owner. As long as the
1771 * owner doesn't call unparent itself on the memory region,
1772 * ref-ing the owner will also keep the memory region alive.
1773 * Memory regions without an owner are supposed to never go away;
1774 * we do not ref/unref them because it slows down DMA sensibly.
1776 if (mr && mr->owner) {
1777 object_ref(mr->owner);
1781 void memory_region_unref(MemoryRegion *mr)
1783 if (mr && mr->owner) {
1784 object_unref(mr->owner);
1788 uint64_t memory_region_size(MemoryRegion *mr)
1790 if (int128_eq(mr->size, int128_2_64())) {
1793 return int128_get64(mr->size);
1796 const char *memory_region_name(const MemoryRegion *mr)
1799 ((MemoryRegion *)mr)->name =
1800 g_strdup(object_get_canonical_path_component(OBJECT(mr)));
1805 bool memory_region_is_ram_device(MemoryRegion *mr)
1807 return mr->ram_device;
1810 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1812 uint8_t mask = mr->dirty_log_mask;
1813 RAMBlock *rb = mr->ram_block;
1815 if (global_dirty_log && ((rb && qemu_ram_is_migratable(rb)) ||
1816 memory_region_is_iommu(mr))) {
1817 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1820 if (tcg_enabled() && rb) {
1821 /* TCG only cares about dirty memory logging for RAM, not IOMMU. */
1822 mask |= (1 << DIRTY_MEMORY_CODE);
1827 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1829 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1832 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1835 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1836 IOMMUNotifier *iommu_notifier;
1837 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1840 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1841 flags |= iommu_notifier->notifier_flags;
1844 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1845 ret = imrc->notify_flag_changed(iommu_mr,
1846 iommu_mr->iommu_notify_flags,
1851 iommu_mr->iommu_notify_flags = flags;
1856 int memory_region_iommu_set_page_size_mask(IOMMUMemoryRegion *iommu_mr,
1857 uint64_t page_size_mask,
1860 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1863 if (imrc->iommu_set_page_size_mask) {
1864 ret = imrc->iommu_set_page_size_mask(iommu_mr, page_size_mask, errp);
1869 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1870 IOMMUNotifier *n, Error **errp)
1872 IOMMUMemoryRegion *iommu_mr;
1876 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1879 /* We need to register for at least one bitfield */
1880 iommu_mr = IOMMU_MEMORY_REGION(mr);
1881 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1882 assert(n->start <= n->end);
1883 assert(n->iommu_idx >= 0 &&
1884 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1886 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1887 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1889 QLIST_REMOVE(n, node);
1894 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1896 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1898 if (imrc->get_min_page_size) {
1899 return imrc->get_min_page_size(iommu_mr);
1901 return TARGET_PAGE_SIZE;
1904 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1906 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1907 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1908 hwaddr addr, granularity;
1909 IOMMUTLBEntry iotlb;
1911 /* If the IOMMU has its own replay callback, override */
1913 imrc->replay(iommu_mr, n);
1917 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1919 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1920 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1921 if (iotlb.perm != IOMMU_NONE) {
1922 n->notify(n, &iotlb);
1925 /* if (2^64 - MR size) < granularity, it's possible to get an
1926 * infinite loop here. This should catch such a wraparound */
1927 if ((addr + granularity) < addr) {
1933 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1936 IOMMUMemoryRegion *iommu_mr;
1939 memory_region_unregister_iommu_notifier(mr->alias, n);
1942 QLIST_REMOVE(n, node);
1943 iommu_mr = IOMMU_MEMORY_REGION(mr);
1944 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1947 void memory_region_notify_iommu_one(IOMMUNotifier *notifier,
1948 IOMMUTLBEvent *event)
1950 IOMMUTLBEntry *entry = &event->entry;
1951 hwaddr entry_end = entry->iova + entry->addr_mask;
1952 IOMMUTLBEntry tmp = *entry;
1954 if (event->type == IOMMU_NOTIFIER_UNMAP) {
1955 assert(entry->perm == IOMMU_NONE);
1959 * Skip the notification if the notification does not overlap
1960 * with registered range.
1962 if (notifier->start > entry_end || notifier->end < entry->iova) {
1966 if (notifier->notifier_flags & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
1967 /* Crop (iova, addr_mask) to range */
1968 tmp.iova = MAX(tmp.iova, notifier->start);
1969 tmp.addr_mask = MIN(entry_end, notifier->end) - tmp.iova;
1971 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1974 if (event->type & notifier->notifier_flags) {
1975 notifier->notify(notifier, &tmp);
1979 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1981 IOMMUTLBEvent event)
1983 IOMMUNotifier *iommu_notifier;
1985 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1987 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1988 if (iommu_notifier->iommu_idx == iommu_idx) {
1989 memory_region_notify_iommu_one(iommu_notifier, &event);
1994 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1995 enum IOMMUMemoryRegionAttr attr,
1998 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2000 if (!imrc->get_attr) {
2004 return imrc->get_attr(iommu_mr, attr, data);
2007 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
2010 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2012 if (!imrc->attrs_to_index) {
2016 return imrc->attrs_to_index(iommu_mr, attrs);
2019 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
2021 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
2023 if (!imrc->num_indexes) {
2027 return imrc->num_indexes(iommu_mr);
2030 RamDiscardManager *memory_region_get_ram_discard_manager(MemoryRegion *mr)
2032 if (!memory_region_is_mapped(mr) || !memory_region_is_ram(mr)) {
2038 void memory_region_set_ram_discard_manager(MemoryRegion *mr,
2039 RamDiscardManager *rdm)
2041 g_assert(memory_region_is_ram(mr) && !memory_region_is_mapped(mr));
2042 g_assert(!rdm || !mr->rdm);
2046 uint64_t ram_discard_manager_get_min_granularity(const RamDiscardManager *rdm,
2047 const MemoryRegion *mr)
2049 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2051 g_assert(rdmc->get_min_granularity);
2052 return rdmc->get_min_granularity(rdm, mr);
2055 bool ram_discard_manager_is_populated(const RamDiscardManager *rdm,
2056 const MemoryRegionSection *section)
2058 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2060 g_assert(rdmc->is_populated);
2061 return rdmc->is_populated(rdm, section);
2064 int ram_discard_manager_replay_populated(const RamDiscardManager *rdm,
2065 MemoryRegionSection *section,
2066 ReplayRamPopulate replay_fn,
2069 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2071 g_assert(rdmc->replay_populated);
2072 return rdmc->replay_populated(rdm, section, replay_fn, opaque);
2075 void ram_discard_manager_register_listener(RamDiscardManager *rdm,
2076 RamDiscardListener *rdl,
2077 MemoryRegionSection *section)
2079 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2081 g_assert(rdmc->register_listener);
2082 rdmc->register_listener(rdm, rdl, section);
2085 void ram_discard_manager_unregister_listener(RamDiscardManager *rdm,
2086 RamDiscardListener *rdl)
2088 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_GET_CLASS(rdm);
2090 g_assert(rdmc->unregister_listener);
2091 rdmc->unregister_listener(rdm, rdl);
2094 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
2096 uint8_t mask = 1 << client;
2097 uint8_t old_logging;
2099 assert(client == DIRTY_MEMORY_VGA);
2100 old_logging = mr->vga_logging_count;
2101 mr->vga_logging_count += log ? 1 : -1;
2102 if (!!old_logging == !!mr->vga_logging_count) {
2106 memory_region_transaction_begin();
2107 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2108 memory_region_update_pending |= mr->enabled;
2109 memory_region_transaction_commit();
2112 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2115 assert(mr->ram_block);
2116 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2118 memory_region_get_dirty_log_mask(mr));
2122 * If memory region `mr' is NULL, do global sync. Otherwise, sync
2123 * dirty bitmap for the specified memory region.
2125 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2127 MemoryListener *listener;
2132 /* If the same address space has multiple log_sync listeners, we
2133 * visit that address space's FlatView multiple times. But because
2134 * log_sync listeners are rare, it's still cheaper than walking each
2135 * address space once.
2137 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2138 if (listener->log_sync) {
2139 as = listener->address_space;
2140 view = address_space_get_flatview(as);
2141 FOR_EACH_FLAT_RANGE(fr, view) {
2142 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2143 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2144 listener->log_sync(listener, &mrs);
2147 flatview_unref(view);
2148 } else if (listener->log_sync_global) {
2150 * No matter whether MR is specified, what we can do here
2151 * is to do a global sync, because we are not capable to
2152 * sync in a finer granularity.
2154 listener->log_sync_global(listener);
2159 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2162 MemoryRegionSection mrs;
2163 MemoryListener *listener;
2167 hwaddr sec_start, sec_end, sec_size;
2169 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2170 if (!listener->log_clear) {
2173 as = listener->address_space;
2174 view = address_space_get_flatview(as);
2175 FOR_EACH_FLAT_RANGE(fr, view) {
2176 if (!fr->dirty_log_mask || fr->mr != mr) {
2178 * Clear dirty bitmap operation only applies to those
2179 * regions whose dirty logging is at least enabled
2184 mrs = section_from_flat_range(fr, view);
2186 sec_start = MAX(mrs.offset_within_region, start);
2187 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2188 sec_end = MIN(sec_end, start + len);
2190 if (sec_start >= sec_end) {
2192 * If this memory region section has no intersection
2193 * with the requested range, skip.
2198 /* Valid case; shrink the section if needed */
2199 mrs.offset_within_address_space +=
2200 sec_start - mrs.offset_within_region;
2201 mrs.offset_within_region = sec_start;
2202 sec_size = sec_end - sec_start;
2203 mrs.size = int128_make64(sec_size);
2204 listener->log_clear(listener, &mrs);
2206 flatview_unref(view);
2210 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2215 DirtyBitmapSnapshot *snapshot;
2216 assert(mr->ram_block);
2217 memory_region_sync_dirty_bitmap(mr);
2218 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2219 memory_global_after_dirty_log_sync();
2223 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2224 hwaddr addr, hwaddr size)
2226 assert(mr->ram_block);
2227 return cpu_physical_memory_snapshot_get_dirty(snap,
2228 memory_region_get_ram_addr(mr) + addr, size);
2231 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2233 if (mr->readonly != readonly) {
2234 memory_region_transaction_begin();
2235 mr->readonly = readonly;
2236 memory_region_update_pending |= mr->enabled;
2237 memory_region_transaction_commit();
2241 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2243 if (mr->nonvolatile != nonvolatile) {
2244 memory_region_transaction_begin();
2245 mr->nonvolatile = nonvolatile;
2246 memory_region_update_pending |= mr->enabled;
2247 memory_region_transaction_commit();
2251 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2253 if (mr->romd_mode != romd_mode) {
2254 memory_region_transaction_begin();
2255 mr->romd_mode = romd_mode;
2256 memory_region_update_pending |= mr->enabled;
2257 memory_region_transaction_commit();
2261 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2262 hwaddr size, unsigned client)
2264 assert(mr->ram_block);
2265 cpu_physical_memory_test_and_clear_dirty(
2266 memory_region_get_ram_addr(mr) + addr, size, client);
2269 int memory_region_get_fd(MemoryRegion *mr)
2273 RCU_READ_LOCK_GUARD();
2277 fd = mr->ram_block->fd;
2282 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2285 uint64_t offset = 0;
2287 RCU_READ_LOCK_GUARD();
2289 offset += mr->alias_offset;
2292 assert(mr->ram_block);
2293 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2298 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2302 block = qemu_ram_block_from_host(ptr, false, offset);
2310 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2312 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2315 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2317 assert(mr->ram_block);
2319 qemu_ram_resize(mr->ram_block, newsize, errp);
2322 void memory_region_msync(MemoryRegion *mr, hwaddr addr, hwaddr size)
2324 if (mr->ram_block) {
2325 qemu_ram_msync(mr->ram_block, addr, size);
2329 void memory_region_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2332 * Might be extended case needed to cover
2333 * different types of memory regions
2335 if (mr->dirty_log_mask) {
2336 memory_region_msync(mr, addr, size);
2341 * Call proper memory listeners about the change on the newly
2342 * added/removed CoalescedMemoryRange.
2344 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2345 CoalescedMemoryRange *cmr,
2352 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2353 view = address_space_get_flatview(as);
2354 FOR_EACH_FLAT_RANGE(fr, view) {
2356 flat_range_coalesced_io_notify(fr, as, cmr, add);
2359 flatview_unref(view);
2363 void memory_region_set_coalescing(MemoryRegion *mr)
2365 memory_region_clear_coalescing(mr);
2366 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2369 void memory_region_add_coalescing(MemoryRegion *mr,
2373 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2375 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2376 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2377 memory_region_update_coalesced_range(mr, cmr, true);
2378 memory_region_set_flush_coalesced(mr);
2381 void memory_region_clear_coalescing(MemoryRegion *mr)
2383 CoalescedMemoryRange *cmr;
2385 if (QTAILQ_EMPTY(&mr->coalesced)) {
2389 qemu_flush_coalesced_mmio_buffer();
2390 mr->flush_coalesced_mmio = false;
2392 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2393 cmr = QTAILQ_FIRST(&mr->coalesced);
2394 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2395 memory_region_update_coalesced_range(mr, cmr, false);
2400 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2402 mr->flush_coalesced_mmio = true;
2405 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2407 qemu_flush_coalesced_mmio_buffer();
2408 if (QTAILQ_EMPTY(&mr->coalesced)) {
2409 mr->flush_coalesced_mmio = false;
2413 static bool userspace_eventfd_warning;
2415 void memory_region_add_eventfd(MemoryRegion *mr,
2422 MemoryRegionIoeventfd mrfd = {
2423 .addr.start = int128_make64(addr),
2424 .addr.size = int128_make64(size),
2425 .match_data = match_data,
2431 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2432 userspace_eventfd_warning))) {
2433 userspace_eventfd_warning = true;
2434 error_report("Using eventfd without MMIO binding in KVM. "
2435 "Suboptimal performance expected");
2439 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2441 memory_region_transaction_begin();
2442 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2443 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2448 mr->ioeventfds = g_realloc(mr->ioeventfds,
2449 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2450 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2451 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2452 mr->ioeventfds[i] = mrfd;
2453 ioeventfd_update_pending |= mr->enabled;
2454 memory_region_transaction_commit();
2457 void memory_region_del_eventfd(MemoryRegion *mr,
2464 MemoryRegionIoeventfd mrfd = {
2465 .addr.start = int128_make64(addr),
2466 .addr.size = int128_make64(size),
2467 .match_data = match_data,
2474 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2476 memory_region_transaction_begin();
2477 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2478 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2482 assert(i != mr->ioeventfd_nb);
2483 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2484 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2486 mr->ioeventfds = g_realloc(mr->ioeventfds,
2487 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2488 ioeventfd_update_pending |= mr->enabled;
2489 memory_region_transaction_commit();
2492 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2494 MemoryRegion *mr = subregion->container;
2495 MemoryRegion *other;
2497 memory_region_transaction_begin();
2499 memory_region_ref(subregion);
2500 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2501 if (subregion->priority >= other->priority) {
2502 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2506 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2508 memory_region_update_pending |= mr->enabled && subregion->enabled;
2509 memory_region_transaction_commit();
2512 static void memory_region_add_subregion_common(MemoryRegion *mr,
2514 MemoryRegion *subregion)
2516 assert(!subregion->container);
2517 subregion->container = mr;
2518 subregion->addr = offset;
2519 memory_region_update_container_subregions(subregion);
2522 void memory_region_add_subregion(MemoryRegion *mr,
2524 MemoryRegion *subregion)
2526 subregion->priority = 0;
2527 memory_region_add_subregion_common(mr, offset, subregion);
2530 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2532 MemoryRegion *subregion,
2535 subregion->priority = priority;
2536 memory_region_add_subregion_common(mr, offset, subregion);
2539 void memory_region_del_subregion(MemoryRegion *mr,
2540 MemoryRegion *subregion)
2542 memory_region_transaction_begin();
2543 assert(subregion->container == mr);
2544 subregion->container = NULL;
2545 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2546 memory_region_unref(subregion);
2547 memory_region_update_pending |= mr->enabled && subregion->enabled;
2548 memory_region_transaction_commit();
2551 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2553 if (enabled == mr->enabled) {
2556 memory_region_transaction_begin();
2557 mr->enabled = enabled;
2558 memory_region_update_pending = true;
2559 memory_region_transaction_commit();
2562 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2564 Int128 s = int128_make64(size);
2566 if (size == UINT64_MAX) {
2569 if (int128_eq(s, mr->size)) {
2572 memory_region_transaction_begin();
2574 memory_region_update_pending = true;
2575 memory_region_transaction_commit();
2578 static void memory_region_readd_subregion(MemoryRegion *mr)
2580 MemoryRegion *container = mr->container;
2583 memory_region_transaction_begin();
2584 memory_region_ref(mr);
2585 memory_region_del_subregion(container, mr);
2586 mr->container = container;
2587 memory_region_update_container_subregions(mr);
2588 memory_region_unref(mr);
2589 memory_region_transaction_commit();
2593 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2595 if (addr != mr->addr) {
2597 memory_region_readd_subregion(mr);
2601 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2605 if (offset == mr->alias_offset) {
2609 memory_region_transaction_begin();
2610 mr->alias_offset = offset;
2611 memory_region_update_pending |= mr->enabled;
2612 memory_region_transaction_commit();
2615 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2620 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2622 const AddrRange *addr = addr_;
2623 const FlatRange *fr = fr_;
2625 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2627 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2633 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2635 return bsearch(&addr, view->ranges, view->nr,
2636 sizeof(FlatRange), cmp_flatrange_addr);
2639 bool memory_region_is_mapped(MemoryRegion *mr)
2641 return mr->container ? true : false;
2644 /* Same as memory_region_find, but it does not add a reference to the
2645 * returned region. It must be called from an RCU critical section.
2647 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2648 hwaddr addr, uint64_t size)
2650 MemoryRegionSection ret = { .mr = NULL };
2658 for (root = mr; root->container; ) {
2659 root = root->container;
2663 as = memory_region_to_address_space(root);
2667 range = addrrange_make(int128_make64(addr), int128_make64(size));
2669 view = address_space_to_flatview(as);
2670 fr = flatview_lookup(view, range);
2675 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2681 range = addrrange_intersection(range, fr->addr);
2682 ret.offset_within_region = fr->offset_in_region;
2683 ret.offset_within_region += int128_get64(int128_sub(range.start,
2685 ret.size = range.size;
2686 ret.offset_within_address_space = int128_get64(range.start);
2687 ret.readonly = fr->readonly;
2688 ret.nonvolatile = fr->nonvolatile;
2692 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2693 hwaddr addr, uint64_t size)
2695 MemoryRegionSection ret;
2696 RCU_READ_LOCK_GUARD();
2697 ret = memory_region_find_rcu(mr, addr, size);
2699 memory_region_ref(ret.mr);
2704 MemoryRegionSection *memory_region_section_new_copy(MemoryRegionSection *s)
2706 MemoryRegionSection *tmp = g_new(MemoryRegionSection, 1);
2710 memory_region_ref(tmp->mr);
2713 bool ret = flatview_ref(tmp->fv);
2720 void memory_region_section_free_copy(MemoryRegionSection *s)
2723 flatview_unref(s->fv);
2726 memory_region_unref(s->mr);
2731 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2735 RCU_READ_LOCK_GUARD();
2736 mr = memory_region_find_rcu(container, addr, 1).mr;
2737 return mr && mr != container;
2740 void memory_global_dirty_log_sync(void)
2742 memory_region_sync_dirty_bitmap(NULL);
2745 void memory_global_after_dirty_log_sync(void)
2747 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2750 static VMChangeStateEntry *vmstate_change;
2752 void memory_global_dirty_log_start(void)
2754 if (vmstate_change) {
2755 qemu_del_vm_change_state_handler(vmstate_change);
2756 vmstate_change = NULL;
2759 global_dirty_log = true;
2761 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2763 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2764 memory_region_transaction_begin();
2765 memory_region_update_pending = true;
2766 memory_region_transaction_commit();
2769 static void memory_global_dirty_log_do_stop(void)
2771 global_dirty_log = false;
2773 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2774 memory_region_transaction_begin();
2775 memory_region_update_pending = true;
2776 memory_region_transaction_commit();
2778 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2781 static void memory_vm_change_state_handler(void *opaque, bool running,
2785 memory_global_dirty_log_do_stop();
2787 if (vmstate_change) {
2788 qemu_del_vm_change_state_handler(vmstate_change);
2789 vmstate_change = NULL;
2794 void memory_global_dirty_log_stop(void)
2796 if (!runstate_is_running()) {
2797 if (vmstate_change) {
2800 vmstate_change = qemu_add_vm_change_state_handler(
2801 memory_vm_change_state_handler, NULL);
2805 memory_global_dirty_log_do_stop();
2808 static void listener_add_address_space(MemoryListener *listener,
2814 if (listener->begin) {
2815 listener->begin(listener);
2817 if (global_dirty_log) {
2818 if (listener->log_global_start) {
2819 listener->log_global_start(listener);
2823 view = address_space_get_flatview(as);
2824 FOR_EACH_FLAT_RANGE(fr, view) {
2825 MemoryRegionSection section = section_from_flat_range(fr, view);
2827 if (listener->region_add) {
2828 listener->region_add(listener, §ion);
2830 if (fr->dirty_log_mask && listener->log_start) {
2831 listener->log_start(listener, §ion, 0, fr->dirty_log_mask);
2834 if (listener->commit) {
2835 listener->commit(listener);
2837 flatview_unref(view);
2840 static void listener_del_address_space(MemoryListener *listener,
2846 if (listener->begin) {
2847 listener->begin(listener);
2849 view = address_space_get_flatview(as);
2850 FOR_EACH_FLAT_RANGE(fr, view) {
2851 MemoryRegionSection section = section_from_flat_range(fr, view);
2853 if (fr->dirty_log_mask && listener->log_stop) {
2854 listener->log_stop(listener, §ion, fr->dirty_log_mask, 0);
2856 if (listener->region_del) {
2857 listener->region_del(listener, §ion);
2860 if (listener->commit) {
2861 listener->commit(listener);
2863 flatview_unref(view);
2866 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2868 MemoryListener *other = NULL;
2870 /* Only one of them can be defined for a listener */
2871 assert(!(listener->log_sync && listener->log_sync_global));
2873 listener->address_space = as;
2874 if (QTAILQ_EMPTY(&memory_listeners)
2875 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2876 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2878 QTAILQ_FOREACH(other, &memory_listeners, link) {
2879 if (listener->priority < other->priority) {
2883 QTAILQ_INSERT_BEFORE(other, listener, link);
2886 if (QTAILQ_EMPTY(&as->listeners)
2887 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2888 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2890 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2891 if (listener->priority < other->priority) {
2895 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2898 listener_add_address_space(listener, as);
2901 void memory_listener_unregister(MemoryListener *listener)
2903 if (!listener->address_space) {
2907 listener_del_address_space(listener, listener->address_space);
2908 QTAILQ_REMOVE(&memory_listeners, listener, link);
2909 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2910 listener->address_space = NULL;
2913 void address_space_remove_listeners(AddressSpace *as)
2915 while (!QTAILQ_EMPTY(&as->listeners)) {
2916 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2920 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2922 memory_region_ref(root);
2924 as->current_map = NULL;
2925 as->ioeventfd_nb = 0;
2926 as->ioeventfds = NULL;
2927 QTAILQ_INIT(&as->listeners);
2928 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2929 as->name = g_strdup(name ? name : "anonymous");
2930 address_space_update_topology(as);
2931 address_space_update_ioeventfds(as);
2934 static void do_address_space_destroy(AddressSpace *as)
2936 assert(QTAILQ_EMPTY(&as->listeners));
2938 flatview_unref(as->current_map);
2940 g_free(as->ioeventfds);
2941 memory_region_unref(as->root);
2944 void address_space_destroy(AddressSpace *as)
2946 MemoryRegion *root = as->root;
2948 /* Flush out anything from MemoryListeners listening in on this */
2949 memory_region_transaction_begin();
2951 memory_region_transaction_commit();
2952 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2954 /* At this point, as->dispatch and as->current_map are dummy
2955 * entries that the guest should never use. Wait for the old
2956 * values to expire before freeing the data.
2959 call_rcu(as, do_address_space_destroy, rcu);
2962 static const char *memory_region_type(MemoryRegion *mr)
2965 return memory_region_type(mr->alias);
2967 if (memory_region_is_ram_device(mr)) {
2969 } else if (memory_region_is_romd(mr)) {
2971 } else if (memory_region_is_rom(mr)) {
2973 } else if (memory_region_is_ram(mr)) {
2980 typedef struct MemoryRegionList MemoryRegionList;
2982 struct MemoryRegionList {
2983 const MemoryRegion *mr;
2984 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2987 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2989 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2990 int128_sub((size), int128_one())) : 0)
2991 #define MTREE_INDENT " "
2993 static void mtree_expand_owner(const char *label, Object *obj)
2995 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2997 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2998 if (dev && dev->id) {
2999 qemu_printf(" id=%s", dev->id);
3001 char *canonical_path = object_get_canonical_path(obj);
3002 if (canonical_path) {
3003 qemu_printf(" path=%s", canonical_path);
3004 g_free(canonical_path);
3006 qemu_printf(" type=%s", object_get_typename(obj));
3012 static void mtree_print_mr_owner(const MemoryRegion *mr)
3014 Object *owner = mr->owner;
3015 Object *parent = memory_region_owner((MemoryRegion *)mr);
3017 if (!owner && !parent) {
3018 qemu_printf(" orphan");
3022 mtree_expand_owner("owner", owner);
3024 if (parent && parent != owner) {
3025 mtree_expand_owner("parent", parent);
3029 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
3031 MemoryRegionListHead *alias_print_queue,
3032 bool owner, bool display_disabled)
3034 MemoryRegionList *new_ml, *ml, *next_ml;
3035 MemoryRegionListHead submr_print_queue;
3036 const MemoryRegion *submr;
3038 hwaddr cur_start, cur_end;
3044 cur_start = base + mr->addr;
3045 cur_end = cur_start + MR_SIZE(mr->size);
3048 * Try to detect overflow of memory region. This should never
3049 * happen normally. When it happens, we dump something to warn the
3050 * user who is observing this.
3052 if (cur_start < base || cur_end < cur_start) {
3053 qemu_printf("[DETECTED OVERFLOW!] ");
3057 MemoryRegionList *ml;
3060 /* check if the alias is already in the queue */
3061 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
3062 if (ml->mr == mr->alias) {
3068 ml = g_new(MemoryRegionList, 1);
3070 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
3072 if (mr->enabled || display_disabled) {
3073 for (i = 0; i < level; i++) {
3074 qemu_printf(MTREE_INDENT);
3076 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3077 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
3078 "-" TARGET_FMT_plx "%s",
3081 mr->nonvolatile ? "nv-" : "",
3082 memory_region_type((MemoryRegion *)mr),
3083 memory_region_name(mr),
3084 memory_region_name(mr->alias),
3086 mr->alias_offset + MR_SIZE(mr->size),
3087 mr->enabled ? "" : " [disabled]");
3089 mtree_print_mr_owner(mr);
3094 if (mr->enabled || display_disabled) {
3095 for (i = 0; i < level; i++) {
3096 qemu_printf(MTREE_INDENT);
3098 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
3099 " (prio %d, %s%s): %s%s",
3102 mr->nonvolatile ? "nv-" : "",
3103 memory_region_type((MemoryRegion *)mr),
3104 memory_region_name(mr),
3105 mr->enabled ? "" : " [disabled]");
3107 mtree_print_mr_owner(mr);
3113 QTAILQ_INIT(&submr_print_queue);
3115 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
3116 new_ml = g_new(MemoryRegionList, 1);
3118 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3119 if (new_ml->mr->addr < ml->mr->addr ||
3120 (new_ml->mr->addr == ml->mr->addr &&
3121 new_ml->mr->priority > ml->mr->priority)) {
3122 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
3128 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
3132 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
3133 mtree_print_mr(ml->mr, level + 1, cur_start,
3134 alias_print_queue, owner, display_disabled);
3137 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
3142 struct FlatViewInfo {
3149 static void mtree_print_flatview(gpointer key, gpointer value,
3152 FlatView *view = key;
3153 GArray *fv_address_spaces = value;
3154 struct FlatViewInfo *fvi = user_data;
3155 FlatRange *range = &view->ranges[0];
3161 qemu_printf("FlatView #%d\n", fvi->counter);
3164 for (i = 0; i < fv_address_spaces->len; ++i) {
3165 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3166 qemu_printf(" AS \"%s\", root: %s",
3167 as->name, memory_region_name(as->root));
3168 if (as->root->alias) {
3169 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3174 qemu_printf(" Root memory region: %s\n",
3175 view->root ? memory_region_name(view->root) : "(none)");
3178 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3184 if (range->offset_in_region) {
3185 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3186 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3187 int128_get64(range->addr.start),
3188 int128_get64(range->addr.start)
3189 + MR_SIZE(range->addr.size),
3191 range->nonvolatile ? "nv-" : "",
3192 range->readonly ? "rom" : memory_region_type(mr),
3193 memory_region_name(mr),
3194 range->offset_in_region);
3196 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3197 " (prio %d, %s%s): %s",
3198 int128_get64(range->addr.start),
3199 int128_get64(range->addr.start)
3200 + MR_SIZE(range->addr.size),
3202 range->nonvolatile ? "nv-" : "",
3203 range->readonly ? "rom" : memory_region_type(mr),
3204 memory_region_name(mr));
3207 mtree_print_mr_owner(mr);
3211 for (i = 0; i < fv_address_spaces->len; ++i) {
3212 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3213 if (fvi->ac->has_memory(current_machine, as,
3214 int128_get64(range->addr.start),
3215 MR_SIZE(range->addr.size) + 1)) {
3216 qemu_printf(" %s", fvi->ac->name);
3224 #if !defined(CONFIG_USER_ONLY)
3225 if (fvi->dispatch_tree && view->root) {
3226 mtree_print_dispatch(view->dispatch, view->root);
3233 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3236 FlatView *view = key;
3237 GArray *fv_address_spaces = value;
3239 g_array_unref(fv_address_spaces);
3240 flatview_unref(view);
3245 void mtree_info(bool flatview, bool dispatch_tree, bool owner, bool disabled)
3247 MemoryRegionListHead ml_head;
3248 MemoryRegionList *ml, *ml2;
3253 struct FlatViewInfo fvi = {
3255 .dispatch_tree = dispatch_tree,
3258 GArray *fv_address_spaces;
3259 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3260 AccelClass *ac = ACCEL_GET_CLASS(current_accel());
3262 if (ac->has_memory) {
3266 /* Gather all FVs in one table */
3267 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3268 view = address_space_get_flatview(as);
3270 fv_address_spaces = g_hash_table_lookup(views, view);
3271 if (!fv_address_spaces) {
3272 fv_address_spaces = g_array_new(false, false, sizeof(as));
3273 g_hash_table_insert(views, view, fv_address_spaces);
3276 g_array_append_val(fv_address_spaces, as);
3280 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3283 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3284 g_hash_table_unref(views);
3289 QTAILQ_INIT(&ml_head);
3291 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3292 qemu_printf("address-space: %s\n", as->name);
3293 mtree_print_mr(as->root, 1, 0, &ml_head, owner, disabled);
3297 /* print aliased regions */
3298 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3299 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3300 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner, disabled);
3304 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3309 void memory_region_init_ram(MemoryRegion *mr,
3315 DeviceState *owner_dev;
3318 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3320 error_propagate(errp, err);
3323 /* This will assert if owner is neither NULL nor a DeviceState.
3324 * We only want the owner here for the purposes of defining a
3325 * unique name for migration. TODO: Ideally we should implement
3326 * a naming scheme for Objects which are not DeviceStates, in
3327 * which case we can relax this restriction.
3329 owner_dev = DEVICE(owner);
3330 vmstate_register_ram(mr, owner_dev);
3333 void memory_region_init_rom(MemoryRegion *mr,
3339 DeviceState *owner_dev;
3342 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3344 error_propagate(errp, err);
3347 /* This will assert if owner is neither NULL nor a DeviceState.
3348 * We only want the owner here for the purposes of defining a
3349 * unique name for migration. TODO: Ideally we should implement
3350 * a naming scheme for Objects which are not DeviceStates, in
3351 * which case we can relax this restriction.
3353 owner_dev = DEVICE(owner);
3354 vmstate_register_ram(mr, owner_dev);
3357 void memory_region_init_rom_device(MemoryRegion *mr,
3359 const MemoryRegionOps *ops,
3365 DeviceState *owner_dev;
3368 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3371 error_propagate(errp, err);
3374 /* This will assert if owner is neither NULL nor a DeviceState.
3375 * We only want the owner here for the purposes of defining a
3376 * unique name for migration. TODO: Ideally we should implement
3377 * a naming scheme for Objects which are not DeviceStates, in
3378 * which case we can relax this restriction.
3380 owner_dev = DEVICE(owner);
3381 vmstate_register_ram(mr, owner_dev);
3385 * Support softmmu builds with CONFIG_FUZZ using a weak symbol and a stub for
3386 * the fuzz_dma_read_cb callback
3389 void __attribute__((weak)) fuzz_dma_read_cb(size_t addr,
3396 static const TypeInfo memory_region_info = {
3397 .parent = TYPE_OBJECT,
3398 .name = TYPE_MEMORY_REGION,
3399 .class_size = sizeof(MemoryRegionClass),
3400 .instance_size = sizeof(MemoryRegion),
3401 .instance_init = memory_region_initfn,
3402 .instance_finalize = memory_region_finalize,
3405 static const TypeInfo iommu_memory_region_info = {
3406 .parent = TYPE_MEMORY_REGION,
3407 .name = TYPE_IOMMU_MEMORY_REGION,
3408 .class_size = sizeof(IOMMUMemoryRegionClass),
3409 .instance_size = sizeof(IOMMUMemoryRegion),
3410 .instance_init = iommu_memory_region_initfn,
3414 static const TypeInfo ram_discard_manager_info = {
3415 .parent = TYPE_INTERFACE,
3416 .name = TYPE_RAM_DISCARD_MANAGER,
3417 .class_size = sizeof(RamDiscardManagerClass),
3420 static void memory_register_types(void)
3422 type_register_static(&memory_region_info);
3423 type_register_static(&iommu_memory_region_info);
3424 type_register_static(&ram_discard_manager_info);
3427 type_init(memory_register_types)