2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 ram_addr_t region_offset;
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size;
167 unsigned long qemu_host_page_bits;
168 unsigned long qemu_host_page_size;
169 unsigned long qemu_host_page_mask;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc *l1_map[L1_SIZE];
173 static PhysPageDesc **l1_phys_map;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
181 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
182 static char io_mem_used[IO_MEM_NB_ENTRIES];
183 static int io_mem_watch;
187 static const char *logfilename = "/tmp/qemu.log";
190 static int log_append = 0;
193 static int tlb_flush_count;
194 static int tb_flush_count;
195 static int tb_phys_invalidate_count;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t {
199 target_phys_addr_t base;
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
207 static void map_exec(void *addr, long size)
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
215 static void map_exec(void *addr, long size)
217 unsigned long start, end, page_size;
219 page_size = getpagesize();
220 start = (unsigned long)addr;
221 start &= ~(page_size - 1);
223 end = (unsigned long)addr + size;
224 end += page_size - 1;
225 end &= ~(page_size - 1);
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
238 SYSTEM_INFO system_info;
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
244 qemu_real_host_page_size = getpagesize();
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr, endaddr;
264 last_brk = (unsigned long)sbrk(0);
265 f = fopen("/proc/self/maps", "r");
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
274 page_set_flags(startaddr & TARGET_PAGE_MASK,
275 TARGET_PAGE_ALIGN(endaddr),
286 static inline PageDesc **page_l1_map(target_ulong index)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
294 return &l1_map[index >> L2_BITS];
297 static inline PageDesc *page_find_alloc(target_ulong index)
300 lp = page_l1_map(index);
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
314 unsigned long addr = h2g(p);
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
324 return p + (index & (L2_SIZE - 1));
327 static inline PageDesc *page_find(target_ulong index)
330 lp = page_l1_map(index);
337 return p + (index & (L2_SIZE - 1));
340 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
345 p = (void **)l1_phys_map;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
354 /* allocate if not found */
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
366 /* allocate if not found */
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
371 for (i = 0; i < L2_SIZE; i++) {
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
376 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
379 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
381 return phys_page_find_alloc(index, 0);
384 #if !defined(CONFIG_USER_ONLY)
385 static void tlb_protect_code(ram_addr_t ram_addr);
386 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
388 #define mmap_lock() do { } while(0)
389 #define mmap_unlock() do { } while(0)
392 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
394 #if defined(CONFIG_USER_ONLY)
395 /* Currently it is not recommanded to allocate big chunks of data in
396 user mode. It will change when a dedicated libc will be used */
397 #define USE_STATIC_CODE_GEN_BUFFER
400 #ifdef USE_STATIC_CODE_GEN_BUFFER
401 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
404 static void code_gen_alloc(unsigned long tb_size)
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 code_gen_buffer = static_code_gen_buffer;
408 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
409 map_exec(code_gen_buffer, code_gen_buffer_size);
411 code_gen_buffer_size = tb_size;
412 if (code_gen_buffer_size == 0) {
413 #if defined(CONFIG_USER_ONLY)
414 /* in user mode, phys_ram_size is not meaningful */
415 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
417 /* XXX: needs ajustments */
418 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
421 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
422 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
423 /* The code gen buffer location may have constraints depending on
424 the host cpu and OS */
425 #if defined(__linux__)
430 flags = MAP_PRIVATE | MAP_ANONYMOUS;
431 #if defined(__x86_64__)
433 /* Cannot map more than that */
434 if (code_gen_buffer_size > (800 * 1024 * 1024))
435 code_gen_buffer_size = (800 * 1024 * 1024);
436 #elif defined(__sparc_v9__)
437 // Map the buffer below 2G, so we can use direct calls and branches
439 start = (void *) 0x60000000UL;
440 if (code_gen_buffer_size > (512 * 1024 * 1024))
441 code_gen_buffer_size = (512 * 1024 * 1024);
442 #elif defined(__arm__)
443 /* Map the buffer below 32M, so we can use direct calls and branches */
445 start = (void *) 0x01000000UL;
446 if (code_gen_buffer_size > 16 * 1024 * 1024)
447 code_gen_buffer_size = 16 * 1024 * 1024;
449 code_gen_buffer = mmap(start, code_gen_buffer_size,
450 PROT_WRITE | PROT_READ | PROT_EXEC,
452 if (code_gen_buffer == MAP_FAILED) {
453 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
457 #elif defined(__FreeBSD__) || defined(__DragonFly__)
461 flags = MAP_PRIVATE | MAP_ANONYMOUS;
462 #if defined(__x86_64__)
463 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
464 * 0x40000000 is free */
466 addr = (void *)0x40000000;
467 /* Cannot map more than that */
468 if (code_gen_buffer_size > (800 * 1024 * 1024))
469 code_gen_buffer_size = (800 * 1024 * 1024);
471 code_gen_buffer = mmap(addr, code_gen_buffer_size,
472 PROT_WRITE | PROT_READ | PROT_EXEC,
474 if (code_gen_buffer == MAP_FAILED) {
475 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
480 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
481 map_exec(code_gen_buffer, code_gen_buffer_size);
483 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
484 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
485 code_gen_buffer_max_size = code_gen_buffer_size -
486 code_gen_max_block_size();
487 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
488 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
491 /* Must be called before using the QEMU cpus. 'tb_size' is the size
492 (in bytes) allocated to the translation buffer. Zero means default
494 void cpu_exec_init_all(unsigned long tb_size)
497 code_gen_alloc(tb_size);
498 code_gen_ptr = code_gen_buffer;
500 #if !defined(CONFIG_USER_ONLY)
505 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
507 #define CPU_COMMON_SAVE_VERSION 1
509 static void cpu_common_save(QEMUFile *f, void *opaque)
511 CPUState *env = opaque;
513 qemu_put_be32s(f, &env->halted);
514 qemu_put_be32s(f, &env->interrupt_request);
517 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
519 CPUState *env = opaque;
521 if (version_id != CPU_COMMON_SAVE_VERSION)
524 qemu_get_be32s(f, &env->halted);
525 qemu_get_be32s(f, &env->interrupt_request);
526 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
533 void cpu_exec_init(CPUState *env)
538 #if defined(CONFIG_USER_ONLY)
541 env->next_cpu = NULL;
544 while (*penv != NULL) {
545 penv = (CPUState **)&(*penv)->next_cpu;
548 env->cpu_index = cpu_index;
549 TAILQ_INIT(&env->breakpoints);
550 TAILQ_INIT(&env->watchpoints);
552 #if defined(CONFIG_USER_ONLY)
555 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
556 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
557 cpu_common_save, cpu_common_load, env);
558 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
559 cpu_save, cpu_load, env);
563 static inline void invalidate_page_bitmap(PageDesc *p)
565 if (p->code_bitmap) {
566 qemu_free(p->code_bitmap);
567 p->code_bitmap = NULL;
569 p->code_write_count = 0;
572 /* set to NULL all the 'first_tb' fields in all PageDescs */
573 static void page_flush_tb(void)
578 for(i = 0; i < L1_SIZE; i++) {
581 for(j = 0; j < L2_SIZE; j++) {
583 invalidate_page_bitmap(p);
590 /* flush all the translation blocks */
591 /* XXX: tb_flush is currently not thread safe */
592 void tb_flush(CPUState *env1)
595 #if defined(DEBUG_FLUSH)
596 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
597 (unsigned long)(code_gen_ptr - code_gen_buffer),
599 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
601 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
602 cpu_abort(env1, "Internal error: code buffer overflow\n");
606 for(env = first_cpu; env != NULL; env = env->next_cpu) {
607 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
610 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
613 code_gen_ptr = code_gen_buffer;
614 /* XXX: flush processor icache at this point if cache flush is
619 #ifdef DEBUG_TB_CHECK
621 static void tb_invalidate_check(target_ulong address)
623 TranslationBlock *tb;
625 address &= TARGET_PAGE_MASK;
626 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
627 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
628 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
629 address >= tb->pc + tb->size)) {
630 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
631 address, (long)tb->pc, tb->size);
637 /* verify that all the pages have correct rights for code */
638 static void tb_page_check(void)
640 TranslationBlock *tb;
641 int i, flags1, flags2;
643 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
644 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
645 flags1 = page_get_flags(tb->pc);
646 flags2 = page_get_flags(tb->pc + tb->size - 1);
647 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
648 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
649 (long)tb->pc, tb->size, flags1, flags2);
655 static void tb_jmp_check(TranslationBlock *tb)
657 TranslationBlock *tb1;
660 /* suppress any remaining jumps to this TB */
664 tb1 = (TranslationBlock *)((long)tb1 & ~3);
667 tb1 = tb1->jmp_next[n1];
669 /* check end of list */
671 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
677 /* invalidate one TB */
678 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
681 TranslationBlock *tb1;
685 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
688 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
692 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
694 TranslationBlock *tb1;
700 tb1 = (TranslationBlock *)((long)tb1 & ~3);
702 *ptb = tb1->page_next[n1];
705 ptb = &tb1->page_next[n1];
709 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
711 TranslationBlock *tb1, **ptb;
714 ptb = &tb->jmp_next[n];
717 /* find tb(n) in circular list */
721 tb1 = (TranslationBlock *)((long)tb1 & ~3);
722 if (n1 == n && tb1 == tb)
725 ptb = &tb1->jmp_first;
727 ptb = &tb1->jmp_next[n1];
730 /* now we can suppress tb(n) from the list */
731 *ptb = tb->jmp_next[n];
733 tb->jmp_next[n] = NULL;
737 /* reset the jump entry 'n' of a TB so that it is not chained to
739 static inline void tb_reset_jump(TranslationBlock *tb, int n)
741 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
744 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
749 target_phys_addr_t phys_pc;
750 TranslationBlock *tb1, *tb2;
752 /* remove the TB from the hash list */
753 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
754 h = tb_phys_hash_func(phys_pc);
755 tb_remove(&tb_phys_hash[h], tb,
756 offsetof(TranslationBlock, phys_hash_next));
758 /* remove the TB from the page list */
759 if (tb->page_addr[0] != page_addr) {
760 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
761 tb_page_remove(&p->first_tb, tb);
762 invalidate_page_bitmap(p);
764 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
765 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
766 tb_page_remove(&p->first_tb, tb);
767 invalidate_page_bitmap(p);
770 tb_invalidated_flag = 1;
772 /* remove the TB from the hash list */
773 h = tb_jmp_cache_hash_func(tb->pc);
774 for(env = first_cpu; env != NULL; env = env->next_cpu) {
775 if (env->tb_jmp_cache[h] == tb)
776 env->tb_jmp_cache[h] = NULL;
779 /* suppress this TB from the two jump lists */
780 tb_jmp_remove(tb, 0);
781 tb_jmp_remove(tb, 1);
783 /* suppress any remaining jumps to this TB */
789 tb1 = (TranslationBlock *)((long)tb1 & ~3);
790 tb2 = tb1->jmp_next[n1];
791 tb_reset_jump(tb1, n1);
792 tb1->jmp_next[n1] = NULL;
795 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
797 tb_phys_invalidate_count++;
800 static inline void set_bits(uint8_t *tab, int start, int len)
806 mask = 0xff << (start & 7);
807 if ((start & ~7) == (end & ~7)) {
809 mask &= ~(0xff << (end & 7));
814 start = (start + 8) & ~7;
816 while (start < end1) {
821 mask = ~(0xff << (end & 7));
827 static void build_page_bitmap(PageDesc *p)
829 int n, tb_start, tb_end;
830 TranslationBlock *tb;
832 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
837 tb = (TranslationBlock *)((long)tb & ~3);
838 /* NOTE: this is subtle as a TB may span two physical pages */
840 /* NOTE: tb_end may be after the end of the page, but
841 it is not a problem */
842 tb_start = tb->pc & ~TARGET_PAGE_MASK;
843 tb_end = tb_start + tb->size;
844 if (tb_end > TARGET_PAGE_SIZE)
845 tb_end = TARGET_PAGE_SIZE;
848 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
850 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
851 tb = tb->page_next[n];
855 TranslationBlock *tb_gen_code(CPUState *env,
856 target_ulong pc, target_ulong cs_base,
857 int flags, int cflags)
859 TranslationBlock *tb;
861 target_ulong phys_pc, phys_page2, virt_page2;
864 phys_pc = get_phys_addr_code(env, pc);
867 /* flush must be done */
869 /* cannot fail at this point */
871 /* Don't forget to invalidate previous TB info. */
872 tb_invalidated_flag = 1;
874 tc_ptr = code_gen_ptr;
876 tb->cs_base = cs_base;
879 cpu_gen_code(env, tb, &code_gen_size);
880 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
882 /* check next page if needed */
883 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
885 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
886 phys_page2 = get_phys_addr_code(env, virt_page2);
888 tb_link_phys(tb, phys_pc, phys_page2);
892 /* invalidate all TBs which intersect with the target physical page
893 starting in range [start;end[. NOTE: start and end must refer to
894 the same physical page. 'is_cpu_write_access' should be true if called
895 from a real cpu write access: the virtual CPU will exit the current
896 TB if code is modified inside this TB. */
897 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
898 int is_cpu_write_access)
900 TranslationBlock *tb, *tb_next, *saved_tb;
901 CPUState *env = cpu_single_env;
902 target_ulong tb_start, tb_end;
905 #ifdef TARGET_HAS_PRECISE_SMC
906 int current_tb_not_found = is_cpu_write_access;
907 TranslationBlock *current_tb = NULL;
908 int current_tb_modified = 0;
909 target_ulong current_pc = 0;
910 target_ulong current_cs_base = 0;
911 int current_flags = 0;
912 #endif /* TARGET_HAS_PRECISE_SMC */
914 p = page_find(start >> TARGET_PAGE_BITS);
917 if (!p->code_bitmap &&
918 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
919 is_cpu_write_access) {
920 /* build code bitmap */
921 build_page_bitmap(p);
924 /* we remove all the TBs in the range [start, end[ */
925 /* XXX: see if in some cases it could be faster to invalidate all the code */
929 tb = (TranslationBlock *)((long)tb & ~3);
930 tb_next = tb->page_next[n];
931 /* NOTE: this is subtle as a TB may span two physical pages */
933 /* NOTE: tb_end may be after the end of the page, but
934 it is not a problem */
935 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
936 tb_end = tb_start + tb->size;
938 tb_start = tb->page_addr[1];
939 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
941 if (!(tb_end <= start || tb_start >= end)) {
942 #ifdef TARGET_HAS_PRECISE_SMC
943 if (current_tb_not_found) {
944 current_tb_not_found = 0;
946 if (env->mem_io_pc) {
947 /* now we have a real cpu fault */
948 current_tb = tb_find_pc(env->mem_io_pc);
951 if (current_tb == tb &&
952 (current_tb->cflags & CF_COUNT_MASK) != 1) {
953 /* If we are modifying the current TB, we must stop
954 its execution. We could be more precise by checking
955 that the modification is after the current PC, but it
956 would require a specialized function to partially
957 restore the CPU state */
959 current_tb_modified = 1;
960 cpu_restore_state(current_tb, env,
961 env->mem_io_pc, NULL);
962 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
965 #endif /* TARGET_HAS_PRECISE_SMC */
966 /* we need to do that to handle the case where a signal
967 occurs while doing tb_phys_invalidate() */
970 saved_tb = env->current_tb;
971 env->current_tb = NULL;
973 tb_phys_invalidate(tb, -1);
975 env->current_tb = saved_tb;
976 if (env->interrupt_request && env->current_tb)
977 cpu_interrupt(env, env->interrupt_request);
982 #if !defined(CONFIG_USER_ONLY)
983 /* if no code remaining, no need to continue to use slow writes */
985 invalidate_page_bitmap(p);
986 if (is_cpu_write_access) {
987 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
991 #ifdef TARGET_HAS_PRECISE_SMC
992 if (current_tb_modified) {
993 /* we generate a block containing just the instruction
994 modifying the memory. It will ensure that it cannot modify
996 env->current_tb = NULL;
997 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
998 cpu_resume_from_signal(env, NULL);
1003 /* len must be <= 8 and start must be a multiple of len */
1004 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1010 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1011 cpu_single_env->mem_io_vaddr, len,
1012 cpu_single_env->eip,
1013 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1016 p = page_find(start >> TARGET_PAGE_BITS);
1019 if (p->code_bitmap) {
1020 offset = start & ~TARGET_PAGE_MASK;
1021 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1022 if (b & ((1 << len) - 1))
1026 tb_invalidate_phys_page_range(start, start + len, 1);
1030 #if !defined(CONFIG_SOFTMMU)
1031 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1032 unsigned long pc, void *puc)
1034 TranslationBlock *tb;
1037 #ifdef TARGET_HAS_PRECISE_SMC
1038 TranslationBlock *current_tb = NULL;
1039 CPUState *env = cpu_single_env;
1040 int current_tb_modified = 0;
1041 target_ulong current_pc = 0;
1042 target_ulong current_cs_base = 0;
1043 int current_flags = 0;
1046 addr &= TARGET_PAGE_MASK;
1047 p = page_find(addr >> TARGET_PAGE_BITS);
1051 #ifdef TARGET_HAS_PRECISE_SMC
1052 if (tb && pc != 0) {
1053 current_tb = tb_find_pc(pc);
1056 while (tb != NULL) {
1058 tb = (TranslationBlock *)((long)tb & ~3);
1059 #ifdef TARGET_HAS_PRECISE_SMC
1060 if (current_tb == tb &&
1061 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
1068 current_tb_modified = 1;
1069 cpu_restore_state(current_tb, env, pc, puc);
1070 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1073 #endif /* TARGET_HAS_PRECISE_SMC */
1074 tb_phys_invalidate(tb, addr);
1075 tb = tb->page_next[n];
1078 #ifdef TARGET_HAS_PRECISE_SMC
1079 if (current_tb_modified) {
1080 /* we generate a block containing just the instruction
1081 modifying the memory. It will ensure that it cannot modify
1083 env->current_tb = NULL;
1084 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1085 cpu_resume_from_signal(env, puc);
1091 /* add the tb in the target page and protect it if necessary */
1092 static inline void tb_alloc_page(TranslationBlock *tb,
1093 unsigned int n, target_ulong page_addr)
1096 TranslationBlock *last_first_tb;
1098 tb->page_addr[n] = page_addr;
1099 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1100 tb->page_next[n] = p->first_tb;
1101 last_first_tb = p->first_tb;
1102 p->first_tb = (TranslationBlock *)((long)tb | n);
1103 invalidate_page_bitmap(p);
1105 #if defined(TARGET_HAS_SMC) || 1
1107 #if defined(CONFIG_USER_ONLY)
1108 if (p->flags & PAGE_WRITE) {
1113 /* force the host page as non writable (writes will have a
1114 page fault + mprotect overhead) */
1115 page_addr &= qemu_host_page_mask;
1117 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1118 addr += TARGET_PAGE_SIZE) {
1120 p2 = page_find (addr >> TARGET_PAGE_BITS);
1124 p2->flags &= ~PAGE_WRITE;
1125 page_get_flags(addr);
1127 mprotect(g2h(page_addr), qemu_host_page_size,
1128 (prot & PAGE_BITS) & ~PAGE_WRITE);
1129 #ifdef DEBUG_TB_INVALIDATE
1130 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1135 /* if some code is already present, then the pages are already
1136 protected. So we handle the case where only the first TB is
1137 allocated in a physical page */
1138 if (!last_first_tb) {
1139 tlb_protect_code(page_addr);
1143 #endif /* TARGET_HAS_SMC */
1146 /* Allocate a new translation block. Flush the translation buffer if
1147 too many translation blocks or too much generated code. */
1148 TranslationBlock *tb_alloc(target_ulong pc)
1150 TranslationBlock *tb;
1152 if (nb_tbs >= code_gen_max_blocks ||
1153 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1155 tb = &tbs[nb_tbs++];
1161 void tb_free(TranslationBlock *tb)
1163 /* In practice this is mostly used for single use temporary TB
1164 Ignore the hard cases and just back up if this TB happens to
1165 be the last one generated. */
1166 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1167 code_gen_ptr = tb->tc_ptr;
1172 /* add a new TB and link it to the physical page tables. phys_page2 is
1173 (-1) to indicate that only one page contains the TB. */
1174 void tb_link_phys(TranslationBlock *tb,
1175 target_ulong phys_pc, target_ulong phys_page2)
1178 TranslationBlock **ptb;
1180 /* Grab the mmap lock to stop another thread invalidating this TB
1181 before we are done. */
1183 /* add in the physical hash table */
1184 h = tb_phys_hash_func(phys_pc);
1185 ptb = &tb_phys_hash[h];
1186 tb->phys_hash_next = *ptb;
1189 /* add in the page list */
1190 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1191 if (phys_page2 != -1)
1192 tb_alloc_page(tb, 1, phys_page2);
1194 tb->page_addr[1] = -1;
1196 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1197 tb->jmp_next[0] = NULL;
1198 tb->jmp_next[1] = NULL;
1200 /* init original jump addresses */
1201 if (tb->tb_next_offset[0] != 0xffff)
1202 tb_reset_jump(tb, 0);
1203 if (tb->tb_next_offset[1] != 0xffff)
1204 tb_reset_jump(tb, 1);
1206 #ifdef DEBUG_TB_CHECK
1212 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1213 tb[1].tc_ptr. Return NULL if not found */
1214 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1216 int m_min, m_max, m;
1218 TranslationBlock *tb;
1222 if (tc_ptr < (unsigned long)code_gen_buffer ||
1223 tc_ptr >= (unsigned long)code_gen_ptr)
1225 /* binary search (cf Knuth) */
1228 while (m_min <= m_max) {
1229 m = (m_min + m_max) >> 1;
1231 v = (unsigned long)tb->tc_ptr;
1234 else if (tc_ptr < v) {
1243 static void tb_reset_jump_recursive(TranslationBlock *tb);
1245 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1247 TranslationBlock *tb1, *tb_next, **ptb;
1250 tb1 = tb->jmp_next[n];
1252 /* find head of list */
1255 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1258 tb1 = tb1->jmp_next[n1];
1260 /* we are now sure now that tb jumps to tb1 */
1263 /* remove tb from the jmp_first list */
1264 ptb = &tb_next->jmp_first;
1268 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1269 if (n1 == n && tb1 == tb)
1271 ptb = &tb1->jmp_next[n1];
1273 *ptb = tb->jmp_next[n];
1274 tb->jmp_next[n] = NULL;
1276 /* suppress the jump to next tb in generated code */
1277 tb_reset_jump(tb, n);
1279 /* suppress jumps in the tb on which we could have jumped */
1280 tb_reset_jump_recursive(tb_next);
1284 static void tb_reset_jump_recursive(TranslationBlock *tb)
1286 tb_reset_jump_recursive2(tb, 0);
1287 tb_reset_jump_recursive2(tb, 1);
1290 #if defined(TARGET_HAS_ICE)
1291 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1293 target_phys_addr_t addr;
1295 ram_addr_t ram_addr;
1298 addr = cpu_get_phys_page_debug(env, pc);
1299 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1301 pd = IO_MEM_UNASSIGNED;
1303 pd = p->phys_offset;
1305 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1306 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1310 /* Add a watchpoint. */
1311 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1312 int flags, CPUWatchpoint **watchpoint)
1314 target_ulong len_mask = ~(len - 1);
1317 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1318 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1319 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1320 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1323 wp = qemu_malloc(sizeof(*wp));
1326 wp->len_mask = len_mask;
1329 /* keep all GDB-injected watchpoints in front */
1331 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1333 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1335 tlb_flush_page(env, addr);
1342 /* Remove a specific watchpoint. */
1343 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1346 target_ulong len_mask = ~(len - 1);
1349 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1350 if (addr == wp->vaddr && len_mask == wp->len_mask
1351 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1352 cpu_watchpoint_remove_by_ref(env, wp);
1359 /* Remove a specific watchpoint by reference. */
1360 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1362 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1364 tlb_flush_page(env, watchpoint->vaddr);
1366 qemu_free(watchpoint);
1369 /* Remove all matching watchpoints. */
1370 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1372 CPUWatchpoint *wp, *next;
1374 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1375 if (wp->flags & mask)
1376 cpu_watchpoint_remove_by_ref(env, wp);
1380 /* Add a breakpoint. */
1381 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1382 CPUBreakpoint **breakpoint)
1384 #if defined(TARGET_HAS_ICE)
1387 bp = qemu_malloc(sizeof(*bp));
1392 /* keep all GDB-injected breakpoints in front */
1394 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1396 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1398 breakpoint_invalidate(env, pc);
1408 /* Remove a specific breakpoint. */
1409 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1411 #if defined(TARGET_HAS_ICE)
1414 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1415 if (bp->pc == pc && bp->flags == flags) {
1416 cpu_breakpoint_remove_by_ref(env, bp);
1426 /* Remove a specific breakpoint by reference. */
1427 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1429 #if defined(TARGET_HAS_ICE)
1430 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1432 breakpoint_invalidate(env, breakpoint->pc);
1434 qemu_free(breakpoint);
1438 /* Remove all matching breakpoints. */
1439 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1441 #if defined(TARGET_HAS_ICE)
1442 CPUBreakpoint *bp, *next;
1444 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1445 if (bp->flags & mask)
1446 cpu_breakpoint_remove_by_ref(env, bp);
1451 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1452 CPU loop after each instruction */
1453 void cpu_single_step(CPUState *env, int enabled)
1455 #if defined(TARGET_HAS_ICE)
1456 if (env->singlestep_enabled != enabled) {
1457 env->singlestep_enabled = enabled;
1458 /* must flush all the translated code to avoid inconsistancies */
1459 /* XXX: only flush what is necessary */
1465 /* enable or disable low levels log */
1466 void cpu_set_log(int log_flags)
1468 loglevel = log_flags;
1469 if (loglevel && !logfile) {
1470 logfile = fopen(logfilename, log_append ? "a" : "w");
1472 perror(logfilename);
1475 #if !defined(CONFIG_SOFTMMU)
1476 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1478 static char logfile_buf[4096];
1479 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1482 setvbuf(logfile, NULL, _IOLBF, 0);
1486 if (!loglevel && logfile) {
1492 void cpu_set_log_filename(const char *filename)
1494 logfilename = strdup(filename);
1499 cpu_set_log(loglevel);
1502 /* mask must never be zero, except for A20 change call */
1503 void cpu_interrupt(CPUState *env, int mask)
1505 #if !defined(USE_NPTL)
1506 TranslationBlock *tb;
1507 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1511 if (mask & CPU_INTERRUPT_EXIT) {
1512 env->exit_request = 1;
1513 mask &= ~CPU_INTERRUPT_EXIT;
1516 old_mask = env->interrupt_request;
1517 env->interrupt_request |= mask;
1518 #if defined(USE_NPTL)
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1525 env->icount_decr.u16.high = 0xffff;
1526 #ifndef CONFIG_USER_ONLY
1528 && (mask & ~old_mask) != 0) {
1529 cpu_abort(env, "Raised interrupt while not in I/O function");
1533 tb = env->current_tb;
1534 /* if the cpu is currently executing code, we must unlink it and
1535 all the potentially executing TB */
1536 if (tb && !testandset(&interrupt_lock)) {
1537 env->current_tb = NULL;
1538 tb_reset_jump_recursive(tb);
1539 resetlock(&interrupt_lock);
1545 void cpu_reset_interrupt(CPUState *env, int mask)
1547 env->interrupt_request &= ~mask;
1550 const CPULogItem cpu_log_items[] = {
1551 { CPU_LOG_TB_OUT_ASM, "out_asm",
1552 "show generated host assembly code for each compiled TB" },
1553 { CPU_LOG_TB_IN_ASM, "in_asm",
1554 "show target assembly code for each compiled TB" },
1555 { CPU_LOG_TB_OP, "op",
1556 "show micro ops for each compiled TB" },
1557 { CPU_LOG_TB_OP_OPT, "op_opt",
1560 "before eflags optimization and "
1562 "after liveness analysis" },
1563 { CPU_LOG_INT, "int",
1564 "show interrupts/exceptions in short format" },
1565 { CPU_LOG_EXEC, "exec",
1566 "show trace before each executed TB (lots of logs)" },
1567 { CPU_LOG_TB_CPU, "cpu",
1568 "show CPU state before block translation" },
1570 { CPU_LOG_PCALL, "pcall",
1571 "show protected mode far calls/returns/exceptions" },
1572 { CPU_LOG_RESET, "cpu_reset",
1573 "show CPU state before CPU resets" },
1576 { CPU_LOG_IOPORT, "ioport",
1577 "show all i/o ports accesses" },
1582 static int cmp1(const char *s1, int n, const char *s2)
1584 if (strlen(s2) != n)
1586 return memcmp(s1, s2, n) == 0;
1589 /* takes a comma separated list of log masks. Return 0 if error. */
1590 int cpu_str_to_log_mask(const char *str)
1592 const CPULogItem *item;
1599 p1 = strchr(p, ',');
1602 if(cmp1(p,p1-p,"all")) {
1603 for(item = cpu_log_items; item->mask != 0; item++) {
1607 for(item = cpu_log_items; item->mask != 0; item++) {
1608 if (cmp1(p, p1 - p, item->name))
1622 void cpu_abort(CPUState *env, const char *fmt, ...)
1629 fprintf(stderr, "qemu: fatal: ");
1630 vfprintf(stderr, fmt, ap);
1631 fprintf(stderr, "\n");
1633 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1635 cpu_dump_state(env, stderr, fprintf, 0);
1637 if (qemu_log_enabled()) {
1638 qemu_log("qemu: fatal: ");
1639 qemu_log_vprintf(fmt, ap2);
1642 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1644 log_cpu_state(env, 0);
1654 CPUState *cpu_copy(CPUState *env)
1656 CPUState *new_env = cpu_init(env->cpu_model_str);
1657 CPUState *next_cpu = new_env->next_cpu;
1658 int cpu_index = new_env->cpu_index;
1659 #if defined(TARGET_HAS_ICE)
1664 memcpy(new_env, env, sizeof(CPUState));
1666 /* Preserve chaining and index. */
1667 new_env->next_cpu = next_cpu;
1668 new_env->cpu_index = cpu_index;
1670 /* Clone all break/watchpoints.
1671 Note: Once we support ptrace with hw-debug register access, make sure
1672 BP_CPU break/watchpoints are handled correctly on clone. */
1673 TAILQ_INIT(&env->breakpoints);
1674 TAILQ_INIT(&env->watchpoints);
1675 #if defined(TARGET_HAS_ICE)
1676 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1677 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1679 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1680 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1688 #if !defined(CONFIG_USER_ONLY)
1690 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1694 /* Discard jump cache entries for any tb which might potentially
1695 overlap the flushed page. */
1696 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1697 memset (&env->tb_jmp_cache[i], 0,
1698 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1700 i = tb_jmp_cache_hash_page(addr);
1701 memset (&env->tb_jmp_cache[i], 0,
1702 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1705 /* NOTE: if flush_global is true, also flush global entries (not
1707 void tlb_flush(CPUState *env, int flush_global)
1711 #if defined(DEBUG_TLB)
1712 printf("tlb_flush:\n");
1714 /* must reset current TB so that interrupts cannot modify the
1715 links while we are modifying them */
1716 env->current_tb = NULL;
1718 for(i = 0; i < CPU_TLB_SIZE; i++) {
1719 env->tlb_table[0][i].addr_read = -1;
1720 env->tlb_table[0][i].addr_write = -1;
1721 env->tlb_table[0][i].addr_code = -1;
1722 env->tlb_table[1][i].addr_read = -1;
1723 env->tlb_table[1][i].addr_write = -1;
1724 env->tlb_table[1][i].addr_code = -1;
1725 #if (NB_MMU_MODES >= 3)
1726 env->tlb_table[2][i].addr_read = -1;
1727 env->tlb_table[2][i].addr_write = -1;
1728 env->tlb_table[2][i].addr_code = -1;
1729 #if (NB_MMU_MODES == 4)
1730 env->tlb_table[3][i].addr_read = -1;
1731 env->tlb_table[3][i].addr_write = -1;
1732 env->tlb_table[3][i].addr_code = -1;
1737 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1740 if (env->kqemu_enabled) {
1741 kqemu_flush(env, flush_global);
1747 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1749 if (addr == (tlb_entry->addr_read &
1750 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1751 addr == (tlb_entry->addr_write &
1752 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1753 addr == (tlb_entry->addr_code &
1754 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1755 tlb_entry->addr_read = -1;
1756 tlb_entry->addr_write = -1;
1757 tlb_entry->addr_code = -1;
1761 void tlb_flush_page(CPUState *env, target_ulong addr)
1765 #if defined(DEBUG_TLB)
1766 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1768 /* must reset current TB so that interrupts cannot modify the
1769 links while we are modifying them */
1770 env->current_tb = NULL;
1772 addr &= TARGET_PAGE_MASK;
1773 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1774 tlb_flush_entry(&env->tlb_table[0][i], addr);
1775 tlb_flush_entry(&env->tlb_table[1][i], addr);
1776 #if (NB_MMU_MODES >= 3)
1777 tlb_flush_entry(&env->tlb_table[2][i], addr);
1778 #if (NB_MMU_MODES == 4)
1779 tlb_flush_entry(&env->tlb_table[3][i], addr);
1783 tlb_flush_jmp_cache(env, addr);
1786 if (env->kqemu_enabled) {
1787 kqemu_flush_page(env, addr);
1792 /* update the TLBs so that writes to code in the virtual page 'addr'
1794 static void tlb_protect_code(ram_addr_t ram_addr)
1796 cpu_physical_memory_reset_dirty(ram_addr,
1797 ram_addr + TARGET_PAGE_SIZE,
1801 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1802 tested for self modifying code */
1803 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1806 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1809 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1810 unsigned long start, unsigned long length)
1813 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1814 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1815 if ((addr - start) < length) {
1816 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1821 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1825 unsigned long length, start1;
1829 start &= TARGET_PAGE_MASK;
1830 end = TARGET_PAGE_ALIGN(end);
1832 length = end - start;
1835 len = length >> TARGET_PAGE_BITS;
1837 /* XXX: should not depend on cpu context */
1839 if (env->kqemu_enabled) {
1842 for(i = 0; i < len; i++) {
1843 kqemu_set_notdirty(env, addr);
1844 addr += TARGET_PAGE_SIZE;
1848 mask = ~dirty_flags;
1849 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1850 for(i = 0; i < len; i++)
1853 /* we modify the TLB cache so that the dirty bit will be set again
1854 when accessing the range */
1855 start1 = start + (unsigned long)phys_ram_base;
1856 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1857 for(i = 0; i < CPU_TLB_SIZE; i++)
1858 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1859 for(i = 0; i < CPU_TLB_SIZE; i++)
1860 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1861 #if (NB_MMU_MODES >= 3)
1862 for(i = 0; i < CPU_TLB_SIZE; i++)
1863 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1864 #if (NB_MMU_MODES == 4)
1865 for(i = 0; i < CPU_TLB_SIZE; i++)
1866 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1872 int cpu_physical_memory_set_dirty_tracking(int enable)
1874 in_migration = enable;
1878 int cpu_physical_memory_get_dirty_tracking(void)
1880 return in_migration;
1883 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1886 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1889 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1891 ram_addr_t ram_addr;
1893 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1894 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1895 tlb_entry->addend - (unsigned long)phys_ram_base;
1896 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1897 tlb_entry->addr_write |= TLB_NOTDIRTY;
1902 /* update the TLB according to the current state of the dirty bits */
1903 void cpu_tlb_update_dirty(CPUState *env)
1906 for(i = 0; i < CPU_TLB_SIZE; i++)
1907 tlb_update_dirty(&env->tlb_table[0][i]);
1908 for(i = 0; i < CPU_TLB_SIZE; i++)
1909 tlb_update_dirty(&env->tlb_table[1][i]);
1910 #if (NB_MMU_MODES >= 3)
1911 for(i = 0; i < CPU_TLB_SIZE; i++)
1912 tlb_update_dirty(&env->tlb_table[2][i]);
1913 #if (NB_MMU_MODES == 4)
1914 for(i = 0; i < CPU_TLB_SIZE; i++)
1915 tlb_update_dirty(&env->tlb_table[3][i]);
1920 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1922 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1923 tlb_entry->addr_write = vaddr;
1926 /* update the TLB corresponding to virtual page vaddr
1927 so that it is no longer dirty */
1928 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1932 vaddr &= TARGET_PAGE_MASK;
1933 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1934 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1935 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1936 #if (NB_MMU_MODES >= 3)
1937 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1938 #if (NB_MMU_MODES == 4)
1939 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1944 /* add a new TLB entry. At most one entry for a given virtual address
1945 is permitted. Return 0 if OK or 2 if the page could not be mapped
1946 (can only happen in non SOFTMMU mode for I/O pages or pages
1947 conflicting with the host address space). */
1948 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1949 target_phys_addr_t paddr, int prot,
1950 int mmu_idx, int is_softmmu)
1955 target_ulong address;
1956 target_ulong code_address;
1957 target_phys_addr_t addend;
1961 target_phys_addr_t iotlb;
1963 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1965 pd = IO_MEM_UNASSIGNED;
1967 pd = p->phys_offset;
1969 #if defined(DEBUG_TLB)
1970 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1971 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1976 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1977 /* IO memory case (romd handled later) */
1978 address |= TLB_MMIO;
1980 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1981 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1983 iotlb = pd & TARGET_PAGE_MASK;
1984 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1985 iotlb |= IO_MEM_NOTDIRTY;
1987 iotlb |= IO_MEM_ROM;
1989 /* IO handlers are currently passed a phsical address.
1990 It would be nice to pass an offset from the base address
1991 of that region. This would avoid having to special case RAM,
1992 and avoid full address decoding in every device.
1993 We can't use the high bits of pd for this because
1994 IO_MEM_ROMD uses these as a ram address. */
1995 iotlb = (pd & ~TARGET_PAGE_MASK);
1997 iotlb += p->region_offset;
2003 code_address = address;
2004 /* Make accesses to pages with watchpoints go via the
2005 watchpoint trap routines. */
2006 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2007 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2008 iotlb = io_mem_watch + paddr;
2009 /* TODO: The memory case can be optimized by not trapping
2010 reads of pages with a write breakpoint. */
2011 address |= TLB_MMIO;
2015 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2016 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2017 te = &env->tlb_table[mmu_idx][index];
2018 te->addend = addend - vaddr;
2019 if (prot & PAGE_READ) {
2020 te->addr_read = address;
2025 if (prot & PAGE_EXEC) {
2026 te->addr_code = code_address;
2030 if (prot & PAGE_WRITE) {
2031 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2032 (pd & IO_MEM_ROMD)) {
2033 /* Write access calls the I/O callback. */
2034 te->addr_write = address | TLB_MMIO;
2035 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2036 !cpu_physical_memory_is_dirty(pd)) {
2037 te->addr_write = address | TLB_NOTDIRTY;
2039 te->addr_write = address;
2042 te->addr_write = -1;
2049 void tlb_flush(CPUState *env, int flush_global)
2053 void tlb_flush_page(CPUState *env, target_ulong addr)
2057 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2058 target_phys_addr_t paddr, int prot,
2059 int mmu_idx, int is_softmmu)
2064 /* dump memory mappings */
2065 void page_dump(FILE *f)
2067 unsigned long start, end;
2068 int i, j, prot, prot1;
2071 fprintf(f, "%-8s %-8s %-8s %s\n",
2072 "start", "end", "size", "prot");
2076 for(i = 0; i <= L1_SIZE; i++) {
2081 for(j = 0;j < L2_SIZE; j++) {
2086 if (prot1 != prot) {
2087 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2089 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2090 start, end, end - start,
2091 prot & PAGE_READ ? 'r' : '-',
2092 prot & PAGE_WRITE ? 'w' : '-',
2093 prot & PAGE_EXEC ? 'x' : '-');
2107 int page_get_flags(target_ulong address)
2111 p = page_find(address >> TARGET_PAGE_BITS);
2117 /* modify the flags of a page and invalidate the code if
2118 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2119 depending on PAGE_WRITE */
2120 void page_set_flags(target_ulong start, target_ulong end, int flags)
2125 /* mmap_lock should already be held. */
2126 start = start & TARGET_PAGE_MASK;
2127 end = TARGET_PAGE_ALIGN(end);
2128 if (flags & PAGE_WRITE)
2129 flags |= PAGE_WRITE_ORG;
2130 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2131 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2132 /* We may be called for host regions that are outside guest
2136 /* if the write protection is set, then we invalidate the code
2138 if (!(p->flags & PAGE_WRITE) &&
2139 (flags & PAGE_WRITE) &&
2141 tb_invalidate_phys_page(addr, 0, NULL);
2147 int page_check_range(target_ulong start, target_ulong len, int flags)
2153 if (start + len < start)
2154 /* we've wrapped around */
2157 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2158 start = start & TARGET_PAGE_MASK;
2160 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2161 p = page_find(addr >> TARGET_PAGE_BITS);
2164 if( !(p->flags & PAGE_VALID) )
2167 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2169 if (flags & PAGE_WRITE) {
2170 if (!(p->flags & PAGE_WRITE_ORG))
2172 /* unprotect the page if it was put read-only because it
2173 contains translated code */
2174 if (!(p->flags & PAGE_WRITE)) {
2175 if (!page_unprotect(addr, 0, NULL))
2184 /* called from signal handler: invalidate the code and unprotect the
2185 page. Return TRUE if the fault was succesfully handled. */
2186 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2188 unsigned int page_index, prot, pindex;
2190 target_ulong host_start, host_end, addr;
2192 /* Technically this isn't safe inside a signal handler. However we
2193 know this only ever happens in a synchronous SEGV handler, so in
2194 practice it seems to be ok. */
2197 host_start = address & qemu_host_page_mask;
2198 page_index = host_start >> TARGET_PAGE_BITS;
2199 p1 = page_find(page_index);
2204 host_end = host_start + qemu_host_page_size;
2207 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2211 /* if the page was really writable, then we change its
2212 protection back to writable */
2213 if (prot & PAGE_WRITE_ORG) {
2214 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2215 if (!(p1[pindex].flags & PAGE_WRITE)) {
2216 mprotect((void *)g2h(host_start), qemu_host_page_size,
2217 (prot & PAGE_BITS) | PAGE_WRITE);
2218 p1[pindex].flags |= PAGE_WRITE;
2219 /* and since the content will be modified, we must invalidate
2220 the corresponding translated code. */
2221 tb_invalidate_phys_page(address, pc, puc);
2222 #ifdef DEBUG_TB_CHECK
2223 tb_invalidate_check(address);
2233 static inline void tlb_set_dirty(CPUState *env,
2234 unsigned long addr, target_ulong vaddr)
2237 #endif /* defined(CONFIG_USER_ONLY) */
2239 #if !defined(CONFIG_USER_ONLY)
2241 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2242 ram_addr_t memory, ram_addr_t region_offset);
2243 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2244 ram_addr_t orig_memory, ram_addr_t region_offset);
2245 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2248 if (addr > start_addr) \
2251 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2252 if (start_addr2 > 0) \
2256 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2257 end_addr2 = TARGET_PAGE_SIZE - 1; \
2259 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2260 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2265 /* register physical memory. 'size' must be a multiple of the target
2266 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2267 io memory page. The address used when calling the IO function is
2268 the offset from the start of the region, plus region_offset. Both
2269 start_region and regon_offset are rounded down to a page boundary
2270 before calculating this offset. This should not be a problem unless
2271 the low bits of start_addr and region_offset differ. */
2272 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2274 ram_addr_t phys_offset,
2275 ram_addr_t region_offset)
2277 target_phys_addr_t addr, end_addr;
2280 ram_addr_t orig_size = size;
2284 /* XXX: should not depend on cpu context */
2286 if (env->kqemu_enabled) {
2287 kqemu_set_phys_mem(start_addr, size, phys_offset);
2291 kvm_set_phys_mem(start_addr, size, phys_offset);
2293 if (phys_offset == IO_MEM_UNASSIGNED) {
2294 region_offset = start_addr;
2296 region_offset &= TARGET_PAGE_MASK;
2297 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2298 end_addr = start_addr + (target_phys_addr_t)size;
2299 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2300 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2301 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2302 ram_addr_t orig_memory = p->phys_offset;
2303 target_phys_addr_t start_addr2, end_addr2;
2304 int need_subpage = 0;
2306 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2308 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2309 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2310 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2311 &p->phys_offset, orig_memory,
2314 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2317 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2319 p->region_offset = 0;
2321 p->phys_offset = phys_offset;
2322 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2323 (phys_offset & IO_MEM_ROMD))
2324 phys_offset += TARGET_PAGE_SIZE;
2327 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2328 p->phys_offset = phys_offset;
2329 p->region_offset = region_offset;
2330 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2331 (phys_offset & IO_MEM_ROMD)) {
2332 phys_offset += TARGET_PAGE_SIZE;
2334 target_phys_addr_t start_addr2, end_addr2;
2335 int need_subpage = 0;
2337 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2338 end_addr2, need_subpage);
2340 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2341 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2342 &p->phys_offset, IO_MEM_UNASSIGNED,
2343 addr & TARGET_PAGE_MASK);
2344 subpage_register(subpage, start_addr2, end_addr2,
2345 phys_offset, region_offset);
2346 p->region_offset = 0;
2350 region_offset += TARGET_PAGE_SIZE;
2353 /* since each CPU stores ram addresses in its TLB cache, we must
2354 reset the modified entries */
2356 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2361 /* XXX: temporary until new memory mapping API */
2362 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2366 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2368 return IO_MEM_UNASSIGNED;
2369 return p->phys_offset;
2372 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2375 kvm_coalesce_mmio_region(addr, size);
2378 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2381 kvm_uncoalesce_mmio_region(addr, size);
2384 /* XXX: better than nothing */
2385 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2388 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2389 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2390 (uint64_t)size, (uint64_t)phys_ram_size);
2393 addr = phys_ram_alloc_offset;
2394 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2398 void qemu_ram_free(ram_addr_t addr)
2402 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2404 #ifdef DEBUG_UNASSIGNED
2405 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2407 #if defined(TARGET_SPARC)
2408 do_unassigned_access(addr, 0, 0, 0, 1);
2413 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2415 #ifdef DEBUG_UNASSIGNED
2416 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2418 #if defined(TARGET_SPARC)
2419 do_unassigned_access(addr, 0, 0, 0, 2);
2424 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2426 #ifdef DEBUG_UNASSIGNED
2427 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2429 #if defined(TARGET_SPARC)
2430 do_unassigned_access(addr, 0, 0, 0, 4);
2435 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2437 #ifdef DEBUG_UNASSIGNED
2438 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2440 #if defined(TARGET_SPARC)
2441 do_unassigned_access(addr, 1, 0, 0, 1);
2445 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2447 #ifdef DEBUG_UNASSIGNED
2448 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2450 #if defined(TARGET_SPARC)
2451 do_unassigned_access(addr, 1, 0, 0, 2);
2455 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2457 #ifdef DEBUG_UNASSIGNED
2458 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2460 #if defined(TARGET_SPARC)
2461 do_unassigned_access(addr, 1, 0, 0, 4);
2465 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2466 unassigned_mem_readb,
2467 unassigned_mem_readw,
2468 unassigned_mem_readl,
2471 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2472 unassigned_mem_writeb,
2473 unassigned_mem_writew,
2474 unassigned_mem_writel,
2477 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2481 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2482 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2483 #if !defined(CONFIG_USER_ONLY)
2484 tb_invalidate_phys_page_fast(ram_addr, 1);
2485 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2488 stb_p(phys_ram_base + ram_addr, val);
2490 if (cpu_single_env->kqemu_enabled &&
2491 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2492 kqemu_modify_page(cpu_single_env, ram_addr);
2494 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2495 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2496 /* we remove the notdirty callback only if the code has been
2498 if (dirty_flags == 0xff)
2499 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2502 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2506 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2507 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2508 #if !defined(CONFIG_USER_ONLY)
2509 tb_invalidate_phys_page_fast(ram_addr, 2);
2510 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2513 stw_p(phys_ram_base + ram_addr, val);
2515 if (cpu_single_env->kqemu_enabled &&
2516 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2517 kqemu_modify_page(cpu_single_env, ram_addr);
2519 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2520 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2521 /* we remove the notdirty callback only if the code has been
2523 if (dirty_flags == 0xff)
2524 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2527 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2531 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2532 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2533 #if !defined(CONFIG_USER_ONLY)
2534 tb_invalidate_phys_page_fast(ram_addr, 4);
2535 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2538 stl_p(phys_ram_base + ram_addr, val);
2540 if (cpu_single_env->kqemu_enabled &&
2541 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2542 kqemu_modify_page(cpu_single_env, ram_addr);
2544 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2545 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2546 /* we remove the notdirty callback only if the code has been
2548 if (dirty_flags == 0xff)
2549 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2552 static CPUReadMemoryFunc *error_mem_read[3] = {
2553 NULL, /* never used */
2554 NULL, /* never used */
2555 NULL, /* never used */
2558 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2559 notdirty_mem_writeb,
2560 notdirty_mem_writew,
2561 notdirty_mem_writel,
2564 /* Generate a debug exception if a watchpoint has been hit. */
2565 static void check_watchpoint(int offset, int len_mask, int flags)
2567 CPUState *env = cpu_single_env;
2568 target_ulong pc, cs_base;
2569 TranslationBlock *tb;
2574 if (env->watchpoint_hit) {
2575 /* We re-entered the check after replacing the TB. Now raise
2576 * the debug interrupt so that is will trigger after the
2577 * current instruction. */
2578 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2581 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2582 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2583 if ((vaddr == (wp->vaddr & len_mask) ||
2584 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2585 wp->flags |= BP_WATCHPOINT_HIT;
2586 if (!env->watchpoint_hit) {
2587 env->watchpoint_hit = wp;
2588 tb = tb_find_pc(env->mem_io_pc);
2590 cpu_abort(env, "check_watchpoint: could not find TB for "
2591 "pc=%p", (void *)env->mem_io_pc);
2593 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2594 tb_phys_invalidate(tb, -1);
2595 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2596 env->exception_index = EXCP_DEBUG;
2598 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2599 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2601 cpu_resume_from_signal(env, NULL);
2604 wp->flags &= ~BP_WATCHPOINT_HIT;
2609 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2610 so these check for a hit then pass through to the normal out-of-line
2612 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2614 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2615 return ldub_phys(addr);
2618 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2620 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2621 return lduw_phys(addr);
2624 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2626 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2627 return ldl_phys(addr);
2630 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2633 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2634 stb_phys(addr, val);
2637 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2640 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2641 stw_phys(addr, val);
2644 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2647 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2648 stl_phys(addr, val);
2651 static CPUReadMemoryFunc *watch_mem_read[3] = {
2657 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2663 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2669 idx = SUBPAGE_IDX(addr);
2670 #if defined(DEBUG_SUBPAGE)
2671 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2672 mmio, len, addr, idx);
2674 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2675 addr + mmio->region_offset[idx][0][len]);
2680 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2681 uint32_t value, unsigned int len)
2685 idx = SUBPAGE_IDX(addr);
2686 #if defined(DEBUG_SUBPAGE)
2687 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2688 mmio, len, addr, idx, value);
2690 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2691 addr + mmio->region_offset[idx][1][len],
2695 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2697 #if defined(DEBUG_SUBPAGE)
2698 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2701 return subpage_readlen(opaque, addr, 0);
2704 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2707 #if defined(DEBUG_SUBPAGE)
2708 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2710 subpage_writelen(opaque, addr, value, 0);
2713 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2715 #if defined(DEBUG_SUBPAGE)
2716 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2719 return subpage_readlen(opaque, addr, 1);
2722 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2725 #if defined(DEBUG_SUBPAGE)
2726 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2728 subpage_writelen(opaque, addr, value, 1);
2731 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2733 #if defined(DEBUG_SUBPAGE)
2734 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2737 return subpage_readlen(opaque, addr, 2);
2740 static void subpage_writel (void *opaque,
2741 target_phys_addr_t addr, uint32_t value)
2743 #if defined(DEBUG_SUBPAGE)
2744 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2746 subpage_writelen(opaque, addr, value, 2);
2749 static CPUReadMemoryFunc *subpage_read[] = {
2755 static CPUWriteMemoryFunc *subpage_write[] = {
2761 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2762 ram_addr_t memory, ram_addr_t region_offset)
2767 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2769 idx = SUBPAGE_IDX(start);
2770 eidx = SUBPAGE_IDX(end);
2771 #if defined(DEBUG_SUBPAGE)
2772 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2773 mmio, start, end, idx, eidx, memory);
2775 memory >>= IO_MEM_SHIFT;
2776 for (; idx <= eidx; idx++) {
2777 for (i = 0; i < 4; i++) {
2778 if (io_mem_read[memory][i]) {
2779 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2780 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2781 mmio->region_offset[idx][0][i] = region_offset;
2783 if (io_mem_write[memory][i]) {
2784 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2785 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2786 mmio->region_offset[idx][1][i] = region_offset;
2794 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2795 ram_addr_t orig_memory, ram_addr_t region_offset)
2800 mmio = qemu_mallocz(sizeof(subpage_t));
2803 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2804 #if defined(DEBUG_SUBPAGE)
2805 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2806 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2808 *phys = subpage_memory | IO_MEM_SUBPAGE;
2809 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2815 static int get_free_io_mem_idx(void)
2819 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2820 if (!io_mem_used[i]) {
2828 static void io_mem_init(void)
2832 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2833 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2834 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2838 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2839 watch_mem_write, NULL);
2840 /* alloc dirty bits array */
2841 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2842 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2845 /* mem_read and mem_write are arrays of functions containing the
2846 function to access byte (index 0), word (index 1) and dword (index
2847 2). Functions can be omitted with a NULL function pointer. The
2848 registered functions may be modified dynamically later.
2849 If io_index is non zero, the corresponding io zone is
2850 modified. If it is zero, a new io zone is allocated. The return
2851 value can be used with cpu_register_physical_memory(). (-1) is
2852 returned if error. */
2853 int cpu_register_io_memory(int io_index,
2854 CPUReadMemoryFunc **mem_read,
2855 CPUWriteMemoryFunc **mem_write,
2858 int i, subwidth = 0;
2860 if (io_index <= 0) {
2861 io_index = get_free_io_mem_idx();
2865 if (io_index >= IO_MEM_NB_ENTRIES)
2869 for(i = 0;i < 3; i++) {
2870 if (!mem_read[i] || !mem_write[i])
2871 subwidth = IO_MEM_SUBWIDTH;
2872 io_mem_read[io_index][i] = mem_read[i];
2873 io_mem_write[io_index][i] = mem_write[i];
2875 io_mem_opaque[io_index] = opaque;
2876 return (io_index << IO_MEM_SHIFT) | subwidth;
2879 void cpu_unregister_io_memory(int io_table_address)
2882 int io_index = io_table_address >> IO_MEM_SHIFT;
2884 for (i=0;i < 3; i++) {
2885 io_mem_read[io_index][i] = unassigned_mem_read[i];
2886 io_mem_write[io_index][i] = unassigned_mem_write[i];
2888 io_mem_opaque[io_index] = NULL;
2889 io_mem_used[io_index] = 0;
2892 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2894 return io_mem_write[io_index >> IO_MEM_SHIFT];
2897 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2899 return io_mem_read[io_index >> IO_MEM_SHIFT];
2902 #endif /* !defined(CONFIG_USER_ONLY) */
2904 /* physical memory access (slow version, mainly for debug) */
2905 #if defined(CONFIG_USER_ONLY)
2906 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2907 int len, int is_write)
2914 page = addr & TARGET_PAGE_MASK;
2915 l = (page + TARGET_PAGE_SIZE) - addr;
2918 flags = page_get_flags(page);
2919 if (!(flags & PAGE_VALID))
2922 if (!(flags & PAGE_WRITE))
2924 /* XXX: this code should not depend on lock_user */
2925 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2926 /* FIXME - should this return an error rather than just fail? */
2929 unlock_user(p, addr, l);
2931 if (!(flags & PAGE_READ))
2933 /* XXX: this code should not depend on lock_user */
2934 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2935 /* FIXME - should this return an error rather than just fail? */
2938 unlock_user(p, addr, 0);
2947 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2948 int len, int is_write)
2953 target_phys_addr_t page;
2958 page = addr & TARGET_PAGE_MASK;
2959 l = (page + TARGET_PAGE_SIZE) - addr;
2962 p = phys_page_find(page >> TARGET_PAGE_BITS);
2964 pd = IO_MEM_UNASSIGNED;
2966 pd = p->phys_offset;
2970 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2971 target_phys_addr_t addr1 = addr;
2972 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2974 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2975 /* XXX: could force cpu_single_env to NULL to avoid
2977 if (l >= 4 && ((addr1 & 3) == 0)) {
2978 /* 32 bit write access */
2980 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
2982 } else if (l >= 2 && ((addr1 & 1) == 0)) {
2983 /* 16 bit write access */
2985 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
2988 /* 8 bit write access */
2990 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
2994 unsigned long addr1;
2995 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2997 ptr = phys_ram_base + addr1;
2998 memcpy(ptr, buf, l);
2999 if (!cpu_physical_memory_is_dirty(addr1)) {
3000 /* invalidate code */
3001 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3003 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3004 (0xff & ~CODE_DIRTY_FLAG);
3008 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3009 !(pd & IO_MEM_ROMD)) {
3010 target_phys_addr_t addr1 = addr;
3012 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3014 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3015 if (l >= 4 && ((addr1 & 3) == 0)) {
3016 /* 32 bit read access */
3017 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3020 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3021 /* 16 bit read access */
3022 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3026 /* 8 bit read access */
3027 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3033 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3034 (addr & ~TARGET_PAGE_MASK);
3035 memcpy(buf, ptr, l);
3044 /* used for ROM loading : can write in RAM and ROM */
3045 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3046 const uint8_t *buf, int len)
3050 target_phys_addr_t page;
3055 page = addr & TARGET_PAGE_MASK;
3056 l = (page + TARGET_PAGE_SIZE) - addr;
3059 p = phys_page_find(page >> TARGET_PAGE_BITS);
3061 pd = IO_MEM_UNASSIGNED;
3063 pd = p->phys_offset;
3066 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3067 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3068 !(pd & IO_MEM_ROMD)) {
3071 unsigned long addr1;
3072 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3074 ptr = phys_ram_base + addr1;
3075 memcpy(ptr, buf, l);
3085 target_phys_addr_t addr;
3086 target_phys_addr_t len;
3089 static BounceBuffer bounce;
3091 typedef struct MapClient {
3093 void (*callback)(void *opaque);
3094 LIST_ENTRY(MapClient) link;
3097 static LIST_HEAD(map_client_list, MapClient) map_client_list
3098 = LIST_HEAD_INITIALIZER(map_client_list);
3100 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3102 MapClient *client = qemu_malloc(sizeof(*client));
3104 client->opaque = opaque;
3105 client->callback = callback;
3106 LIST_INSERT_HEAD(&map_client_list, client, link);
3110 void cpu_unregister_map_client(void *_client)
3112 MapClient *client = (MapClient *)_client;
3114 LIST_REMOVE(client, link);
3117 static void cpu_notify_map_clients(void)
3121 while (!LIST_EMPTY(&map_client_list)) {
3122 client = LIST_FIRST(&map_client_list);
3123 client->callback(client->opaque);
3124 LIST_REMOVE(client, link);
3128 /* Map a physical memory region into a host virtual address.
3129 * May map a subset of the requested range, given by and returned in *plen.
3130 * May return NULL if resources needed to perform the mapping are exhausted.
3131 * Use only for reads OR writes - not for read-modify-write operations.
3132 * Use cpu_register_map_client() to know when retrying the map operation is
3133 * likely to succeed.
3135 void *cpu_physical_memory_map(target_phys_addr_t addr,
3136 target_phys_addr_t *plen,
3139 target_phys_addr_t len = *plen;
3140 target_phys_addr_t done = 0;
3142 uint8_t *ret = NULL;
3144 target_phys_addr_t page;
3147 unsigned long addr1;
3150 page = addr & TARGET_PAGE_MASK;
3151 l = (page + TARGET_PAGE_SIZE) - addr;
3154 p = phys_page_find(page >> TARGET_PAGE_BITS);
3156 pd = IO_MEM_UNASSIGNED;
3158 pd = p->phys_offset;
3161 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3162 if (done || bounce.buffer) {
3165 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3169 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3171 ptr = bounce.buffer;
3173 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3174 ptr = phys_ram_base + addr1;
3178 } else if (ret + done != ptr) {
3190 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3191 * Will also mark the memory as dirty if is_write == 1. access_len gives
3192 * the amount of memory that was actually read or written by the caller.
3194 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3195 int is_write, target_phys_addr_t access_len)
3197 if (buffer != bounce.buffer) {
3199 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3200 while (access_len) {
3202 l = TARGET_PAGE_SIZE;
3205 if (!cpu_physical_memory_is_dirty(addr1)) {
3206 /* invalidate code */
3207 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3209 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3210 (0xff & ~CODE_DIRTY_FLAG);
3219 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3221 qemu_free(bounce.buffer);
3222 bounce.buffer = NULL;
3223 cpu_notify_map_clients();
3226 /* warning: addr must be aligned */
3227 uint32_t ldl_phys(target_phys_addr_t addr)
3235 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3237 pd = IO_MEM_UNASSIGNED;
3239 pd = p->phys_offset;
3242 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3243 !(pd & IO_MEM_ROMD)) {
3245 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3247 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3248 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3251 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3252 (addr & ~TARGET_PAGE_MASK);
3258 /* warning: addr must be aligned */
3259 uint64_t ldq_phys(target_phys_addr_t addr)
3267 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3269 pd = IO_MEM_UNASSIGNED;
3271 pd = p->phys_offset;
3274 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3275 !(pd & IO_MEM_ROMD)) {
3277 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3279 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3280 #ifdef TARGET_WORDS_BIGENDIAN
3281 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3282 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3284 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3285 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3289 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3290 (addr & ~TARGET_PAGE_MASK);
3297 uint32_t ldub_phys(target_phys_addr_t addr)
3300 cpu_physical_memory_read(addr, &val, 1);
3305 uint32_t lduw_phys(target_phys_addr_t addr)
3308 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3309 return tswap16(val);
3312 /* warning: addr must be aligned. The ram page is not masked as dirty
3313 and the code inside is not invalidated. It is useful if the dirty
3314 bits are used to track modified PTEs */
3315 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3322 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3324 pd = IO_MEM_UNASSIGNED;
3326 pd = p->phys_offset;
3329 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3330 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3332 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3333 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3335 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3336 ptr = phys_ram_base + addr1;
3339 if (unlikely(in_migration)) {
3340 if (!cpu_physical_memory_is_dirty(addr1)) {
3341 /* invalidate code */
3342 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3344 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3345 (0xff & ~CODE_DIRTY_FLAG);
3351 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3358 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3360 pd = IO_MEM_UNASSIGNED;
3362 pd = p->phys_offset;
3365 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3366 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3368 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3369 #ifdef TARGET_WORDS_BIGENDIAN
3370 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3371 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3373 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3374 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3377 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3378 (addr & ~TARGET_PAGE_MASK);
3383 /* warning: addr must be aligned */
3384 void stl_phys(target_phys_addr_t addr, uint32_t val)
3391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3393 pd = IO_MEM_UNASSIGNED;
3395 pd = p->phys_offset;
3398 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3399 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3401 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3402 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3404 unsigned long addr1;
3405 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3407 ptr = phys_ram_base + addr1;
3409 if (!cpu_physical_memory_is_dirty(addr1)) {
3410 /* invalidate code */
3411 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3413 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3414 (0xff & ~CODE_DIRTY_FLAG);
3420 void stb_phys(target_phys_addr_t addr, uint32_t val)
3423 cpu_physical_memory_write(addr, &v, 1);
3427 void stw_phys(target_phys_addr_t addr, uint32_t val)
3429 uint16_t v = tswap16(val);
3430 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3434 void stq_phys(target_phys_addr_t addr, uint64_t val)
3437 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3442 /* virtual memory access for debug */
3443 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3444 uint8_t *buf, int len, int is_write)
3447 target_phys_addr_t phys_addr;
3451 page = addr & TARGET_PAGE_MASK;
3452 phys_addr = cpu_get_phys_page_debug(env, page);
3453 /* if no physical page mapped, return an error */
3454 if (phys_addr == -1)
3456 l = (page + TARGET_PAGE_SIZE) - addr;
3459 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3468 /* in deterministic execution mode, instructions doing device I/Os
3469 must be at the end of the TB */
3470 void cpu_io_recompile(CPUState *env, void *retaddr)
3472 TranslationBlock *tb;
3474 target_ulong pc, cs_base;
3477 tb = tb_find_pc((unsigned long)retaddr);
3479 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3482 n = env->icount_decr.u16.low + tb->icount;
3483 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3484 /* Calculate how many instructions had been executed before the fault
3486 n = n - env->icount_decr.u16.low;
3487 /* Generate a new TB ending on the I/O insn. */
3489 /* On MIPS and SH, delay slot instructions can only be restarted if
3490 they were already the first instruction in the TB. If this is not
3491 the first instruction in a TB then re-execute the preceding
3493 #if defined(TARGET_MIPS)
3494 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3495 env->active_tc.PC -= 4;
3496 env->icount_decr.u16.low++;
3497 env->hflags &= ~MIPS_HFLAG_BMASK;
3499 #elif defined(TARGET_SH4)
3500 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3503 env->icount_decr.u16.low++;
3504 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3507 /* This should never happen. */
3508 if (n > CF_COUNT_MASK)
3509 cpu_abort(env, "TB too big during recompile");
3511 cflags = n | CF_LAST_IO;
3513 cs_base = tb->cs_base;
3515 tb_phys_invalidate(tb, -1);
3516 /* FIXME: In theory this could raise an exception. In practice
3517 we have already translated the block once so it's probably ok. */
3518 tb_gen_code(env, pc, cs_base, flags, cflags);
3519 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3520 the first in the TB) then we end up generating a whole new TB and
3521 repeating the fault, which is horribly inefficient.
3522 Better would be to execute just this insn uncached, or generate a
3524 cpu_resume_from_signal(env, NULL);
3527 void dump_exec_info(FILE *f,
3528 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3530 int i, target_code_size, max_target_code_size;
3531 int direct_jmp_count, direct_jmp2_count, cross_page;
3532 TranslationBlock *tb;
3534 target_code_size = 0;
3535 max_target_code_size = 0;
3537 direct_jmp_count = 0;
3538 direct_jmp2_count = 0;
3539 for(i = 0; i < nb_tbs; i++) {
3541 target_code_size += tb->size;
3542 if (tb->size > max_target_code_size)
3543 max_target_code_size = tb->size;
3544 if (tb->page_addr[1] != -1)
3546 if (tb->tb_next_offset[0] != 0xffff) {
3548 if (tb->tb_next_offset[1] != 0xffff) {
3549 direct_jmp2_count++;
3553 /* XXX: avoid using doubles ? */
3554 cpu_fprintf(f, "Translation buffer state:\n");
3555 cpu_fprintf(f, "gen code size %ld/%ld\n",
3556 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3557 cpu_fprintf(f, "TB count %d/%d\n",
3558 nb_tbs, code_gen_max_blocks);
3559 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3560 nb_tbs ? target_code_size / nb_tbs : 0,
3561 max_target_code_size);
3562 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3563 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3564 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3565 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3567 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3568 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3570 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3572 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3573 cpu_fprintf(f, "\nStatistics:\n");
3574 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3575 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3576 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3577 tcg_dump_info(f, cpu_fprintf);
3580 #if !defined(CONFIG_USER_ONLY)
3582 #define MMUSUFFIX _cmmu
3583 #define GETPC() NULL
3584 #define env cpu_single_env
3585 #define SOFTMMU_CODE_ACCESS
3588 #include "softmmu_template.h"
3591 #include "softmmu_template.h"
3594 #include "softmmu_template.h"
3597 #include "softmmu_template.h"