2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
37 #include "qom/object.h"
39 /* Fields for FlashPartInfo->flags */
41 /* erase capabilities */
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
52 #define SPI_NOR_MAX_ID_LEN 6
54 typedef struct FlashPartInfo {
55 const char *part_name;
57 * This array stores the ID bytes.
58 * The first three bytes are the JEDIC ID.
59 * JEDEC ID zero means "no ID" (mostly older chips).
61 uint8_t id[SPI_NOR_MAX_ID_LEN];
63 /* there is confusion between manufacturers as to what a sector is. In this
64 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65 * command (opcode 0xd8).
72 * Big sized spi nor are often stacked devices, thus sometime
73 * replace chip erase with die erase.
74 * This field inform how many die is in the chip.
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98 .part_name = _part_name,\
100 ((_jedec_id) >> 16) & 0xff,\
101 ((_jedec_id) >> 8) & 0xff,\
103 ((_ext_id) >> 16) & 0xff,\
104 ((_ext_id) >> 8) & 0xff,\
108 .sector_size = (_sector_size),\
109 .n_sectors = (_n_sectors),\
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
116 .part_name = _part_name,\
118 ((_jedec_id) >> 16) & 0xff,\
119 ((_jedec_id) >> 8) & 0xff,\
121 ((_ext_id) >> 8) & 0xff,\
124 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125 .sector_size = (_sector_size),\
126 .n_sectors = (_n_sectors),\
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
167 * Spansion read mode command length in bytes,
168 * the mode is currently not supported.
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
174 static const FlashPartInfo known_devices[] = {
175 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
177 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
179 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
180 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
181 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
183 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
184 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
185 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
186 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
188 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
190 /* Atmel EEPROMS - it is assumed, that don't care bit in command
191 * is set to 0. Block protection is not supported.
193 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
194 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
197 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
198 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
199 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
200 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
201 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
204 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
205 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
207 /* Intel/Numonyx -- xxxs33b */
208 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
209 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
210 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
211 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
214 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
215 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
216 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
217 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
218 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
219 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
220 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
221 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
222 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) },
223 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
224 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
225 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
226 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
227 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
230 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
231 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
232 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
233 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
234 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
235 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
236 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
237 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
238 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
239 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
240 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
241 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
242 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
243 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K) },
244 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
245 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
246 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
247 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
248 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
250 /* Spansion -- single (large) sector size only, at least
251 * for the chips listed here (without boot sectors).
253 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
254 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
255 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
256 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
257 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
258 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
259 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
260 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
261 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
262 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
263 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
264 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
265 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
266 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
267 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
268 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
269 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
271 /* Spansion -- boot sectors support */
272 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
273 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
275 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
276 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
277 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
278 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
279 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
280 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
281 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
282 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
283 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
284 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
286 /* ST Microelectronics -- newer production may have feature updates */
287 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
288 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
289 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
290 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
291 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
292 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
293 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
294 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
295 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
296 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
298 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
299 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
300 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
302 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
303 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
304 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
306 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
307 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
308 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
309 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
311 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
312 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
313 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
314 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
315 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
316 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
317 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
318 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
319 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
320 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
321 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
322 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
323 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
324 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
325 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K) },
337 BULK_ERASE_60 = 0x60,
369 ERASE4_SECTOR = 0xdc,
371 EN_4BYTE_ADDR = 0xB7,
372 EX_4BYTE_ADDR = 0xE9,
374 EXTEND_ADDR_READ = 0xC8,
375 EXTEND_ADDR_WRITE = 0xC5,
381 * Micron: 0x35 - enable QPI
382 * Spansion: 0x35 - read control register
403 STATE_COLLECTING_DATA,
404 STATE_COLLECTING_VAR_LEN_DATA,
423 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
426 SSIPeripheral parent_obj;
435 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
439 uint8_t needed_bytes;
440 uint8_t cmd_in_progress;
442 uint32_t nonvolatile_cfg;
443 /* Configuration register for Macronix */
444 uint32_t volatile_cfg;
445 uint32_t enh_volatile_cfg;
446 /* Spansion cfg registers. */
447 uint8_t spansion_cr1nv;
448 uint8_t spansion_cr2nv;
449 uint8_t spansion_cr3nv;
450 uint8_t spansion_cr4nv;
451 uint8_t spansion_cr1v;
452 uint8_t spansion_cr2v;
453 uint8_t spansion_cr3v;
454 uint8_t spansion_cr4v;
456 bool four_bytes_address_mode;
463 const FlashPartInfo *pi;
468 SSIPeripheralClass parent_class;
472 #define TYPE_M25P80 "m25p80-generic"
473 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
475 static inline Manufacturer get_man(Flash *s)
477 switch (s->pi->id[0]) {
493 static void blk_sync_complete(void *opaque, int ret)
495 QEMUIOVector *iov = opaque;
497 qemu_iovec_destroy(iov);
500 /* do nothing. Masters do not directly interact with the backing store,
501 * only the working copy so no mutexing required.
505 static void flash_sync_page(Flash *s, int page)
509 if (!s->blk || blk_is_read_only(s->blk)) {
513 iov = g_new(QEMUIOVector, 1);
514 qemu_iovec_init(iov, 1);
515 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
517 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
518 blk_sync_complete, iov);
521 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
525 if (!s->blk || blk_is_read_only(s->blk)) {
529 assert(!(len % BDRV_SECTOR_SIZE));
530 iov = g_new(QEMUIOVector, 1);
531 qemu_iovec_init(iov, 1);
532 qemu_iovec_add(iov, s->storage + off, len);
533 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
536 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
539 uint8_t capa_to_assert = 0;
545 capa_to_assert = ER_4K;
550 capa_to_assert = ER_32K;
554 len = s->pi->sector_size;
560 if (s->pi->die_cnt) {
561 len = s->size / s->pi->die_cnt;
562 offset = offset & (~(len - 1));
564 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
573 trace_m25p80_flash_erase(s, offset, len);
575 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
576 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
580 if (!s->write_enable) {
581 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
584 memset(s->storage + offset, 0xff, len);
585 flash_sync_area(s, offset, len);
588 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
590 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
591 flash_sync_page(s, s->dirty_page);
592 s->dirty_page = newpage;
597 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
599 uint32_t page = addr / s->pi->page_size;
600 uint8_t prev = s->storage[s->cur_addr];
602 if (!s->write_enable) {
603 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
606 if ((prev ^ data) & data) {
607 trace_m25p80_programming_zero_to_one(s, addr, prev, data);
610 if (s->pi->flags & EEPROM) {
611 s->storage[s->cur_addr] = data;
613 s->storage[s->cur_addr] &= data;
616 flash_sync_dirty(s, page);
617 s->dirty_page = page;
620 static inline int get_addr_length(Flash *s)
622 /* check if eeprom is in use */
623 if (s->pi->flags == EEPROM) {
627 switch (s->cmd_in_progress) {
642 return s->four_bytes_address_mode ? 4 : 3;
646 static void complete_collecting_data(Flash *s)
650 n = get_addr_length(s);
651 s->cur_addr = (n == 3 ? s->ear : 0);
652 for (i = 0; i < n; ++i) {
654 s->cur_addr |= s->data[i];
657 s->cur_addr &= s->size - 1;
659 s->state = STATE_IDLE;
661 trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
664 switch (s->cmd_in_progress) {
671 s->state = STATE_PAGE_PROGRAM;
685 s->state = STATE_READ;
694 flash_erase(s, s->cur_addr, s->cmd_in_progress);
697 switch (get_man(s)) {
699 s->quad_enable = !!(s->data[1] & 0x02);
702 s->quad_enable = extract32(s->data[0], 6, 1);
704 s->volatile_cfg = s->data[1];
705 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
711 if (s->write_enable) {
712 s->write_enable = false;
716 case EXTEND_ADDR_WRITE:
720 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
723 s->volatile_cfg = s->data[0];
726 s->enh_volatile_cfg = s->data[0];
730 if (get_man(s) == MAN_SST) {
731 if (s->cur_addr <= 1) {
733 s->data[0] = s->pi->id[2];
734 s->data[1] = s->pi->id[0];
736 s->data[0] = s->pi->id[0];
737 s->data[1] = s->pi->id[2];
741 s->data_read_loop = true;
742 s->state = STATE_READING_DATA;
744 qemu_log_mask(LOG_GUEST_ERROR,
745 "M25P80: Invalid read id address\n");
748 qemu_log_mask(LOG_GUEST_ERROR,
749 "M25P80: Read id (command 0x90/0xAB) is not supported"
758 static void reset_memory(Flash *s)
760 s->cmd_in_progress = NOP;
763 s->four_bytes_address_mode = false;
767 s->state = STATE_IDLE;
768 s->write_enable = false;
769 s->reset_enable = false;
770 s->quad_enable = false;
772 switch (get_man(s)) {
775 s->volatile_cfg |= VCFG_DUMMY;
776 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
777 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
778 == NVCFG_XIP_MODE_DISABLED) {
779 s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
781 s->volatile_cfg |= deposit32(s->volatile_cfg,
784 extract32(s->nonvolatile_cfg,
789 s->enh_volatile_cfg = 0;
790 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
791 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
792 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
793 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
794 s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
796 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
797 s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
799 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
800 s->four_bytes_address_mode = true;
802 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
803 s->ear = s->size / MAX_3BYTES_SIZE - 1;
807 s->volatile_cfg = 0x7;
810 s->spansion_cr1v = s->spansion_cr1nv;
811 s->spansion_cr2v = s->spansion_cr2nv;
812 s->spansion_cr3v = s->spansion_cr3nv;
813 s->spansion_cr4v = s->spansion_cr4nv;
814 s->quad_enable = extract32(s->spansion_cr1v,
815 SPANSION_QUAD_CFG_POS,
816 SPANSION_QUAD_CFG_LEN
818 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
819 SPANSION_ADDR_LEN_POS,
820 SPANSION_ADDR_LEN_LEN
827 trace_m25p80_reset_done(s);
830 static uint8_t numonyx_mode(Flash *s)
832 if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
834 } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
841 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
845 assert(get_man(s) == MAN_NUMONYX);
847 mode = numonyx_mode(s);
848 num_dummies = extract32(s->volatile_cfg, 4, 4);
850 if (num_dummies == 0x0 || num_dummies == 0xf) {
851 switch (s->cmd_in_progress) {
857 num_dummies = (mode == MODE_QIO) ? 10 : 8;
865 static void decode_fast_read_cmd(Flash *s)
867 s->needed_bytes = get_addr_length(s);
868 switch (get_man(s)) {
869 /* Dummy cycles - modeled with bytes writes instead of bits */
871 s->needed_bytes += 8;
874 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
877 if (extract32(s->volatile_cfg, 6, 2) == 1) {
878 s->needed_bytes += 6;
880 s->needed_bytes += 8;
884 s->needed_bytes += extract32(s->spansion_cr2v,
885 SPANSION_DUMMY_CLK_POS,
886 SPANSION_DUMMY_CLK_LEN
894 s->state = STATE_COLLECTING_DATA;
897 static void decode_dio_read_cmd(Flash *s)
899 s->needed_bytes = get_addr_length(s);
900 /* Dummy cycles modeled with bytes writes instead of bits */
901 switch (get_man(s)) {
903 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
906 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
907 s->needed_bytes += extract32(s->spansion_cr2v,
908 SPANSION_DUMMY_CLK_POS,
909 SPANSION_DUMMY_CLK_LEN
913 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
916 switch (extract32(s->volatile_cfg, 6, 2)) {
918 s->needed_bytes += 6;
921 s->needed_bytes += 8;
924 s->needed_bytes += 4;
933 s->state = STATE_COLLECTING_DATA;
936 static void decode_qio_read_cmd(Flash *s)
938 s->needed_bytes = get_addr_length(s);
939 /* Dummy cycles modeled with bytes writes instead of bits */
940 switch (get_man(s)) {
942 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
943 s->needed_bytes += 4;
946 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
947 s->needed_bytes += extract32(s->spansion_cr2v,
948 SPANSION_DUMMY_CLK_POS,
949 SPANSION_DUMMY_CLK_LEN
953 s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
956 switch (extract32(s->volatile_cfg, 6, 2)) {
958 s->needed_bytes += 4;
961 s->needed_bytes += 8;
964 s->needed_bytes += 6;
973 s->state = STATE_COLLECTING_DATA;
976 static void decode_new_cmd(Flash *s, uint32_t value)
980 s->cmd_in_progress = value;
981 trace_m25p80_command_decoded(s, value);
983 if (value != RESET_MEMORY) {
984 s->reset_enable = false;
1000 s->needed_bytes = get_addr_length(s);
1003 s->state = STATE_COLLECTING_DATA;
1007 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1008 s->needed_bytes = get_addr_length(s);
1011 s->state = STATE_COLLECTING_DATA;
1013 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1014 "DIO or QIO mode\n", s->cmd_in_progress);
1018 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1019 s->needed_bytes = get_addr_length(s);
1022 s->state = STATE_COLLECTING_DATA;
1024 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1025 "QIO mode\n", s->cmd_in_progress);
1031 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1032 s->needed_bytes = get_addr_length(s);
1035 s->state = STATE_COLLECTING_DATA;
1037 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1038 "DIO mode\n", s->cmd_in_progress);
1044 decode_fast_read_cmd(s);
1048 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1049 decode_fast_read_cmd(s);
1051 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1052 "QIO mode\n", s->cmd_in_progress);
1057 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1058 decode_fast_read_cmd(s);
1060 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1061 "DIO mode\n", s->cmd_in_progress);
1067 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1068 decode_dio_read_cmd(s);
1070 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1071 "QIO mode\n", s->cmd_in_progress);
1077 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1078 decode_qio_read_cmd(s);
1080 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1081 "DIO mode\n", s->cmd_in_progress);
1086 if (s->write_enable) {
1087 switch (get_man(s)) {
1089 s->needed_bytes = 2;
1090 s->state = STATE_COLLECTING_DATA;
1093 s->needed_bytes = 2;
1094 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1097 s->needed_bytes = 1;
1098 s->state = STATE_COLLECTING_DATA;
1105 s->write_enable = false;
1108 s->write_enable = true;
1112 s->data[0] = (!!s->write_enable) << 1;
1113 if (get_man(s) == MAN_MACRONIX) {
1114 s->data[0] |= (!!s->quad_enable) << 6;
1118 s->data_read_loop = true;
1119 s->state = STATE_READING_DATA;
1123 s->data[0] = FSR_FLASH_READY;
1124 if (s->four_bytes_address_mode) {
1125 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1129 s->data_read_loop = true;
1130 s->state = STATE_READING_DATA;
1134 if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1135 trace_m25p80_populated_jedec(s);
1136 for (i = 0; i < s->pi->id_len; i++) {
1137 s->data[i] = s->pi->id[i];
1139 for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1143 s->len = SPI_NOR_MAX_ID_LEN;
1145 s->state = STATE_READING_DATA;
1147 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1148 "in DIO or QIO mode\n");
1153 s->data[0] = s->volatile_cfg & 0xFF;
1154 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1157 s->state = STATE_READING_DATA;
1162 if (s->write_enable) {
1163 trace_m25p80_chip_erase(s);
1164 flash_erase(s, 0, BULK_ERASE);
1166 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1173 s->four_bytes_address_mode = true;
1176 s->four_bytes_address_mode = false;
1179 case EXTEND_ADDR_READ:
1180 s->data[0] = s->ear;
1183 s->state = STATE_READING_DATA;
1186 case EXTEND_ADDR_WRITE:
1187 if (s->write_enable) {
1188 s->needed_bytes = 1;
1191 s->state = STATE_COLLECTING_DATA;
1195 s->data[0] = s->nonvolatile_cfg & 0xFF;
1196 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1199 s->state = STATE_READING_DATA;
1202 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1203 s->needed_bytes = 2;
1206 s->state = STATE_COLLECTING_DATA;
1210 s->data[0] = s->volatile_cfg & 0xFF;
1213 s->state = STATE_READING_DATA;
1216 if (s->write_enable) {
1217 s->needed_bytes = 1;
1220 s->state = STATE_COLLECTING_DATA;
1224 s->data[0] = s->enh_volatile_cfg & 0xFF;
1227 s->state = STATE_READING_DATA;
1230 if (s->write_enable) {
1231 s->needed_bytes = 1;
1234 s->state = STATE_COLLECTING_DATA;
1238 s->reset_enable = true;
1241 if (s->reset_enable) {
1246 switch (get_man(s)) {
1248 s->data[0] = (!!s->quad_enable) << 1;
1251 s->state = STATE_READING_DATA;
1254 s->quad_enable = true;
1261 s->quad_enable = false;
1266 s->state = STATE_READING_DATA;
1267 s->data_read_loop = true;
1269 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1274 static int m25p80_cs(SSIPeripheral *ss, bool select)
1276 Flash *s = M25P80(ss);
1279 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1280 complete_collecting_data(s);
1284 s->state = STATE_IDLE;
1285 flash_sync_dirty(s, -1);
1286 s->data_read_loop = false;
1289 trace_m25p80_select(s, select ? "de" : "");
1294 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1296 Flash *s = M25P80(ss);
1299 trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1300 s->cur_addr, (uint8_t)tx);
1304 case STATE_PAGE_PROGRAM:
1305 trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1306 flash_write8(s, s->cur_addr, (uint8_t)tx);
1307 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1311 r = s->storage[s->cur_addr];
1312 trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1313 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1316 case STATE_COLLECTING_DATA:
1317 case STATE_COLLECTING_VAR_LEN_DATA:
1319 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1320 qemu_log_mask(LOG_GUEST_ERROR,
1321 "M25P80: Write overrun internal data buffer. "
1322 "SPI controller (QEMU emulator or guest driver) "
1323 "is misbehaving\n");
1324 s->len = s->pos = 0;
1325 s->state = STATE_IDLE;
1329 s->data[s->len] = (uint8_t)tx;
1332 if (s->len == s->needed_bytes) {
1333 complete_collecting_data(s);
1337 case STATE_READING_DATA:
1339 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1340 qemu_log_mask(LOG_GUEST_ERROR,
1341 "M25P80: Read overrun internal data buffer. "
1342 "SPI controller (QEMU emulator or guest driver) "
1343 "is misbehaving\n");
1344 s->len = s->pos = 0;
1345 s->state = STATE_IDLE;
1349 r = s->data[s->pos];
1350 trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1352 if (s->pos == s->len) {
1354 if (!s->data_read_loop) {
1355 s->state = STATE_IDLE;
1362 decode_new_cmd(s, (uint8_t)tx);
1369 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1371 Flash *s = M25P80(ss);
1372 M25P80Class *mc = M25P80_GET_CLASS(s);
1377 s->size = s->pi->sector_size * s->pi->n_sectors;
1381 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1382 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1383 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1388 trace_m25p80_binding(s);
1389 s->storage = blk_blockalign(s->blk, s->size);
1391 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
1392 error_setg(errp, "failed to read the initial flash content");
1396 trace_m25p80_binding_no_bdrv(s);
1397 s->storage = blk_blockalign(NULL, s->size);
1398 memset(s->storage, 0xFF, s->size);
1402 static void m25p80_reset(DeviceState *d)
1404 Flash *s = M25P80(d);
1409 static int m25p80_pre_save(void *opaque)
1411 flash_sync_dirty((Flash *)opaque, -1);
1416 static Property m25p80_properties[] = {
1417 /* This is default value for Micron flash */
1418 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1419 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1420 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1421 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1422 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1423 DEFINE_PROP_DRIVE("drive", Flash, blk),
1424 DEFINE_PROP_END_OF_LIST(),
1427 static int m25p80_pre_load(void *opaque)
1429 Flash *s = (Flash *)opaque;
1431 s->data_read_loop = false;
1435 static bool m25p80_data_read_loop_needed(void *opaque)
1437 Flash *s = (Flash *)opaque;
1439 return s->data_read_loop;
1442 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1443 .name = "m25p80/data_read_loop",
1445 .minimum_version_id = 1,
1446 .needed = m25p80_data_read_loop_needed,
1447 .fields = (VMStateField[]) {
1448 VMSTATE_BOOL(data_read_loop, Flash),
1449 VMSTATE_END_OF_LIST()
1453 static const VMStateDescription vmstate_m25p80 = {
1456 .minimum_version_id = 0,
1457 .pre_save = m25p80_pre_save,
1458 .pre_load = m25p80_pre_load,
1459 .fields = (VMStateField[]) {
1460 VMSTATE_UINT8(state, Flash),
1461 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1462 VMSTATE_UINT32(len, Flash),
1463 VMSTATE_UINT32(pos, Flash),
1464 VMSTATE_UINT8(needed_bytes, Flash),
1465 VMSTATE_UINT8(cmd_in_progress, Flash),
1466 VMSTATE_UINT32(cur_addr, Flash),
1467 VMSTATE_BOOL(write_enable, Flash),
1468 VMSTATE_BOOL(reset_enable, Flash),
1469 VMSTATE_UINT8(ear, Flash),
1470 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1471 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1472 VMSTATE_UINT32(volatile_cfg, Flash),
1473 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1474 VMSTATE_BOOL(quad_enable, Flash),
1475 VMSTATE_UINT8(spansion_cr1nv, Flash),
1476 VMSTATE_UINT8(spansion_cr2nv, Flash),
1477 VMSTATE_UINT8(spansion_cr3nv, Flash),
1478 VMSTATE_UINT8(spansion_cr4nv, Flash),
1479 VMSTATE_END_OF_LIST()
1481 .subsections = (const VMStateDescription * []) {
1482 &vmstate_m25p80_data_read_loop,
1487 static void m25p80_class_init(ObjectClass *klass, void *data)
1489 DeviceClass *dc = DEVICE_CLASS(klass);
1490 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1491 M25P80Class *mc = M25P80_CLASS(klass);
1493 k->realize = m25p80_realize;
1494 k->transfer = m25p80_transfer8;
1495 k->set_cs = m25p80_cs;
1496 k->cs_polarity = SSI_CS_LOW;
1497 dc->vmsd = &vmstate_m25p80;
1498 device_class_set_props(dc, m25p80_properties);
1499 dc->reset = m25p80_reset;
1503 static const TypeInfo m25p80_info = {
1504 .name = TYPE_M25P80,
1505 .parent = TYPE_SSI_PERIPHERAL,
1506 .instance_size = sizeof(Flash),
1507 .class_size = sizeof(M25P80Class),
1511 static void m25p80_register_types(void)
1515 type_register_static(&m25p80_info);
1516 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1518 .name = known_devices[i].part_name,
1519 .parent = TYPE_M25P80,
1520 .class_init = m25p80_class_init,
1521 .class_data = (void *)&known_devices[i],
1527 type_init(m25p80_register_types)