2 * IMX6 System Reset Controller
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/bitops.h"
16 #include "arm-powerctl.h"
18 #ifndef DEBUG_IMX6_SRC
19 #define DEBUG_IMX6_SRC 0
22 #define DPRINTF(fmt, args...) \
24 if (DEBUG_IMX6_SRC) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
30 static const char *imx6_src_reg_name(uint32_t reg)
32 static char unknown[20];
68 sprintf(unknown, "%d ?", reg);
73 static const VMStateDescription vmstate_imx6_src = {
74 .name = TYPE_IMX6_SRC,
76 .minimum_version_id = 1,
77 .fields = (VMStateField[]) {
78 VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
83 static void imx6_src_reset(DeviceState *dev)
85 IMX6SRCState *s = IMX6_SRC(dev);
89 memset(s->regs, 0, sizeof(s->regs));
91 /* Set reset values */
92 s->regs[SRC_SCR] = 0x521;
93 s->regs[SRC_SRSR] = 0x1;
94 s->regs[SRC_SIMR] = 0x1F;
97 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
100 IMX6SRCState *s = (IMX6SRCState *)opaque;
101 uint32_t index = offset >> 2;
103 if (index < SRC_MAX) {
104 value = s->regs[index];
106 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
107 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
111 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
116 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
119 IMX6SRCState *s = (IMX6SRCState *)opaque;
120 uint32_t index = offset >> 2;
121 unsigned long change_mask;
122 unsigned long current_value = value;
124 if (index >= SRC_MAX) {
125 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
126 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
130 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
131 (uint32_t)current_value);
133 change_mask = s->regs[index] ^ (uint32_t)current_value;
138 * On real hardware when the system reset controller starts a
139 * secondary CPU it runs through some boot ROM code which reads
140 * the SRC_GPRX registers controlling the start address and branches
142 * Here we are taking a short cut and branching directly to the
143 * requested address (we don't want to run the boot ROM code inside
146 if (EXTRACT(change_mask, CORE3_ENABLE)) {
147 if (EXTRACT(current_value, CORE3_ENABLE)) {
148 /* CORE 3 is brought up */
149 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
152 /* CORE 3 is shut down */
155 /* We clear the reset bits as the processor changed state */
156 clear_bit(CORE3_RST_SHIFT, ¤t_value);
157 clear_bit(CORE3_RST_SHIFT, &change_mask);
159 if (EXTRACT(change_mask, CORE2_ENABLE)) {
160 if (EXTRACT(current_value, CORE2_ENABLE)) {
161 /* CORE 2 is brought up */
162 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
165 /* CORE 3 is shut down */
168 /* We clear the reset bits as the processor changed state */
169 clear_bit(CORE2_RST_SHIFT, ¤t_value);
170 clear_bit(CORE2_RST_SHIFT, &change_mask);
172 if (EXTRACT(change_mask, CORE1_ENABLE)) {
173 if (EXTRACT(current_value, CORE1_ENABLE)) {
174 /* CORE 1 is brought up */
175 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
178 /* CORE 3 is shut down */
181 /* We clear the reset bits as the processor changed state */
182 clear_bit(CORE1_RST_SHIFT, ¤t_value);
183 clear_bit(CORE1_RST_SHIFT, &change_mask);
185 if (EXTRACT(change_mask, CORE0_RST)) {
187 clear_bit(CORE0_RST_SHIFT, ¤t_value);
189 if (EXTRACT(change_mask, CORE1_RST)) {
191 clear_bit(CORE1_RST_SHIFT, ¤t_value);
193 if (EXTRACT(change_mask, CORE2_RST)) {
195 clear_bit(CORE2_RST_SHIFT, ¤t_value);
197 if (EXTRACT(change_mask, CORE3_RST)) {
199 clear_bit(CORE3_RST_SHIFT, ¤t_value);
201 if (EXTRACT(change_mask, SW_IPU2_RST)) {
202 /* We pretend the IPU2 is reset */
203 clear_bit(SW_IPU2_RST_SHIFT, ¤t_value);
205 if (EXTRACT(change_mask, SW_IPU1_RST)) {
206 /* We pretend the IPU1 is reset */
207 clear_bit(SW_IPU1_RST_SHIFT, ¤t_value);
209 s->regs[index] = current_value;
212 s->regs[index] = current_value;
217 static const struct MemoryRegionOps imx6_src_ops = {
218 .read = imx6_src_read,
219 .write = imx6_src_write,
220 .endianness = DEVICE_NATIVE_ENDIAN,
223 * Our device would not work correctly if the guest was doing
224 * unaligned access. This might not be a limitation on the real
225 * device but in practice there is no reason for a guest to access
226 * this device unaligned.
228 .min_access_size = 4,
229 .max_access_size = 4,
234 static void imx6_src_realize(DeviceState *dev, Error **errp)
236 IMX6SRCState *s = IMX6_SRC(dev);
238 memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
239 TYPE_IMX6_SRC, 0x1000);
240 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
243 static void imx6_src_class_init(ObjectClass *klass, void *data)
245 DeviceClass *dc = DEVICE_CLASS(klass);
247 dc->realize = imx6_src_realize;
248 dc->reset = imx6_src_reset;
249 dc->vmsd = &vmstate_imx6_src;
250 dc->desc = "i.MX6 System Reset Controller";
253 static const TypeInfo imx6_src_info = {
254 .name = TYPE_IMX6_SRC,
255 .parent = TYPE_SYS_BUS_DEVICE,
256 .instance_size = sizeof(IMX6SRCState),
257 .class_init = imx6_src_class_init,
260 static void imx6_src_register_types(void)
262 type_register_static(&imx6_src_info);
265 type_init(imx6_src_register_types)