2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
30 # define TARGET_LONG_BITS 32
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
60 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */
61 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
63 #define ARMV7M_EXCP_RESET 1
64 #define ARMV7M_EXCP_NMI 2
65 #define ARMV7M_EXCP_HARD 3
66 #define ARMV7M_EXCP_MEM 4
67 #define ARMV7M_EXCP_BUS 5
68 #define ARMV7M_EXCP_USAGE 6
69 #define ARMV7M_EXCP_SECURE 7
70 #define ARMV7M_EXCP_SVC 11
71 #define ARMV7M_EXCP_DEBUG 12
72 #define ARMV7M_EXCP_PENDSV 14
73 #define ARMV7M_EXCP_SYSTICK 15
75 /* For M profile, some registers are banked secure vs non-secure;
76 * these are represented as a 2-element array where the first element
77 * is the non-secure copy and the second is the secure copy.
78 * When the CPU does not have implement the security extension then
79 * only the first element is used.
80 * This means that the copy for the current security state can be
81 * accessed via env->registerfield[env->v7m.secure] (whether the security
82 * extension is implemented or not).
90 /* ARM-specific interrupt pending bits. */
91 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
92 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
93 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
95 /* The usual mapping for an AArch64 system register to its AArch32
96 * counterpart is for the 32 bit world to have access to the lower
97 * half only (with writes leaving the upper half untouched). It's
98 * therefore useful to be able to pass TCG the offset of the least
99 * significant half of a uint64_t struct member.
101 #ifdef HOST_WORDS_BIGENDIAN
102 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
103 #define offsetofhigh32(S, M) offsetof(S, M)
105 #define offsetoflow32(S, M) offsetof(S, M)
106 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
109 /* Meanings of the ARMCPU object's four inbound GPIO lines */
110 #define ARM_CPU_IRQ 0
111 #define ARM_CPU_FIQ 1
112 #define ARM_CPU_VIRQ 2
113 #define ARM_CPU_VFIQ 3
115 #define NB_MMU_MODES 8
116 /* ARM-specific extra insn start words:
117 * 1: Conditional execution bits
118 * 2: Partial exception syndrome for data aborts
120 #define TARGET_INSN_START_EXTRA_WORDS 2
122 /* The 2nd extra word holding syndrome info for data aborts does not use
123 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
124 * help the sleb128 encoder do a better job.
125 * When restoring the CPU state, we shift it back up.
127 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
128 #define ARM_INSN_START_WORD2_SHIFT 14
130 /* We currently assume float and double are IEEE single and double
131 precision respectively.
132 Doing runtime conversions is tricky because VFP registers may contain
133 integer values (eg. as the result of a FTOSI instruction).
134 s<2n> maps to the least significant half of d<n>
135 s<2n+1> maps to the most significant half of d<n>
140 * @desc: Contains the XML descriptions.
141 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
142 * @cpregs_keys: Array that contains the corresponding Key of
143 * a given cpreg with the same order of the cpreg in the XML description.
145 typedef struct DynamicGDBXMLInfo {
148 uint32_t *cpregs_keys;
151 /* CPU state for each instance of a generic timer (in cp15 c14) */
152 typedef struct ARMGenericTimer {
153 uint64_t cval; /* Timer CompareValue register */
154 uint64_t ctl; /* Timer Control register */
157 #define GTIMER_PHYS 0
158 #define GTIMER_VIRT 1
161 #define NUM_GTIMERS 4
169 /* Define a maximum sized vector register.
170 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
171 * For 64-bit, this is a 2048-bit SVE register.
173 * Note that the mapping between S, D, and Q views of the register bank
174 * differs between AArch64 and AArch32.
176 * Qn = regs[n].d[1]:regs[n].d[0]
177 * Dn = regs[n / 2].d[n & 1]
178 * Sn = regs[n / 4].d[n % 4 / 2],
179 * bits 31..0 for even n, and bits 63..32 for odd n
180 * (and regs[16] to regs[31] are inaccessible)
183 * Qn = regs[n].d[1]:regs[n].d[0]
185 * Sn = regs[n].d[0] bits 31..0
186 * Hn = regs[n].d[0] bits 15..0
188 * This corresponds to the architecturally defined mapping between
189 * the two execution states, and means we do not need to explicitly
190 * map these registers when changing states.
192 * Align the data for use with TCG host vector operations.
195 #ifdef TARGET_AARCH64
196 # define ARM_MAX_VQ 16
198 # define ARM_MAX_VQ 1
201 typedef struct ARMVectorReg {
202 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
205 #ifdef TARGET_AARCH64
206 /* In AArch32 mode, predicate registers do not exist at all. */
207 typedef struct ARMPredicateReg {
208 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
211 /* In AArch32 mode, PAC keys do not exist at all. */
212 typedef struct ARMPACKey {
218 typedef struct CPUARMState {
219 /* Regs for current mode. */
222 /* 32/64 switch only happens when taking and returning from
223 * exceptions so the overlap semantics are taken care of then
224 * instead of having a complicated union.
226 /* Regs for A64 mode. */
229 /* PSTATE isn't an architectural register for ARMv8. However, it is
230 * convenient for us to assemble the underlying state into a 32 bit format
231 * identical to the architectural format used for the SPSR. (This is also
232 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
233 * 'pstate' register are.) Of the PSTATE bits:
234 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
235 * semantics as for AArch32, as described in the comments on each field)
236 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
237 * DAIF (exception masks) are kept in env->daif
238 * BTYPE is kept in env->btype
239 * all other bits are stored in their correct places in env->pstate
242 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
244 /* Frequently accessed CPSR bits are stored separately for efficiency.
245 This contains all the other bits. Use cpsr_{read,write} to access
247 uint32_t uncached_cpsr;
250 /* Banked registers. */
251 uint64_t banked_spsr[8];
252 uint32_t banked_r13[8];
253 uint32_t banked_r14[8];
255 /* These hold r8-r12. */
256 uint32_t usr_regs[5];
257 uint32_t fiq_regs[5];
259 /* cpsr flag cache for faster execution */
260 uint32_t CF; /* 0 or 1 */
261 uint32_t VF; /* V is the bit 31. All other bits are undefined */
262 uint32_t NF; /* N is bit 31. All other bits are undefined. */
263 uint32_t ZF; /* Z set if zero. */
264 uint32_t QF; /* 0 or 1 */
265 uint32_t GE; /* cpsr[19:16] */
266 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
267 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
268 uint32_t btype; /* BTI branch type. spsr[11:10]. */
269 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
271 uint64_t elr_el[4]; /* AArch64 exception link regs */
272 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
274 /* System control coprocessor (cp15) */
277 union { /* Cache size selection */
279 uint64_t _unused_csselr0;
281 uint64_t _unused_csselr1;
284 uint64_t csselr_el[4];
286 union { /* System control register. */
288 uint64_t _unused_sctlr;
293 uint64_t sctlr_el[4];
295 uint64_t cpacr_el1; /* Architectural feature access control register */
296 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
297 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
298 uint64_t sder; /* Secure debug enable register. */
299 uint32_t nsacr; /* Non-secure access control register. */
300 union { /* MMU translation table base 0. */
302 uint64_t _unused_ttbr0_0;
304 uint64_t _unused_ttbr0_1;
307 uint64_t ttbr0_el[4];
309 union { /* MMU translation table base 1. */
311 uint64_t _unused_ttbr1_0;
313 uint64_t _unused_ttbr1_1;
316 uint64_t ttbr1_el[4];
318 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
319 /* MMU translation table base control. */
321 TCR vtcr_el2; /* Virtualization Translation Control. */
322 uint32_t c2_data; /* MPU data cacheable bits. */
323 uint32_t c2_insn; /* MPU instruction cacheable bits. */
324 union { /* MMU domain access control register
325 * MPU write buffer control.
335 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
336 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
337 uint64_t hcr_el2; /* Hypervisor configuration register */
338 uint64_t scr_el3; /* Secure configuration register. */
339 union { /* Fault status registers. */
350 uint64_t _unused_dfsr;
357 uint32_t c6_region[8]; /* MPU base/size registers. */
358 union { /* Fault address registers. */
360 uint64_t _unused_far0;
361 #ifdef HOST_WORDS_BIGENDIAN
372 uint64_t _unused_far3;
378 union { /* Translation result. */
380 uint64_t _unused_par_0;
382 uint64_t _unused_par_1;
388 uint32_t c9_insn; /* Cache lockdown registers. */
390 uint64_t c9_pmcr; /* performance monitor control register */
391 uint64_t c9_pmcnten; /* perf monitor counter enables */
392 uint64_t c9_pmovsr; /* perf monitor overflow status */
393 uint64_t c9_pmuserenr; /* perf monitor user enable */
394 uint64_t c9_pmselr; /* perf monitor counter selection register */
395 uint64_t c9_pminten; /* perf monitor interrupt enables */
396 union { /* Memory attribute redirection */
398 #ifdef HOST_WORDS_BIGENDIAN
399 uint64_t _unused_mair_0;
402 uint64_t _unused_mair_1;
406 uint64_t _unused_mair_0;
409 uint64_t _unused_mair_1;
416 union { /* vector base address register */
418 uint64_t _unused_vbar;
425 uint32_t mvbar; /* (monitor) vector base address register */
426 struct { /* FCSE PID. */
430 union { /* Context ID. */
432 uint64_t _unused_contextidr_0;
433 uint64_t contextidr_ns;
434 uint64_t _unused_contextidr_1;
435 uint64_t contextidr_s;
437 uint64_t contextidr_el[4];
439 union { /* User RW Thread register. */
441 uint64_t tpidrurw_ns;
442 uint64_t tpidrprw_ns;
446 uint64_t tpidr_el[4];
448 /* The secure banks of these registers don't map anywhere */
453 union { /* User RO Thread register. */
454 uint64_t tpidruro_ns;
455 uint64_t tpidrro_el[1];
457 uint64_t c14_cntfrq; /* Counter Frequency register */
458 uint64_t c14_cntkctl; /* Timer Control register */
459 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
460 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
461 ARMGenericTimer c14_timer[NUM_GTIMERS];
462 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
463 uint32_t c15_ticonfig; /* TI925T configuration byte. */
464 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
465 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
466 uint32_t c15_threadid; /* TI debugger thread-ID. */
467 uint32_t c15_config_base_address; /* SCU base address. */
468 uint32_t c15_diagnostic; /* diagnostic register */
469 uint32_t c15_power_diagnostic;
470 uint32_t c15_power_control; /* power control */
471 uint64_t dbgbvr[16]; /* breakpoint value registers */
472 uint64_t dbgbcr[16]; /* breakpoint control registers */
473 uint64_t dbgwvr[16]; /* watchpoint value registers */
474 uint64_t dbgwcr[16]; /* watchpoint control registers */
476 uint64_t oslsr_el1; /* OS Lock Status */
479 /* Stores the architectural value of the counter *the last time it was
480 * updated* by pmccntr_op_start. Accesses should always be surrounded
481 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
482 * architecturally-correct value is being read/set.
485 /* Stores the delta between the architectural value and the underlying
486 * cycle count during normal operation. It is used to update c15_ccnt
487 * to be the correct architectural value before accesses. During
488 * accesses, c15_ccnt_delta contains the underlying count being used
489 * for the access, after which it reverts to the delta value in
492 uint64_t c15_ccnt_delta;
493 uint64_t c14_pmevcntr[31];
494 uint64_t c14_pmevcntr_delta[31];
495 uint64_t c14_pmevtyper[31];
496 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
497 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
498 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
502 /* M profile has up to 4 stack pointers:
503 * a Main Stack Pointer and a Process Stack Pointer for each
504 * of the Secure and Non-Secure states. (If the CPU doesn't support
505 * the security extension then it has only two SPs.)
506 * In QEMU we always store the currently active SP in regs[13],
507 * and the non-active SP for the current security state in
508 * v7m.other_sp. The stack pointers for the inactive security state
509 * are stored in other_ss_msp and other_ss_psp.
510 * switch_v7m_security_state() is responsible for rearranging them
511 * when we change security state.
514 uint32_t other_ss_msp;
515 uint32_t other_ss_psp;
516 uint32_t vecbase[M_REG_NUM_BANKS];
517 uint32_t basepri[M_REG_NUM_BANKS];
518 uint32_t control[M_REG_NUM_BANKS];
519 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
520 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
521 uint32_t hfsr; /* HardFault Status */
522 uint32_t dfsr; /* Debug Fault Status Register */
523 uint32_t sfsr; /* Secure Fault Status Register */
524 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
525 uint32_t bfar; /* BusFault Address */
526 uint32_t sfar; /* Secure Fault Address Register */
527 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
529 uint32_t primask[M_REG_NUM_BANKS];
530 uint32_t faultmask[M_REG_NUM_BANKS];
531 uint32_t aircr; /* only holds r/w state if security extn implemented */
532 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
533 uint32_t csselr[M_REG_NUM_BANKS];
534 uint32_t scr[M_REG_NUM_BANKS];
535 uint32_t msplim[M_REG_NUM_BANKS];
536 uint32_t psplim[M_REG_NUM_BANKS];
537 uint32_t fpcar[M_REG_NUM_BANKS];
538 uint32_t fpccr[M_REG_NUM_BANKS];
539 uint32_t fpdscr[M_REG_NUM_BANKS];
540 uint32_t cpacr[M_REG_NUM_BANKS];
544 /* Information associated with an exception about to be taken:
545 * code which raises an exception must set cs->exception_index and
546 * the relevant parts of this structure; the cpu_do_interrupt function
547 * will then set the guest-visible registers as part of the exception
551 uint32_t syndrome; /* AArch64 format syndrome register */
552 uint32_t fsr; /* AArch32 format fault status register info */
553 uint64_t vaddress; /* virtual addr associated with exception, if any */
554 uint32_t target_el; /* EL the exception should be targeted for */
555 /* If we implement EL2 we will also need to store information
556 * about the intermediate physical address for stage 2 faults.
560 /* Information associated with an SError */
567 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
568 uint32_t irq_line_state;
570 /* Thumb-2 EE state. */
574 /* VFP coprocessor state. */
576 ARMVectorReg zregs[32];
578 #ifdef TARGET_AARCH64
579 /* Store FFR as pregs[16] to make it easier to treat as any other. */
580 #define FFR_PRED_NUM 16
581 ARMPredicateReg pregs[17];
582 /* Scratch space for aa64 sve predicate temporary. */
583 ARMPredicateReg preg_tmp;
586 /* We store these fpcsr fields separately for convenience. */
587 uint32_t qc[4] QEMU_ALIGNED(16);
593 /* Scratch space for aa32 neon expansion. */
596 /* There are a number of distinct float control structures:
598 * fp_status: is the "normal" fp status.
599 * fp_status_fp16: used for half-precision calculations
600 * standard_fp_status : the ARM "Standard FPSCR Value"
602 * Half-precision operations are governed by a separate
603 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
604 * status structure to control this.
606 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
607 * round-to-nearest and is used by any operations (generally
608 * Neon) which the architecture defines as controlled by the
609 * standard FPSCR value rather than the FPSCR.
611 * To avoid having to transfer exception bits around, we simply
612 * say that the FPSCR cumulative exception flags are the logical
613 * OR of the flags in the three fp statuses. This relies on the
614 * only thing which needs to read the exception flags being
615 * an explicit FPSCR read.
617 float_status fp_status;
618 float_status fp_status_f16;
619 float_status standard_fp_status;
624 uint64_t exclusive_addr;
625 uint64_t exclusive_val;
626 uint64_t exclusive_high;
628 /* iwMMXt coprocessor state. */
636 #ifdef TARGET_AARCH64
644 #if defined(CONFIG_USER_ONLY)
645 /* For usermode syscall translation. */
649 struct CPUBreakpoint *cpu_breakpoint[16];
650 struct CPUWatchpoint *cpu_watchpoint[16];
652 /* Fields up to this point are cleared by a CPU reset */
653 struct {} end_reset_fields;
657 /* Fields after CPU_COMMON are preserved across CPU reset. */
659 /* Internal CPU feature flags. */
667 uint32_t rnr[M_REG_NUM_BANKS];
672 /* The PMSAv8 implementation also shares some PMSAv7 config
674 * pmsav7.rnr (region number register)
675 * pmsav7_dregion (number of configured regions)
677 uint32_t *rbar[M_REG_NUM_BANKS];
678 uint32_t *rlar[M_REG_NUM_BANKS];
679 uint32_t mair0[M_REG_NUM_BANKS];
680 uint32_t mair1[M_REG_NUM_BANKS];
692 const struct arm_boot_info *boot_info;
693 /* Store GICv3CPUState to access from this struct */
699 * type of a function which can be registered via arm_register_el_change_hook()
700 * to get callbacks when the CPU changes its exception level or mode.
702 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
703 typedef struct ARMELChangeHook ARMELChangeHook;
704 struct ARMELChangeHook {
705 ARMELChangeHookFn *hook;
707 QLIST_ENTRY(ARMELChangeHook) node;
710 /* These values map onto the return values for
711 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
712 typedef enum ARMPSCIState {
718 typedef struct ARMISARegisters ARMISARegisters;
733 /* Coprocessor information */
735 /* For marshalling (mostly coprocessor) register state between the
736 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
737 * we use these arrays.
739 /* List of register indexes managed via these arrays; (full KVM style
740 * 64 bit indexes, not CPRegInfo 32 bit indexes)
742 uint64_t *cpreg_indexes;
743 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
744 uint64_t *cpreg_values;
745 /* Length of the indexes, values, reset_values arrays */
746 int32_t cpreg_array_len;
747 /* These are used only for migration: incoming data arrives in
748 * these fields and is sanity checked in post_load before copying
749 * to the working data structures above.
751 uint64_t *cpreg_vmstate_indexes;
752 uint64_t *cpreg_vmstate_values;
753 int32_t cpreg_vmstate_array_len;
755 DynamicGDBXMLInfo dyn_xml;
757 /* Timers used by the generic (architected) timer */
758 QEMUTimer *gt_timer[NUM_GTIMERS];
760 * Timer used by the PMU. Its state is restored after migration by
761 * pmu_op_finish() - it does not need other handling during migration
763 QEMUTimer *pmu_timer;
764 /* GPIO outputs for generic timer */
765 qemu_irq gt_timer_outputs[NUM_GTIMERS];
766 /* GPIO output for GICv3 maintenance interrupt signal */
767 qemu_irq gicv3_maintenance_interrupt;
768 /* GPIO output for the PMU interrupt */
769 qemu_irq pmu_interrupt;
771 /* MemoryRegion to use for secure physical accesses */
772 MemoryRegion *secure_memory;
774 /* For v8M, pointer to the IDAU interface provided by board/SoC */
777 /* 'compatible' string for this CPU for Linux device trees */
778 const char *dtb_compatible;
780 /* PSCI version for this CPU
781 * Bits[31:16] = Major Version
782 * Bits[15:0] = Minor Version
784 uint32_t psci_version;
786 /* Should CPU start in PSCI powered-off state? */
787 bool start_powered_off;
789 /* Current power state, access guarded by BQL */
790 ARMPSCIState power_state;
792 /* CPU has virtualization extension */
794 /* CPU has security extension */
796 /* CPU has PMU (Performance Monitor Unit) */
799 /* CPU has memory protection unit */
801 /* PMSAv7 MPU number of supported regions */
802 uint32_t pmsav7_dregion;
803 /* v8M SAU number of supported regions */
804 uint32_t sau_sregion;
806 /* PSCI conduit used to invoke PSCI methods
807 * 0 - disabled, 1 - smc, 2 - hvc
809 uint32_t psci_conduit;
811 /* For v8M, initial value of the Secure VTOR */
814 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
815 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
819 /* KVM init features for this CPU */
820 uint32_t kvm_init_features[7];
822 /* Uniprocessor system with MP extensions */
825 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
826 * and the probe failed (so we need to report the error in realize)
828 bool host_cpu_probe_failed;
830 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
835 /* The instance init functions for implementation-specific subclasses
836 * set these fields to specify the implementation-dependent values of
837 * various constant registers and reset values of non-constant
839 * Some of these might become QOM properties eventually.
840 * Field names match the official register names as defined in the
841 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
842 * is used for reset values of non-constant registers; no reset_
843 * prefix means a constant register.
844 * Some of these registers are split out into a substructure that
845 * is shared with the translators to control the ISA.
847 struct ARMISARegisters {
858 uint64_t id_aa64isar0;
859 uint64_t id_aa64isar1;
860 uint64_t id_aa64pfr0;
861 uint64_t id_aa64pfr1;
862 uint64_t id_aa64mmfr0;
863 uint64_t id_aa64mmfr1;
867 uint32_t reset_fpsid;
869 uint32_t reset_sctlr;
881 uint64_t id_aa64dfr0;
882 uint64_t id_aa64dfr1;
883 uint64_t id_aa64afr0;
884 uint64_t id_aa64afr1;
887 uint64_t mp_affinity; /* MP ID without feature bits */
888 /* The elements of this array are the CCSIDR values for each cache,
889 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
893 uint32_t reset_auxcr;
895 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
896 uint32_t dcz_blocksize;
899 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
900 int gic_num_lrs; /* number of list registers */
901 int gic_vpribits; /* number of virtual priority bits */
902 int gic_vprebits; /* number of virtual preemption bits */
904 /* Whether the cfgend input is high (i.e. this CPU should reset into
905 * big-endian mode). This setting isn't used directly: instead it modifies
906 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
907 * architecture version.
911 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
912 QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
914 int32_t node_id; /* NUMA node this CPU belongs to */
916 /* Used to synchronize KVM and QEMU in-kernel device levels */
917 uint8_t device_irq_level;
919 /* Used to set the maximum vector length the cpu will support. */
923 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
925 return container_of(env, ARMCPU, env);
928 void arm_cpu_post_init(Object *obj);
930 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
932 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
934 #define ENV_OFFSET offsetof(ARMCPU, env)
936 #ifndef CONFIG_USER_ONLY
937 extern const struct VMStateDescription vmstate_arm_cpu;
940 void arm_cpu_do_interrupt(CPUState *cpu);
941 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
942 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
944 void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags);
946 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
949 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
950 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
952 /* Dynamically generates for gdb stub an XML description of the sysregs from
953 * the cp_regs hashtable. Returns the registered sysregs number.
955 int arm_gen_dynamic_xml(CPUState *cpu);
957 /* Returns the dynamically generated XML for the gdb stub.
958 * Returns a pointer to the XML contents for the specified XML file or NULL
959 * if the XML name doesn't match the predefined one.
961 const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
963 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
964 int cpuid, void *opaque);
965 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
966 int cpuid, void *opaque);
968 #ifdef TARGET_AARCH64
969 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
970 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
971 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
972 void aarch64_sve_change_el(CPUARMState *env, int old_el,
973 int new_el, bool el0_a64);
975 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
976 static inline void aarch64_sve_change_el(CPUARMState *env, int o,
981 target_ulong do_arm_semihosting(CPUARMState *env);
982 void aarch64_sync_32_to_64(CPUARMState *env);
983 void aarch64_sync_64_to_32(CPUARMState *env);
985 int fp_exception_el(CPUARMState *env, int cur_el);
986 int sve_exception_el(CPUARMState *env, int cur_el);
987 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
989 static inline bool is_a64(CPUARMState *env)
994 /* you can call this signal handler from your SIGBUS and SIGSEGV
995 signal handlers to inform the virtual CPU of exceptions. non zero
996 is returned if the signal was handled by the virtual CPU. */
997 int cpu_arm_signal_handler(int host_signum, void *pinfo,
1001 * pmu_op_start/finish
1004 * Convert all PMU counters between their delta form (the typical mode when
1005 * they are enabled) and the guest-visible values. These two calls must
1006 * surround any action which might affect the counters.
1008 void pmu_op_start(CPUARMState *env);
1009 void pmu_op_finish(CPUARMState *env);
1012 * Called when a PMU counter is due to overflow
1014 void arm_pmu_timer_cb(void *opaque);
1017 * Functions to register as EL change hooks for PMU mode filtering
1019 void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1020 void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1026 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1027 * for the current configuration
1029 void pmu_init(ARMCPU *cpu);
1031 /* SCTLR bit meanings. Several bits have been reused in newer
1032 * versions of the architecture; in that case we define constants
1033 * for both old and new bit meanings. Code which tests against those
1034 * bits should probably check or otherwise arrange that the CPU
1035 * is the architectural version it expects.
1037 #define SCTLR_M (1U << 0)
1038 #define SCTLR_A (1U << 1)
1039 #define SCTLR_C (1U << 2)
1040 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
1041 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1042 #define SCTLR_SA (1U << 3) /* AArch64 only */
1043 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
1044 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1045 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
1046 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
1047 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1048 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1049 #define SCTLR_nAA (1U << 6) /* when v8.4-LSE is implemented */
1050 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
1051 #define SCTLR_ITD (1U << 7) /* v8 onward */
1052 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
1053 #define SCTLR_SED (1U << 8) /* v8 onward */
1054 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
1055 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
1056 #define SCTLR_F (1U << 10) /* up to v6 */
1057 #define SCTLR_SW (1U << 10) /* v7 */
1058 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */
1059 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */
1060 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */
1061 #define SCTLR_I (1U << 12)
1062 #define SCTLR_V (1U << 13) /* AArch32 only */
1063 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */
1064 #define SCTLR_RR (1U << 14) /* up to v7 */
1065 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
1066 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
1067 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
1068 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
1069 #define SCTLR_nTWI (1U << 16) /* v8 onward */
1070 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */
1071 #define SCTLR_BR (1U << 17) /* PMSA only */
1072 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
1073 #define SCTLR_nTWE (1U << 18) /* v8 onward */
1074 #define SCTLR_WXN (1U << 19)
1075 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
1076 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */
1077 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */
1078 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */
1079 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */
1080 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */
1081 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
1082 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */
1083 #define SCTLR_VE (1U << 24) /* up to v7 */
1084 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
1085 #define SCTLR_EE (1U << 25)
1086 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
1087 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
1088 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1089 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */
1090 #define SCTLR_TRE (1U << 28) /* AArch32 only */
1091 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1092 #define SCTLR_AFE (1U << 29) /* AArch32 only */
1093 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1094 #define SCTLR_TE (1U << 30) /* AArch32 only */
1095 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */
1096 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */
1097 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */
1098 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */
1099 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */
1100 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */
1101 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */
1102 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */
1103 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */
1104 #define SCTLR_DSSBS (1ULL << 44) /* v8.5 */
1106 #define CPTR_TCPAC (1U << 31)
1107 #define CPTR_TTA (1U << 20)
1108 #define CPTR_TFP (1U << 10)
1109 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1110 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1112 #define MDCR_EPMAD (1U << 21)
1113 #define MDCR_EDAD (1U << 20)
1114 #define MDCR_SPME (1U << 17) /* MDCR_EL3 */
1115 #define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
1116 #define MDCR_SDD (1U << 16)
1117 #define MDCR_SPD (3U << 14)
1118 #define MDCR_TDRA (1U << 11)
1119 #define MDCR_TDOSA (1U << 10)
1120 #define MDCR_TDA (1U << 9)
1121 #define MDCR_TDE (1U << 8)
1122 #define MDCR_HPME (1U << 7)
1123 #define MDCR_TPM (1U << 6)
1124 #define MDCR_TPMCR (1U << 5)
1125 #define MDCR_HPMN (0x1fU)
1127 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1128 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1130 #define CPSR_M (0x1fU)
1131 #define CPSR_T (1U << 5)
1132 #define CPSR_F (1U << 6)
1133 #define CPSR_I (1U << 7)
1134 #define CPSR_A (1U << 8)
1135 #define CPSR_E (1U << 9)
1136 #define CPSR_IT_2_7 (0xfc00U)
1137 #define CPSR_GE (0xfU << 16)
1138 #define CPSR_IL (1U << 20)
1139 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1140 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1141 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1142 * where it is live state but not accessible to the AArch32 code.
1144 #define CPSR_RESERVED (0x7U << 21)
1145 #define CPSR_J (1U << 24)
1146 #define CPSR_IT_0_1 (3U << 25)
1147 #define CPSR_Q (1U << 27)
1148 #define CPSR_V (1U << 28)
1149 #define CPSR_C (1U << 29)
1150 #define CPSR_Z (1U << 30)
1151 #define CPSR_N (1U << 31)
1152 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1153 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1155 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1156 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1158 /* Bits writable in user mode. */
1159 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1160 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1161 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1162 /* Mask of bits which may be set by exception return copying them from SPSR */
1163 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1165 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1166 #define XPSR_EXCP 0x1ffU
1167 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1168 #define XPSR_IT_2_7 CPSR_IT_2_7
1169 #define XPSR_GE CPSR_GE
1170 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1171 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1172 #define XPSR_IT_0_1 CPSR_IT_0_1
1173 #define XPSR_Q CPSR_Q
1174 #define XPSR_V CPSR_V
1175 #define XPSR_C CPSR_C
1176 #define XPSR_Z CPSR_Z
1177 #define XPSR_N CPSR_N
1178 #define XPSR_NZCV CPSR_NZCV
1179 #define XPSR_IT CPSR_IT
1181 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1182 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1183 #define TTBCR_PD0 (1U << 4)
1184 #define TTBCR_PD1 (1U << 5)
1185 #define TTBCR_EPD0 (1U << 7)
1186 #define TTBCR_IRGN0 (3U << 8)
1187 #define TTBCR_ORGN0 (3U << 10)
1188 #define TTBCR_SH0 (3U << 12)
1189 #define TTBCR_T1SZ (3U << 16)
1190 #define TTBCR_A1 (1U << 22)
1191 #define TTBCR_EPD1 (1U << 23)
1192 #define TTBCR_IRGN1 (3U << 24)
1193 #define TTBCR_ORGN1 (3U << 26)
1194 #define TTBCR_SH1 (1U << 28)
1195 #define TTBCR_EAE (1U << 31)
1197 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1198 * Only these are valid when in AArch64 mode; in
1199 * AArch32 mode SPSRs are basically CPSR-format.
1201 #define PSTATE_SP (1U)
1202 #define PSTATE_M (0xFU)
1203 #define PSTATE_nRW (1U << 4)
1204 #define PSTATE_F (1U << 6)
1205 #define PSTATE_I (1U << 7)
1206 #define PSTATE_A (1U << 8)
1207 #define PSTATE_D (1U << 9)
1208 #define PSTATE_BTYPE (3U << 10)
1209 #define PSTATE_IL (1U << 20)
1210 #define PSTATE_SS (1U << 21)
1211 #define PSTATE_V (1U << 28)
1212 #define PSTATE_C (1U << 29)
1213 #define PSTATE_Z (1U << 30)
1214 #define PSTATE_N (1U << 31)
1215 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1216 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1217 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1218 /* Mode values for AArch64 */
1219 #define PSTATE_MODE_EL3h 13
1220 #define PSTATE_MODE_EL3t 12
1221 #define PSTATE_MODE_EL2h 9
1222 #define PSTATE_MODE_EL2t 8
1223 #define PSTATE_MODE_EL1h 5
1224 #define PSTATE_MODE_EL1t 4
1225 #define PSTATE_MODE_EL0t 0
1227 /* Write a new value to v7m.exception, thus transitioning into or out
1228 * of Handler mode; this may result in a change of active stack pointer.
1230 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1232 /* Map EL and handler into a PSTATE_MODE. */
1233 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1235 return (el << 2) | handler;
1238 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1239 * interprocessing, so we don't attempt to sync with the cpsr state used by
1240 * the 32 bit decoder.
1242 static inline uint32_t pstate_read(CPUARMState *env)
1246 ZF = (env->ZF == 0);
1247 return (env->NF & 0x80000000) | (ZF << 30)
1248 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1249 | env->pstate | env->daif | (env->btype << 10);
1252 static inline void pstate_write(CPUARMState *env, uint32_t val)
1254 env->ZF = (~val) & PSTATE_Z;
1256 env->CF = (val >> 29) & 1;
1257 env->VF = (val << 3) & 0x80000000;
1258 env->daif = val & PSTATE_DAIF;
1259 env->btype = (val >> 10) & 3;
1260 env->pstate = val & ~CACHED_PSTATE_BITS;
1263 /* Return the current CPSR value. */
1264 uint32_t cpsr_read(CPUARMState *env);
1266 typedef enum CPSRWriteType {
1267 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1268 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1269 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1270 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1273 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1274 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1275 CPSRWriteType write_type);
1277 /* Return the current xPSR value. */
1278 static inline uint32_t xpsr_read(CPUARMState *env)
1281 ZF = (env->ZF == 0);
1282 return (env->NF & 0x80000000) | (ZF << 30)
1283 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1284 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1285 | ((env->condexec_bits & 0xfc) << 8)
1286 | env->v7m.exception;
1289 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1290 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1292 if (mask & XPSR_NZCV) {
1293 env->ZF = (~val) & XPSR_Z;
1295 env->CF = (val >> 29) & 1;
1296 env->VF = (val << 3) & 0x80000000;
1298 if (mask & XPSR_Q) {
1299 env->QF = ((val & XPSR_Q) != 0);
1301 if (mask & XPSR_T) {
1302 env->thumb = ((val & XPSR_T) != 0);
1304 if (mask & XPSR_IT_0_1) {
1305 env->condexec_bits &= ~3;
1306 env->condexec_bits |= (val >> 25) & 3;
1308 if (mask & XPSR_IT_2_7) {
1309 env->condexec_bits &= 3;
1310 env->condexec_bits |= (val >> 8) & 0xfc;
1312 if (mask & XPSR_EXCP) {
1313 /* Note that this only happens on exception exit */
1314 write_v7m_exception(env, val & XPSR_EXCP);
1318 #define HCR_VM (1ULL << 0)
1319 #define HCR_SWIO (1ULL << 1)
1320 #define HCR_PTW (1ULL << 2)
1321 #define HCR_FMO (1ULL << 3)
1322 #define HCR_IMO (1ULL << 4)
1323 #define HCR_AMO (1ULL << 5)
1324 #define HCR_VF (1ULL << 6)
1325 #define HCR_VI (1ULL << 7)
1326 #define HCR_VSE (1ULL << 8)
1327 #define HCR_FB (1ULL << 9)
1328 #define HCR_BSU_MASK (3ULL << 10)
1329 #define HCR_DC (1ULL << 12)
1330 #define HCR_TWI (1ULL << 13)
1331 #define HCR_TWE (1ULL << 14)
1332 #define HCR_TID0 (1ULL << 15)
1333 #define HCR_TID1 (1ULL << 16)
1334 #define HCR_TID2 (1ULL << 17)
1335 #define HCR_TID3 (1ULL << 18)
1336 #define HCR_TSC (1ULL << 19)
1337 #define HCR_TIDCP (1ULL << 20)
1338 #define HCR_TACR (1ULL << 21)
1339 #define HCR_TSW (1ULL << 22)
1340 #define HCR_TPCP (1ULL << 23)
1341 #define HCR_TPU (1ULL << 24)
1342 #define HCR_TTLB (1ULL << 25)
1343 #define HCR_TVM (1ULL << 26)
1344 #define HCR_TGE (1ULL << 27)
1345 #define HCR_TDZ (1ULL << 28)
1346 #define HCR_HCD (1ULL << 29)
1347 #define HCR_TRVM (1ULL << 30)
1348 #define HCR_RW (1ULL << 31)
1349 #define HCR_CD (1ULL << 32)
1350 #define HCR_ID (1ULL << 33)
1351 #define HCR_E2H (1ULL << 34)
1352 #define HCR_TLOR (1ULL << 35)
1353 #define HCR_TERR (1ULL << 36)
1354 #define HCR_TEA (1ULL << 37)
1355 #define HCR_MIOCNCE (1ULL << 38)
1356 #define HCR_APK (1ULL << 40)
1357 #define HCR_API (1ULL << 41)
1358 #define HCR_NV (1ULL << 42)
1359 #define HCR_NV1 (1ULL << 43)
1360 #define HCR_AT (1ULL << 44)
1361 #define HCR_NV2 (1ULL << 45)
1362 #define HCR_FWB (1ULL << 46)
1363 #define HCR_FIEN (1ULL << 47)
1364 #define HCR_TID4 (1ULL << 49)
1365 #define HCR_TICAB (1ULL << 50)
1366 #define HCR_TOCU (1ULL << 52)
1367 #define HCR_TTLBIS (1ULL << 54)
1368 #define HCR_TTLBOS (1ULL << 55)
1369 #define HCR_ATA (1ULL << 56)
1370 #define HCR_DCT (1ULL << 57)
1373 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1374 * HCR_MASK and then clear it again if the feature bit is not set in
1377 #define HCR_MASK ((1ULL << 34) - 1)
1379 #define SCR_NS (1U << 0)
1380 #define SCR_IRQ (1U << 1)
1381 #define SCR_FIQ (1U << 2)
1382 #define SCR_EA (1U << 3)
1383 #define SCR_FW (1U << 4)
1384 #define SCR_AW (1U << 5)
1385 #define SCR_NET (1U << 6)
1386 #define SCR_SMD (1U << 7)
1387 #define SCR_HCE (1U << 8)
1388 #define SCR_SIF (1U << 9)
1389 #define SCR_RW (1U << 10)
1390 #define SCR_ST (1U << 11)
1391 #define SCR_TWI (1U << 12)
1392 #define SCR_TWE (1U << 13)
1393 #define SCR_TLOR (1U << 14)
1394 #define SCR_TERR (1U << 15)
1395 #define SCR_APK (1U << 16)
1396 #define SCR_API (1U << 17)
1397 #define SCR_EEL2 (1U << 18)
1398 #define SCR_EASE (1U << 19)
1399 #define SCR_NMEA (1U << 20)
1400 #define SCR_FIEN (1U << 21)
1401 #define SCR_ENSCXT (1U << 25)
1402 #define SCR_ATA (1U << 26)
1404 /* Return the current FPSCR value. */
1405 uint32_t vfp_get_fpscr(CPUARMState *env);
1406 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1408 /* FPCR, Floating Point Control Register
1409 * FPSR, Floating Poiht Status Register
1411 * For A64 the FPSCR is split into two logically distinct registers,
1412 * FPCR and FPSR. However since they still use non-overlapping bits
1413 * we store the underlying state in fpscr and just mask on read/write.
1415 #define FPSR_MASK 0xf800009f
1416 #define FPCR_MASK 0x07ff9f00
1418 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */
1419 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */
1420 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */
1421 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */
1422 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */
1423 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */
1424 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1425 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1426 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1427 #define FPCR_QC (1 << 27) /* Cumulative saturation bit */
1429 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1431 return vfp_get_fpscr(env) & FPSR_MASK;
1434 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1436 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1437 vfp_set_fpscr(env, new_fpscr);
1440 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1442 return vfp_get_fpscr(env) & FPCR_MASK;
1445 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1447 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1448 vfp_set_fpscr(env, new_fpscr);
1452 ARM_CPU_MODE_USR = 0x10,
1453 ARM_CPU_MODE_FIQ = 0x11,
1454 ARM_CPU_MODE_IRQ = 0x12,
1455 ARM_CPU_MODE_SVC = 0x13,
1456 ARM_CPU_MODE_MON = 0x16,
1457 ARM_CPU_MODE_ABT = 0x17,
1458 ARM_CPU_MODE_HYP = 0x1a,
1459 ARM_CPU_MODE_UND = 0x1b,
1460 ARM_CPU_MODE_SYS = 0x1f
1463 /* VFP system registers. */
1464 #define ARM_VFP_FPSID 0
1465 #define ARM_VFP_FPSCR 1
1466 #define ARM_VFP_MVFR2 5
1467 #define ARM_VFP_MVFR1 6
1468 #define ARM_VFP_MVFR0 7
1469 #define ARM_VFP_FPEXC 8
1470 #define ARM_VFP_FPINST 9
1471 #define ARM_VFP_FPINST2 10
1473 /* iwMMXt coprocessor control registers. */
1474 #define ARM_IWMMXT_wCID 0
1475 #define ARM_IWMMXT_wCon 1
1476 #define ARM_IWMMXT_wCSSF 2
1477 #define ARM_IWMMXT_wCASF 3
1478 #define ARM_IWMMXT_wCGR0 8
1479 #define ARM_IWMMXT_wCGR1 9
1480 #define ARM_IWMMXT_wCGR2 10
1481 #define ARM_IWMMXT_wCGR3 11
1484 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1485 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1486 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1487 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1488 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1489 FIELD(V7M_CCR, STKALIGN, 9, 1)
1490 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1491 FIELD(V7M_CCR, DC, 16, 1)
1492 FIELD(V7M_CCR, IC, 17, 1)
1493 FIELD(V7M_CCR, BP, 18, 1)
1496 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1497 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1498 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1499 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1501 /* V7M AIRCR bits */
1502 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1503 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1504 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1505 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1506 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1507 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1508 FIELD(V7M_AIRCR, PRIS, 14, 1)
1509 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1510 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1512 /* V7M CFSR bits for MMFSR */
1513 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1514 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1515 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1516 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1517 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1518 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1520 /* V7M CFSR bits for BFSR */
1521 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1522 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1523 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1524 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1525 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1526 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1527 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1529 /* V7M CFSR bits for UFSR */
1530 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1531 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1532 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1533 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1534 FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1535 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1536 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1538 /* V7M CFSR bit masks covering all of the subregister bits */
1539 FIELD(V7M_CFSR, MMFSR, 0, 8)
1540 FIELD(V7M_CFSR, BFSR, 8, 8)
1541 FIELD(V7M_CFSR, UFSR, 16, 16)
1544 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1545 FIELD(V7M_HFSR, FORCED, 30, 1)
1546 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1549 FIELD(V7M_DFSR, HALTED, 0, 1)
1550 FIELD(V7M_DFSR, BKPT, 1, 1)
1551 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1552 FIELD(V7M_DFSR, VCATCH, 3, 1)
1553 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1556 FIELD(V7M_SFSR, INVEP, 0, 1)
1557 FIELD(V7M_SFSR, INVIS, 1, 1)
1558 FIELD(V7M_SFSR, INVER, 2, 1)
1559 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1560 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1561 FIELD(V7M_SFSR, LSPERR, 5, 1)
1562 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1563 FIELD(V7M_SFSR, LSERR, 7, 1)
1565 /* v7M MPU_CTRL bits */
1566 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1567 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1568 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1570 /* v7M CLIDR bits */
1571 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1572 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1573 FIELD(V7M_CLIDR, LOC, 24, 3)
1574 FIELD(V7M_CLIDR, LOUU, 27, 3)
1575 FIELD(V7M_CLIDR, ICB, 30, 2)
1577 FIELD(V7M_CSSELR, IND, 0, 1)
1578 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1579 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1580 * define a mask for this and check that it doesn't permit running off
1581 * the end of the array.
1583 FIELD(V7M_CSSELR, INDEX, 0, 4)
1585 /* v7M FPCCR bits */
1586 FIELD(V7M_FPCCR, LSPACT, 0, 1)
1587 FIELD(V7M_FPCCR, USER, 1, 1)
1588 FIELD(V7M_FPCCR, S, 2, 1)
1589 FIELD(V7M_FPCCR, THREAD, 3, 1)
1590 FIELD(V7M_FPCCR, HFRDY, 4, 1)
1591 FIELD(V7M_FPCCR, MMRDY, 5, 1)
1592 FIELD(V7M_FPCCR, BFRDY, 6, 1)
1593 FIELD(V7M_FPCCR, SFRDY, 7, 1)
1594 FIELD(V7M_FPCCR, MONRDY, 8, 1)
1595 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1)
1596 FIELD(V7M_FPCCR, UFRDY, 10, 1)
1597 FIELD(V7M_FPCCR, RES0, 11, 15)
1598 FIELD(V7M_FPCCR, TS, 26, 1)
1599 FIELD(V7M_FPCCR, CLRONRETS, 27, 1)
1600 FIELD(V7M_FPCCR, CLRONRET, 28, 1)
1601 FIELD(V7M_FPCCR, LSPENS, 29, 1)
1602 FIELD(V7M_FPCCR, LSPEN, 30, 1)
1603 FIELD(V7M_FPCCR, ASPEN, 31, 1)
1604 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */
1605 #define R_V7M_FPCCR_BANKED_MASK \
1606 (R_V7M_FPCCR_LSPACT_MASK | \
1607 R_V7M_FPCCR_USER_MASK | \
1608 R_V7M_FPCCR_THREAD_MASK | \
1609 R_V7M_FPCCR_MMRDY_MASK | \
1610 R_V7M_FPCCR_SPLIMVIOL_MASK | \
1611 R_V7M_FPCCR_UFRDY_MASK | \
1612 R_V7M_FPCCR_ASPEN_MASK)
1615 * System register ID fields.
1617 FIELD(ID_ISAR0, SWAP, 0, 4)
1618 FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1619 FIELD(ID_ISAR0, BITFIELD, 8, 4)
1620 FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1621 FIELD(ID_ISAR0, COPROC, 16, 4)
1622 FIELD(ID_ISAR0, DEBUG, 20, 4)
1623 FIELD(ID_ISAR0, DIVIDE, 24, 4)
1625 FIELD(ID_ISAR1, ENDIAN, 0, 4)
1626 FIELD(ID_ISAR1, EXCEPT, 4, 4)
1627 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1628 FIELD(ID_ISAR1, EXTEND, 12, 4)
1629 FIELD(ID_ISAR1, IFTHEN, 16, 4)
1630 FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1631 FIELD(ID_ISAR1, INTERWORK, 24, 4)
1632 FIELD(ID_ISAR1, JAZELLE, 28, 4)
1634 FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1635 FIELD(ID_ISAR2, MEMHINT, 4, 4)
1636 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1637 FIELD(ID_ISAR2, MULT, 12, 4)
1638 FIELD(ID_ISAR2, MULTS, 16, 4)
1639 FIELD(ID_ISAR2, MULTU, 20, 4)
1640 FIELD(ID_ISAR2, PSR_AR, 24, 4)
1641 FIELD(ID_ISAR2, REVERSAL, 28, 4)
1643 FIELD(ID_ISAR3, SATURATE, 0, 4)
1644 FIELD(ID_ISAR3, SIMD, 4, 4)
1645 FIELD(ID_ISAR3, SVC, 8, 4)
1646 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1647 FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1648 FIELD(ID_ISAR3, T32COPY, 20, 4)
1649 FIELD(ID_ISAR3, TRUENOP, 24, 4)
1650 FIELD(ID_ISAR3, T32EE, 28, 4)
1652 FIELD(ID_ISAR4, UNPRIV, 0, 4)
1653 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1654 FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1655 FIELD(ID_ISAR4, SMC, 12, 4)
1656 FIELD(ID_ISAR4, BARRIER, 16, 4)
1657 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1658 FIELD(ID_ISAR4, PSR_M, 24, 4)
1659 FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1661 FIELD(ID_ISAR5, SEVL, 0, 4)
1662 FIELD(ID_ISAR5, AES, 4, 4)
1663 FIELD(ID_ISAR5, SHA1, 8, 4)
1664 FIELD(ID_ISAR5, SHA2, 12, 4)
1665 FIELD(ID_ISAR5, CRC32, 16, 4)
1666 FIELD(ID_ISAR5, RDM, 24, 4)
1667 FIELD(ID_ISAR5, VCMA, 28, 4)
1669 FIELD(ID_ISAR6, JSCVT, 0, 4)
1670 FIELD(ID_ISAR6, DP, 4, 4)
1671 FIELD(ID_ISAR6, FHM, 8, 4)
1672 FIELD(ID_ISAR6, SB, 12, 4)
1673 FIELD(ID_ISAR6, SPECRES, 16, 4)
1675 FIELD(ID_MMFR4, SPECSEI, 0, 4)
1676 FIELD(ID_MMFR4, AC2, 4, 4)
1677 FIELD(ID_MMFR4, XNX, 8, 4)
1678 FIELD(ID_MMFR4, CNP, 12, 4)
1679 FIELD(ID_MMFR4, HPDS, 16, 4)
1680 FIELD(ID_MMFR4, LSM, 20, 4)
1681 FIELD(ID_MMFR4, CCIDX, 24, 4)
1682 FIELD(ID_MMFR4, EVT, 28, 4)
1684 FIELD(ID_AA64ISAR0, AES, 4, 4)
1685 FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1686 FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1687 FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1688 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1689 FIELD(ID_AA64ISAR0, RDM, 28, 4)
1690 FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1691 FIELD(ID_AA64ISAR0, SM3, 36, 4)
1692 FIELD(ID_AA64ISAR0, SM4, 40, 4)
1693 FIELD(ID_AA64ISAR0, DP, 44, 4)
1694 FIELD(ID_AA64ISAR0, FHM, 48, 4)
1695 FIELD(ID_AA64ISAR0, TS, 52, 4)
1696 FIELD(ID_AA64ISAR0, TLB, 56, 4)
1697 FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1699 FIELD(ID_AA64ISAR1, DPB, 0, 4)
1700 FIELD(ID_AA64ISAR1, APA, 4, 4)
1701 FIELD(ID_AA64ISAR1, API, 8, 4)
1702 FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1703 FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1704 FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1705 FIELD(ID_AA64ISAR1, GPA, 24, 4)
1706 FIELD(ID_AA64ISAR1, GPI, 28, 4)
1707 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1708 FIELD(ID_AA64ISAR1, SB, 36, 4)
1709 FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1711 FIELD(ID_AA64PFR0, EL0, 0, 4)
1712 FIELD(ID_AA64PFR0, EL1, 4, 4)
1713 FIELD(ID_AA64PFR0, EL2, 8, 4)
1714 FIELD(ID_AA64PFR0, EL3, 12, 4)
1715 FIELD(ID_AA64PFR0, FP, 16, 4)
1716 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1717 FIELD(ID_AA64PFR0, GIC, 24, 4)
1718 FIELD(ID_AA64PFR0, RAS, 28, 4)
1719 FIELD(ID_AA64PFR0, SVE, 32, 4)
1721 FIELD(ID_AA64PFR1, BT, 0, 4)
1722 FIELD(ID_AA64PFR1, SBSS, 4, 4)
1723 FIELD(ID_AA64PFR1, MTE, 8, 4)
1724 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1726 FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1727 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1728 FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1729 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1730 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1731 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1732 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1733 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1734 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1735 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1736 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1737 FIELD(ID_AA64MMFR0, EXS, 44, 4)
1739 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1740 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1741 FIELD(ID_AA64MMFR1, VH, 8, 4)
1742 FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1743 FIELD(ID_AA64MMFR1, LO, 16, 4)
1744 FIELD(ID_AA64MMFR1, PAN, 20, 4)
1745 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1746 FIELD(ID_AA64MMFR1, XNX, 28, 4)
1748 FIELD(ID_DFR0, COPDBG, 0, 4)
1749 FIELD(ID_DFR0, COPSDBG, 4, 4)
1750 FIELD(ID_DFR0, MMAPDBG, 8, 4)
1751 FIELD(ID_DFR0, COPTRC, 12, 4)
1752 FIELD(ID_DFR0, MMAPTRC, 16, 4)
1753 FIELD(ID_DFR0, MPROFDBG, 20, 4)
1754 FIELD(ID_DFR0, PERFMON, 24, 4)
1755 FIELD(ID_DFR0, TRACEFILT, 28, 4)
1757 FIELD(MVFR0, SIMDREG, 0, 4)
1758 FIELD(MVFR0, FPSP, 4, 4)
1759 FIELD(MVFR0, FPDP, 8, 4)
1760 FIELD(MVFR0, FPTRAP, 12, 4)
1761 FIELD(MVFR0, FPDIVIDE, 16, 4)
1762 FIELD(MVFR0, FPSQRT, 20, 4)
1763 FIELD(MVFR0, FPSHVEC, 24, 4)
1764 FIELD(MVFR0, FPROUND, 28, 4)
1766 FIELD(MVFR1, FPFTZ, 0, 4)
1767 FIELD(MVFR1, FPDNAN, 4, 4)
1768 FIELD(MVFR1, SIMDLS, 8, 4)
1769 FIELD(MVFR1, SIMDINT, 12, 4)
1770 FIELD(MVFR1, SIMDSP, 16, 4)
1771 FIELD(MVFR1, SIMDHP, 20, 4)
1772 FIELD(MVFR1, FPHP, 24, 4)
1773 FIELD(MVFR1, SIMDFMAC, 28, 4)
1775 FIELD(MVFR2, SIMDMISC, 0, 4)
1776 FIELD(MVFR2, FPMISC, 4, 4)
1778 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1780 /* If adding a feature bit which corresponds to a Linux ELF
1781 * HWCAP bit, remember to update the feature-bit-to-hwcap
1782 * mapping in linux-user/elfload.c:get_elf_hwcap().
1786 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1787 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1788 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1793 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1796 ARM_FEATURE_M, /* Microcontroller profile. */
1797 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1798 ARM_FEATURE_THUMB2EE,
1799 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1800 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1803 ARM_FEATURE_STRONGARM,
1804 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1805 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1806 ARM_FEATURE_GENERIC_TIMER,
1807 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1808 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1809 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1810 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1811 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1812 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1813 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1814 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1816 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1817 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1818 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1819 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1820 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1821 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1822 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1823 ARM_FEATURE_PMU, /* has PMU support */
1824 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1825 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1826 ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1829 static inline int arm_feature(CPUARMState *env, int feature)
1831 return (env->features & (1ULL << feature)) != 0;
1834 #if !defined(CONFIG_USER_ONLY)
1835 /* Return true if exception levels below EL3 are in secure state,
1836 * or would be following an exception return to that level.
1837 * Unlike arm_is_secure() (which is always a question about the
1838 * _current_ state of the CPU) this doesn't care about the current
1841 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1843 if (arm_feature(env, ARM_FEATURE_EL3)) {
1844 return !(env->cp15.scr_el3 & SCR_NS);
1846 /* If EL3 is not supported then the secure state is implementation
1847 * defined, in which case QEMU defaults to non-secure.
1853 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1854 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1856 if (arm_feature(env, ARM_FEATURE_EL3)) {
1857 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1858 /* CPU currently in AArch64 state and EL3 */
1860 } else if (!is_a64(env) &&
1861 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1862 /* CPU currently in AArch32 state and monitor mode */
1869 /* Return true if the processor is in secure state */
1870 static inline bool arm_is_secure(CPUARMState *env)
1872 if (arm_is_el3_or_mon(env)) {
1875 return arm_is_secure_below_el3(env);
1879 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1884 static inline bool arm_is_secure(CPUARMState *env)
1891 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1892 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1893 * "for all purposes other than a direct read or write access of HCR_EL2."
1894 * Not included here is HCR_RW.
1896 uint64_t arm_hcr_el2_eff(CPUARMState *env);
1898 /* Return true if the specified exception level is running in AArch64 state. */
1899 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1901 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1902 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1904 assert(el >= 1 && el <= 3);
1905 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1907 /* The highest exception level is always at the maximum supported
1908 * register width, and then lower levels have a register width controlled
1909 * by bits in the SCR or HCR registers.
1915 if (arm_feature(env, ARM_FEATURE_EL3)) {
1916 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1923 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1924 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1930 /* Function for determing whether guest cp register reads and writes should
1931 * access the secure or non-secure bank of a cp register. When EL3 is
1932 * operating in AArch32 state, the NS-bit determines whether the secure
1933 * instance of a cp register should be used. When EL3 is AArch64 (or if
1934 * it doesn't exist at all) then there is no register banking, and all
1935 * accesses are to the non-secure version.
1937 static inline bool access_secure_reg(CPUARMState *env)
1939 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1940 !arm_el_is_aa64(env, 3) &&
1941 !(env->cp15.scr_el3 & SCR_NS));
1946 /* Macros for accessing a specified CP register bank */
1947 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1948 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1950 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1953 (_env)->cp15._regname##_s = (_val); \
1955 (_env)->cp15._regname##_ns = (_val); \
1959 /* Macros for automatically accessing a specific CP register bank depending on
1960 * the current secure state of the system. These macros are not intended for
1961 * supporting instruction translation reads/writes as these are dependent
1962 * solely on the SCR.NS bit and not the mode.
1964 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1965 A32_BANKED_REG_GET((_env), _regname, \
1966 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1968 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1969 A32_BANKED_REG_SET((_env), _regname, \
1970 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1973 void arm_cpu_list(void);
1974 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1975 uint32_t cur_el, bool secure);
1977 /* Interface between CPU and Interrupt controller. */
1978 #ifndef CONFIG_USER_ONLY
1979 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1981 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1987 * armv7m_nvic_set_pending: mark the specified exception as pending
1989 * @irq: the exception number to mark pending
1990 * @secure: false for non-banked exceptions or for the nonsecure
1991 * version of a banked exception, true for the secure version of a banked
1994 * Marks the specified exception as pending. Note that we will assert()
1995 * if @secure is true and @irq does not specify one of the fixed set
1996 * of architecturally banked exceptions.
1998 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
2000 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
2002 * @irq: the exception number to mark pending
2003 * @secure: false for non-banked exceptions or for the nonsecure
2004 * version of a banked exception, true for the secure version of a banked
2007 * Similar to armv7m_nvic_set_pending(), but specifically for derived
2008 * exceptions (exceptions generated in the course of trying to take
2009 * a different exception).
2011 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
2013 * armv7m_nvic_set_pending_lazyfp: mark this lazy FP exception as pending
2015 * @irq: the exception number to mark pending
2016 * @secure: false for non-banked exceptions or for the nonsecure
2017 * version of a banked exception, true for the secure version of a banked
2020 * Similar to armv7m_nvic_set_pending(), but specifically for exceptions
2021 * generated in the course of lazy stacking of FP registers.
2023 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure);
2025 * armv7m_nvic_get_pending_irq_info: return highest priority pending
2026 * exception, and whether it targets Secure state
2028 * @pirq: set to pending exception number
2029 * @ptargets_secure: set to whether pending exception targets Secure
2031 * This function writes the number of the highest priority pending
2032 * exception (the one which would be made active by
2033 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
2034 * to true if the current highest priority pending exception should
2035 * be taken to Secure state, false for NS.
2037 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
2038 bool *ptargets_secure);
2040 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
2043 * Move the current highest priority pending exception from the pending
2044 * state to the active state, and update v7m.exception to indicate that
2045 * it is the exception currently being handled.
2047 void armv7m_nvic_acknowledge_irq(void *opaque);
2049 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2051 * @irq: the exception number to complete
2052 * @secure: true if this exception was secure
2054 * Returns: -1 if the irq was not active
2055 * 1 if completing this irq brought us back to base (no active irqs)
2056 * 0 if there is still an irq active after this one was completed
2057 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2059 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2061 * armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
2063 * @irq: the exception number to mark pending
2064 * @secure: false for non-banked exceptions or for the nonsecure
2065 * version of a banked exception, true for the secure version of a banked
2068 * Return whether an exception is "ready", i.e. whether the exception is
2069 * enabled and is configured at a priority which would allow it to
2070 * interrupt the current execution priority. This controls whether the
2071 * RDY bit for it in the FPCCR is set.
2073 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure);
2075 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2078 * Returns: the raw execution priority as defined by the v8M architecture.
2079 * This is the execution priority minus the effects of AIRCR.PRIS,
2080 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2081 * (v8M ARM ARM I_PKLD.)
2083 int armv7m_nvic_raw_execution_priority(void *opaque);
2085 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2086 * priority is negative for the specified security state.
2088 * @secure: the security state to test
2089 * This corresponds to the pseudocode IsReqExecPriNeg().
2091 #ifndef CONFIG_USER_ONLY
2092 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2094 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2100 /* Interface for defining coprocessor registers.
2101 * Registers are defined in tables of arm_cp_reginfo structs
2102 * which are passed to define_arm_cp_regs().
2105 /* When looking up a coprocessor register we look for it
2106 * via an integer which encodes all of:
2107 * coprocessor number
2108 * Crn, Crm, opc1, opc2 fields
2109 * 32 or 64 bit register (ie is it accessed via MRC/MCR
2110 * or via MRRC/MCRR?)
2111 * non-secure/secure bank (AArch32 only)
2112 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2113 * (In this case crn and opc2 should be zero.)
2114 * For AArch64, there is no 32/64 bit size distinction;
2115 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2116 * and 4 bit CRn and CRm. The encoding patterns are chosen
2117 * to be easy to convert to and from the KVM encodings, and also
2118 * so that the hashtable can contain both AArch32 and AArch64
2119 * registers (to allow for interprocessing where we might run
2120 * 32 bit code on a 64 bit core).
2122 /* This bit is private to our hashtable cpreg; in KVM register
2123 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2124 * in the upper bits of the 64 bit ID.
2126 #define CP_REG_AA64_SHIFT 28
2127 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2129 /* To enable banking of coprocessor registers depending on ns-bit we
2130 * add a bit to distinguish between secure and non-secure cpregs in the
2133 #define CP_REG_NS_SHIFT 29
2134 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2136 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
2137 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
2138 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2140 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2141 (CP_REG_AA64_MASK | \
2142 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
2143 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
2144 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
2145 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
2146 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
2147 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2149 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
2150 * version used as a key for the coprocessor register hashtable
2152 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2154 uint32_t cpregid = kvmid;
2155 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2156 cpregid |= CP_REG_AA64_MASK;
2158 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2159 cpregid |= (1 << 15);
2162 /* KVM is always non-secure so add the NS flag on AArch32 register
2165 cpregid |= 1 << CP_REG_NS_SHIFT;
2170 /* Convert a truncated 32 bit hashtable key into the full
2171 * 64 bit KVM register ID.
2173 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2177 if (cpregid & CP_REG_AA64_MASK) {
2178 kvmid = cpregid & ~CP_REG_AA64_MASK;
2179 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2181 kvmid = cpregid & ~(1 << 15);
2182 if (cpregid & (1 << 15)) {
2183 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2185 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2191 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2192 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2193 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2194 * TCG can assume the value to be constant (ie load at translate time)
2195 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2196 * indicates that the TB should not be ended after a write to this register
2197 * (the default is that the TB ends after cp writes). OVERRIDE permits
2198 * a register definition to override a previous definition for the
2199 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2200 * old must have the OVERRIDE bit set.
2201 * ALIAS indicates that this register is an alias view of some underlying
2202 * state which is also visible via another register, and that the other
2203 * register is handling migration and reset; registers marked ALIAS will not be
2204 * migrated but may have their state set by syncing of register state from KVM.
2205 * NO_RAW indicates that this register has no underlying state and does not
2206 * support raw access for state saving/loading; it will not be used for either
2207 * migration or KVM state synchronization. (Typically this is for "registers"
2208 * which are actually used as instructions for cache maintenance and so on.)
2209 * IO indicates that this register does I/O and therefore its accesses
2210 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2211 * registers which implement clocks or timers require this.
2213 #define ARM_CP_SPECIAL 0x0001
2214 #define ARM_CP_CONST 0x0002
2215 #define ARM_CP_64BIT 0x0004
2216 #define ARM_CP_SUPPRESS_TB_END 0x0008
2217 #define ARM_CP_OVERRIDE 0x0010
2218 #define ARM_CP_ALIAS 0x0020
2219 #define ARM_CP_IO 0x0040
2220 #define ARM_CP_NO_RAW 0x0080
2221 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
2222 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
2223 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
2224 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
2225 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
2226 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
2227 #define ARM_CP_FPU 0x1000
2228 #define ARM_CP_SVE 0x2000
2229 #define ARM_CP_NO_GDB 0x4000
2230 /* Used only as a terminator for ARMCPRegInfo lists */
2231 #define ARM_CP_SENTINEL 0xffff
2232 /* Mask of only the flag bits in a type field */
2233 #define ARM_CP_FLAG_MASK 0x70ff
2235 /* Valid values for ARMCPRegInfo state field, indicating which of
2236 * the AArch32 and AArch64 execution states this register is visible in.
2237 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2238 * If the reginfo is declared to be visible in both states then a second
2239 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2240 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2241 * Note that we rely on the values of these enums as we iterate through
2242 * the various states in some places.
2245 ARM_CP_STATE_AA32 = 0,
2246 ARM_CP_STATE_AA64 = 1,
2247 ARM_CP_STATE_BOTH = 2,
2250 /* ARM CP register secure state flags. These flags identify security state
2251 * attributes for a given CP register entry.
2252 * The existence of both or neither secure and non-secure flags indicates that
2253 * the register has both a secure and non-secure hash entry. A single one of
2254 * these flags causes the register to only be hashed for the specified
2256 * Although definitions may have any combination of the S/NS bits, each
2257 * registered entry will only have one to identify whether the entry is secure
2261 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
2262 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
2265 /* Return true if cptype is a valid type field. This is used to try to
2266 * catch errors where the sentinel has been accidentally left off the end
2267 * of a list of registers.
2269 static inline bool cptype_valid(int cptype)
2271 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2272 || ((cptype & ARM_CP_SPECIAL) &&
2273 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2277 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2278 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2279 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2280 * (ie any of the privileged modes in Secure state, or Monitor mode).
2281 * If a register is accessible in one privilege level it's always accessible
2282 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2283 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2284 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2285 * terminology a little and call this PL3.
2286 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2287 * with the ELx exception levels.
2289 * If access permissions for a register are more complex than can be
2290 * described with these bits, then use a laxer set of restrictions, and
2291 * do the more restrictive/complex check inside a helper function.
2295 #define PL2_R (0x20 | PL3_R)
2296 #define PL2_W (0x10 | PL3_W)
2297 #define PL1_R (0x08 | PL2_R)
2298 #define PL1_W (0x04 | PL2_W)
2299 #define PL0_R (0x02 | PL1_R)
2300 #define PL0_W (0x01 | PL1_W)
2303 * For user-mode some registers are accessible to EL0 via a kernel
2304 * trap-and-emulate ABI. In this case we define the read permissions
2305 * as actually being PL0_R. However some bits of any given register
2306 * may still be masked.
2308 #ifdef CONFIG_USER_ONLY
2309 #define PL0U_R PL0_R
2311 #define PL0U_R PL1_R
2314 #define PL3_RW (PL3_R | PL3_W)
2315 #define PL2_RW (PL2_R | PL2_W)
2316 #define PL1_RW (PL1_R | PL1_W)
2317 #define PL0_RW (PL0_R | PL0_W)
2319 /* Return the highest implemented Exception Level */
2320 static inline int arm_highest_el(CPUARMState *env)
2322 if (arm_feature(env, ARM_FEATURE_EL3)) {
2325 if (arm_feature(env, ARM_FEATURE_EL2)) {
2331 /* Return true if a v7M CPU is in Handler mode */
2332 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2334 return env->v7m.exception != 0;
2337 /* Return the current Exception Level (as per ARMv8; note that this differs
2338 * from the ARMv7 Privilege Level).
2340 static inline int arm_current_el(CPUARMState *env)
2342 if (arm_feature(env, ARM_FEATURE_M)) {
2343 return arm_v7m_is_handler_mode(env) ||
2344 !(env->v7m.control[env->v7m.secure] & 1);
2348 return extract32(env->pstate, 2, 2);
2351 switch (env->uncached_cpsr & 0x1f) {
2352 case ARM_CPU_MODE_USR:
2354 case ARM_CPU_MODE_HYP:
2356 case ARM_CPU_MODE_MON:
2359 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2360 /* If EL3 is 32-bit then all secure privileged modes run in
2370 typedef struct ARMCPRegInfo ARMCPRegInfo;
2372 typedef enum CPAccessResult {
2373 /* Access is permitted */
2375 /* Access fails due to a configurable trap or enable which would
2376 * result in a categorized exception syndrome giving information about
2377 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2378 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2379 * PL1 if in EL0, otherwise to the current EL).
2382 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2383 * Note that this is not a catch-all case -- the set of cases which may
2384 * result in this failure is specifically defined by the architecture.
2386 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2387 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2388 CP_ACCESS_TRAP_EL2 = 3,
2389 CP_ACCESS_TRAP_EL3 = 4,
2390 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2391 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2392 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2393 /* Access fails and results in an exception syndrome for an FP access,
2394 * trapped directly to EL2 or EL3
2396 CP_ACCESS_TRAP_FP_EL2 = 7,
2397 CP_ACCESS_TRAP_FP_EL3 = 8,
2400 /* Access functions for coprocessor registers. These cannot fail and
2401 * may not raise exceptions.
2403 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2404 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2406 /* Access permission check functions for coprocessor registers. */
2407 typedef CPAccessResult CPAccessFn(CPUARMState *env,
2408 const ARMCPRegInfo *opaque,
2410 /* Hook function for register reset */
2411 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2415 /* Definition of an ARM coprocessor register */
2416 struct ARMCPRegInfo {
2417 /* Name of register (useful mainly for debugging, need not be unique) */
2419 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2420 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2421 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2422 * will be decoded to this register. The register read and write
2423 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2424 * used by the program, so it is possible to register a wildcard and
2425 * then behave differently on read/write if necessary.
2426 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2427 * must both be zero.
2428 * For AArch64-visible registers, opc0 is also used.
2429 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2430 * way to distinguish (for KVM's benefit) guest-visible system registers
2431 * from demuxed ones provided to preserve the "no side effects on
2432 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2433 * visible (to match KVM's encoding); cp==0 will be converted to
2434 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2442 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2444 /* Register type: ARM_CP_* bits/values */
2446 /* Access rights: PL*_[RW] */
2448 /* Security state: ARM_CP_SECSTATE_* bits/values */
2450 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2451 * this register was defined: can be used to hand data through to the
2452 * register read/write functions, since they are passed the ARMCPRegInfo*.
2455 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2456 * fieldoffset is non-zero, the reset value of the register.
2458 uint64_t resetvalue;
2459 /* Offset of the field in CPUARMState for this register.
2461 * This is not needed if either:
2462 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2463 * 2. both readfn and writefn are specified
2465 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2467 /* Offsets of the secure and non-secure fields in CPUARMState for the
2468 * register if it is banked. These fields are only used during the static
2469 * registration of a register. During hashing the bank associated
2470 * with a given security state is copied to fieldoffset which is used from
2473 * It is expected that register definitions use either fieldoffset or
2474 * bank_fieldoffsets in the definition but not both. It is also expected
2475 * that both bank offsets are set when defining a banked register. This
2476 * use indicates that a register is banked.
2478 ptrdiff_t bank_fieldoffsets[2];
2480 /* Function for making any access checks for this register in addition to
2481 * those specified by the 'access' permissions bits. If NULL, no extra
2482 * checks required. The access check is performed at runtime, not at
2485 CPAccessFn *accessfn;
2486 /* Function for handling reads of this register. If NULL, then reads
2487 * will be done by loading from the offset into CPUARMState specified
2491 /* Function for handling writes of this register. If NULL, then writes
2492 * will be done by writing to the offset into CPUARMState specified
2496 /* Function for doing a "raw" read; used when we need to copy
2497 * coprocessor state to the kernel for KVM or out for
2498 * migration. This only needs to be provided if there is also a
2499 * readfn and it has side effects (for instance clear-on-read bits).
2501 CPReadFn *raw_readfn;
2502 /* Function for doing a "raw" write; used when we need to copy KVM
2503 * kernel coprocessor state into userspace, or for inbound
2504 * migration. This only needs to be provided if there is also a
2505 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2506 * or similar behaviour.
2508 CPWriteFn *raw_writefn;
2509 /* Function for resetting the register. If NULL, then reset will be done
2510 * by writing resetvalue to the field specified in fieldoffset. If
2511 * fieldoffset is 0 then no reset will be done.
2516 /* Macros which are lvalues for the field in CPUARMState for the
2519 #define CPREG_FIELD32(env, ri) \
2520 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2521 #define CPREG_FIELD64(env, ri) \
2522 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2524 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2526 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2527 const ARMCPRegInfo *regs, void *opaque);
2528 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2529 const ARMCPRegInfo *regs, void *opaque);
2530 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2532 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2534 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2536 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2538 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2541 * Definition of an ARM co-processor register as viewed from
2542 * userspace. This is used for presenting sanitised versions of
2543 * registers to userspace when emulating the Linux AArch64 CPU
2544 * ID/feature ABI (advertised as HWCAP_CPUID).
2546 typedef struct ARMCPRegUserSpaceInfo {
2547 /* Name of register */
2550 /* Is the name actually a glob pattern */
2553 /* Only some bits are exported to user space */
2554 uint64_t exported_bits;
2556 /* Fixed bits are applied after the mask */
2557 uint64_t fixed_bits;
2558 } ARMCPRegUserSpaceInfo;
2560 #define REGUSERINFO_SENTINEL { .name = NULL }
2562 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2564 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2565 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2567 /* CPReadFn that can be used for read-as-zero behaviour */
2568 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2570 /* CPResetFn that does nothing, for use if no reset is required even
2571 * if fieldoffset is non zero.
2573 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2575 /* Return true if this reginfo struct's field in the cpu state struct
2578 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2580 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2583 static inline bool cp_access_ok(int current_el,
2584 const ARMCPRegInfo *ri, int isread)
2586 return (ri->access >> ((current_el * 2) + isread)) & 1;
2589 /* Raw read of a coprocessor register (as needed for migration, etc) */
2590 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2593 * write_list_to_cpustate
2596 * For each register listed in the ARMCPU cpreg_indexes list, write
2597 * its value from the cpreg_values list into the ARMCPUState structure.
2598 * This updates TCG's working data structures from KVM data or
2599 * from incoming migration state.
2601 * Returns: true if all register values were updated correctly,
2602 * false if some register was unknown or could not be written.
2603 * Note that we do not stop early on failure -- we will attempt
2604 * writing all registers in the list.
2606 bool write_list_to_cpustate(ARMCPU *cpu);
2609 * write_cpustate_to_list:
2612 * For each register listed in the ARMCPU cpreg_indexes list, write
2613 * its value from the ARMCPUState structure into the cpreg_values list.
2614 * This is used to copy info from TCG's working data structures into
2615 * KVM or for outbound migration.
2617 * Returns: true if all register values were read correctly,
2618 * false if some register was unknown or could not be read.
2619 * Note that we do not stop early on failure -- we will attempt
2620 * reading all registers in the list.
2622 bool write_cpustate_to_list(ARMCPU *cpu);
2624 #define ARM_CPUID_TI915T 0x54029152
2625 #define ARM_CPUID_TI925T 0x54029252
2627 #if defined(CONFIG_USER_ONLY)
2628 #define TARGET_PAGE_BITS 12
2630 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2631 * have to support 1K tiny pages.
2633 #define TARGET_PAGE_BITS_VARY
2634 #define TARGET_PAGE_BITS_MIN 10
2637 #if defined(TARGET_AARCH64)
2638 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2639 # define TARGET_VIRT_ADDR_SPACE_BITS 48
2641 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2642 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2645 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2646 unsigned int target_el)
2648 CPUARMState *env = cs->env_ptr;
2649 unsigned int cur_el = arm_current_el(env);
2650 bool secure = arm_is_secure(env);
2651 bool pstate_unmasked;
2652 int8_t unmasked = 0;
2655 /* Don't take exceptions if they target a lower EL.
2656 * This check should catch any exceptions that would not be taken but left
2659 if (cur_el > target_el) {
2663 hcr_el2 = arm_hcr_el2_eff(env);
2667 pstate_unmasked = !(env->daif & PSTATE_F);
2671 pstate_unmasked = !(env->daif & PSTATE_I);
2675 if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2676 /* VFIQs are only taken when hypervized and non-secure. */
2679 return !(env->daif & PSTATE_F);
2681 if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2682 /* VIRQs are only taken when hypervized and non-secure. */
2685 return !(env->daif & PSTATE_I);
2687 g_assert_not_reached();
2690 /* Use the target EL, current execution state and SCR/HCR settings to
2691 * determine whether the corresponding CPSR bit is used to mask the
2694 if ((target_el > cur_el) && (target_el != 1)) {
2695 /* Exceptions targeting a higher EL may not be maskable */
2696 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2697 /* 64-bit masking rules are simple: exceptions to EL3
2698 * can't be masked, and exceptions to EL2 can only be
2699 * masked from Secure state. The HCR and SCR settings
2700 * don't affect the masking logic, only the interrupt routing.
2702 if (target_el == 3 || !secure) {
2706 /* The old 32-bit-only environment has a more complicated
2707 * masking setup. HCR and SCR bits not only affect interrupt
2708 * routing but also change the behaviour of masking.
2714 /* If FIQs are routed to EL3 or EL2 then there are cases where
2715 * we override the CPSR.F in determining if the exception is
2716 * masked or not. If neither of these are set then we fall back
2717 * to the CPSR.F setting otherwise we further assess the state
2720 hcr = hcr_el2 & HCR_FMO;
2721 scr = (env->cp15.scr_el3 & SCR_FIQ);
2723 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2724 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2725 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2726 * when non-secure but only when FIQs are only routed to EL3.
2728 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2731 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2732 * we may override the CPSR.I masking when in non-secure state.
2733 * The SCR.IRQ setting has already been taken into consideration
2734 * when setting the target EL, so it does not have a further
2737 hcr = hcr_el2 & HCR_IMO;
2741 g_assert_not_reached();
2744 if ((scr || hcr) && !secure) {
2750 /* The PSTATE bits only mask the interrupt if we have not overriden the
2753 return unmasked || pstate_unmasked;
2756 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2757 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2758 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2760 #define cpu_signal_handler cpu_arm_signal_handler
2761 #define cpu_list arm_cpu_list
2763 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2766 * + NonSecure EL1 & 0 stage 1
2767 * + NonSecure EL1 & 0 stage 2
2769 * + Secure EL1 & EL0
2772 * + NonSecure PL1 & 0 stage 1
2773 * + NonSecure PL1 & 0 stage 2
2775 * + Secure PL0 & PL1
2776 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2778 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2779 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2780 * may differ in access permissions even if the VA->PA map is the same
2781 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2782 * translation, which means that we have one mmu_idx that deals with two
2783 * concatenated translation regimes [this sort of combined s1+2 TLB is
2784 * architecturally permitted]
2785 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2786 * handling via the TLB. The only way to do a stage 1 translation without
2787 * the immediate stage 2 translation is via the ATS or AT system insns,
2788 * which can be slow-pathed and always do a page table walk.
2789 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2790 * translation regimes, because they map reasonably well to each other
2791 * and they can't both be active at the same time.
2792 * This gives us the following list of mmu_idx values:
2794 * NS EL0 (aka NS PL0) stage 1+2
2795 * NS EL1 (aka NS PL1) stage 1+2
2796 * NS EL2 (aka NS PL2)
2799 * S EL1 (not used if EL3 is 32 bit)
2802 * (The last of these is an mmu_idx because we want to be able to use the TLB
2803 * for the accesses done as part of a stage 1 page table walk, rather than
2804 * having to walk the stage 2 page table over and over.)
2806 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2807 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2808 * NS EL2 if we ever model a Cortex-R52).
2810 * M profile CPUs are rather different as they do not have a true MMU.
2811 * They have the following different MMU indexes:
2814 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2815 * Privileged, execution priority negative (ditto)
2816 * If the CPU supports the v8M Security Extension then there are also:
2819 * Secure User, execution priority negative
2820 * Secure Privileged, execution priority negative
2822 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2823 * are not quite the same -- different CPU types (most notably M profile
2824 * vs A/R profile) would like to use MMU indexes with different semantics,
2825 * but since we don't ever need to use all of those in a single CPU we
2826 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2827 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2828 * the same for any particular CPU.
2829 * Variables of type ARMMUIdx are always full values, and the core
2830 * index values are in variables of type 'int'.
2832 * Our enumeration includes at the end some entries which are not "true"
2833 * mmu_idx values in that they don't have corresponding TLBs and are only
2834 * valid for doing slow path page table walks.
2836 * The constant names here are patterned after the general style of the names
2837 * of the AT/ATS operations.
2838 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2839 * For M profile we arrange them to have a bit for priv, a bit for negpri
2840 * and a bit for secure.
2842 #define ARM_MMU_IDX_A 0x10 /* A profile */
2843 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2844 #define ARM_MMU_IDX_M 0x40 /* M profile */
2846 /* meanings of the bits for M profile mmu idx values */
2847 #define ARM_MMU_IDX_M_PRIV 0x1
2848 #define ARM_MMU_IDX_M_NEGPRI 0x2
2849 #define ARM_MMU_IDX_M_S 0x4
2851 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2852 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2854 typedef enum ARMMMUIdx {
2855 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2856 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2857 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2858 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2859 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2860 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2861 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2862 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2863 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2864 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2865 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2866 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2867 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2868 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2869 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2870 /* Indexes below here don't have TLBs and are used only for AT system
2871 * instructions or for the first stage of an S12 page table walk.
2873 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2874 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2877 /* Bit macros for the core-mmu-index values for each index,
2878 * for use when calling tlb_flush_by_mmuidx() and friends.
2880 typedef enum ARMMMUIdxBit {
2881 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2882 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2883 ARMMMUIdxBit_S1E2 = 1 << 2,
2884 ARMMMUIdxBit_S1E3 = 1 << 3,
2885 ARMMMUIdxBit_S1SE0 = 1 << 4,
2886 ARMMMUIdxBit_S1SE1 = 1 << 5,
2887 ARMMMUIdxBit_S2NS = 1 << 6,
2888 ARMMMUIdxBit_MUser = 1 << 0,
2889 ARMMMUIdxBit_MPriv = 1 << 1,
2890 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2891 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2892 ARMMMUIdxBit_MSUser = 1 << 4,
2893 ARMMMUIdxBit_MSPriv = 1 << 5,
2894 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2895 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2898 #define MMU_USER_IDX 0
2900 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2902 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2905 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2907 if (arm_feature(env, ARM_FEATURE_M)) {
2908 return mmu_idx | ARM_MMU_IDX_M;
2910 return mmu_idx | ARM_MMU_IDX_A;
2914 /* Return the exception level we're running at if this is our mmu_idx */
2915 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2917 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2921 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2923 g_assert_not_reached();
2928 * Return the MMU index for a v7M CPU with all relevant information
2929 * manually specified.
2931 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env,
2932 bool secstate, bool priv, bool negpri);
2934 /* Return the MMU index for a v7M CPU in the specified security and
2937 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2938 bool secstate, bool priv);
2940 /* Return the MMU index for a v7M CPU in the specified security state */
2941 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2945 * @env: The cpu environment
2946 * @ifetch: True for code access, false for data access.
2948 * Return the core mmu index for the current translation regime.
2949 * This function is used by generic TCG code paths.
2951 int cpu_mmu_index(CPUARMState *env, bool ifetch);
2953 /* Indexes used when registering address spaces with cpu_address_space_init */
2954 typedef enum ARMASIdx {
2959 /* Return the Exception Level targeted by debug exceptions. */
2960 static inline int arm_debug_target_el(CPUARMState *env)
2962 bool secure = arm_is_secure(env);
2963 bool route_to_el2 = false;
2965 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2966 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2967 env->cp15.mdcr_el2 & MDCR_TDE;
2972 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2973 !arm_el_is_aa64(env, 3) && secure) {
2980 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2982 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2985 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2988 /* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2989 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2991 int cur_el = arm_current_el(env);
2998 /* MDCR_EL3.SDD disables debug events from Secure state */
2999 if (arm_is_secure_below_el3(env)
3000 && extract32(env->cp15.mdcr_el3, 16, 1)) {
3005 * Same EL to same EL debug exceptions need MDSCR_KDE enabled
3006 * while not masking the (D)ebug bit in DAIF.
3008 debug_el = arm_debug_target_el(env);
3010 if (cur_el == debug_el) {
3011 return extract32(env->cp15.mdscr_el1, 13, 1)
3012 && !(env->daif & PSTATE_D);
3015 /* Otherwise the debug target needs to be a higher EL */
3016 return debug_el > cur_el;
3019 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
3021 int el = arm_current_el(env);
3023 if (el == 0 && arm_el_is_aa64(env, 1)) {
3024 return aa64_generate_debug_exceptions(env);
3027 if (arm_is_secure(env)) {
3030 if (el == 0 && (env->cp15.sder & 1)) {
3031 /* SDER.SUIDEN means debug exceptions from Secure EL0
3032 * are always enabled. Otherwise they are controlled by
3033 * SDCR.SPD like those from other Secure ELs.
3038 spd = extract32(env->cp15.mdcr_el3, 14, 2);
3041 /* SPD == 0b01 is reserved, but behaves as 0b00. */
3043 /* For 0b00 we return true if external secure invasive debug
3044 * is enabled. On real hardware this is controlled by external
3045 * signals to the core. QEMU always permits debug, and behaves
3046 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
3059 /* Return true if debugging exceptions are currently enabled.
3060 * This corresponds to what in ARM ARM pseudocode would be
3061 * if UsingAArch32() then
3062 * return AArch32.GenerateDebugExceptions()
3064 * return AArch64.GenerateDebugExceptions()
3065 * We choose to push the if() down into this function for clarity,
3066 * since the pseudocode has it at all callsites except for the one in
3067 * CheckSoftwareStep(), where it is elided because both branches would
3068 * always return the same value.
3070 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3073 return aa64_generate_debug_exceptions(env);
3075 return aa32_generate_debug_exceptions(env);
3079 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3080 * implicitly means this always returns false in pre-v8 CPUs.)
3082 static inline bool arm_singlestep_active(CPUARMState *env)
3084 return extract32(env->cp15.mdscr_el1, 0, 1)
3085 && arm_el_is_aa64(env, arm_debug_target_el(env))
3086 && arm_generate_debug_exceptions(env);
3089 static inline bool arm_sctlr_b(CPUARMState *env)
3092 /* We need not implement SCTLR.ITD in user-mode emulation, so
3093 * let linux-user ignore the fact that it conflicts with SCTLR_B.
3094 * This lets people run BE32 binaries with "-cpu any".
3096 #ifndef CONFIG_USER_ONLY
3097 !arm_feature(env, ARM_FEATURE_V7) &&
3099 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3102 static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3105 /* FIXME: ARMv8.1-VHE S2 translation regime. */
3106 return env->cp15.sctlr_el[1];
3108 return env->cp15.sctlr_el[el];
3113 /* Return true if the processor is in big-endian mode. */
3114 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3116 /* In 32bit endianness is determined by looking at CPSR's E bit */
3119 #ifdef CONFIG_USER_ONLY
3120 /* In system mode, BE32 is modelled in line with the
3121 * architecture (as word-invariant big-endianness), where loads
3122 * and stores are done little endian but from addresses which
3123 * are adjusted by XORing with the appropriate constant. So the
3124 * endianness to use for the raw data access is not affected by
3126 * In user mode, however, we model BE32 as byte-invariant
3127 * big-endianness (because user-only code cannot tell the
3128 * difference), and so we need to use a data access endianness
3129 * that depends on SCTLR.B.
3133 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3135 int cur_el = arm_current_el(env);
3136 uint64_t sctlr = arm_sctlr(env, cur_el);
3138 return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3142 #include "exec/cpu-all.h"
3144 /* Bit usage in the TB flags field: bit 31 indicates whether we are
3145 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3146 * We put flags which are shared between 32 and 64 bit mode at the top
3147 * of the word, and flags which apply to only one mode at the bottom.
3149 FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3150 FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3151 FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3152 FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3153 /* Target EL if we take a floating-point-disabled exception */
3154 FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3155 FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3157 /* Bit usage when in AArch32 state: */
3158 FIELD(TBFLAG_A32, THUMB, 0, 1)
3159 FIELD(TBFLAG_A32, VECLEN, 1, 3)
3160 FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3162 * We store the bottom two bits of the CPAR as TB flags and handle
3163 * checks on the other bits at runtime. This shares the same bits as
3164 * VECSTRIDE, which is OK as no XScale CPU has VFP.
3166 FIELD(TBFLAG_A32, XSCALE_CPAR, 4, 2)
3168 * Indicates whether cp register reads and writes by guest code should access
3169 * the secure or nonsecure bank of banked registers; note that this is not
3170 * the same thing as the current security state of the processor!
3172 FIELD(TBFLAG_A32, NS, 6, 1)
3173 FIELD(TBFLAG_A32, VFPEN, 7, 1)
3174 FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3175 FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3176 /* For M profile only, set if FPCCR.LSPACT is set */
3177 FIELD(TBFLAG_A32, LSPACT, 18, 1)
3178 /* For M profile only, set if we must create a new FP context */
3179 FIELD(TBFLAG_A32, NEW_FP_CTXT_NEEDED, 19, 1)
3180 /* For M profile only, set if FPCCR.S does not match current security state */
3181 FIELD(TBFLAG_A32, FPCCR_S_WRONG, 20, 1)
3182 /* For M profile only, Handler (ie not Thread) mode */
3183 FIELD(TBFLAG_A32, HANDLER, 21, 1)
3184 /* For M profile only, whether we should generate stack-limit checks */
3185 FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3187 /* Bit usage when in AArch64 state */
3188 FIELD(TBFLAG_A64, TBII, 0, 2)
3189 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3190 FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3191 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3192 FIELD(TBFLAG_A64, BT, 9, 1)
3193 FIELD(TBFLAG_A64, BTYPE, 10, 2)
3194 FIELD(TBFLAG_A64, TBID, 12, 2)
3196 static inline bool bswap_code(bool sctlr_b)
3198 #ifdef CONFIG_USER_ONLY
3199 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3200 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3201 * would also end up as a mixed-endian mode with BE code, LE data.
3204 #ifdef TARGET_WORDS_BIGENDIAN
3209 /* All code access in ARM is little endian, and there are no loaders
3210 * doing swaps that need to be reversed
3216 #ifdef CONFIG_USER_ONLY
3217 static inline bool arm_cpu_bswap_data(CPUARMState *env)
3220 #ifdef TARGET_WORDS_BIGENDIAN
3223 arm_cpu_data_is_big_endian(env);
3227 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3228 target_ulong *cs_base, uint32_t *flags);
3231 QEMU_PSCI_CONDUIT_DISABLED = 0,
3232 QEMU_PSCI_CONDUIT_SMC = 1,
3233 QEMU_PSCI_CONDUIT_HVC = 2,
3236 #ifndef CONFIG_USER_ONLY
3237 /* Return the address space index to use for a memory access */
3238 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3240 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3243 /* Return the AddressSpace to use for a memory access
3244 * (which depends on whether the access is S or NS, and whether
3245 * the board gave us a separate AddressSpace for S accesses).
3247 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3249 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3254 * arm_register_pre_el_change_hook:
3255 * Register a hook function which will be called immediately before this
3256 * CPU changes exception level or mode. The hook function will be
3257 * passed a pointer to the ARMCPU and the opaque data pointer passed
3258 * to this function when the hook was registered.
3260 * Note that if a pre-change hook is called, any registered post-change hooks
3261 * are guaranteed to subsequently be called.
3263 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3266 * arm_register_el_change_hook:
3267 * Register a hook function which will be called immediately after this
3268 * CPU changes exception level or mode. The hook function will be
3269 * passed a pointer to the ARMCPU and the opaque data pointer passed
3270 * to this function when the hook was registered.
3272 * Note that any registered hooks registered here are guaranteed to be called
3273 * if pre-change hooks have been.
3275 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3280 * Return a pointer to the Dn register within env in 32-bit mode.
3282 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3284 return &env->vfp.zregs[regno >> 1].d[regno & 1];
3289 * Return a pointer to the Qn register within env in 32-bit mode.
3291 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3293 return &env->vfp.zregs[regno].d[0];
3298 * Return a pointer to the Qn register within env in 64-bit mode.
3300 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3302 return &env->vfp.zregs[regno].d[0];
3305 /* Shared between translate-sve.c and sve_helper.c. */
3306 extern const uint64_t pred_esz_masks[4];
3309 * 32-bit feature tests via id registers.
3311 static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3313 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3316 static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3318 return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3321 static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3323 return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3326 static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3328 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3331 static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3333 return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3336 static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3338 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3341 static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3343 return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3346 static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3348 return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3351 static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3353 return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3356 static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3358 return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3361 static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3363 return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3366 static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3368 return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3371 static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3373 return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3376 static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3378 return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3381 static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3383 return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3386 static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3389 * This is a placeholder for use by VCMA until the rest of
3390 * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3391 * At which point we can properly set and check MVFR1.FPHP.
3393 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3397 * We always set the FP and SIMD FP16 fields to indicate identical
3398 * levels of support (assuming SIMD is implemented at all), so
3399 * we only need one set of accessors.
3401 static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3403 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3406 static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3408 return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3411 static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3413 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3416 static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3418 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3421 static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3423 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3426 static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3428 return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3432 * 64-bit feature tests via id registers.
3434 static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3436 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3439 static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3441 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3444 static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3446 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3449 static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3451 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3454 static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3456 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3459 static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3461 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3464 static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3466 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3469 static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3471 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3474 static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3476 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3479 static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3481 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3484 static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3486 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3489 static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3491 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3494 static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3496 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3499 static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3501 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3504 static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3506 return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3509 static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3511 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3514 static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3516 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3519 static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3522 * Note that while QEMU will only implement the architected algorithm
3523 * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3524 * defined algorithms, and thus API+GPI, and this predicate controls
3525 * migration of the 128-bit keys.
3527 return (id->id_aa64isar1 &
3528 (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3529 FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3530 FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3531 FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3534 static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3536 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3539 static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3541 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3544 static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3546 return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3549 static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3551 /* We always set the AdvSIMD and FP fields identically wrt FP16. */
3552 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3555 static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3557 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3560 static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3562 return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3565 static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3567 return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3570 static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3572 return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3576 * Forward to the above feature tests given an ARMCPU pointer.
3578 #define cpu_isar_feature(name, cpu) \
3579 ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })