4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
108 ret = cpuid->entries[i].eax;
111 ret = cpuid->entries[i].ebx;
114 ret = cpuid->entries[i].ecx;
117 ret = cpuid->entries[i].edx;
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
171 static int get_para_features(CPUState *env)
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177 features |= (1 << para_features[i].feature);
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
190 r = kvm_check_extension(s, KVM_CAP_MCE);
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_progress(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 fprintf(stderr, "Failed to get MCE status\n");
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
237 struct kvm_x86_mce_data
240 struct kvm_x86_mce *mce;
244 static void kvm_do_inject_x86_mce(void *_data)
246 struct kvm_x86_mce_data *data = _data;
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
252 if (kvm_mce_in_progress(data->env)) {
257 r = kvm_set_mce(data->env, data->mce);
259 perror("kvm_set_mce FAILED");
260 if (data->abort_on_error) {
266 static void kvm_mce_broadcast_rest(CPUState *env);
269 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
270 uint64_t mcg_status, uint64_t addr, uint64_t misc,
274 struct kvm_x86_mce mce = {
277 .mcg_status = mcg_status,
281 struct kvm_x86_mce_data data = {
286 if (!cenv->mcg_cap) {
287 fprintf(stderr, "MCE support is not enabled!\n");
291 if (flag & MCE_BROADCAST) {
292 kvm_mce_broadcast_rest(cenv);
295 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
297 if (flag & ABORT_ON_ERROR) {
303 int kvm_arch_init_vcpu(CPUState *env)
306 struct kvm_cpuid2 cpuid;
307 struct kvm_cpuid_entry2 entries[100];
308 } __attribute__((packed)) cpuid_data;
309 uint32_t limit, i, j, cpuid_i;
311 struct kvm_cpuid_entry2 *c;
312 #ifdef KVM_CPUID_SIGNATURE
313 uint32_t signature[3];
316 env->mp_state = KVM_MP_STATE_RUNNABLE;
318 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
320 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
321 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
322 env->cpuid_ext_features |= i;
324 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
326 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
328 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
334 #ifdef CONFIG_KVM_PARA
335 /* Paravirtualization CPUIDs */
336 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
337 c = &cpuid_data.entries[cpuid_i++];
338 memset(c, 0, sizeof(*c));
339 c->function = KVM_CPUID_SIGNATURE;
341 c->ebx = signature[0];
342 c->ecx = signature[1];
343 c->edx = signature[2];
345 c = &cpuid_data.entries[cpuid_i++];
346 memset(c, 0, sizeof(*c));
347 c->function = KVM_CPUID_FEATURES;
348 c->eax = env->cpuid_kvm_features & get_para_features(env);
351 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
353 for (i = 0; i <= limit; i++) {
354 c = &cpuid_data.entries[cpuid_i++];
358 /* Keep reading function 2 till all the input is received */
362 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
363 KVM_CPUID_FLAG_STATE_READ_NEXT;
364 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
365 times = c->eax & 0xff;
367 for (j = 1; j < times; ++j) {
368 c = &cpuid_data.entries[cpuid_i++];
370 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
371 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
380 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
382 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
384 if (i == 4 && c->eax == 0)
386 if (i == 0xb && !(c->ecx & 0xff00))
388 if (i == 0xd && c->eax == 0)
391 c = &cpuid_data.entries[cpuid_i++];
397 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
401 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
403 for (i = 0x80000000; i <= limit; i++) {
404 c = &cpuid_data.entries[cpuid_i++];
408 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
411 cpuid_data.cpuid.nent = cpuid_i;
414 if (((env->cpuid_version >> 8)&0xF) >= 6
415 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
416 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
420 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
421 perror("kvm_get_mce_cap_supported FAILED");
423 if (banks > MCE_BANKS_DEF)
424 banks = MCE_BANKS_DEF;
425 mcg_cap &= MCE_CAP_DEF;
427 if (kvm_setup_mce(env, &mcg_cap))
428 perror("kvm_setup_mce FAILED");
430 env->mcg_cap = mcg_cap;
435 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
438 void kvm_arch_reset_vcpu(CPUState *env)
440 env->exception_injected = -1;
441 env->interrupt_injected = -1;
442 env->nmi_injected = 0;
443 env->nmi_pending = 0;
444 if (kvm_irqchip_in_kernel()) {
445 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
446 KVM_MP_STATE_UNINITIALIZED;
448 env->mp_state = KVM_MP_STATE_RUNNABLE;
453 int has_msr_hsave_pa;
455 static void kvm_supported_msrs(CPUState *env)
457 static int kvm_supported_msrs;
461 if (kvm_supported_msrs == 0) {
462 struct kvm_msr_list msr_list, *kvm_msr_list;
464 kvm_supported_msrs = -1;
466 /* Obtain MSR list from KVM. These are the MSRs that we must
469 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
470 if (ret < 0 && ret != -E2BIG) {
473 /* Old kernel modules had a bug and could write beyond the provided
474 memory. Allocate at least a safe amount of 1K. */
475 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
477 sizeof(msr_list.indices[0])));
479 kvm_msr_list->nmsrs = msr_list.nmsrs;
480 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
484 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
485 if (kvm_msr_list->indices[i] == MSR_STAR) {
489 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
490 has_msr_hsave_pa = 1;
502 static int kvm_has_msr_hsave_pa(CPUState *env)
504 kvm_supported_msrs(env);
505 return has_msr_hsave_pa;
508 static int kvm_has_msr_star(CPUState *env)
510 kvm_supported_msrs(env);
514 static int kvm_init_identity_map_page(KVMState *s)
516 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
518 uint64_t addr = 0xfffbc000;
520 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
524 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
526 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
533 int kvm_arch_init(KVMState *s, int smp_cpus)
537 struct utsname utsname;
540 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
542 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
543 * directly. In order to use vm86 mode, a TSS is needed. Since this
544 * must be part of guest physical memory, we need to allocate it. Older
545 * versions of KVM just assumed that it would be at the end of physical
546 * memory but that doesn't work with more than 4GB of memory. We simply
547 * refuse to work with those older versions of KVM. */
548 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
550 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
554 /* this address is 3 pages before the bios, and the bios should present
555 * as unavaible memory. FIXME, need to ensure the e820 map deals with
559 * Tell fw_cfg to notify the BIOS to reserve the range.
561 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
562 perror("e820_add_entry() table is full");
565 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
570 return kvm_init_identity_map_page(s);
573 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
575 lhs->selector = rhs->selector;
576 lhs->base = rhs->base;
577 lhs->limit = rhs->limit;
589 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
591 unsigned flags = rhs->flags;
592 lhs->selector = rhs->selector;
593 lhs->base = rhs->base;
594 lhs->limit = rhs->limit;
595 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
596 lhs->present = (flags & DESC_P_MASK) != 0;
597 lhs->dpl = rhs->selector & 3;
598 lhs->db = (flags >> DESC_B_SHIFT) & 1;
599 lhs->s = (flags & DESC_S_MASK) != 0;
600 lhs->l = (flags >> DESC_L_SHIFT) & 1;
601 lhs->g = (flags & DESC_G_MASK) != 0;
602 lhs->avl = (flags & DESC_AVL_MASK) != 0;
606 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
608 lhs->selector = rhs->selector;
609 lhs->base = rhs->base;
610 lhs->limit = rhs->limit;
612 (rhs->type << DESC_TYPE_SHIFT)
613 | (rhs->present * DESC_P_MASK)
614 | (rhs->dpl << DESC_DPL_SHIFT)
615 | (rhs->db << DESC_B_SHIFT)
616 | (rhs->s * DESC_S_MASK)
617 | (rhs->l << DESC_L_SHIFT)
618 | (rhs->g * DESC_G_MASK)
619 | (rhs->avl * DESC_AVL_MASK);
622 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
625 *kvm_reg = *qemu_reg;
627 *qemu_reg = *kvm_reg;
630 static int kvm_getput_regs(CPUState *env, int set)
632 struct kvm_regs regs;
636 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
641 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
642 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
643 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
644 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
645 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
646 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
647 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
648 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
650 kvm_getput_reg(®s.r8, &env->regs[8], set);
651 kvm_getput_reg(®s.r9, &env->regs[9], set);
652 kvm_getput_reg(®s.r10, &env->regs[10], set);
653 kvm_getput_reg(®s.r11, &env->regs[11], set);
654 kvm_getput_reg(®s.r12, &env->regs[12], set);
655 kvm_getput_reg(®s.r13, &env->regs[13], set);
656 kvm_getput_reg(®s.r14, &env->regs[14], set);
657 kvm_getput_reg(®s.r15, &env->regs[15], set);
660 kvm_getput_reg(®s.rflags, &env->eflags, set);
661 kvm_getput_reg(®s.rip, &env->eip, set);
664 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
669 static int kvm_put_fpu(CPUState *env)
674 memset(&fpu, 0, sizeof fpu);
675 fpu.fsw = env->fpus & ~(7 << 11);
676 fpu.fsw |= (env->fpstt & 7) << 11;
678 for (i = 0; i < 8; ++i)
679 fpu.ftwx |= (!env->fptags[i]) << i;
680 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
681 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
682 fpu.mxcsr = env->mxcsr;
684 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
688 #define XSAVE_CWD_RIP 2
689 #define XSAVE_CWD_RDP 4
690 #define XSAVE_MXCSR 6
691 #define XSAVE_ST_SPACE 8
692 #define XSAVE_XMM_SPACE 40
693 #define XSAVE_XSTATE_BV 128
694 #define XSAVE_YMMH_SPACE 144
697 static int kvm_put_xsave(CPUState *env)
701 struct kvm_xsave* xsave;
702 uint16_t cwd, swd, twd, fop;
704 if (!kvm_has_xsave())
705 return kvm_put_fpu(env);
707 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
708 memset(xsave, 0, sizeof(struct kvm_xsave));
709 cwd = swd = twd = fop = 0;
710 swd = env->fpus & ~(7 << 11);
711 swd |= (env->fpstt & 7) << 11;
713 for (i = 0; i < 8; ++i)
714 twd |= (!env->fptags[i]) << i;
715 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
716 xsave->region[1] = (uint32_t)(fop << 16) + twd;
717 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
719 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
720 sizeof env->xmm_regs);
721 xsave->region[XSAVE_MXCSR] = env->mxcsr;
722 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
723 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
724 sizeof env->ymmh_regs);
725 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
729 return kvm_put_fpu(env);
733 static int kvm_put_xcrs(CPUState *env)
736 struct kvm_xcrs xcrs;
743 xcrs.xcrs[0].xcr = 0;
744 xcrs.xcrs[0].value = env->xcr0;
745 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
751 static int kvm_put_sregs(CPUState *env)
753 struct kvm_sregs sregs;
755 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
756 if (env->interrupt_injected >= 0) {
757 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
758 (uint64_t)1 << (env->interrupt_injected % 64);
761 if ((env->eflags & VM_MASK)) {
762 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
763 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
764 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
765 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
766 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
767 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
769 set_seg(&sregs.cs, &env->segs[R_CS]);
770 set_seg(&sregs.ds, &env->segs[R_DS]);
771 set_seg(&sregs.es, &env->segs[R_ES]);
772 set_seg(&sregs.fs, &env->segs[R_FS]);
773 set_seg(&sregs.gs, &env->segs[R_GS]);
774 set_seg(&sregs.ss, &env->segs[R_SS]);
776 if (env->cr[0] & CR0_PE_MASK) {
777 /* force ss cpl to cs cpl */
778 sregs.ss.selector = (sregs.ss.selector & ~3) |
779 (sregs.cs.selector & 3);
780 sregs.ss.dpl = sregs.ss.selector & 3;
784 set_seg(&sregs.tr, &env->tr);
785 set_seg(&sregs.ldt, &env->ldt);
787 sregs.idt.limit = env->idt.limit;
788 sregs.idt.base = env->idt.base;
789 sregs.gdt.limit = env->gdt.limit;
790 sregs.gdt.base = env->gdt.base;
792 sregs.cr0 = env->cr[0];
793 sregs.cr2 = env->cr[2];
794 sregs.cr3 = env->cr[3];
795 sregs.cr4 = env->cr[4];
797 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
798 sregs.apic_base = cpu_get_apic_base(env->apic_state);
800 sregs.efer = env->efer;
802 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
805 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
806 uint32_t index, uint64_t value)
808 entry->index = index;
812 static int kvm_put_msrs(CPUState *env, int level)
815 struct kvm_msrs info;
816 struct kvm_msr_entry entries[100];
818 struct kvm_msr_entry *msrs = msr_data.entries;
821 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
822 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
823 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
824 if (kvm_has_msr_star(env))
825 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
826 if (kvm_has_msr_hsave_pa(env))
827 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
829 if (lm_capable_kernel) {
830 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
831 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
832 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
833 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
836 if (level == KVM_PUT_FULL_STATE) {
838 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
839 * writeback. Until this is fixed, we only write the offset to SMP
840 * guests after migration, desynchronizing the VCPUs, but avoiding
841 * huge jump-backs that would occur without any writeback at all.
843 if (smp_cpus == 1 || env->tsc != 0) {
844 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
846 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
847 env->system_time_msr);
848 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
849 #ifdef KVM_CAP_ASYNC_PF
850 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
856 if (level == KVM_PUT_RESET_STATE)
857 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
858 else if (level == KVM_PUT_FULL_STATE) {
859 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
860 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
861 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
862 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
867 msr_data.info.nmsrs = n;
869 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
874 static int kvm_get_fpu(CPUState *env)
879 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
883 env->fpstt = (fpu.fsw >> 11) & 7;
886 for (i = 0; i < 8; ++i)
887 env->fptags[i] = !((fpu.ftwx >> i) & 1);
888 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
889 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
890 env->mxcsr = fpu.mxcsr;
895 static int kvm_get_xsave(CPUState *env)
898 struct kvm_xsave* xsave;
900 uint16_t cwd, swd, twd, fop;
902 if (!kvm_has_xsave())
903 return kvm_get_fpu(env);
905 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
906 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
912 cwd = (uint16_t)xsave->region[0];
913 swd = (uint16_t)(xsave->region[0] >> 16);
914 twd = (uint16_t)xsave->region[1];
915 fop = (uint16_t)(xsave->region[1] >> 16);
916 env->fpstt = (swd >> 11) & 7;
919 for (i = 0; i < 8; ++i)
920 env->fptags[i] = !((twd >> i) & 1);
921 env->mxcsr = xsave->region[XSAVE_MXCSR];
922 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
924 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
925 sizeof env->xmm_regs);
926 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
927 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
928 sizeof env->ymmh_regs);
932 return kvm_get_fpu(env);
936 static int kvm_get_xcrs(CPUState *env)
940 struct kvm_xcrs xcrs;
945 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
949 for (i = 0; i < xcrs.nr_xcrs; i++)
950 /* Only support xcr0 now */
951 if (xcrs.xcrs[0].xcr == 0) {
952 env->xcr0 = xcrs.xcrs[0].value;
961 static int kvm_get_sregs(CPUState *env)
963 struct kvm_sregs sregs;
967 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
971 /* There can only be one pending IRQ set in the bitmap at a time, so try
972 to find it and save its number instead (-1 for none). */
973 env->interrupt_injected = -1;
974 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
975 if (sregs.interrupt_bitmap[i]) {
976 bit = ctz64(sregs.interrupt_bitmap[i]);
977 env->interrupt_injected = i * 64 + bit;
982 get_seg(&env->segs[R_CS], &sregs.cs);
983 get_seg(&env->segs[R_DS], &sregs.ds);
984 get_seg(&env->segs[R_ES], &sregs.es);
985 get_seg(&env->segs[R_FS], &sregs.fs);
986 get_seg(&env->segs[R_GS], &sregs.gs);
987 get_seg(&env->segs[R_SS], &sregs.ss);
989 get_seg(&env->tr, &sregs.tr);
990 get_seg(&env->ldt, &sregs.ldt);
992 env->idt.limit = sregs.idt.limit;
993 env->idt.base = sregs.idt.base;
994 env->gdt.limit = sregs.gdt.limit;
995 env->gdt.base = sregs.gdt.base;
997 env->cr[0] = sregs.cr0;
998 env->cr[2] = sregs.cr2;
999 env->cr[3] = sregs.cr3;
1000 env->cr[4] = sregs.cr4;
1002 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1004 env->efer = sregs.efer;
1005 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1007 #define HFLAG_COPY_MASK ~( \
1008 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1009 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1010 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1011 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1015 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1016 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1017 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1018 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1019 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1020 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1021 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1023 if (env->efer & MSR_EFER_LMA) {
1024 hflags |= HF_LMA_MASK;
1027 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1028 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1030 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1031 (DESC_B_SHIFT - HF_CS32_SHIFT);
1032 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1033 (DESC_B_SHIFT - HF_SS32_SHIFT);
1034 if (!(env->cr[0] & CR0_PE_MASK) ||
1035 (env->eflags & VM_MASK) ||
1036 !(hflags & HF_CS32_MASK)) {
1037 hflags |= HF_ADDSEG_MASK;
1039 hflags |= ((env->segs[R_DS].base |
1040 env->segs[R_ES].base |
1041 env->segs[R_SS].base) != 0) <<
1045 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1050 static int kvm_get_msrs(CPUState *env)
1053 struct kvm_msrs info;
1054 struct kvm_msr_entry entries[100];
1056 struct kvm_msr_entry *msrs = msr_data.entries;
1060 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1061 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1062 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1063 if (kvm_has_msr_star(env))
1064 msrs[n++].index = MSR_STAR;
1065 if (kvm_has_msr_hsave_pa(env))
1066 msrs[n++].index = MSR_VM_HSAVE_PA;
1067 msrs[n++].index = MSR_IA32_TSC;
1068 #ifdef TARGET_X86_64
1069 if (lm_capable_kernel) {
1070 msrs[n++].index = MSR_CSTAR;
1071 msrs[n++].index = MSR_KERNELGSBASE;
1072 msrs[n++].index = MSR_FMASK;
1073 msrs[n++].index = MSR_LSTAR;
1076 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1077 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1078 #ifdef KVM_CAP_ASYNC_PF
1079 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1084 msrs[n++].index = MSR_MCG_STATUS;
1085 msrs[n++].index = MSR_MCG_CTL;
1086 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1087 msrs[n++].index = MSR_MC0_CTL + i;
1091 msr_data.info.nmsrs = n;
1092 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1096 for (i = 0; i < ret; i++) {
1097 switch (msrs[i].index) {
1098 case MSR_IA32_SYSENTER_CS:
1099 env->sysenter_cs = msrs[i].data;
1101 case MSR_IA32_SYSENTER_ESP:
1102 env->sysenter_esp = msrs[i].data;
1104 case MSR_IA32_SYSENTER_EIP:
1105 env->sysenter_eip = msrs[i].data;
1108 env->star = msrs[i].data;
1110 #ifdef TARGET_X86_64
1112 env->cstar = msrs[i].data;
1114 case MSR_KERNELGSBASE:
1115 env->kernelgsbase = msrs[i].data;
1118 env->fmask = msrs[i].data;
1121 env->lstar = msrs[i].data;
1125 env->tsc = msrs[i].data;
1127 case MSR_VM_HSAVE_PA:
1128 env->vm_hsave = msrs[i].data;
1130 case MSR_KVM_SYSTEM_TIME:
1131 env->system_time_msr = msrs[i].data;
1133 case MSR_KVM_WALL_CLOCK:
1134 env->wall_clock_msr = msrs[i].data;
1137 case MSR_MCG_STATUS:
1138 env->mcg_status = msrs[i].data;
1141 env->mcg_ctl = msrs[i].data;
1146 if (msrs[i].index >= MSR_MC0_CTL &&
1147 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1148 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1152 #ifdef KVM_CAP_ASYNC_PF
1153 case MSR_KVM_ASYNC_PF_EN:
1154 env->async_pf_en_msr = msrs[i].data;
1163 static int kvm_put_mp_state(CPUState *env)
1165 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1167 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1170 static int kvm_get_mp_state(CPUState *env)
1172 struct kvm_mp_state mp_state;
1175 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1179 env->mp_state = mp_state.mp_state;
1183 static int kvm_put_vcpu_events(CPUState *env, int level)
1185 #ifdef KVM_CAP_VCPU_EVENTS
1186 struct kvm_vcpu_events events;
1188 if (!kvm_has_vcpu_events()) {
1192 events.exception.injected = (env->exception_injected >= 0);
1193 events.exception.nr = env->exception_injected;
1194 events.exception.has_error_code = env->has_error_code;
1195 events.exception.error_code = env->error_code;
1197 events.interrupt.injected = (env->interrupt_injected >= 0);
1198 events.interrupt.nr = env->interrupt_injected;
1199 events.interrupt.soft = env->soft_interrupt;
1201 events.nmi.injected = env->nmi_injected;
1202 events.nmi.pending = env->nmi_pending;
1203 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1205 events.sipi_vector = env->sipi_vector;
1208 if (level >= KVM_PUT_RESET_STATE) {
1210 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1213 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1219 static int kvm_get_vcpu_events(CPUState *env)
1221 #ifdef KVM_CAP_VCPU_EVENTS
1222 struct kvm_vcpu_events events;
1225 if (!kvm_has_vcpu_events()) {
1229 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1233 env->exception_injected =
1234 events.exception.injected ? events.exception.nr : -1;
1235 env->has_error_code = events.exception.has_error_code;
1236 env->error_code = events.exception.error_code;
1238 env->interrupt_injected =
1239 events.interrupt.injected ? events.interrupt.nr : -1;
1240 env->soft_interrupt = events.interrupt.soft;
1242 env->nmi_injected = events.nmi.injected;
1243 env->nmi_pending = events.nmi.pending;
1244 if (events.nmi.masked) {
1245 env->hflags2 |= HF2_NMI_MASK;
1247 env->hflags2 &= ~HF2_NMI_MASK;
1250 env->sipi_vector = events.sipi_vector;
1256 static int kvm_guest_debug_workarounds(CPUState *env)
1259 #ifdef KVM_CAP_SET_GUEST_DEBUG
1260 unsigned long reinject_trap = 0;
1262 if (!kvm_has_vcpu_events()) {
1263 if (env->exception_injected == 1) {
1264 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1265 } else if (env->exception_injected == 3) {
1266 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1268 env->exception_injected = -1;
1272 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1273 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1274 * by updating the debug state once again if single-stepping is on.
1275 * Another reason to call kvm_update_guest_debug here is a pending debug
1276 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1277 * reinject them via SET_GUEST_DEBUG.
1279 if (reinject_trap ||
1280 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1281 ret = kvm_update_guest_debug(env, reinject_trap);
1283 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1287 static int kvm_put_debugregs(CPUState *env)
1289 #ifdef KVM_CAP_DEBUGREGS
1290 struct kvm_debugregs dbgregs;
1293 if (!kvm_has_debugregs()) {
1297 for (i = 0; i < 4; i++) {
1298 dbgregs.db[i] = env->dr[i];
1300 dbgregs.dr6 = env->dr[6];
1301 dbgregs.dr7 = env->dr[7];
1304 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1310 static int kvm_get_debugregs(CPUState *env)
1312 #ifdef KVM_CAP_DEBUGREGS
1313 struct kvm_debugregs dbgregs;
1316 if (!kvm_has_debugregs()) {
1320 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1324 for (i = 0; i < 4; i++) {
1325 env->dr[i] = dbgregs.db[i];
1327 env->dr[4] = env->dr[6] = dbgregs.dr6;
1328 env->dr[5] = env->dr[7] = dbgregs.dr7;
1334 int kvm_arch_put_registers(CPUState *env, int level)
1338 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1340 ret = kvm_getput_regs(env, 1);
1344 ret = kvm_put_xsave(env);
1348 ret = kvm_put_xcrs(env);
1352 ret = kvm_put_sregs(env);
1356 ret = kvm_put_msrs(env, level);
1360 if (level >= KVM_PUT_RESET_STATE) {
1361 ret = kvm_put_mp_state(env);
1366 ret = kvm_put_vcpu_events(env, level);
1371 ret = kvm_guest_debug_workarounds(env);
1375 ret = kvm_put_debugregs(env);
1382 int kvm_arch_get_registers(CPUState *env)
1386 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1388 ret = kvm_getput_regs(env, 0);
1392 ret = kvm_get_xsave(env);
1396 ret = kvm_get_xcrs(env);
1400 ret = kvm_get_sregs(env);
1404 ret = kvm_get_msrs(env);
1408 ret = kvm_get_mp_state(env);
1412 ret = kvm_get_vcpu_events(env);
1416 ret = kvm_get_debugregs(env);
1423 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1426 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1427 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1428 DPRINTF("injected NMI\n");
1429 kvm_vcpu_ioctl(env, KVM_NMI);
1432 /* Try to inject an interrupt if the guest can accept it */
1433 if (run->ready_for_interrupt_injection &&
1434 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1435 (env->eflags & IF_MASK)) {
1438 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1439 irq = cpu_get_pic_interrupt(env);
1441 struct kvm_interrupt intr;
1444 DPRINTF("injected interrupt %d\n", irq);
1445 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1449 /* If we have an interrupt but the guest is not ready to receive an
1450 * interrupt, request an interrupt window exit. This will
1451 * cause a return to userspace as soon as the guest is ready to
1452 * receive interrupts. */
1453 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1454 run->request_interrupt_window = 1;
1456 run->request_interrupt_window = 0;
1458 DPRINTF("setting tpr\n");
1459 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1464 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1467 env->eflags |= IF_MASK;
1469 env->eflags &= ~IF_MASK;
1471 cpu_set_apic_tpr(env->apic_state, run->cr8);
1472 cpu_set_apic_base(env->apic_state, run->apic_base);
1477 int kvm_arch_process_irqchip_events(CPUState *env)
1479 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1480 kvm_cpu_synchronize_state(env);
1482 env->exception_index = EXCP_HALTED;
1485 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1486 kvm_cpu_synchronize_state(env);
1493 static int kvm_handle_halt(CPUState *env)
1495 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1496 (env->eflags & IF_MASK)) &&
1497 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1499 env->exception_index = EXCP_HLT;
1506 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1510 switch (run->exit_reason) {
1512 DPRINTF("handle_hlt\n");
1513 ret = kvm_handle_halt(env);
1520 #ifdef KVM_CAP_SET_GUEST_DEBUG
1521 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1523 static const uint8_t int3 = 0xcc;
1525 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1526 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1531 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1535 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1536 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1547 static int nb_hw_breakpoint;
1549 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1553 for (n = 0; n < nb_hw_breakpoint; n++)
1554 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1555 (hw_breakpoint[n].len == len || len == -1))
1560 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1561 target_ulong len, int type)
1564 case GDB_BREAKPOINT_HW:
1567 case GDB_WATCHPOINT_WRITE:
1568 case GDB_WATCHPOINT_ACCESS:
1575 if (addr & (len - 1))
1586 if (nb_hw_breakpoint == 4)
1589 if (find_hw_breakpoint(addr, len, type) >= 0)
1592 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1593 hw_breakpoint[nb_hw_breakpoint].len = len;
1594 hw_breakpoint[nb_hw_breakpoint].type = type;
1600 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1601 target_ulong len, int type)
1605 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1610 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1615 void kvm_arch_remove_all_hw_breakpoints(void)
1617 nb_hw_breakpoint = 0;
1620 static CPUWatchpoint hw_watchpoint;
1622 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1627 if (arch_info->exception == 1) {
1628 if (arch_info->dr6 & (1 << 14)) {
1629 if (cpu_single_env->singlestep_enabled)
1632 for (n = 0; n < 4; n++)
1633 if (arch_info->dr6 & (1 << n))
1634 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1640 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1641 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1642 hw_watchpoint.flags = BP_MEM_WRITE;
1646 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1647 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1648 hw_watchpoint.flags = BP_MEM_ACCESS;
1652 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1656 cpu_synchronize_state(cpu_single_env);
1657 assert(cpu_single_env->exception_injected == -1);
1659 cpu_single_env->exception_injected = arch_info->exception;
1660 cpu_single_env->has_error_code = 0;
1666 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1668 const uint8_t type_code[] = {
1669 [GDB_BREAKPOINT_HW] = 0x0,
1670 [GDB_WATCHPOINT_WRITE] = 0x1,
1671 [GDB_WATCHPOINT_ACCESS] = 0x3
1673 const uint8_t len_code[] = {
1674 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1678 if (kvm_sw_breakpoints_active(env))
1679 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1681 if (nb_hw_breakpoint > 0) {
1682 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1683 dbg->arch.debugreg[7] = 0x0600;
1684 for (n = 0; n < nb_hw_breakpoint; n++) {
1685 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1686 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1687 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1688 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1691 /* Legal xcr0 for loading */
1694 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1696 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1698 return !(env->cr[0] & CR0_PE_MASK) ||
1699 ((env->segs[R_CS].selector & 3) != 3);
1702 static void hardware_memory_error(void)
1704 fprintf(stderr, "Hardware memory error!\n");
1709 static void kvm_mce_broadcast_rest(CPUState *env)
1713 /* Broadcast MCA signal for processor version 06H_EH and above */
1714 if (cpu_x86_support_mca_broadcast(env)) {
1715 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1719 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1720 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0,
1726 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1728 struct kvm_x86_mce mce = {
1730 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1731 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1732 | MCI_STATUS_AR | 0x134,
1733 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1735 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1739 r = kvm_set_mce(env, &mce);
1741 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1744 kvm_mce_broadcast_rest(env);
1747 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1749 struct kvm_x86_mce mce = {
1751 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1752 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1754 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1756 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1760 r = kvm_set_mce(env, &mce);
1762 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1765 kvm_mce_broadcast_rest(env);
1768 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1772 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1773 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1775 kvm_inject_x86_mce(env, 9, status,
1776 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1777 (MCM_ADDR_PHYS << 6) | 0xc, ABORT_ON_ERROR);
1779 kvm_mce_broadcast_rest(env);
1784 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1786 #if defined(KVM_CAP_MCE)
1788 ram_addr_t ram_addr;
1789 target_phys_addr_t paddr;
1791 if ((env->mcg_cap & MCG_SER_P) && addr
1792 && (code == BUS_MCEERR_AR
1793 || code == BUS_MCEERR_AO)) {
1794 vaddr = (void *)addr;
1795 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1796 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1797 fprintf(stderr, "Hardware memory error for memory used by "
1798 "QEMU itself instead of guest system!\n");
1799 /* Hope we are lucky for AO MCE */
1800 if (code == BUS_MCEERR_AO) {
1803 hardware_memory_error();
1807 if (code == BUS_MCEERR_AR) {
1808 /* Fake an Intel architectural Data Load SRAR UCR */
1809 kvm_mce_inj_srar_dataload(env, paddr);
1812 * If there is an MCE excpetion being processed, ignore
1815 if (!kvm_mce_in_progress(env)) {
1816 /* Fake an Intel architectural Memory scrubbing UCR */
1817 kvm_mce_inj_srao_memscrub(env, paddr);
1823 if (code == BUS_MCEERR_AO) {
1825 } else if (code == BUS_MCEERR_AR) {
1826 hardware_memory_error();
1834 int kvm_on_sigbus(int code, void *addr)
1836 #if defined(KVM_CAP_MCE)
1837 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1839 ram_addr_t ram_addr;
1840 target_phys_addr_t paddr;
1842 /* Hope we are lucky for AO MCE */
1844 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1845 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1846 fprintf(stderr, "Hardware memory error for memory used by "
1847 "QEMU itself instead of guest system!: %p\n", addr);
1850 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1854 if (code == BUS_MCEERR_AO) {
1856 } else if (code == BUS_MCEERR_AR) {
1857 hardware_memory_error();