4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
24 #define NO_CPU_IO_DEFS
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
30 #if defined(CONFIG_USER_ONLY)
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd /* avoid redefinition */
38 #include <machine/profile.h>
47 #include "exec/ram_addr.h"
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "exec/translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/cpu-timers.h"
61 #include "sysemu/tcg.h"
62 #include "qapi/error.h"
63 #include "hw/core/tcg-cpu-ops.h"
66 /* #define DEBUG_TB_INVALIDATE */
67 /* #define DEBUG_TB_FLUSH */
68 /* make various TB consistency checks */
69 /* #define DEBUG_TB_CHECK */
71 #ifdef DEBUG_TB_INVALIDATE
72 #define DEBUG_TB_INVALIDATE_GATE 1
74 #define DEBUG_TB_INVALIDATE_GATE 0
78 #define DEBUG_TB_FLUSH_GATE 1
80 #define DEBUG_TB_FLUSH_GATE 0
83 #if !defined(CONFIG_USER_ONLY)
84 /* TB consistency checks only implemented for usermode emulation. */
89 #define DEBUG_TB_CHECK_GATE 1
91 #define DEBUG_TB_CHECK_GATE 0
94 /* Access to the various translations structures need to be serialised via locks
96 * In user-mode emulation access to the memory related structures are protected
98 * In !user-mode we use per-page locks.
100 #ifdef CONFIG_SOFTMMU
101 #define assert_memory_lock()
103 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
106 #define SMC_BITMAP_USE_THRESHOLD 10
108 typedef struct PageDesc {
109 /* list of TBs intersecting this ram page */
111 #ifdef CONFIG_SOFTMMU
112 /* in order to optimize self modifying code, we count the number
113 of lookups we do to a given page to use a bitmap */
114 unsigned long *code_bitmap;
115 unsigned int code_write_count;
120 #ifndef CONFIG_USER_ONLY
126 * struct page_entry - page descriptor entry
127 * @pd: pointer to the &struct PageDesc of the page this entry represents
128 * @index: page index of the page
129 * @locked: whether the page is locked
131 * This struct helps us keep track of the locked state of a page, without
132 * bloating &struct PageDesc.
134 * A page lock protects accesses to all fields of &struct PageDesc.
136 * See also: &struct page_collection.
140 tb_page_addr_t index;
145 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
146 * @tree: Binary search tree (BST) of the pages, with key == page index
147 * @max: Pointer to the page in @tree with the highest page index
149 * To avoid deadlock we lock pages in ascending order of page index.
150 * When operating on a set of pages, we need to keep track of them so that
151 * we can lock them in order and also unlock them later. For this we collect
152 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
153 * @tree implementation we use does not provide an O(1) operation to obtain the
154 * highest-ranked element, we use @max to keep track of the inserted page
155 * with the highest index. This is valuable because if a page is not in
156 * the tree and its index is higher than @max's, then we can lock it
157 * without breaking the locking order rule.
159 * Note on naming: 'struct page_set' would be shorter, but we already have a few
160 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
162 * See also: page_collection_lock().
164 struct page_collection {
166 struct page_entry *max;
169 /* list iterators for lists of tagged pointers in TranslationBlock */
170 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
171 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
172 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
173 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
175 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
176 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
178 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
179 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
182 * In system mode we want L1_MAP to be based on ram offsets,
183 * while in user mode we want it to be based on virtual addresses.
185 * TODO: For user mode, see the caveat re host vs guest virtual
186 * address spaces near GUEST_ADDR_MAX.
188 #if !defined(CONFIG_USER_ONLY)
189 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
190 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
192 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
195 # define L1_MAP_ADDR_SPACE_BITS MIN(HOST_LONG_BITS, TARGET_ABI_BITS)
198 /* Size of the L2 (and L3, etc) page tables. */
200 #define V_L2_SIZE (1 << V_L2_BITS)
202 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
203 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
204 sizeof_field(TranslationBlock, trace_vcpu_dstate)
208 * L1 Mapping properties
210 static int v_l1_size;
211 static int v_l1_shift;
212 static int v_l2_levels;
214 /* The bottom level has pointers to PageDesc, and is indexed by
215 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
217 #define V_L1_MIN_BITS 4
218 #define V_L1_MAX_BITS (V_L2_BITS + 3)
219 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
221 static void *l1_map[V_L1_MAX_SIZE];
223 /* code generation context */
224 TCGContext tcg_init_ctx;
225 __thread TCGContext *tcg_ctx;
228 static void page_table_config_init(void)
232 assert(TARGET_PAGE_BITS);
233 /* The bits remaining after N lower levels of page tables. */
234 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
235 if (v_l1_bits < V_L1_MIN_BITS) {
236 v_l1_bits += V_L2_BITS;
239 v_l1_size = 1 << v_l1_bits;
240 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
241 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
243 assert(v_l1_bits <= V_L1_MAX_BITS);
244 assert(v_l1_shift % V_L2_BITS == 0);
245 assert(v_l2_levels >= 0);
248 static void cpu_gen_init(void)
250 tcg_context_init(&tcg_init_ctx);
253 /* Encode VAL as a signed leb128 sequence at P.
254 Return P incremented past the encoded value. */
255 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
262 more = !((val == 0 && (byte & 0x40) == 0)
263 || (val == -1 && (byte & 0x40) != 0));
273 /* Decode a signed leb128 sequence at *PP; increment *PP past the
274 decoded value. Return the decoded value. */
275 static target_long decode_sleb128(const uint8_t **pp)
277 const uint8_t *p = *pp;
283 val |= (target_ulong)(byte & 0x7f) << shift;
285 } while (byte & 0x80);
286 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
287 val |= -(target_ulong)1 << shift;
294 /* Encode the data collected about the instructions while compiling TB.
295 Place the data at BLOCK, and return the number of bytes consumed.
297 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
298 which come from the target's insn_start data, followed by a uintptr_t
299 which comes from the host pc of the end of the code implementing the insn.
301 Each line of the table is encoded as sleb128 deltas from the previous
302 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
303 That is, the first column is seeded with the guest pc, the last column
304 with the host pc, and the middle columns with zeros. */
306 static int encode_search(TranslationBlock *tb, uint8_t *block)
308 uint8_t *highwater = tcg_ctx->code_gen_highwater;
312 for (i = 0, n = tb->icount; i < n; ++i) {
315 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
317 prev = (j == 0 ? tb->pc : 0);
319 prev = tcg_ctx->gen_insn_data[i - 1][j];
321 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
323 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
324 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
326 /* Test for (pending) buffer overflow. The assumption is that any
327 one row beginning below the high water mark cannot overrun
328 the buffer completely. Thus we can test for overflow after
329 encoding a row without having to check during encoding. */
330 if (unlikely(p > highwater)) {
338 /* The cpu state corresponding to 'searched_pc' is restored.
339 * When reset_icount is true, current TB will be interrupted and
340 * icount should be recalculated.
342 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
343 uintptr_t searched_pc, bool reset_icount)
345 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
346 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
347 CPUArchState *env = cpu->env_ptr;
348 const uint8_t *p = tb->tc.ptr + tb->tc.size;
349 int i, j, num_insns = tb->icount;
350 #ifdef CONFIG_PROFILER
351 TCGProfile *prof = &tcg_ctx->prof;
352 int64_t ti = profile_getclock();
355 searched_pc -= GETPC_ADJ;
357 if (searched_pc < host_pc) {
361 /* Reconstruct the stored insn data while looking for the point at
362 which the end of the insn exceeds the searched_pc. */
363 for (i = 0; i < num_insns; ++i) {
364 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
365 data[j] += decode_sleb128(&p);
367 host_pc += decode_sleb128(&p);
368 if (host_pc > searched_pc) {
375 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
376 assert(icount_enabled());
377 /* Reset the cycle counter to the start of the block
378 and shift if to the number of actually executed instructions */
379 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
381 restore_state_to_opc(env, tb, data);
383 #ifdef CONFIG_PROFILER
384 qatomic_set(&prof->restore_time,
385 prof->restore_time + profile_getclock() - ti);
386 qatomic_set(&prof->restore_count, prof->restore_count + 1);
391 void tb_destroy(TranslationBlock *tb)
393 qemu_spin_destroy(&tb->jmp_lock);
396 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
399 * The host_pc has to be in the rx region of the code buffer.
400 * If it is not we will not be able to resolve it here.
401 * The two cases where host_pc will not be correct are:
403 * - fault during translation (instruction fetch)
404 * - fault from helper (not using GETPC() macro)
406 * Either way we need return early as we can't resolve it here.
408 if (in_code_gen_buffer((const void *)(host_pc - tcg_splitwx_diff))) {
409 TranslationBlock *tb = tcg_tb_lookup(host_pc);
411 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
418 static void page_init(void)
421 page_table_config_init();
423 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425 #ifdef HAVE_KINFO_GETVMMAP
426 struct kinfo_vmentry *freep;
429 freep = kinfo_getvmmap(getpid(), &cnt);
432 for (i = 0; i < cnt; i++) {
433 unsigned long startaddr, endaddr;
435 startaddr = freep[i].kve_start;
436 endaddr = freep[i].kve_end;
437 if (h2g_valid(startaddr)) {
438 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440 if (h2g_valid(endaddr)) {
441 endaddr = h2g(endaddr);
442 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
457 last_brk = (unsigned long)sbrk(0);
459 f = fopen("/compat/linux/proc/self/maps", "r");
464 unsigned long startaddr, endaddr;
467 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469 if (n == 2 && h2g_valid(startaddr)) {
470 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472 if (h2g_valid(endaddr)) {
473 endaddr = h2g(endaddr);
477 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
489 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
495 /* Level 1. Always allocated. */
496 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
499 for (i = v_l2_levels; i > 0; i--) {
500 void **p = qatomic_rcu_read(lp);
508 p = g_new0(void *, V_L2_SIZE);
509 existing = qatomic_cmpxchg(lp, NULL, p);
510 if (unlikely(existing)) {
516 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
519 pd = qatomic_rcu_read(lp);
526 pd = g_new0(PageDesc, V_L2_SIZE);
527 #ifndef CONFIG_USER_ONLY
531 for (i = 0; i < V_L2_SIZE; i++) {
532 qemu_spin_init(&pd[i].lock);
536 existing = qatomic_cmpxchg(lp, NULL, pd);
537 if (unlikely(existing)) {
538 #ifndef CONFIG_USER_ONLY
542 for (i = 0; i < V_L2_SIZE; i++) {
543 qemu_spin_destroy(&pd[i].lock);
552 return pd + (index & (V_L2_SIZE - 1));
555 static inline PageDesc *page_find(tb_page_addr_t index)
557 return page_find_alloc(index, 0);
560 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
561 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
563 /* In user-mode page locks aren't used; mmap_lock is enough */
564 #ifdef CONFIG_USER_ONLY
566 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
568 static inline void page_lock(PageDesc *pd)
571 static inline void page_unlock(PageDesc *pd)
574 static inline void page_lock_tb(const TranslationBlock *tb)
577 static inline void page_unlock_tb(const TranslationBlock *tb)
580 struct page_collection *
581 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
586 void page_collection_unlock(struct page_collection *set)
588 #else /* !CONFIG_USER_ONLY */
590 #ifdef CONFIG_DEBUG_TCG
592 static __thread GHashTable *ht_pages_locked_debug;
594 static void ht_pages_locked_debug_init(void)
596 if (ht_pages_locked_debug) {
599 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
602 static bool page_is_locked(const PageDesc *pd)
606 ht_pages_locked_debug_init();
607 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
611 static void page_lock__debug(PageDesc *pd)
613 ht_pages_locked_debug_init();
614 g_assert(!page_is_locked(pd));
615 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
618 static void page_unlock__debug(const PageDesc *pd)
622 ht_pages_locked_debug_init();
623 g_assert(page_is_locked(pd));
624 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
629 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
631 if (unlikely(!page_is_locked(pd))) {
632 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
638 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
640 void assert_no_pages_locked(void)
642 ht_pages_locked_debug_init();
643 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
646 #else /* !CONFIG_DEBUG_TCG */
648 #define assert_page_locked(pd)
650 static inline void page_lock__debug(const PageDesc *pd)
654 static inline void page_unlock__debug(const PageDesc *pd)
658 #endif /* CONFIG_DEBUG_TCG */
660 static inline void page_lock(PageDesc *pd)
662 page_lock__debug(pd);
663 qemu_spin_lock(&pd->lock);
666 static inline void page_unlock(PageDesc *pd)
668 qemu_spin_unlock(&pd->lock);
669 page_unlock__debug(pd);
672 /* lock the page(s) of a TB in the correct acquisition order */
673 static inline void page_lock_tb(const TranslationBlock *tb)
675 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
678 static inline void page_unlock_tb(const TranslationBlock *tb)
680 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
683 if (unlikely(tb->page_addr[1] != -1)) {
684 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
692 static inline struct page_entry *
693 page_entry_new(PageDesc *pd, tb_page_addr_t index)
695 struct page_entry *pe = g_malloc(sizeof(*pe));
703 static void page_entry_destroy(gpointer p)
705 struct page_entry *pe = p;
707 g_assert(pe->locked);
712 /* returns false on success */
713 static bool page_entry_trylock(struct page_entry *pe)
717 busy = qemu_spin_trylock(&pe->pd->lock);
719 g_assert(!pe->locked);
721 page_lock__debug(pe->pd);
726 static void do_page_entry_lock(struct page_entry *pe)
729 g_assert(!pe->locked);
733 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
735 struct page_entry *pe = value;
737 do_page_entry_lock(pe);
741 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
743 struct page_entry *pe = value;
753 * Trylock a page, and if successful, add the page to a collection.
754 * Returns true ("busy") if the page could not be locked; false otherwise.
756 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
758 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
759 struct page_entry *pe;
762 pe = g_tree_lookup(set->tree, &index);
767 pd = page_find(index);
772 pe = page_entry_new(pd, index);
773 g_tree_insert(set->tree, &pe->index, pe);
776 * If this is either (1) the first insertion or (2) a page whose index
777 * is higher than any other so far, just lock the page and move on.
779 if (set->max == NULL || pe->index > set->max->index) {
781 do_page_entry_lock(pe);
785 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
788 return page_entry_trylock(pe);
791 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
793 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
794 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
805 * Lock a range of pages ([@start,@end[) as well as the pages of all
807 * Locking order: acquire locks in ascending order of page index.
809 struct page_collection *
810 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
812 struct page_collection *set = g_malloc(sizeof(*set));
813 tb_page_addr_t index;
816 start >>= TARGET_PAGE_BITS;
817 end >>= TARGET_PAGE_BITS;
818 g_assert(start <= end);
820 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
823 assert_no_pages_locked();
826 g_tree_foreach(set->tree, page_entry_lock, NULL);
828 for (index = start; index <= end; index++) {
829 TranslationBlock *tb;
832 pd = page_find(index);
836 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
837 g_tree_foreach(set->tree, page_entry_unlock, NULL);
840 assert_page_locked(pd);
841 PAGE_FOR_EACH_TB(pd, tb, n) {
842 if (page_trylock_add(set, tb->page_addr[0]) ||
843 (tb->page_addr[1] != -1 &&
844 page_trylock_add(set, tb->page_addr[1]))) {
845 /* drop all locks, and reacquire in order */
846 g_tree_foreach(set->tree, page_entry_unlock, NULL);
854 void page_collection_unlock(struct page_collection *set)
856 /* entries are unlocked and freed via page_entry_destroy */
857 g_tree_destroy(set->tree);
861 #endif /* !CONFIG_USER_ONLY */
863 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
864 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
867 tb_page_addr_t page1;
868 tb_page_addr_t page2;
870 assert_memory_lock();
871 g_assert(phys1 != -1);
873 page1 = phys1 >> TARGET_PAGE_BITS;
874 page2 = phys2 >> TARGET_PAGE_BITS;
876 p1 = page_find_alloc(page1, alloc);
880 if (likely(phys2 == -1)) {
883 } else if (page1 == page2) {
890 p2 = page_find_alloc(page2, alloc);
903 /* Minimum size of the code gen buffer. This number is randomly chosen,
904 but not so small that we can't have a fair number of TB's live. */
905 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB)
907 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
908 indicated, this is constrained by the range of direct branches on the
909 host cpu, as used by the TCG implementation of goto_tb. */
910 #if defined(__x86_64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
912 #elif defined(__sparc__)
913 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
914 #elif defined(__powerpc64__)
915 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
916 #elif defined(__powerpc__)
917 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB)
918 #elif defined(__aarch64__)
919 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
920 #elif defined(__s390x__)
921 /* We have a +- 4GB range on the branches; leave some slop. */
922 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB)
923 #elif defined(__mips__)
924 /* We have a 256MB branch region, but leave room to make sure the
925 main executable is also within that region. */
926 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB)
928 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
931 #if TCG_TARGET_REG_BITS == 32
932 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
933 #ifdef CONFIG_USER_ONLY
935 * For user mode on smaller 32 bit systems we may run into trouble
936 * allocating big chunks of data in the right place. On these systems
937 * we utilise a static code generation buffer directly in the binary.
939 #define USE_STATIC_CODE_GEN_BUFFER
941 #else /* TCG_TARGET_REG_BITS == 64 */
942 #ifdef CONFIG_USER_ONLY
944 * As user-mode emulation typically means running multiple instances
945 * of the translator don't go too nuts with our default code gen
946 * buffer lest we make things too hard for the OS.
948 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
951 * We expect most system emulation to run one or two guests per host.
952 * Users running large scale system emulation may want to tweak their
953 * runtime setup via the tb-size control on the command line.
955 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
959 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
960 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
961 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
963 static size_t size_code_gen_buffer(size_t tb_size)
965 /* Size the buffer. */
967 size_t phys_mem = qemu_get_host_physmem();
969 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
971 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, phys_mem / 8);
974 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
975 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
977 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
978 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
984 /* In order to use J and JAL within the code_gen_buffer, we require
985 that the buffer not cross a 256MB boundary. */
986 static inline bool cross_256mb(void *addr, size_t size)
988 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
991 /* We weren't able to allocate a buffer without crossing that boundary,
992 so make do with the larger portion of the buffer that doesn't cross.
993 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
994 static inline void *split_cross_256mb(void *buf1, size_t size1)
996 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
997 size_t size2 = buf1 + size1 - buf2;
1000 if (size1 < size2) {
1005 tcg_ctx->code_gen_buffer_size = size1;
1010 #ifdef USE_STATIC_CODE_GEN_BUFFER
1011 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
1012 __attribute__((aligned(CODE_GEN_ALIGN)));
1014 static bool alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp)
1020 error_setg(errp, "jit split-wx not supported");
1024 /* page-align the beginning and end of the buffer */
1025 buf = static_code_gen_buffer;
1026 end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1027 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1028 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1032 /* Honor a command-line option limiting the size of the buffer. */
1033 if (size > tb_size) {
1034 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size);
1036 tcg_ctx->code_gen_buffer_size = size;
1039 if (cross_256mb(buf, size)) {
1040 buf = split_cross_256mb(buf, size);
1041 size = tcg_ctx->code_gen_buffer_size;
1045 if (qemu_mprotect_rwx(buf, size)) {
1046 error_setg_errno(errp, errno, "mprotect of jit buffer");
1049 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1051 tcg_ctx->code_gen_buffer = buf;
1054 #elif defined(_WIN32)
1055 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1060 error_setg(errp, "jit split-wx not supported");
1064 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1065 PAGE_EXECUTE_READWRITE);
1067 error_setg_win32(errp, GetLastError(),
1068 "allocate %zu bytes for jit buffer", size);
1072 tcg_ctx->code_gen_buffer = buf;
1073 tcg_ctx->code_gen_buffer_size = size;
1077 static bool alloc_code_gen_buffer_anon(size_t size, int prot,
1078 int flags, Error **errp)
1082 buf = mmap(NULL, size, prot, flags, -1, 0);
1083 if (buf == MAP_FAILED) {
1084 error_setg_errno(errp, errno,
1085 "allocate %zu bytes for jit buffer", size);
1088 tcg_ctx->code_gen_buffer_size = size;
1091 if (cross_256mb(buf, size)) {
1093 * Try again, with the original still mapped, to avoid re-acquiring
1094 * the same 256mb crossing.
1097 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1098 switch ((int)(buf2 != MAP_FAILED)) {
1100 if (!cross_256mb(buf2, size)) {
1101 /* Success! Use the new buffer. */
1105 /* Failure. Work with what we had. */
1109 /* Split the original buffer. Free the smaller half. */
1110 buf2 = split_cross_256mb(buf, size);
1111 size2 = tcg_ctx->code_gen_buffer_size;
1113 munmap(buf + size2, size - size2);
1115 munmap(buf, size - size2);
1124 /* Request large pages for the buffer. */
1125 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1127 tcg_ctx->code_gen_buffer = buf;
1131 #ifndef CONFIG_TCG_INTERPRETER
1133 #include "qemu/memfd.h"
1135 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp)
1137 void *buf_rw = NULL, *buf_rx = MAP_FAILED;
1141 /* Find space for the RX mapping, vs the 256MiB regions. */
1142 if (!alloc_code_gen_buffer_anon(size, PROT_NONE,
1143 MAP_PRIVATE | MAP_ANONYMOUS |
1144 MAP_NORESERVE, errp)) {
1147 /* The size of the mapping may have been adjusted. */
1148 size = tcg_ctx->code_gen_buffer_size;
1149 buf_rx = tcg_ctx->code_gen_buffer;
1152 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp);
1153 if (buf_rw == NULL) {
1158 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC,
1159 MAP_SHARED | MAP_FIXED, fd, 0);
1160 if (tmp != buf_rx) {
1164 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0);
1165 if (buf_rx == MAP_FAILED) {
1171 tcg_ctx->code_gen_buffer = buf_rw;
1172 tcg_ctx->code_gen_buffer_size = size;
1173 tcg_splitwx_diff = buf_rx - buf_rw;
1175 /* Request large pages for the buffer and the splitwx. */
1176 qemu_madvise(buf_rw, size, QEMU_MADV_HUGEPAGE);
1177 qemu_madvise(buf_rx, size, QEMU_MADV_HUGEPAGE);
1181 error_setg_errno(errp, errno, "failed to map shared memory for execute");
1183 if (buf_rx != MAP_FAILED) {
1184 munmap(buf_rx, size);
1187 munmap(buf_rw, size);
1194 #endif /* CONFIG_POSIX */
1196 #ifdef CONFIG_DARWIN
1197 #include <mach/mach.h>
1199 extern kern_return_t mach_vm_remap(vm_map_t target_task,
1200 mach_vm_address_t *target_address,
1201 mach_vm_size_t size,
1202 mach_vm_offset_t mask,
1205 mach_vm_address_t src_address,
1207 vm_prot_t *cur_protection,
1208 vm_prot_t *max_protection,
1209 vm_inherit_t inheritance);
1211 static bool alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp)
1214 mach_vm_address_t buf_rw, buf_rx;
1215 vm_prot_t cur_prot, max_prot;
1217 /* Map the read-write portion via normal anon memory. */
1218 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE,
1219 MAP_PRIVATE | MAP_ANONYMOUS, errp)) {
1223 buf_rw = (mach_vm_address_t)tcg_ctx->code_gen_buffer;
1225 ret = mach_vm_remap(mach_task_self(),
1236 if (ret != KERN_SUCCESS) {
1237 /* TODO: Convert "ret" to a human readable error message. */
1238 error_setg(errp, "vm_remap for jit splitwx failed");
1239 munmap((void *)buf_rw, size);
1243 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) {
1244 error_setg_errno(errp, errno, "mprotect for jit splitwx");
1245 munmap((void *)buf_rx, size);
1246 munmap((void *)buf_rw, size);
1250 tcg_splitwx_diff = buf_rx - buf_rw;
1253 #endif /* CONFIG_DARWIN */
1254 #endif /* CONFIG_TCG_INTERPRETER */
1256 static bool alloc_code_gen_buffer_splitwx(size_t size, Error **errp)
1258 #ifndef CONFIG_TCG_INTERPRETER
1259 # ifdef CONFIG_DARWIN
1260 return alloc_code_gen_buffer_splitwx_vmremap(size, errp);
1262 # ifdef CONFIG_POSIX
1263 return alloc_code_gen_buffer_splitwx_memfd(size, errp);
1266 error_setg(errp, "jit split-wx not supported");
1270 static bool alloc_code_gen_buffer(size_t size, int splitwx, Error **errp)
1276 if (alloc_code_gen_buffer_splitwx(size, errp)) {
1280 * If splitwx force-on (1), fail;
1281 * if splitwx default-on (-1), fall through to splitwx off.
1286 error_free_or_abort(errp);
1289 prot = PROT_READ | PROT_WRITE | PROT_EXEC;
1290 flags = MAP_PRIVATE | MAP_ANONYMOUS;
1291 #ifdef CONFIG_TCG_INTERPRETER
1292 /* The tcg interpreter does not need execute permission. */
1293 prot = PROT_READ | PROT_WRITE;
1294 #elif defined(CONFIG_DARWIN)
1295 /* Applicable to both iOS and macOS (Apple Silicon). */
1301 return alloc_code_gen_buffer_anon(size, prot, flags, errp);
1303 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1305 static bool tb_cmp(const void *ap, const void *bp)
1307 const TranslationBlock *a = ap;
1308 const TranslationBlock *b = bp;
1310 return a->pc == b->pc &&
1311 a->cs_base == b->cs_base &&
1312 a->flags == b->flags &&
1313 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
1314 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1315 a->page_addr[0] == b->page_addr[0] &&
1316 a->page_addr[1] == b->page_addr[1];
1319 static void tb_htable_init(void)
1321 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1323 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1326 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1327 (in bytes) allocated to the translation buffer. Zero means default
1329 void tcg_exec_init(unsigned long tb_size, int splitwx)
1338 ok = alloc_code_gen_buffer(size_code_gen_buffer(tb_size),
1339 splitwx, &error_fatal);
1342 #if defined(CONFIG_SOFTMMU)
1343 /* There's no guest base to take into account, so go ahead and
1344 initialize the prologue now. */
1345 tcg_prologue_init(tcg_ctx);
1349 /* call with @p->lock held */
1350 static inline void invalidate_page_bitmap(PageDesc *p)
1352 assert_page_locked(p);
1353 #ifdef CONFIG_SOFTMMU
1354 g_free(p->code_bitmap);
1355 p->code_bitmap = NULL;
1356 p->code_write_count = 0;
1360 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
1361 static void page_flush_tb_1(int level, void **lp)
1371 for (i = 0; i < V_L2_SIZE; ++i) {
1373 pd[i].first_tb = (uintptr_t)NULL;
1374 invalidate_page_bitmap(pd + i);
1375 page_unlock(&pd[i]);
1380 for (i = 0; i < V_L2_SIZE; ++i) {
1381 page_flush_tb_1(level - 1, pp + i);
1386 static void page_flush_tb(void)
1388 int i, l1_sz = v_l1_size;
1390 for (i = 0; i < l1_sz; i++) {
1391 page_flush_tb_1(v_l2_levels, l1_map + i);
1395 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1397 const TranslationBlock *tb = value;
1398 size_t *size = data;
1400 *size += tb->tc.size;
1404 /* flush all the translation blocks */
1405 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1407 bool did_flush = false;
1410 /* If it is already been done on request of another CPU,
1413 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1418 if (DEBUG_TB_FLUSH_GATE) {
1419 size_t nb_tbs = tcg_nb_tbs();
1420 size_t host_size = 0;
1422 tcg_tb_foreach(tb_host_size_iter, &host_size);
1423 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1424 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1428 cpu_tb_jmp_cache_clear(cpu);
1431 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1434 tcg_region_reset_all();
1435 /* XXX: flush processor icache at this point if cache flush is
1437 qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1442 qemu_plugin_flush_cb();
1446 void tb_flush(CPUState *cpu)
1448 if (tcg_enabled()) {
1449 unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
1451 if (cpu_in_exclusive_context(cpu)) {
1452 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1454 async_safe_run_on_cpu(cpu, do_tb_flush,
1455 RUN_ON_CPU_HOST_INT(tb_flush_count));
1461 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1462 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1463 * and let the optimizer get rid of them by wrapping their user-only callers
1464 * with if (DEBUG_TB_CHECK_GATE).
1466 #ifdef CONFIG_USER_ONLY
1468 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1470 TranslationBlock *tb = p;
1471 target_ulong addr = *(target_ulong *)userp;
1473 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1474 printf("ERROR invalidate: address=" TARGET_FMT_lx
1475 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1479 /* verify that all the pages have correct rights for code
1481 * Called with mmap_lock held.
1483 static void tb_invalidate_check(target_ulong address)
1485 address &= TARGET_PAGE_MASK;
1486 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1489 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1491 TranslationBlock *tb = p;
1494 flags1 = page_get_flags(tb->pc);
1495 flags2 = page_get_flags(tb->pc + tb->size - 1);
1496 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1497 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1498 (long)tb->pc, tb->size, flags1, flags2);
1502 /* verify that all the pages have correct rights for code */
1503 static void tb_page_check(void)
1505 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1508 #endif /* CONFIG_USER_ONLY */
1511 * user-mode: call with mmap_lock held
1512 * !user-mode: call with @pd->lock held
1514 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1516 TranslationBlock *tb1;
1520 assert_page_locked(pd);
1521 pprev = &pd->first_tb;
1522 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1524 *pprev = tb1->page_next[n1];
1527 pprev = &tb1->page_next[n1];
1529 g_assert_not_reached();
1532 /* remove @orig from its @n_orig-th jump list */
1533 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1535 uintptr_t ptr, ptr_locked;
1536 TranslationBlock *dest;
1537 TranslationBlock *tb;
1541 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1542 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1543 dest = (TranslationBlock *)(ptr & ~1);
1548 qemu_spin_lock(&dest->jmp_lock);
1550 * While acquiring the lock, the jump might have been removed if the
1551 * destination TB was invalidated; check again.
1553 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
1554 if (ptr_locked != ptr) {
1555 qemu_spin_unlock(&dest->jmp_lock);
1557 * The only possibility is that the jump was unlinked via
1558 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1559 * because we set the LSB above.
1561 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1565 * We first acquired the lock, and since the destination pointer matches,
1566 * we know for sure that @orig is in the jmp list.
1568 pprev = &dest->jmp_list_head;
1569 TB_FOR_EACH_JMP(dest, tb, n) {
1570 if (tb == orig && n == n_orig) {
1571 *pprev = tb->jmp_list_next[n];
1572 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1573 qemu_spin_unlock(&dest->jmp_lock);
1576 pprev = &tb->jmp_list_next[n];
1578 g_assert_not_reached();
1581 /* reset the jump entry 'n' of a TB so that it is not chained to
1583 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1585 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1586 tb_set_jmp_target(tb, n, addr);
1589 /* remove any jumps to the TB */
1590 static inline void tb_jmp_unlink(TranslationBlock *dest)
1592 TranslationBlock *tb;
1595 qemu_spin_lock(&dest->jmp_lock);
1597 TB_FOR_EACH_JMP(dest, tb, n) {
1598 tb_reset_jump(tb, n);
1599 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1600 /* No need to clear the list entry; setting the dest ptr is enough */
1602 dest->jmp_list_head = (uintptr_t)NULL;
1604 qemu_spin_unlock(&dest->jmp_lock);
1608 * In user-mode, call with mmap_lock held.
1609 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1612 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1617 tb_page_addr_t phys_pc;
1618 uint32_t orig_cflags = tb_cflags(tb);
1620 assert_memory_lock();
1622 /* make sure no further incoming jumps will be chained to this TB */
1623 qemu_spin_lock(&tb->jmp_lock);
1624 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1625 qemu_spin_unlock(&tb->jmp_lock);
1627 /* remove the TB from the hash list */
1628 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1629 h = tb_hash_func(phys_pc, tb->pc, tb->flags, orig_cflags,
1630 tb->trace_vcpu_dstate);
1631 if (!qht_remove(&tb_ctx.htable, tb, h)) {
1635 /* remove the TB from the page list */
1636 if (rm_from_page_list) {
1637 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1638 tb_page_remove(p, tb);
1639 invalidate_page_bitmap(p);
1640 if (tb->page_addr[1] != -1) {
1641 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1642 tb_page_remove(p, tb);
1643 invalidate_page_bitmap(p);
1647 /* remove the TB from the hash list */
1648 h = tb_jmp_cache_hash_func(tb->pc);
1650 if (qatomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1651 qatomic_set(&cpu->tb_jmp_cache[h], NULL);
1655 /* suppress this TB from the two jump lists */
1656 tb_remove_from_jmp_list(tb, 0);
1657 tb_remove_from_jmp_list(tb, 1);
1659 /* suppress any remaining jumps to this TB */
1662 qatomic_set(&tcg_ctx->tb_phys_invalidate_count,
1663 tcg_ctx->tb_phys_invalidate_count + 1);
1666 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1668 qemu_thread_jit_write();
1669 do_tb_phys_invalidate(tb, true);
1670 qemu_thread_jit_execute();
1673 /* invalidate one TB
1675 * Called with mmap_lock held in user-mode.
1677 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1679 if (page_addr == -1 && tb->page_addr[0] != -1) {
1681 do_tb_phys_invalidate(tb, true);
1684 do_tb_phys_invalidate(tb, false);
1688 #ifdef CONFIG_SOFTMMU
1689 /* call with @p->lock held */
1690 static void build_page_bitmap(PageDesc *p)
1692 int n, tb_start, tb_end;
1693 TranslationBlock *tb;
1695 assert_page_locked(p);
1696 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1698 PAGE_FOR_EACH_TB(p, tb, n) {
1699 /* NOTE: this is subtle as a TB may span two physical pages */
1701 /* NOTE: tb_end may be after the end of the page, but
1702 it is not a problem */
1703 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1704 tb_end = tb_start + tb->size;
1705 if (tb_end > TARGET_PAGE_SIZE) {
1706 tb_end = TARGET_PAGE_SIZE;
1710 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1712 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1717 /* add the tb in the target page and protect it if necessary
1719 * Called with mmap_lock held for user-mode emulation.
1720 * Called with @p->lock held in !user-mode.
1722 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1723 unsigned int n, tb_page_addr_t page_addr)
1725 #ifndef CONFIG_USER_ONLY
1726 bool page_already_protected;
1729 assert_page_locked(p);
1731 tb->page_addr[n] = page_addr;
1732 tb->page_next[n] = p->first_tb;
1733 #ifndef CONFIG_USER_ONLY
1734 page_already_protected = p->first_tb != (uintptr_t)NULL;
1736 p->first_tb = (uintptr_t)tb | n;
1737 invalidate_page_bitmap(p);
1739 #if defined(CONFIG_USER_ONLY)
1740 if (p->flags & PAGE_WRITE) {
1745 /* force the host page as non writable (writes will have a
1746 page fault + mprotect overhead) */
1747 page_addr &= qemu_host_page_mask;
1749 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1750 addr += TARGET_PAGE_SIZE) {
1752 p2 = page_find(addr >> TARGET_PAGE_BITS);
1757 p2->flags &= ~PAGE_WRITE;
1759 mprotect(g2h_untagged(page_addr), qemu_host_page_size,
1760 (prot & PAGE_BITS) & ~PAGE_WRITE);
1761 if (DEBUG_TB_INVALIDATE_GATE) {
1762 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1766 /* if some code is already present, then the pages are already
1767 protected. So we handle the case where only the first TB is
1768 allocated in a physical page */
1769 if (!page_already_protected) {
1770 tlb_protect_code(page_addr);
1776 * Add a new TB and link it to the physical page tables. phys_page2 is
1777 * (-1) to indicate that only one page contains the TB.
1779 * Called with mmap_lock held for user-mode emulation.
1781 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1782 * Note that in !user-mode, another thread might have already added a TB
1783 * for the same block of guest code that @tb corresponds to. In that case,
1784 * the caller should discard the original @tb, and use instead the returned TB.
1786 static TranslationBlock *
1787 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1788 tb_page_addr_t phys_page2)
1791 PageDesc *p2 = NULL;
1792 void *existing_tb = NULL;
1795 assert_memory_lock();
1796 tcg_debug_assert(!(tb->cflags & CF_INVALID));
1799 * Add the TB to the page list, acquiring first the pages's locks.
1800 * We keep the locks held until after inserting the TB in the hash table,
1801 * so that if the insertion fails we know for sure that the TBs are still
1802 * in the page descriptors.
1803 * Note that inserting into the hash table first isn't an option, since
1804 * we can only insert TBs that are fully initialized.
1806 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1807 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1809 tb_page_add(p2, tb, 1, phys_page2);
1811 tb->page_addr[1] = -1;
1814 /* add in the hash table */
1815 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags,
1816 tb->trace_vcpu_dstate);
1817 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1819 /* remove TB from the page(s) if we couldn't insert it */
1820 if (unlikely(existing_tb)) {
1821 tb_page_remove(p, tb);
1822 invalidate_page_bitmap(p);
1824 tb_page_remove(p2, tb);
1825 invalidate_page_bitmap(p2);
1830 if (p2 && p2 != p) {
1835 #ifdef CONFIG_USER_ONLY
1836 if (DEBUG_TB_CHECK_GATE) {
1843 /* Called with mmap_lock held for user mode emulation. */
1844 TranslationBlock *tb_gen_code(CPUState *cpu,
1845 target_ulong pc, target_ulong cs_base,
1846 uint32_t flags, int cflags)
1848 CPUArchState *env = cpu->env_ptr;
1849 TranslationBlock *tb, *existing_tb;
1850 tb_page_addr_t phys_pc, phys_page2;
1851 target_ulong virt_page2;
1852 tcg_insn_unit *gen_code_buf;
1853 int gen_code_size, search_size, max_insns;
1854 #ifdef CONFIG_PROFILER
1855 TCGProfile *prof = &tcg_ctx->prof;
1859 assert_memory_lock();
1860 qemu_thread_jit_write();
1862 phys_pc = get_page_addr_code(env, pc);
1864 if (phys_pc == -1) {
1865 /* Generate a one-shot TB with 1 insn in it */
1866 cflags = (cflags & ~CF_COUNT_MASK) | CF_LAST_IO | 1;
1869 max_insns = cflags & CF_COUNT_MASK;
1870 if (max_insns == 0) {
1871 max_insns = CF_COUNT_MASK;
1873 if (max_insns > TCG_MAX_INSNS) {
1874 max_insns = TCG_MAX_INSNS;
1876 if (cpu->singlestep_enabled || singlestep) {
1881 tb = tcg_tb_alloc(tcg_ctx);
1882 if (unlikely(!tb)) {
1883 /* flush must be done */
1886 /* Make the execution loop process the flush as soon as possible. */
1887 cpu->exception_index = EXCP_INTERRUPT;
1891 gen_code_buf = tcg_ctx->code_gen_ptr;
1892 tb->tc.ptr = tcg_splitwx_to_rx(gen_code_buf);
1894 tb->cs_base = cs_base;
1896 tb->cflags = cflags;
1897 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1898 tcg_ctx->tb_cflags = cflags;
1901 #ifdef CONFIG_PROFILER
1902 /* includes aborted translations because of exceptions */
1903 qatomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1904 ti = profile_getclock();
1907 gen_code_size = sigsetjmp(tcg_ctx->jmp_trans, 0);
1908 if (unlikely(gen_code_size != 0)) {
1912 tcg_func_start(tcg_ctx);
1914 tcg_ctx->cpu = env_cpu(env);
1915 gen_intermediate_code(cpu, tb, max_insns);
1916 tcg_ctx->cpu = NULL;
1917 max_insns = tb->icount;
1919 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1921 /* generate machine code */
1922 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1923 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1924 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1925 if (TCG_TARGET_HAS_direct_jump) {
1926 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1927 tcg_ctx->tb_jmp_target_addr = NULL;
1929 tcg_ctx->tb_jmp_insn_offset = NULL;
1930 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1933 #ifdef CONFIG_PROFILER
1934 qatomic_set(&prof->tb_count, prof->tb_count + 1);
1935 qatomic_set(&prof->interm_time,
1936 prof->interm_time + profile_getclock() - ti);
1937 ti = profile_getclock();
1940 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1941 if (unlikely(gen_code_size < 0)) {
1943 switch (gen_code_size) {
1946 * Overflow of code_gen_buffer, or the current slice of it.
1948 * TODO: We don't need to re-do gen_intermediate_code, nor
1949 * should we re-do the tcg optimization currently hidden
1950 * inside tcg_gen_code. All that should be required is to
1951 * flush the TBs, allocate a new TB, re-initialize it per
1952 * above, and re-do the actual code generation.
1954 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1955 "Restarting code generation for "
1956 "code_gen_buffer overflow\n");
1957 goto buffer_overflow;
1961 * The code generated for the TranslationBlock is too large.
1962 * The maximum size allowed by the unwind info is 64k.
1963 * There may be stricter constraints from relocations
1964 * in the tcg backend.
1966 * Try again with half as many insns as we attempted this time.
1967 * If a single insn overflows, there's a bug somewhere...
1969 assert(max_insns > 1);
1971 qemu_log_mask(CPU_LOG_TB_OP | CPU_LOG_TB_OP_OPT,
1972 "Restarting code generation with "
1973 "smaller translation block (max %d insns)\n",
1978 g_assert_not_reached();
1981 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1982 if (unlikely(search_size < 0)) {
1983 goto buffer_overflow;
1985 tb->tc.size = gen_code_size;
1987 #ifdef CONFIG_PROFILER
1988 qatomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1989 qatomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1990 qatomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1991 qatomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1995 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1996 qemu_log_in_addr_range(tb->pc)) {
1997 FILE *logfile = qemu_log_lock();
1998 int code_size, data_size;
1999 const tcg_target_ulong *rx_data_gen_ptr;
2003 if (tcg_ctx->data_gen_ptr) {
2004 rx_data_gen_ptr = tcg_splitwx_to_rx(tcg_ctx->data_gen_ptr);
2005 code_size = (const void *)rx_data_gen_ptr - tb->tc.ptr;
2006 data_size = gen_code_size - code_size;
2008 rx_data_gen_ptr = 0;
2009 code_size = gen_code_size;
2013 /* Dump header and the first instruction */
2014 qemu_log("OUT: [size=%d]\n", gen_code_size);
2015 qemu_log(" -- guest addr 0x" TARGET_FMT_lx " + tb prologue\n",
2016 tcg_ctx->gen_insn_data[insn][0]);
2017 chunk_start = tcg_ctx->gen_insn_end_off[insn];
2018 log_disas(tb->tc.ptr, chunk_start);
2021 * Dump each instruction chunk, wrapping up empty chunks into
2022 * the next instruction. The whole array is offset so the
2023 * first entry is the beginning of the 2nd instruction.
2025 while (insn < tb->icount) {
2026 size_t chunk_end = tcg_ctx->gen_insn_end_off[insn];
2027 if (chunk_end > chunk_start) {
2028 qemu_log(" -- guest addr 0x" TARGET_FMT_lx "\n",
2029 tcg_ctx->gen_insn_data[insn][0]);
2030 log_disas(tb->tc.ptr + chunk_start, chunk_end - chunk_start);
2031 chunk_start = chunk_end;
2036 if (chunk_start < code_size) {
2037 qemu_log(" -- tb slow paths + alignment\n");
2038 log_disas(tb->tc.ptr + chunk_start, code_size - chunk_start);
2041 /* Finally dump any data we may have after the block */
2044 qemu_log(" data: [size=%d]\n", data_size);
2045 for (i = 0; i < data_size / sizeof(tcg_target_ulong); i++) {
2046 qemu_log("0x%08" PRIxPTR ": .quad 0x%" TCG_PRIlx "\n",
2047 (uintptr_t)&rx_data_gen_ptr[i], rx_data_gen_ptr[i]);
2052 qemu_log_unlock(logfile);
2056 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)
2057 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
2060 /* init jump list */
2061 qemu_spin_init(&tb->jmp_lock);
2062 tb->jmp_list_head = (uintptr_t)NULL;
2063 tb->jmp_list_next[0] = (uintptr_t)NULL;
2064 tb->jmp_list_next[1] = (uintptr_t)NULL;
2065 tb->jmp_dest[0] = (uintptr_t)NULL;
2066 tb->jmp_dest[1] = (uintptr_t)NULL;
2068 /* init original jump addresses which have been set during tcg_gen_code() */
2069 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2070 tb_reset_jump(tb, 0);
2072 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2073 tb_reset_jump(tb, 1);
2077 * If the TB is not associated with a physical RAM page then
2078 * it must be a temporary one-insn TB, and we have nothing to do
2079 * except fill in the page_addr[] fields. Return early before
2080 * attempting to link to other TBs or add to the lookup table.
2082 if (phys_pc == -1) {
2083 tb->page_addr[0] = tb->page_addr[1] = -1;
2087 /* check next page if needed */
2088 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
2090 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
2091 phys_page2 = get_page_addr_code(env, virt_page2);
2094 * No explicit memory barrier is required -- tb_link_page() makes the
2095 * TB visible in a consistent state.
2097 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
2098 /* if the TB already exists, discard what we just translated */
2099 if (unlikely(existing_tb != tb)) {
2100 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
2102 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
2103 qatomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
2112 * @p must be non-NULL.
2113 * user-mode: call with mmap_lock held.
2114 * !user-mode: call with all @pages locked.
2117 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
2118 PageDesc *p, tb_page_addr_t start,
2122 TranslationBlock *tb;
2123 tb_page_addr_t tb_start, tb_end;
2125 #ifdef TARGET_HAS_PRECISE_SMC
2126 CPUState *cpu = current_cpu;
2127 CPUArchState *env = NULL;
2128 bool current_tb_not_found = retaddr != 0;
2129 bool current_tb_modified = false;
2130 TranslationBlock *current_tb = NULL;
2131 target_ulong current_pc = 0;
2132 target_ulong current_cs_base = 0;
2133 uint32_t current_flags = 0;
2134 #endif /* TARGET_HAS_PRECISE_SMC */
2136 assert_page_locked(p);
2138 #if defined(TARGET_HAS_PRECISE_SMC)
2144 /* we remove all the TBs in the range [start, end[ */
2145 /* XXX: see if in some cases it could be faster to invalidate all
2147 PAGE_FOR_EACH_TB(p, tb, n) {
2148 assert_page_locked(p);
2149 /* NOTE: this is subtle as a TB may span two physical pages */
2151 /* NOTE: tb_end may be after the end of the page, but
2152 it is not a problem */
2153 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
2154 tb_end = tb_start + tb->size;
2156 tb_start = tb->page_addr[1];
2157 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
2159 if (!(tb_end <= start || tb_start >= end)) {
2160 #ifdef TARGET_HAS_PRECISE_SMC
2161 if (current_tb_not_found) {
2162 current_tb_not_found = false;
2163 /* now we have a real cpu fault */
2164 current_tb = tcg_tb_lookup(retaddr);
2166 if (current_tb == tb &&
2167 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2169 * If we are modifying the current TB, we must stop
2170 * its execution. We could be more precise by checking
2171 * that the modification is after the current PC, but it
2172 * would require a specialized function to partially
2173 * restore the CPU state.
2175 current_tb_modified = true;
2176 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
2177 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
2180 #endif /* TARGET_HAS_PRECISE_SMC */
2181 tb_phys_invalidate__locked(tb);
2184 #if !defined(CONFIG_USER_ONLY)
2185 /* if no code remaining, no need to continue to use slow writes */
2187 invalidate_page_bitmap(p);
2188 tlb_unprotect_code(start);
2191 #ifdef TARGET_HAS_PRECISE_SMC
2192 if (current_tb_modified) {
2193 page_collection_unlock(pages);
2194 /* Force execution of one insn next time. */
2195 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2197 cpu_loop_exit_noexc(cpu);
2203 * Invalidate all TBs which intersect with the target physical address range
2204 * [start;end[. NOTE: start and end must refer to the *same* physical page.
2205 * 'is_cpu_write_access' should be true if called from a real cpu write
2206 * access: the virtual CPU will exit the current TB if code is modified inside
2209 * Called with mmap_lock held for user-mode emulation
2211 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2213 struct page_collection *pages;
2216 assert_memory_lock();
2218 p = page_find(start >> TARGET_PAGE_BITS);
2222 pages = page_collection_lock(start, end);
2223 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2224 page_collection_unlock(pages);
2228 * Invalidate all TBs which intersect with the target physical address range
2229 * [start;end[. NOTE: start and end may refer to *different* physical pages.
2230 * 'is_cpu_write_access' should be true if called from a real cpu write
2231 * access: the virtual CPU will exit the current TB if code is modified inside
2234 * Called with mmap_lock held for user-mode emulation.
2236 #ifdef CONFIG_SOFTMMU
2237 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2239 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2242 struct page_collection *pages;
2243 tb_page_addr_t next;
2245 assert_memory_lock();
2247 pages = page_collection_lock(start, end);
2248 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2250 start = next, next += TARGET_PAGE_SIZE) {
2251 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2252 tb_page_addr_t bound = MIN(next, end);
2257 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2259 page_collection_unlock(pages);
2262 #ifdef CONFIG_SOFTMMU
2263 /* len must be <= 8 and start must be a multiple of len.
2264 * Called via softmmu_template.h when code areas are written to with
2265 * iothread mutex not held.
2267 * Call with all @pages in the range [@start, @start + len[ locked.
2269 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2270 tb_page_addr_t start, int len,
2275 assert_memory_lock();
2277 p = page_find(start >> TARGET_PAGE_BITS);
2282 assert_page_locked(p);
2283 if (!p->code_bitmap &&
2284 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2285 build_page_bitmap(p);
2287 if (p->code_bitmap) {
2291 nr = start & ~TARGET_PAGE_MASK;
2292 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2293 if (b & ((1 << len) - 1)) {
2298 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2303 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2304 * host PC of the faulting store instruction that caused this invalidate.
2305 * Returns true if the caller needs to abort execution of the current
2306 * TB (because it was modified by this store and the guest CPU has
2307 * precise-SMC semantics).
2309 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2311 TranslationBlock *tb;
2314 #ifdef TARGET_HAS_PRECISE_SMC
2315 TranslationBlock *current_tb = NULL;
2316 CPUState *cpu = current_cpu;
2317 CPUArchState *env = NULL;
2318 int current_tb_modified = 0;
2319 target_ulong current_pc = 0;
2320 target_ulong current_cs_base = 0;
2321 uint32_t current_flags = 0;
2324 assert_memory_lock();
2326 addr &= TARGET_PAGE_MASK;
2327 p = page_find(addr >> TARGET_PAGE_BITS);
2332 #ifdef TARGET_HAS_PRECISE_SMC
2333 if (p->first_tb && pc != 0) {
2334 current_tb = tcg_tb_lookup(pc);
2340 assert_page_locked(p);
2341 PAGE_FOR_EACH_TB(p, tb, n) {
2342 #ifdef TARGET_HAS_PRECISE_SMC
2343 if (current_tb == tb &&
2344 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2345 /* If we are modifying the current TB, we must stop
2346 its execution. We could be more precise by checking
2347 that the modification is after the current PC, but it
2348 would require a specialized function to partially
2349 restore the CPU state */
2351 current_tb_modified = 1;
2352 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2353 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
2356 #endif /* TARGET_HAS_PRECISE_SMC */
2357 tb_phys_invalidate(tb, addr);
2359 p->first_tb = (uintptr_t)NULL;
2360 #ifdef TARGET_HAS_PRECISE_SMC
2361 if (current_tb_modified) {
2362 /* Force execution of one insn next time. */
2363 cpu->cflags_next_tb = 1 | curr_cflags(cpu);
2372 /* user-mode: call with mmap_lock held */
2373 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2375 TranslationBlock *tb;
2377 assert_memory_lock();
2379 tb = tcg_tb_lookup(retaddr);
2381 /* We can use retranslation to find the PC. */
2382 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2383 tb_phys_invalidate(tb, -1);
2385 /* The exception probably happened in a helper. The CPU state should
2386 have been saved before calling it. Fetch the PC from there. */
2387 CPUArchState *env = cpu->env_ptr;
2388 target_ulong pc, cs_base;
2389 tb_page_addr_t addr;
2392 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2393 addr = get_page_addr_code(env, pc);
2395 tb_invalidate_phys_range(addr, addr + 1);
2400 #ifndef CONFIG_USER_ONLY
2402 * In deterministic execution mode, instructions doing device I/Os
2403 * must be at the end of the TB.
2405 * Called by softmmu_template.h, with iothread mutex not held.
2407 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2409 TranslationBlock *tb;
2413 tb = tcg_tb_lookup(retaddr);
2415 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2418 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2421 * Some guests must re-execute the branch when re-executing a delay
2422 * slot instruction. When this is the case, adjust icount and N
2423 * to account for the re-execution of the branch.
2426 cc = CPU_GET_CLASS(cpu);
2427 if (cc->tcg_ops->io_recompile_replay_branch &&
2428 cc->tcg_ops->io_recompile_replay_branch(cpu, tb)) {
2429 cpu_neg(cpu)->icount_decr.u16.low++;
2434 * Exit the loop and potentially generate a new TB executing the
2435 * just the I/O insns. We also limit instrumentation to memory
2436 * operations only (which execute after completion) so we don't
2437 * double instrument the instruction.
2439 cpu->cflags_next_tb = curr_cflags(cpu) | CF_MEMI_ONLY | CF_LAST_IO | n;
2441 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
2442 "cpu_io_recompile: rewound execution of TB to "
2443 TARGET_FMT_lx "\n", tb->pc);
2445 cpu_loop_exit_noexc(cpu);
2448 static void print_qht_statistics(struct qht_stats hst)
2450 uint32_t hgram_opts;
2454 if (!hst.head_buckets) {
2457 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2458 hst.used_head_buckets, hst.head_buckets,
2459 (double)hst.used_head_buckets / hst.head_buckets * 100);
2461 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2462 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2463 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2464 hgram_opts |= QDIST_PR_NODECIMAL;
2466 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2467 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2468 qdist_avg(&hst.occupancy) * 100, hgram);
2471 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2472 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2473 if (hgram_bins > 10) {
2477 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2479 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2480 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2481 qdist_avg(&hst.chain), hgram);
2485 struct tb_tree_stats {
2489 size_t max_target_size;
2490 size_t direct_jmp_count;
2491 size_t direct_jmp2_count;
2495 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2497 const TranslationBlock *tb = value;
2498 struct tb_tree_stats *tst = data;
2501 tst->host_size += tb->tc.size;
2502 tst->target_size += tb->size;
2503 if (tb->size > tst->max_target_size) {
2504 tst->max_target_size = tb->size;
2506 if (tb->page_addr[1] != -1) {
2509 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2510 tst->direct_jmp_count++;
2511 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2512 tst->direct_jmp2_count++;
2518 void dump_exec_info(void)
2520 struct tb_tree_stats tst = {};
2521 struct qht_stats hst;
2522 size_t nb_tbs, flush_full, flush_part, flush_elide;
2524 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2525 nb_tbs = tst.nb_tbs;
2526 /* XXX: avoid using doubles ? */
2527 qemu_printf("Translation buffer state:\n");
2529 * Report total code size including the padding and TB structs;
2530 * otherwise users might think "-accel tcg,tb-size" is not honoured.
2531 * For avg host size we use the precise numbers from tb_tree_stats though.
2533 qemu_printf("gen code size %zu/%zu\n",
2534 tcg_code_size(), tcg_code_capacity());
2535 qemu_printf("TB count %zu\n", nb_tbs);
2536 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2537 nb_tbs ? tst.target_size / nb_tbs : 0,
2538 tst.max_target_size);
2539 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2540 nb_tbs ? tst.host_size / nb_tbs : 0,
2541 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2542 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2543 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2544 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2545 tst.direct_jmp_count,
2546 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2547 tst.direct_jmp2_count,
2548 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2550 qht_statistics_init(&tb_ctx.htable, &hst);
2551 print_qht_statistics(hst);
2552 qht_statistics_destroy(&hst);
2554 qemu_printf("\nStatistics:\n");
2555 qemu_printf("TB flush count %u\n",
2556 qatomic_read(&tb_ctx.tb_flush_count));
2557 qemu_printf("TB invalidate count %zu\n",
2558 tcg_tb_phys_invalidate_count());
2560 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2561 qemu_printf("TLB full flushes %zu\n", flush_full);
2562 qemu_printf("TLB partial flushes %zu\n", flush_part);
2563 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2567 void dump_opcount_info(void)
2569 tcg_dump_op_count();
2572 #else /* CONFIG_USER_ONLY */
2574 void cpu_interrupt(CPUState *cpu, int mask)
2576 g_assert(qemu_mutex_iothread_locked());
2577 cpu->interrupt_request |= mask;
2578 qatomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2582 * Walks guest process memory "regions" one by one
2583 * and calls callback function 'fn' for each region.
2585 struct walk_memory_regions_data {
2586 walk_memory_regions_fn fn;
2592 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2593 target_ulong end, int new_prot)
2595 if (data->start != -1u) {
2596 int rc = data->fn(data->priv, data->start, end, data->prot);
2602 data->start = (new_prot ? end : -1u);
2603 data->prot = new_prot;
2608 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2609 target_ulong base, int level, void **lp)
2615 return walk_memory_regions_end(data, base, 0);
2621 for (i = 0; i < V_L2_SIZE; ++i) {
2622 int prot = pd[i].flags;
2624 pa = base | (i << TARGET_PAGE_BITS);
2625 if (prot != data->prot) {
2626 rc = walk_memory_regions_end(data, pa, prot);
2635 for (i = 0; i < V_L2_SIZE; ++i) {
2636 pa = base | ((target_ulong)i <<
2637 (TARGET_PAGE_BITS + V_L2_BITS * level));
2638 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2648 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2650 struct walk_memory_regions_data data;
2651 uintptr_t i, l1_sz = v_l1_size;
2658 for (i = 0; i < l1_sz; i++) {
2659 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2660 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2666 return walk_memory_regions_end(&data, 0, 0);
2669 static int dump_region(void *priv, target_ulong start,
2670 target_ulong end, unsigned long prot)
2672 FILE *f = (FILE *)priv;
2674 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2675 " "TARGET_FMT_lx" %c%c%c\n",
2676 start, end, end - start,
2677 ((prot & PAGE_READ) ? 'r' : '-'),
2678 ((prot & PAGE_WRITE) ? 'w' : '-'),
2679 ((prot & PAGE_EXEC) ? 'x' : '-'));
2684 /* dump memory mappings */
2685 void page_dump(FILE *f)
2687 const int length = sizeof(target_ulong) * 2;
2688 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2689 length, "start", length, "end", length, "size", "prot");
2690 walk_memory_regions(f, dump_region);
2693 int page_get_flags(target_ulong address)
2697 p = page_find(address >> TARGET_PAGE_BITS);
2704 /* Modify the flags of a page and invalidate the code if necessary.
2705 The flag PAGE_WRITE_ORG is positioned automatically depending
2706 on PAGE_WRITE. The mmap_lock should already be held. */
2707 void page_set_flags(target_ulong start, target_ulong end, int flags)
2709 target_ulong addr, len;
2710 bool reset_target_data;
2712 /* This function should never be called with addresses outside the
2713 guest address space. If this assert fires, it probably indicates
2714 a missing call to h2g_valid. */
2715 assert(end - 1 <= GUEST_ADDR_MAX);
2716 assert(start < end);
2717 /* Only set PAGE_ANON with new mappings. */
2718 assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
2719 assert_memory_lock();
2721 start = start & TARGET_PAGE_MASK;
2722 end = TARGET_PAGE_ALIGN(end);
2724 if (flags & PAGE_WRITE) {
2725 flags |= PAGE_WRITE_ORG;
2727 reset_target_data = !(flags & PAGE_VALID) || (flags & PAGE_RESET);
2728 flags &= ~PAGE_RESET;
2730 for (addr = start, len = end - start;
2732 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2733 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2735 /* If the write protection bit is set, then we invalidate
2737 if (!(p->flags & PAGE_WRITE) &&
2738 (flags & PAGE_WRITE) &&
2740 tb_invalidate_phys_page(addr, 0);
2742 if (reset_target_data) {
2743 g_free(p->target_data);
2744 p->target_data = NULL;
2747 /* Using mprotect on a page does not change MAP_ANON. */
2748 p->flags = (p->flags & PAGE_ANON) | flags;
2753 void *page_get_target_data(target_ulong address)
2755 PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2756 return p ? p->target_data : NULL;
2759 void *page_alloc_target_data(target_ulong address, size_t size)
2761 PageDesc *p = page_find(address >> TARGET_PAGE_BITS);
2764 if (p->flags & PAGE_VALID) {
2765 ret = p->target_data;
2767 p->target_data = ret = g_malloc0(size);
2773 int page_check_range(target_ulong start, target_ulong len, int flags)
2779 /* This function should never be called with addresses outside the
2780 guest address space. If this assert fires, it probably indicates
2781 a missing call to h2g_valid. */
2782 if (TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS) {
2783 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2789 if (start + len - 1 < start) {
2790 /* We've wrapped around. */
2794 /* must do before we loose bits in the next step */
2795 end = TARGET_PAGE_ALIGN(start + len);
2796 start = start & TARGET_PAGE_MASK;
2798 for (addr = start, len = end - start;
2800 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2801 p = page_find(addr >> TARGET_PAGE_BITS);
2805 if (!(p->flags & PAGE_VALID)) {
2809 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2812 if (flags & PAGE_WRITE) {
2813 if (!(p->flags & PAGE_WRITE_ORG)) {
2816 /* unprotect the page if it was put read-only because it
2817 contains translated code */
2818 if (!(p->flags & PAGE_WRITE)) {
2819 if (!page_unprotect(addr, 0)) {
2828 /* called from signal handler: invalidate the code and unprotect the
2829 * page. Return 0 if the fault was not handled, 1 if it was handled,
2830 * and 2 if it was handled but the caller must cause the TB to be
2831 * immediately exited. (We can only return 2 if the 'pc' argument is
2834 int page_unprotect(target_ulong address, uintptr_t pc)
2837 bool current_tb_invalidated;
2839 target_ulong host_start, host_end, addr;
2841 /* Technically this isn't safe inside a signal handler. However we
2842 know this only ever happens in a synchronous SEGV handler, so in
2843 practice it seems to be ok. */
2846 p = page_find(address >> TARGET_PAGE_BITS);
2852 /* if the page was really writable, then we change its
2853 protection back to writable */
2854 if (p->flags & PAGE_WRITE_ORG) {
2855 current_tb_invalidated = false;
2856 if (p->flags & PAGE_WRITE) {
2857 /* If the page is actually marked WRITE then assume this is because
2858 * this thread raced with another one which got here first and
2859 * set the page to PAGE_WRITE and did the TB invalidate for us.
2861 #ifdef TARGET_HAS_PRECISE_SMC
2862 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2864 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2868 host_start = address & qemu_host_page_mask;
2869 host_end = host_start + qemu_host_page_size;
2872 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2873 p = page_find(addr >> TARGET_PAGE_BITS);
2874 p->flags |= PAGE_WRITE;
2877 /* and since the content will be modified, we must invalidate
2878 the corresponding translated code. */
2879 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2880 #ifdef CONFIG_USER_ONLY
2881 if (DEBUG_TB_CHECK_GATE) {
2882 tb_invalidate_check(addr);
2886 mprotect((void *)g2h_untagged(host_start), qemu_host_page_size,
2890 /* If current TB was invalidated return to main loop */
2891 return current_tb_invalidated ? 2 : 1;
2896 #endif /* CONFIG_USER_ONLY */
2898 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
2899 void tcg_flush_softmmu_tlb(CPUState *cs)
2901 #ifdef CONFIG_SOFTMMU