4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* This check must be after config-host.h is included */
33 #include <sys/eventfd.h>
36 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
37 #define PAGE_SIZE TARGET_PAGE_SIZE
42 #define DPRINTF(fmt, ...) \
43 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #define DPRINTF(fmt, ...) \
49 typedef struct KVMSlot
51 target_phys_addr_t start_addr;
52 ram_addr_t memory_size;
53 ram_addr_t phys_offset;
58 typedef struct kvm_dirty_log KVMDirtyLog;
66 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
67 int broken_set_mem_region;
70 int robust_singlestep;
72 #ifdef KVM_CAP_SET_GUEST_DEBUG
73 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
75 int irqchip_in_kernel;
81 static KVMState *kvm_state;
83 static const KVMCapabilityInfo kvm_required_capabilites[] = {
84 KVM_CAP_INFO(USER_MEMORY),
85 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
89 static KVMSlot *kvm_alloc_slot(KVMState *s)
93 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
94 if (s->slots[i].memory_size == 0) {
99 fprintf(stderr, "%s: no free slot available\n", __func__);
103 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
104 target_phys_addr_t start_addr,
105 target_phys_addr_t end_addr)
109 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
110 KVMSlot *mem = &s->slots[i];
112 if (start_addr == mem->start_addr &&
113 end_addr == mem->start_addr + mem->memory_size) {
122 * Find overlapping slot with lowest start address
124 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
125 target_phys_addr_t start_addr,
126 target_phys_addr_t end_addr)
128 KVMSlot *found = NULL;
131 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
132 KVMSlot *mem = &s->slots[i];
134 if (mem->memory_size == 0 ||
135 (found && found->start_addr < mem->start_addr)) {
139 if (end_addr > mem->start_addr &&
140 start_addr < mem->start_addr + mem->memory_size) {
148 int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
149 target_phys_addr_t *phys_addr)
153 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
154 KVMSlot *mem = &s->slots[i];
156 if (ram_addr >= mem->phys_offset &&
157 ram_addr < mem->phys_offset + mem->memory_size) {
158 *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
166 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
168 struct kvm_userspace_memory_region mem;
170 mem.slot = slot->slot;
171 mem.guest_phys_addr = slot->start_addr;
172 mem.memory_size = slot->memory_size;
173 mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
174 mem.flags = slot->flags;
175 if (s->migration_log) {
176 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
178 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
181 static void kvm_reset_vcpu(void *opaque)
183 CPUState *env = opaque;
185 kvm_arch_reset_vcpu(env);
188 int kvm_irqchip_in_kernel(void)
190 return kvm_state->irqchip_in_kernel;
193 int kvm_pit_in_kernel(void)
195 return kvm_state->pit_in_kernel;
198 int kvm_init_vcpu(CPUState *env)
200 KVMState *s = kvm_state;
204 DPRINTF("kvm_init_vcpu\n");
206 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
208 DPRINTF("kvm_create_vcpu failed\n");
215 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
218 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
222 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
224 if (env->kvm_run == MAP_FAILED) {
226 DPRINTF("mmap'ing vcpu state failed\n");
230 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
231 s->coalesced_mmio_ring =
232 (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
235 ret = kvm_arch_init_vcpu(env);
237 qemu_register_reset(kvm_reset_vcpu, env);
238 kvm_arch_reset_vcpu(env);
245 * dirty pages logging control
247 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
248 ram_addr_t size, int flags, int mask)
250 KVMState *s = kvm_state;
251 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
255 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
256 TARGET_FMT_plx "\n", __func__, phys_addr,
257 (target_phys_addr_t)(phys_addr + size - 1));
261 old_flags = mem->flags;
263 flags = (mem->flags & ~mask) | flags;
266 /* If nothing changed effectively, no need to issue ioctl */
267 if (s->migration_log) {
268 flags |= KVM_MEM_LOG_DIRTY_PAGES;
270 if (flags == old_flags) {
274 return kvm_set_user_memory_region(s, mem);
277 static int kvm_log_start(CPUPhysMemoryClient *client,
278 target_phys_addr_t phys_addr, ram_addr_t size)
280 return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
281 KVM_MEM_LOG_DIRTY_PAGES);
284 static int kvm_log_stop(CPUPhysMemoryClient *client,
285 target_phys_addr_t phys_addr, ram_addr_t size)
287 return kvm_dirty_pages_log_change(phys_addr, size, 0,
288 KVM_MEM_LOG_DIRTY_PAGES);
291 static int kvm_set_migration_log(int enable)
293 KVMState *s = kvm_state;
297 s->migration_log = enable;
299 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
302 if (!mem->memory_size) {
305 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
308 err = kvm_set_user_memory_region(s, mem);
316 /* get kvm's dirty pages bitmap and update qemu's */
317 static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
318 unsigned long *bitmap,
319 unsigned long offset,
320 unsigned long mem_size)
323 unsigned long page_number, addr, addr1, c;
325 unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
329 * bitmap-traveling is faster than memory-traveling (for addr...)
330 * especially when most of the memory is not dirty.
332 for (i = 0; i < len; i++) {
333 if (bitmap[i] != 0) {
334 c = leul_to_cpu(bitmap[i]);
338 page_number = i * HOST_LONG_BITS + j;
339 addr1 = page_number * TARGET_PAGE_SIZE;
340 addr = offset + addr1;
341 ram_addr = cpu_get_physical_page_desc(addr);
342 cpu_physical_memory_set_dirty(ram_addr);
349 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
352 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
353 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
354 * This means all bits are set to dirty.
356 * @start_add: start of logged region.
357 * @end_addr: end of logged region.
359 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
360 target_phys_addr_t end_addr)
362 KVMState *s = kvm_state;
363 unsigned long size, allocated_size = 0;
368 d.dirty_bitmap = NULL;
369 while (start_addr < end_addr) {
370 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
375 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
376 if (!d.dirty_bitmap) {
377 d.dirty_bitmap = qemu_malloc(size);
378 } else if (size > allocated_size) {
379 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
381 allocated_size = size;
382 memset(d.dirty_bitmap, 0, allocated_size);
386 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
387 DPRINTF("ioctl failed %d\n", errno);
392 kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
393 mem->start_addr, mem->memory_size);
394 start_addr = mem->start_addr + mem->memory_size;
396 qemu_free(d.dirty_bitmap);
401 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
404 KVMState *s = kvm_state;
406 if (s->coalesced_mmio) {
407 struct kvm_coalesced_mmio_zone zone;
412 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
418 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
421 KVMState *s = kvm_state;
423 if (s->coalesced_mmio) {
424 struct kvm_coalesced_mmio_zone zone;
429 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
435 int kvm_check_extension(KVMState *s, unsigned int extension)
439 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
447 static int kvm_check_many_ioeventfds(void)
449 /* Userspace can use ioeventfd for io notification. This requires a host
450 * that supports eventfd(2) and an I/O thread; since eventfd does not
451 * support SIGIO it cannot interrupt the vcpu.
453 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
454 * can avoid creating too many ioeventfds.
456 #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
459 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
460 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
461 if (ioeventfds[i] < 0) {
464 ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
466 close(ioeventfds[i]);
471 /* Decide whether many devices are supported or not */
472 ret = i == ARRAY_SIZE(ioeventfds);
475 kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
476 close(ioeventfds[i]);
484 static const KVMCapabilityInfo *
485 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
488 if (!kvm_check_extension(s, list->value)) {
496 static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
497 ram_addr_t phys_offset)
499 KVMState *s = kvm_state;
500 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
504 /* kvm works in page size chunks, but the function may be called
505 with sub-page size and unaligned start address. */
506 size = TARGET_PAGE_ALIGN(size);
507 start_addr = TARGET_PAGE_ALIGN(start_addr);
509 /* KVM does not support read-only slots */
510 phys_offset &= ~IO_MEM_ROM;
513 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
518 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
519 (start_addr + size <= mem->start_addr + mem->memory_size) &&
520 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
521 /* The new slot fits into the existing one and comes with
522 * identical parameters - nothing to be done. */
528 /* unregister the overlapping slot */
529 mem->memory_size = 0;
530 err = kvm_set_user_memory_region(s, mem);
532 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
533 __func__, strerror(-err));
537 /* Workaround for older KVM versions: we can't join slots, even not by
538 * unregistering the previous ones and then registering the larger
539 * slot. We have to maintain the existing fragmentation. Sigh.
541 * This workaround assumes that the new slot starts at the same
542 * address as the first existing one. If not or if some overlapping
543 * slot comes around later, we will fail (not seen in practice so far)
544 * - and actually require a recent KVM version. */
545 if (s->broken_set_mem_region &&
546 old.start_addr == start_addr && old.memory_size < size &&
547 flags < IO_MEM_UNASSIGNED) {
548 mem = kvm_alloc_slot(s);
549 mem->memory_size = old.memory_size;
550 mem->start_addr = old.start_addr;
551 mem->phys_offset = old.phys_offset;
554 err = kvm_set_user_memory_region(s, mem);
556 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
561 start_addr += old.memory_size;
562 phys_offset += old.memory_size;
563 size -= old.memory_size;
567 /* register prefix slot */
568 if (old.start_addr < start_addr) {
569 mem = kvm_alloc_slot(s);
570 mem->memory_size = start_addr - old.start_addr;
571 mem->start_addr = old.start_addr;
572 mem->phys_offset = old.phys_offset;
575 err = kvm_set_user_memory_region(s, mem);
577 fprintf(stderr, "%s: error registering prefix slot: %s\n",
578 __func__, strerror(-err));
583 /* register suffix slot */
584 if (old.start_addr + old.memory_size > start_addr + size) {
585 ram_addr_t size_delta;
587 mem = kvm_alloc_slot(s);
588 mem->start_addr = start_addr + size;
589 size_delta = mem->start_addr - old.start_addr;
590 mem->memory_size = old.memory_size - size_delta;
591 mem->phys_offset = old.phys_offset + size_delta;
594 err = kvm_set_user_memory_region(s, mem);
596 fprintf(stderr, "%s: error registering suffix slot: %s\n",
597 __func__, strerror(-err));
603 /* in case the KVM bug workaround already "consumed" the new slot */
607 /* KVM does not need to know about this memory */
608 if (flags >= IO_MEM_UNASSIGNED) {
611 mem = kvm_alloc_slot(s);
612 mem->memory_size = size;
613 mem->start_addr = start_addr;
614 mem->phys_offset = phys_offset;
617 err = kvm_set_user_memory_region(s, mem);
619 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
625 static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
626 target_phys_addr_t start_addr,
627 ram_addr_t size, ram_addr_t phys_offset)
629 kvm_set_phys_mem(start_addr, size, phys_offset);
632 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
633 target_phys_addr_t start_addr,
634 target_phys_addr_t end_addr)
636 return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
639 static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
642 return kvm_set_migration_log(enable);
645 static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
646 .set_memory = kvm_client_set_memory,
647 .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
648 .migration_log = kvm_client_migration_log,
649 .log_start = kvm_log_start,
650 .log_stop = kvm_log_stop,
655 static const char upgrade_note[] =
656 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
657 "(see http://sourceforge.net/projects/kvm).\n";
659 const KVMCapabilityInfo *missing_cap;
663 s = qemu_mallocz(sizeof(KVMState));
665 #ifdef KVM_CAP_SET_GUEST_DEBUG
666 QTAILQ_INIT(&s->kvm_sw_breakpoints);
668 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
669 s->slots[i].slot = i;
672 s->fd = qemu_open("/dev/kvm", O_RDWR);
674 fprintf(stderr, "Could not access KVM kernel module: %m\n");
679 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
680 if (ret < KVM_API_VERSION) {
684 fprintf(stderr, "kvm version too old\n");
688 if (ret > KVM_API_VERSION) {
690 fprintf(stderr, "kvm version not supported\n");
694 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
697 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
698 "your host kernel command line\n");
703 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
706 kvm_check_extension_list(s, kvm_arch_required_capabilities);
710 fprintf(stderr, "kvm does not support %s\n%s",
711 missing_cap->name, upgrade_note);
715 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
717 s->broken_set_mem_region = 1;
718 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
719 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
721 s->broken_set_mem_region = 0;
726 #ifdef KVM_CAP_VCPU_EVENTS
727 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
730 s->robust_singlestep = 0;
731 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
732 s->robust_singlestep =
733 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
737 #ifdef KVM_CAP_DEBUGREGS
738 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
743 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
748 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
751 ret = kvm_arch_init(s);
757 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
759 s->many_ioeventfds = kvm_check_many_ioeventfds();
777 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
783 for (i = 0; i < count; i++) {
784 if (direction == KVM_EXIT_IO_IN) {
787 stb_p(ptr, cpu_inb(port));
790 stw_p(ptr, cpu_inw(port));
793 stl_p(ptr, cpu_inl(port));
799 cpu_outb(port, ldub_p(ptr));
802 cpu_outw(port, lduw_p(ptr));
805 cpu_outl(port, ldl_p(ptr));
814 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
815 static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
817 fprintf(stderr, "KVM internal error.");
818 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
821 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
822 for (i = 0; i < run->internal.ndata; ++i) {
823 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
824 i, (uint64_t)run->internal.data[i]);
827 fprintf(stderr, "\n");
829 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
830 fprintf(stderr, "emulation failure\n");
831 if (!kvm_arch_stop_on_emulation_error(env)) {
832 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
836 /* FIXME: Should trigger a qmp message to let management know
837 * something went wrong.
843 void kvm_flush_coalesced_mmio_buffer(void)
845 KVMState *s = kvm_state;
846 if (s->coalesced_mmio_ring) {
847 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
848 while (ring->first != ring->last) {
849 struct kvm_coalesced_mmio *ent;
851 ent = &ring->coalesced_mmio[ring->first];
853 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
855 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
860 static void do_kvm_cpu_synchronize_state(void *_env)
862 CPUState *env = _env;
864 if (!env->kvm_vcpu_dirty) {
865 kvm_arch_get_registers(env);
866 env->kvm_vcpu_dirty = 1;
870 void kvm_cpu_synchronize_state(CPUState *env)
872 if (!env->kvm_vcpu_dirty) {
873 run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
877 void kvm_cpu_synchronize_post_reset(CPUState *env)
879 kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
880 env->kvm_vcpu_dirty = 0;
883 void kvm_cpu_synchronize_post_init(CPUState *env)
885 kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
886 env->kvm_vcpu_dirty = 0;
889 int kvm_cpu_exec(CPUState *env)
891 struct kvm_run *run = env->kvm_run;
894 DPRINTF("kvm_cpu_exec()\n");
896 if (kvm_arch_process_irqchip_events(env)) {
897 env->exit_request = 0;
901 cpu_single_env = env;
904 if (env->kvm_vcpu_dirty) {
905 kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
906 env->kvm_vcpu_dirty = 0;
909 kvm_arch_pre_run(env, run);
910 if (env->exit_request) {
911 DPRINTF("interrupt exit requested\n");
913 * KVM requires us to reenter the kernel after IO exits to complete
914 * instruction emulation. This self-signal will ensure that we
917 qemu_cpu_kick_self();
919 cpu_single_env = NULL;
920 qemu_mutex_unlock_iothread();
922 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
924 qemu_mutex_lock_iothread();
925 cpu_single_env = env;
926 kvm_arch_post_run(env, run);
928 kvm_flush_coalesced_mmio_buffer();
930 if (ret == -EINTR || ret == -EAGAIN) {
931 DPRINTF("io window exit\n");
937 DPRINTF("kvm run failed %s\n", strerror(-ret));
941 ret = 0; /* exit loop */
942 switch (run->exit_reason) {
944 DPRINTF("handle_io\n");
945 kvm_handle_io(run->io.port,
946 (uint8_t *)run + run->io.data_offset,
953 DPRINTF("handle_mmio\n");
954 cpu_physical_memory_rw(run->mmio.phys_addr,
960 case KVM_EXIT_IRQ_WINDOW_OPEN:
961 DPRINTF("irq_window_open\n");
963 case KVM_EXIT_SHUTDOWN:
964 DPRINTF("shutdown\n");
965 qemu_system_reset_request();
967 case KVM_EXIT_UNKNOWN:
968 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
969 (uint64_t)run->hw.hardware_exit_reason);
972 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
973 case KVM_EXIT_INTERNAL_ERROR:
974 ret = kvm_handle_internal_error(env, run);
978 DPRINTF("kvm_exit_debug\n");
979 #ifdef KVM_CAP_SET_GUEST_DEBUG
980 if (kvm_arch_debug(&run->debug.arch)) {
984 /* re-enter, this exception was guest-internal */
986 #endif /* KVM_CAP_SET_GUEST_DEBUG */
989 DPRINTF("kvm_arch_handle_exit\n");
990 ret = kvm_arch_handle_exit(env, run);
996 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
997 vm_stop(VMSTOP_PANIC);
999 ret = EXCP_INTERRUPT;
1002 env->exit_request = 0;
1003 cpu_single_env = NULL;
1007 int kvm_ioctl(KVMState *s, int type, ...)
1014 arg = va_arg(ap, void *);
1017 ret = ioctl(s->fd, type, arg);
1024 int kvm_vm_ioctl(KVMState *s, int type, ...)
1031 arg = va_arg(ap, void *);
1034 ret = ioctl(s->vmfd, type, arg);
1041 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
1048 arg = va_arg(ap, void *);
1051 ret = ioctl(env->kvm_fd, type, arg);
1058 int kvm_has_sync_mmu(void)
1060 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1063 int kvm_has_vcpu_events(void)
1065 return kvm_state->vcpu_events;
1068 int kvm_has_robust_singlestep(void)
1070 return kvm_state->robust_singlestep;
1073 int kvm_has_debugregs(void)
1075 return kvm_state->debugregs;
1078 int kvm_has_xsave(void)
1080 return kvm_state->xsave;
1083 int kvm_has_xcrs(void)
1085 return kvm_state->xcrs;
1088 int kvm_has_many_ioeventfds(void)
1090 if (!kvm_enabled()) {
1093 return kvm_state->many_ioeventfds;
1096 void kvm_setup_guest_memory(void *start, size_t size)
1098 if (!kvm_has_sync_mmu()) {
1099 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1102 perror("qemu_madvise");
1104 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1110 #ifdef KVM_CAP_SET_GUEST_DEBUG
1111 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
1114 struct kvm_sw_breakpoint *bp;
1116 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
1124 int kvm_sw_breakpoints_active(CPUState *env)
1126 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
1129 struct kvm_set_guest_debug_data {
1130 struct kvm_guest_debug dbg;
1135 static void kvm_invoke_set_guest_debug(void *data)
1137 struct kvm_set_guest_debug_data *dbg_data = data;
1138 CPUState *env = dbg_data->env;
1140 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
1143 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1145 struct kvm_set_guest_debug_data data;
1147 data.dbg.control = reinject_trap;
1149 if (env->singlestep_enabled) {
1150 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1152 kvm_arch_update_guest_debug(env, &data.dbg);
1155 run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
1159 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1160 target_ulong len, int type)
1162 struct kvm_sw_breakpoint *bp;
1166 if (type == GDB_BREAKPOINT_SW) {
1167 bp = kvm_find_sw_breakpoint(current_env, addr);
1173 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1180 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1186 QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
1189 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1195 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1196 err = kvm_update_guest_debug(env, 0);
1204 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1205 target_ulong len, int type)
1207 struct kvm_sw_breakpoint *bp;
1211 if (type == GDB_BREAKPOINT_SW) {
1212 bp = kvm_find_sw_breakpoint(current_env, addr);
1217 if (bp->use_count > 1) {
1222 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1227 QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1230 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1236 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1237 err = kvm_update_guest_debug(env, 0);
1245 void kvm_remove_all_breakpoints(CPUState *current_env)
1247 struct kvm_sw_breakpoint *bp, *next;
1248 KVMState *s = current_env->kvm_state;
1251 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1252 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1253 /* Try harder to find a CPU that currently sees the breakpoint. */
1254 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1255 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
1261 kvm_arch_remove_all_hw_breakpoints();
1263 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1264 kvm_update_guest_debug(env, 0);
1268 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1270 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1275 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1276 target_ulong len, int type)
1281 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1282 target_ulong len, int type)
1287 void kvm_remove_all_breakpoints(CPUState *current_env)
1290 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1292 int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1294 struct kvm_signal_mask *sigmask;
1298 return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1301 sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1304 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1305 r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1311 int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
1313 #ifdef KVM_IOEVENTFD
1315 struct kvm_ioeventfd iofd;
1317 iofd.datamatch = val;
1320 iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
1323 if (!kvm_enabled()) {
1328 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1331 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1343 int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1345 #ifdef KVM_IOEVENTFD
1346 struct kvm_ioeventfd kick = {
1350 .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1354 if (!kvm_enabled()) {
1358 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1360 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1370 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1372 return kvm_arch_on_sigbus_vcpu(env, code, addr);
1375 int kvm_on_sigbus(int code, void *addr)
1377 return kvm_arch_on_sigbus(code, addr);