2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23 #include "qemu-common.h"
29 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
33 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
38 target_phys_addr_t base;
41 BlockDriverState *bdrv;
42 BlockDriverState *bdrv_cur;
63 struct ecc_state_s ecc;
75 ONEN_BUF_DEST_BLOCK = 2,
76 ONEN_BUF_DEST_PAGE = 3,
81 ONEN_ERR_CMD = 1 << 10,
82 ONEN_ERR_ERASE = 1 << 11,
83 ONEN_ERR_PROG = 1 << 12,
84 ONEN_ERR_LOAD = 1 << 13,
88 ONEN_INT_RESET = 1 << 4,
89 ONEN_INT_ERASE = 1 << 5,
90 ONEN_INT_PROG = 1 << 6,
91 ONEN_INT_LOAD = 1 << 7,
96 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
97 ONEN_LOCK_LOCKED = 1 << 1,
98 ONEN_LOCK_UNLOCKED = 1 << 2,
101 void onenand_base_update(void *opaque, target_phys_addr_t new)
103 struct onenand_s *s = (struct onenand_s *) opaque;
107 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
108 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
109 * write boot commands. Also take note of the BWPS bit. */
110 cpu_register_physical_memory(s->base + (0x0000 << s->shift),
111 0x0200 << s->shift, s->iomemtype);
112 cpu_register_physical_memory(s->base + (0x0200 << s->shift),
114 (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
116 cpu_register_physical_memory(s->base + (0xc000 << s->shift),
117 0x4000 << s->shift, s->iomemtype);
120 void onenand_base_unmap(void *opaque)
122 struct onenand_s *s = (struct onenand_s *) opaque;
124 cpu_register_physical_memory(s->base,
125 0x10000 << s->shift, IO_MEM_UNASSIGNED);
128 static void onenand_intr_update(struct onenand_s *s)
130 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
133 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
134 static void onenand_reset(struct onenand_s *s, int cold)
136 memset(&s->addr, 0, sizeof(s->addr));
140 s->config[0] = 0x40c0;
141 s->config[1] = 0x0000;
142 onenand_intr_update(s);
143 qemu_irq_raise(s->rdy);
145 s->intstatus = cold ? 0x8080 : 0x8010;
148 s->wpstatus = 0x0002;
151 s->bdrv_cur = s->bdrv;
152 s->current = s->image;
153 s->secs_cur = s->secs;
156 /* Lock the whole flash */
157 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
159 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
160 cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n",
165 static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
169 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
170 else if (sec + secn > s->secs_cur)
173 memcpy(dest, s->current + (sec << 9), secn << 9);
178 static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
182 return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
183 else if (sec + secn > s->secs_cur)
186 memcpy(s->current + (sec << 9), src, secn << 9);
191 static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
197 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
199 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
200 } else if (sec + secn > s->secs_cur)
203 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
208 static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
214 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
216 memcpy(buf + ((sec & 31) << 4), src, secn << 4);
217 return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
218 } else if (sec + secn > s->secs_cur)
221 memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
226 static inline int onenand_erase(struct onenand_s *s, int sec, int num)
231 memset(buf, 0xff, sizeof(buf));
232 for (; num > 0; num --, sec ++) {
233 if (onenand_prog_main(s, sec, 1, buf))
235 if (onenand_prog_spare(s, sec, 1, buf))
242 static void onenand_command(struct onenand_s *s, int cmd)
247 #define SETADDR(block, page) \
248 sec = (s->addr[page] & 3) + \
249 ((((s->addr[page] >> 2) & 0x3f) + \
250 (((s->addr[block] & 0xfff) | \
251 (s->addr[block] >> 15 ? \
252 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
254 buf = (s->bufaddr & 8) ? \
255 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
256 buf += (s->bufaddr & 3) << 9;
258 buf = (s->bufaddr & 8) ? \
259 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
260 buf += (s->bufaddr & 3) << 4;
263 case 0x00: /* Load single/multiple sector data unit into buffer */
264 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
267 if (onenand_load_main(s, sec, s->count, buf))
268 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
272 if (onenand_load_spare(s, sec, s->count, buf))
273 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
276 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
277 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
278 * then we need two split the read/write into two chunks.
280 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
282 case 0x13: /* Load single/multiple spare sector into buffer */
283 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
286 if (onenand_load_spare(s, sec, s->count, buf))
287 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
289 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
290 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
291 * then we need two split the read/write into two chunks.
293 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
295 case 0x80: /* Program single/multiple sector data unit from buffer */
296 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
299 if (onenand_prog_main(s, sec, s->count, buf))
300 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
304 if (onenand_prog_spare(s, sec, s->count, buf))
305 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
308 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
309 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
310 * then we need two split the read/write into two chunks.
312 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
314 case 0x1a: /* Program single/multiple spare area sector from buffer */
315 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
318 if (onenand_prog_spare(s, sec, s->count, buf))
319 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
321 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
322 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
323 * then we need two split the read/write into two chunks.
325 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
327 case 0x1b: /* Copy-back program */
330 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
331 if (onenand_load_main(s, sec, s->count, buf))
332 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
334 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
335 if (onenand_prog_main(s, sec, s->count, buf))
336 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
338 /* TODO: spare areas */
340 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
343 case 0x23: /* Unlock NAND array block(s) */
344 s->intstatus |= ONEN_INT;
346 /* XXX the previous (?) area should be locked automatically */
347 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
348 if (b >= s->blocks) {
349 s->status |= ONEN_ERR_CMD;
352 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
355 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
358 case 0x2a: /* Lock NAND array block(s) */
359 s->intstatus |= ONEN_INT;
361 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
362 if (b >= s->blocks) {
363 s->status |= ONEN_ERR_CMD;
366 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
369 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
372 case 0x2c: /* Lock-tight NAND array block(s) */
373 s->intstatus |= ONEN_INT;
375 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
376 if (b >= s->blocks) {
377 s->status |= ONEN_ERR_CMD;
380 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
383 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
387 case 0x71: /* Erase-Verify-Read */
388 s->intstatus |= ONEN_INT;
390 case 0x95: /* Multi-block erase */
391 qemu_irq_pulse(s->intr);
393 case 0x94: /* Block erase */
394 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
395 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
396 << (BLOCK_SHIFT - 9);
397 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
398 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
400 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
402 case 0xb0: /* Erase suspend */
404 case 0x30: /* Erase resume */
405 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
408 case 0xf0: /* Reset NAND Flash core */
411 case 0xf3: /* Reset OneNAND */
415 case 0x65: /* OTP Access */
416 s->intstatus |= ONEN_INT;
419 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
420 s->addr[ONEN_BUF_BLOCK] = 0;
425 s->status |= ONEN_ERR_CMD;
426 s->intstatus |= ONEN_INT;
427 fprintf(stderr, "%s: unknown OneNAND command %x\n",
431 onenand_intr_update(s);
434 static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
436 struct onenand_s *s = (struct onenand_s *) opaque;
437 int offset = (addr - s->base) >> s->shift;
440 case 0x0000 ... 0xc000:
441 return lduw_le_p(s->boot[0] + (addr - s->base));
443 case 0xf000: /* Manufacturer ID */
444 return (s->id >> 16) & 0xff;
445 case 0xf001: /* Device ID */
446 return (s->id >> 8) & 0xff;
447 /* TODO: get the following values from a real chip! */
448 case 0xf002: /* Version ID */
449 return (s->id >> 0) & 0xff;
450 case 0xf003: /* Data Buffer size */
451 return 1 << PAGE_SHIFT;
452 case 0xf004: /* Boot Buffer size */
454 case 0xf005: /* Amount of buffers */
456 case 0xf006: /* Technology */
459 case 0xf100 ... 0xf107: /* Start addresses */
460 return s->addr[offset - 0xf100];
462 case 0xf200: /* Start buffer */
463 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
465 case 0xf220: /* Command */
467 case 0xf221: /* System Configuration 1 */
468 return s->config[0] & 0xffe0;
469 case 0xf222: /* System Configuration 2 */
472 case 0xf240: /* Controller Status */
474 case 0xf241: /* Interrupt */
476 case 0xf24c: /* Unlock Start Block Address */
477 return s->unladdr[0];
478 case 0xf24d: /* Unlock End Block Address */
479 return s->unladdr[1];
480 case 0xf24e: /* Write Protection Status */
483 case 0xff00: /* ECC Status */
485 case 0xff01: /* ECC Result of main area data */
486 case 0xff02: /* ECC Result of spare area data */
487 case 0xff03: /* ECC Result of main area data */
488 case 0xff04: /* ECC Result of spare area data */
489 cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__);
493 fprintf(stderr, "%s: unknown OneNAND register %x\n",
494 __FUNCTION__, offset);
498 static void onenand_write(void *opaque, target_phys_addr_t addr,
501 struct onenand_s *s = (struct onenand_s *) opaque;
502 int offset = (addr - s->base) >> s->shift;
506 case 0x0000 ... 0x01ff:
507 case 0x8000 ... 0x800f:
511 if (value == 0x0000) {
512 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
513 onenand_load_main(s, sec,
514 1 << (PAGE_SHIFT - 9), s->data[0][0]);
515 s->addr[ONEN_BUF_PAGE] += 4;
516 s->addr[ONEN_BUF_PAGE] &= 0xff;
522 case 0x00f0: /* Reset OneNAND */
526 case 0x00e0: /* Load Data into Buffer */
530 case 0x0090: /* Read Identification Data */
531 memset(s->boot[0], 0, 3 << s->shift);
532 s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
533 s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff;
534 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
538 fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
539 __FUNCTION__, value);
543 case 0xf100 ... 0xf107: /* Start addresses */
544 s->addr[offset - 0xf100] = value;
547 case 0xf200: /* Start buffer */
548 s->bufaddr = (value >> 8) & 0xf;
549 if (PAGE_SHIFT == 11)
550 s->count = (value & 3) ?: 4;
551 else if (PAGE_SHIFT == 10)
552 s->count = (value & 1) ?: 2;
555 case 0xf220: /* Command */
556 if (s->intstatus & (1 << 15))
559 onenand_command(s, s->command);
561 case 0xf221: /* System Configuration 1 */
562 s->config[0] = value;
563 onenand_intr_update(s);
564 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
566 case 0xf222: /* System Configuration 2 */
567 s->config[1] = value;
570 case 0xf241: /* Interrupt */
571 s->intstatus &= value;
572 if ((1 << 15) & ~s->intstatus)
573 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
574 ONEN_ERR_PROG | ONEN_ERR_LOAD);
575 onenand_intr_update(s);
577 case 0xf24c: /* Unlock Start Block Address */
578 s->unladdr[0] = value & (s->blocks - 1);
579 /* For some reason we have to set the end address to by default
580 * be same as start because the software forgets to write anything
582 s->unladdr[1] = value & (s->blocks - 1);
584 case 0xf24d: /* Unlock End Block Address */
585 s->unladdr[1] = value & (s->blocks - 1);
589 fprintf(stderr, "%s: unknown OneNAND register %x\n",
590 __FUNCTION__, offset);
594 static CPUReadMemoryFunc *onenand_readfn[] = {
595 onenand_read, /* TODO */
600 static CPUWriteMemoryFunc *onenand_writefn[] = {
601 onenand_write, /* TODO */
606 void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
608 struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
609 int bdrv_index = drive_get_index(IF_MTD, 0, 0);
610 uint32_t size = 1 << (24 + ((id >> 12) & 7));
617 s->blocks = size >> BLOCK_SHIFT;
619 s->blockwp = qemu_malloc(s->blocks);
620 s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
621 s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
623 if (bdrv_index == -1)
624 s->image = memset(qemu_malloc(size + (size >> 5)),
625 0xff, size + (size >> 5));
627 s->bdrv = drives_table[bdrv_index].bdrv;
628 s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
629 0xff, (64 + 2) << PAGE_SHIFT);
630 s->ram = qemu_ram_alloc(0xc000 << s->shift);
631 ram = phys_ram_base + s->ram;
632 s->boot[0] = ram + (0x0000 << s->shift);
633 s->boot[1] = ram + (0x8000 << s->shift);
634 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
635 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
636 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
637 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);