]> Git Repo - qemu.git/blob - include/fpu/softfloat.h
softfloat: Expand out the STATUS_PARAM macro
[qemu.git] / include / fpu / softfloat.h
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43
44 ===============================================================================
45 */
46
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
88
89 #include <inttypes.h>
90 #include "config-host.h"
91 #include "qemu/osdep.h"
92
93 /*----------------------------------------------------------------------------
94 | Each of the following `typedef's defines the most convenient type that holds
95 | integers of at least as many bits as specified.  For example, `uint8' should
96 | be the most convenient type that can hold unsigned integers of as many as
97 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
98 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
99 | to the same as `int'.
100 *----------------------------------------------------------------------------*/
101 typedef uint8_t flag;
102 typedef uint8_t uint8;
103 typedef int8_t int8;
104 typedef unsigned int uint32;
105 typedef signed int int32;
106 typedef uint64_t uint64;
107 typedef int64_t int64;
108
109 #define LIT64( a ) a##LL
110
111 #define STATUS(field) status->field
112 #define STATUS_VAR , status
113
114 /*----------------------------------------------------------------------------
115 | Software IEC/IEEE floating-point ordering relations
116 *----------------------------------------------------------------------------*/
117 enum {
118     float_relation_less      = -1,
119     float_relation_equal     =  0,
120     float_relation_greater   =  1,
121     float_relation_unordered =  2
122 };
123
124 /*----------------------------------------------------------------------------
125 | Software IEC/IEEE floating-point types.
126 *----------------------------------------------------------------------------*/
127 /* Use structures for soft-float types.  This prevents accidentally mixing
128    them with native int/float types.  A sufficiently clever compiler and
129    sane ABI should be able to see though these structs.  However
130    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
131 //#define USE_SOFTFLOAT_STRUCT_TYPES
132 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
133 typedef struct {
134     uint16_t v;
135 } float16;
136 #define float16_val(x) (((float16)(x)).v)
137 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
138 #define const_float16(x) { x }
139 typedef struct {
140     uint32_t v;
141 } float32;
142 /* The cast ensures an error if the wrong type is passed.  */
143 #define float32_val(x) (((float32)(x)).v)
144 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
145 #define const_float32(x) { x }
146 typedef struct {
147     uint64_t v;
148 } float64;
149 #define float64_val(x) (((float64)(x)).v)
150 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
151 #define const_float64(x) { x }
152 #else
153 typedef uint16_t float16;
154 typedef uint32_t float32;
155 typedef uint64_t float64;
156 #define float16_val(x) (x)
157 #define float32_val(x) (x)
158 #define float64_val(x) (x)
159 #define make_float16(x) (x)
160 #define make_float32(x) (x)
161 #define make_float64(x) (x)
162 #define const_float16(x) (x)
163 #define const_float32(x) (x)
164 #define const_float64(x) (x)
165 #endif
166 typedef struct {
167     uint64_t low;
168     uint16_t high;
169 } floatx80;
170 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
171 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
172 typedef struct {
173 #ifdef HOST_WORDS_BIGENDIAN
174     uint64_t high, low;
175 #else
176     uint64_t low, high;
177 #endif
178 } float128;
179 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
180 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
181
182 /*----------------------------------------------------------------------------
183 | Software IEC/IEEE floating-point underflow tininess-detection mode.
184 *----------------------------------------------------------------------------*/
185 enum {
186     float_tininess_after_rounding  = 0,
187     float_tininess_before_rounding = 1
188 };
189
190 /*----------------------------------------------------------------------------
191 | Software IEC/IEEE floating-point rounding mode.
192 *----------------------------------------------------------------------------*/
193 enum {
194     float_round_nearest_even = 0,
195     float_round_down         = 1,
196     float_round_up           = 2,
197     float_round_to_zero      = 3,
198     float_round_ties_away    = 4,
199 };
200
201 /*----------------------------------------------------------------------------
202 | Software IEC/IEEE floating-point exception flags.
203 *----------------------------------------------------------------------------*/
204 enum {
205     float_flag_invalid   =  1,
206     float_flag_divbyzero =  4,
207     float_flag_overflow  =  8,
208     float_flag_underflow = 16,
209     float_flag_inexact   = 32,
210     float_flag_input_denormal = 64,
211     float_flag_output_denormal = 128
212 };
213
214 typedef struct float_status {
215     signed char float_detect_tininess;
216     signed char float_rounding_mode;
217     signed char float_exception_flags;
218     signed char floatx80_rounding_precision;
219     /* should denormalised results go to zero and set the inexact flag? */
220     flag flush_to_zero;
221     /* should denormalised inputs go to zero and set the input_denormal flag? */
222     flag flush_inputs_to_zero;
223     flag default_nan_mode;
224 } float_status;
225
226 static inline void set_float_detect_tininess(int val, float_status *status)
227 {
228     STATUS(float_detect_tininess) = val;
229 }
230 static inline void set_float_rounding_mode(int val, float_status *status)
231 {
232     STATUS(float_rounding_mode) = val;
233 }
234 static inline void set_float_exception_flags(int val, float_status *status)
235 {
236     STATUS(float_exception_flags) = val;
237 }
238 static inline void set_floatx80_rounding_precision(int val,
239                                                    float_status *status)
240 {
241     STATUS(floatx80_rounding_precision) = val;
242 }
243 static inline void set_flush_to_zero(flag val, float_status *status)
244 {
245     STATUS(flush_to_zero) = val;
246 }
247 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
248 {
249     STATUS(flush_inputs_to_zero) = val;
250 }
251 static inline void set_default_nan_mode(flag val, float_status *status)
252 {
253     STATUS(default_nan_mode) = val;
254 }
255 static inline int get_float_detect_tininess(float_status *status)
256 {
257     return STATUS(float_detect_tininess);
258 }
259 static inline int get_float_rounding_mode(float_status *status)
260 {
261     return STATUS(float_rounding_mode);
262 }
263 static inline int get_float_exception_flags(float_status *status)
264 {
265     return STATUS(float_exception_flags);
266 }
267 static inline int get_floatx80_rounding_precision(float_status *status)
268 {
269     return STATUS(floatx80_rounding_precision);
270 }
271 static inline flag get_flush_to_zero(float_status *status)
272 {
273     return STATUS(flush_to_zero);
274 }
275 static inline flag get_flush_inputs_to_zero(float_status *status)
276 {
277     return STATUS(flush_inputs_to_zero);
278 }
279 static inline flag get_default_nan_mode(float_status *status)
280 {
281     return STATUS(default_nan_mode);
282 }
283
284 /*----------------------------------------------------------------------------
285 | Routine to raise any or all of the software IEC/IEEE floating-point
286 | exception flags.
287 *----------------------------------------------------------------------------*/
288 void float_raise(int8 flags, float_status *status);
289
290 /*----------------------------------------------------------------------------
291 | If `a' is denormal and we are in flush-to-zero mode then set the
292 | input-denormal exception and return zero. Otherwise just return the value.
293 *----------------------------------------------------------------------------*/
294 float32 float32_squash_input_denormal(float32 a, float_status *status);
295 float64 float64_squash_input_denormal(float64 a, float_status *status);
296
297 /*----------------------------------------------------------------------------
298 | Options to indicate which negations to perform in float*_muladd()
299 | Using these differs from negating an input or output before calling
300 | the muladd function in that this means that a NaN doesn't have its
301 | sign bit inverted before it is propagated.
302 | We also support halving the result before rounding, as a special
303 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
304 *----------------------------------------------------------------------------*/
305 enum {
306     float_muladd_negate_c = 1,
307     float_muladd_negate_product = 2,
308     float_muladd_negate_result = 4,
309     float_muladd_halve_result = 8,
310 };
311
312 /*----------------------------------------------------------------------------
313 | Software IEC/IEEE integer-to-floating-point conversion routines.
314 *----------------------------------------------------------------------------*/
315 float32 int32_to_float32(int32_t, float_status *status);
316 float64 int32_to_float64(int32_t, float_status *status);
317 float32 uint32_to_float32(uint32_t, float_status *status);
318 float64 uint32_to_float64(uint32_t, float_status *status);
319 floatx80 int32_to_floatx80(int32_t, float_status *status);
320 float128 int32_to_float128(int32_t, float_status *status);
321 float32 int64_to_float32(int64_t, float_status *status);
322 float64 int64_to_float64(int64_t, float_status *status);
323 floatx80 int64_to_floatx80(int64_t, float_status *status);
324 float128 int64_to_float128(int64_t, float_status *status);
325 float32 uint64_to_float32(uint64_t, float_status *status);
326 float64 uint64_to_float64(uint64_t, float_status *status);
327 float128 uint64_to_float128(uint64_t, float_status *status);
328
329 /* We provide the int16 versions for symmetry of API with float-to-int */
330 static inline float32 int16_to_float32(int16_t v, float_status *status)
331 {
332     return int32_to_float32(v STATUS_VAR);
333 }
334
335 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
336 {
337     return uint32_to_float32(v STATUS_VAR);
338 }
339
340 static inline float64 int16_to_float64(int16_t v, float_status *status)
341 {
342     return int32_to_float64(v STATUS_VAR);
343 }
344
345 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
346 {
347     return uint32_to_float64(v STATUS_VAR);
348 }
349
350 /*----------------------------------------------------------------------------
351 | Software half-precision conversion routines.
352 *----------------------------------------------------------------------------*/
353 float16 float32_to_float16(float32, flag, float_status *status);
354 float32 float16_to_float32(float16, flag, float_status *status);
355 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
356 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
357
358 /*----------------------------------------------------------------------------
359 | Software half-precision operations.
360 *----------------------------------------------------------------------------*/
361 int float16_is_quiet_nan( float16 );
362 int float16_is_signaling_nan( float16 );
363 float16 float16_maybe_silence_nan( float16 );
364
365 static inline int float16_is_any_nan(float16 a)
366 {
367     return ((float16_val(a) & ~0x8000) > 0x7c00);
368 }
369
370 /*----------------------------------------------------------------------------
371 | The pattern for a default generated half-precision NaN.
372 *----------------------------------------------------------------------------*/
373 extern const float16 float16_default_nan;
374
375 /*----------------------------------------------------------------------------
376 | Software IEC/IEEE single-precision conversion routines.
377 *----------------------------------------------------------------------------*/
378 int_fast16_t float32_to_int16(float32, float_status *status);
379 uint_fast16_t float32_to_uint16(float32, float_status *status);
380 int_fast16_t float32_to_int16_round_to_zero(float32, float_status *status);
381 uint_fast16_t float32_to_uint16_round_to_zero(float32, float_status *status);
382 int32 float32_to_int32(float32, float_status *status);
383 int32 float32_to_int32_round_to_zero(float32, float_status *status);
384 uint32 float32_to_uint32(float32, float_status *status);
385 uint32 float32_to_uint32_round_to_zero(float32, float_status *status);
386 int64 float32_to_int64(float32, float_status *status);
387 uint64 float32_to_uint64(float32, float_status *status);
388 uint64 float32_to_uint64_round_to_zero(float32, float_status *status);
389 int64 float32_to_int64_round_to_zero(float32, float_status *status);
390 float64 float32_to_float64(float32, float_status *status);
391 floatx80 float32_to_floatx80(float32, float_status *status);
392 float128 float32_to_float128(float32, float_status *status);
393
394 /*----------------------------------------------------------------------------
395 | Software IEC/IEEE single-precision operations.
396 *----------------------------------------------------------------------------*/
397 float32 float32_round_to_int(float32, float_status *status);
398 float32 float32_add(float32, float32, float_status *status);
399 float32 float32_sub(float32, float32, float_status *status);
400 float32 float32_mul(float32, float32, float_status *status);
401 float32 float32_div(float32, float32, float_status *status);
402 float32 float32_rem(float32, float32, float_status *status);
403 float32 float32_muladd(float32, float32, float32, int, float_status *status);
404 float32 float32_sqrt(float32, float_status *status);
405 float32 float32_exp2(float32, float_status *status);
406 float32 float32_log2(float32, float_status *status);
407 int float32_eq(float32, float32, float_status *status);
408 int float32_le(float32, float32, float_status *status);
409 int float32_lt(float32, float32, float_status *status);
410 int float32_unordered(float32, float32, float_status *status);
411 int float32_eq_quiet(float32, float32, float_status *status);
412 int float32_le_quiet(float32, float32, float_status *status);
413 int float32_lt_quiet(float32, float32, float_status *status);
414 int float32_unordered_quiet(float32, float32, float_status *status);
415 int float32_compare(float32, float32, float_status *status);
416 int float32_compare_quiet(float32, float32, float_status *status);
417 float32 float32_min(float32, float32, float_status *status);
418 float32 float32_max(float32, float32, float_status *status);
419 float32 float32_minnum(float32, float32, float_status *status);
420 float32 float32_maxnum(float32, float32, float_status *status);
421 float32 float32_minnummag(float32, float32, float_status *status);
422 float32 float32_maxnummag(float32, float32, float_status *status);
423 int float32_is_quiet_nan( float32 );
424 int float32_is_signaling_nan( float32 );
425 float32 float32_maybe_silence_nan( float32 );
426 float32 float32_scalbn(float32, int, float_status *status);
427
428 static inline float32 float32_abs(float32 a)
429 {
430     /* Note that abs does *not* handle NaN specially, nor does
431      * it flush denormal inputs to zero.
432      */
433     return make_float32(float32_val(a) & 0x7fffffff);
434 }
435
436 static inline float32 float32_chs(float32 a)
437 {
438     /* Note that chs does *not* handle NaN specially, nor does
439      * it flush denormal inputs to zero.
440      */
441     return make_float32(float32_val(a) ^ 0x80000000);
442 }
443
444 static inline int float32_is_infinity(float32 a)
445 {
446     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
447 }
448
449 static inline int float32_is_neg(float32 a)
450 {
451     return float32_val(a) >> 31;
452 }
453
454 static inline int float32_is_zero(float32 a)
455 {
456     return (float32_val(a) & 0x7fffffff) == 0;
457 }
458
459 static inline int float32_is_any_nan(float32 a)
460 {
461     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
462 }
463
464 static inline int float32_is_zero_or_denormal(float32 a)
465 {
466     return (float32_val(a) & 0x7f800000) == 0;
467 }
468
469 static inline float32 float32_set_sign(float32 a, int sign)
470 {
471     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
472 }
473
474 #define float32_zero make_float32(0)
475 #define float32_one make_float32(0x3f800000)
476 #define float32_ln2 make_float32(0x3f317218)
477 #define float32_pi make_float32(0x40490fdb)
478 #define float32_half make_float32(0x3f000000)
479 #define float32_infinity make_float32(0x7f800000)
480
481
482 /*----------------------------------------------------------------------------
483 | The pattern for a default generated single-precision NaN.
484 *----------------------------------------------------------------------------*/
485 extern const float32 float32_default_nan;
486
487 /*----------------------------------------------------------------------------
488 | Software IEC/IEEE double-precision conversion routines.
489 *----------------------------------------------------------------------------*/
490 int_fast16_t float64_to_int16(float64, float_status *status);
491 uint_fast16_t float64_to_uint16(float64, float_status *status);
492 int_fast16_t float64_to_int16_round_to_zero(float64, float_status *status);
493 uint_fast16_t float64_to_uint16_round_to_zero(float64, float_status *status);
494 int32 float64_to_int32(float64, float_status *status);
495 int32 float64_to_int32_round_to_zero(float64, float_status *status);
496 uint32 float64_to_uint32(float64, float_status *status);
497 uint32 float64_to_uint32_round_to_zero(float64, float_status *status);
498 int64 float64_to_int64(float64, float_status *status);
499 int64 float64_to_int64_round_to_zero(float64, float_status *status);
500 uint64 float64_to_uint64(float64 a, float_status *status);
501 uint64 float64_to_uint64_round_to_zero(float64 a, float_status *status);
502 float32 float64_to_float32(float64, float_status *status);
503 floatx80 float64_to_floatx80(float64, float_status *status);
504 float128 float64_to_float128(float64, float_status *status);
505
506 /*----------------------------------------------------------------------------
507 | Software IEC/IEEE double-precision operations.
508 *----------------------------------------------------------------------------*/
509 float64 float64_round_to_int(float64, float_status *status);
510 float64 float64_trunc_to_int(float64, float_status *status);
511 float64 float64_add(float64, float64, float_status *status);
512 float64 float64_sub(float64, float64, float_status *status);
513 float64 float64_mul(float64, float64, float_status *status);
514 float64 float64_div(float64, float64, float_status *status);
515 float64 float64_rem(float64, float64, float_status *status);
516 float64 float64_muladd(float64, float64, float64, int, float_status *status);
517 float64 float64_sqrt(float64, float_status *status);
518 float64 float64_log2(float64, float_status *status);
519 int float64_eq(float64, float64, float_status *status);
520 int float64_le(float64, float64, float_status *status);
521 int float64_lt(float64, float64, float_status *status);
522 int float64_unordered(float64, float64, float_status *status);
523 int float64_eq_quiet(float64, float64, float_status *status);
524 int float64_le_quiet(float64, float64, float_status *status);
525 int float64_lt_quiet(float64, float64, float_status *status);
526 int float64_unordered_quiet(float64, float64, float_status *status);
527 int float64_compare(float64, float64, float_status *status);
528 int float64_compare_quiet(float64, float64, float_status *status);
529 float64 float64_min(float64, float64, float_status *status);
530 float64 float64_max(float64, float64, float_status *status);
531 float64 float64_minnum(float64, float64, float_status *status);
532 float64 float64_maxnum(float64, float64, float_status *status);
533 float64 float64_minnummag(float64, float64, float_status *status);
534 float64 float64_maxnummag(float64, float64, float_status *status);
535 int float64_is_quiet_nan( float64 a );
536 int float64_is_signaling_nan( float64 );
537 float64 float64_maybe_silence_nan( float64 );
538 float64 float64_scalbn(float64, int, float_status *status);
539
540 static inline float64 float64_abs(float64 a)
541 {
542     /* Note that abs does *not* handle NaN specially, nor does
543      * it flush denormal inputs to zero.
544      */
545     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
546 }
547
548 static inline float64 float64_chs(float64 a)
549 {
550     /* Note that chs does *not* handle NaN specially, nor does
551      * it flush denormal inputs to zero.
552      */
553     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
554 }
555
556 static inline int float64_is_infinity(float64 a)
557 {
558     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
559 }
560
561 static inline int float64_is_neg(float64 a)
562 {
563     return float64_val(a) >> 63;
564 }
565
566 static inline int float64_is_zero(float64 a)
567 {
568     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
569 }
570
571 static inline int float64_is_any_nan(float64 a)
572 {
573     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
574 }
575
576 static inline int float64_is_zero_or_denormal(float64 a)
577 {
578     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
579 }
580
581 static inline float64 float64_set_sign(float64 a, int sign)
582 {
583     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
584                         | ((int64_t)sign << 63));
585 }
586
587 #define float64_zero make_float64(0)
588 #define float64_one make_float64(0x3ff0000000000000LL)
589 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
590 #define float64_pi make_float64(0x400921fb54442d18LL)
591 #define float64_half make_float64(0x3fe0000000000000LL)
592 #define float64_infinity make_float64(0x7ff0000000000000LL)
593
594 /*----------------------------------------------------------------------------
595 | The pattern for a default generated double-precision NaN.
596 *----------------------------------------------------------------------------*/
597 extern const float64 float64_default_nan;
598
599 /*----------------------------------------------------------------------------
600 | Software IEC/IEEE extended double-precision conversion routines.
601 *----------------------------------------------------------------------------*/
602 int32 floatx80_to_int32(floatx80, float_status *status);
603 int32 floatx80_to_int32_round_to_zero(floatx80, float_status *status);
604 int64 floatx80_to_int64(floatx80, float_status *status);
605 int64 floatx80_to_int64_round_to_zero(floatx80, float_status *status);
606 float32 floatx80_to_float32(floatx80, float_status *status);
607 float64 floatx80_to_float64(floatx80, float_status *status);
608 float128 floatx80_to_float128(floatx80, float_status *status);
609
610 /*----------------------------------------------------------------------------
611 | Software IEC/IEEE extended double-precision operations.
612 *----------------------------------------------------------------------------*/
613 floatx80 floatx80_round_to_int(floatx80, float_status *status);
614 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
615 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
616 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
617 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
618 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
619 floatx80 floatx80_sqrt(floatx80, float_status *status);
620 int floatx80_eq(floatx80, floatx80, float_status *status);
621 int floatx80_le(floatx80, floatx80, float_status *status);
622 int floatx80_lt(floatx80, floatx80, float_status *status);
623 int floatx80_unordered(floatx80, floatx80, float_status *status);
624 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
625 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
626 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
627 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
628 int floatx80_compare(floatx80, floatx80, float_status *status);
629 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
630 int floatx80_is_quiet_nan( floatx80 );
631 int floatx80_is_signaling_nan( floatx80 );
632 floatx80 floatx80_maybe_silence_nan( floatx80 );
633 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
634
635 static inline floatx80 floatx80_abs(floatx80 a)
636 {
637     a.high &= 0x7fff;
638     return a;
639 }
640
641 static inline floatx80 floatx80_chs(floatx80 a)
642 {
643     a.high ^= 0x8000;
644     return a;
645 }
646
647 static inline int floatx80_is_infinity(floatx80 a)
648 {
649     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
650 }
651
652 static inline int floatx80_is_neg(floatx80 a)
653 {
654     return a.high >> 15;
655 }
656
657 static inline int floatx80_is_zero(floatx80 a)
658 {
659     return (a.high & 0x7fff) == 0 && a.low == 0;
660 }
661
662 static inline int floatx80_is_zero_or_denormal(floatx80 a)
663 {
664     return (a.high & 0x7fff) == 0;
665 }
666
667 static inline int floatx80_is_any_nan(floatx80 a)
668 {
669     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
670 }
671
672 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
673 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
674 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
675 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
676 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
677 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
678
679 /*----------------------------------------------------------------------------
680 | The pattern for a default generated extended double-precision NaN.
681 *----------------------------------------------------------------------------*/
682 extern const floatx80 floatx80_default_nan;
683
684 /*----------------------------------------------------------------------------
685 | Software IEC/IEEE quadruple-precision conversion routines.
686 *----------------------------------------------------------------------------*/
687 int32 float128_to_int32(float128, float_status *status);
688 int32 float128_to_int32_round_to_zero(float128, float_status *status);
689 int64 float128_to_int64(float128, float_status *status);
690 int64 float128_to_int64_round_to_zero(float128, float_status *status);
691 float32 float128_to_float32(float128, float_status *status);
692 float64 float128_to_float64(float128, float_status *status);
693 floatx80 float128_to_floatx80(float128, float_status *status);
694
695 /*----------------------------------------------------------------------------
696 | Software IEC/IEEE quadruple-precision operations.
697 *----------------------------------------------------------------------------*/
698 float128 float128_round_to_int(float128, float_status *status);
699 float128 float128_add(float128, float128, float_status *status);
700 float128 float128_sub(float128, float128, float_status *status);
701 float128 float128_mul(float128, float128, float_status *status);
702 float128 float128_div(float128, float128, float_status *status);
703 float128 float128_rem(float128, float128, float_status *status);
704 float128 float128_sqrt(float128, float_status *status);
705 int float128_eq(float128, float128, float_status *status);
706 int float128_le(float128, float128, float_status *status);
707 int float128_lt(float128, float128, float_status *status);
708 int float128_unordered(float128, float128, float_status *status);
709 int float128_eq_quiet(float128, float128, float_status *status);
710 int float128_le_quiet(float128, float128, float_status *status);
711 int float128_lt_quiet(float128, float128, float_status *status);
712 int float128_unordered_quiet(float128, float128, float_status *status);
713 int float128_compare(float128, float128, float_status *status);
714 int float128_compare_quiet(float128, float128, float_status *status);
715 int float128_is_quiet_nan( float128 );
716 int float128_is_signaling_nan( float128 );
717 float128 float128_maybe_silence_nan( float128 );
718 float128 float128_scalbn(float128, int, float_status *status);
719
720 static inline float128 float128_abs(float128 a)
721 {
722     a.high &= 0x7fffffffffffffffLL;
723     return a;
724 }
725
726 static inline float128 float128_chs(float128 a)
727 {
728     a.high ^= 0x8000000000000000LL;
729     return a;
730 }
731
732 static inline int float128_is_infinity(float128 a)
733 {
734     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
735 }
736
737 static inline int float128_is_neg(float128 a)
738 {
739     return a.high >> 63;
740 }
741
742 static inline int float128_is_zero(float128 a)
743 {
744     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
745 }
746
747 static inline int float128_is_zero_or_denormal(float128 a)
748 {
749     return (a.high & 0x7fff000000000000LL) == 0;
750 }
751
752 static inline int float128_is_any_nan(float128 a)
753 {
754     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
755         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
756 }
757
758 #define float128_zero make_float128(0, 0)
759
760 /*----------------------------------------------------------------------------
761 | The pattern for a default generated quadruple-precision NaN.
762 *----------------------------------------------------------------------------*/
763 extern const float128 float128_default_nan;
764
765 #endif /* !SOFTFLOAT_H */
This page took 0.064726 seconds and 4 git commands to generate.