2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/module.h"
22 #include "qemu/cutils.h"
23 #include "qemu/option.h"
24 #include "qemu/vfio-helpers.h"
25 #include "block/block_int.h"
26 #include "sysemu/replay.h"
29 #include "block/nvme.h"
31 #define NVME_SQ_ENTRY_BYTES 64
32 #define NVME_CQ_ENTRY_BYTES 16
33 #define NVME_QUEUE_SIZE 128
34 #define NVME_DOORBELL_SIZE 4096
37 * We have to leave one slot empty as that is the full queue case where
40 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
42 typedef struct BDRVNVMeState BDRVNVMeState;
48 /* Hardware MMIO register */
49 volatile uint32_t *doorbell;
53 BlockCompletionFunc *cb;
57 uint64_t prp_list_iova;
58 int free_req_next; /* q->reqs[] index of next free req */
64 /* Read from I/O code path, initialized under BQL */
68 /* Fields protected by BQL */
69 uint8_t *prp_list_pages;
71 /* Fields protected by @lock */
72 CoQueue free_req_queue;
76 NVMeRequest reqs[NVME_NUM_REQS];
80 /* Thread-safe, no lock necessary */
81 QEMUBH *completion_bh;
85 #define INDEX_IO(n) (1 + n)
87 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
89 MSIX_SHARED_IRQ_IDX = 0,
93 struct BDRVNVMeState {
94 AioContext *aio_context;
96 /* Memory mapped registers */
101 /* The submission/completion queue pairs.
105 NVMeQueuePair **queues;
108 /* How many uint32_t elements does each doorbell entry take. */
109 size_t doorbell_scale;
110 bool write_cache_supported;
111 EventNotifier irq_notifier[MSIX_IRQ_COUNT];
113 uint64_t nsze; /* Namespace size reported by identify command */
114 int nsid; /* The namespace id to read/write data. */
117 uint64_t max_transfer;
120 bool supports_write_zeroes;
121 bool supports_discard;
123 CoMutex dma_map_lock;
124 CoQueue dma_flush_queue;
126 /* Total size of mapped qiov, accessed under dma_map_lock */
129 /* PCI address (required for nvme_refresh_filename()) */
133 #define NVME_BLOCK_OPT_DEVICE "device"
134 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
136 static void nvme_process_completion_bh(void *opaque);
138 static QemuOptsList runtime_opts = {
140 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
143 .name = NVME_BLOCK_OPT_DEVICE,
144 .type = QEMU_OPT_STRING,
145 .help = "NVMe PCI device address",
148 .name = NVME_BLOCK_OPT_NAMESPACE,
149 .type = QEMU_OPT_NUMBER,
150 .help = "NVMe namespace",
152 { /* end of list */ }
156 static void nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
157 int nentries, int entry_bytes, Error **errp)
162 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
163 q->head = q->tail = 0;
164 q->queue = qemu_try_memalign(s->page_size, bytes);
166 error_setg(errp, "Cannot allocate queue");
169 memset(q->queue, 0, bytes);
170 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
172 error_setg(errp, "Cannot map queue");
176 static void nvme_free_queue_pair(NVMeQueuePair *q)
178 if (q->completion_bh) {
179 qemu_bh_delete(q->completion_bh);
181 qemu_vfree(q->prp_list_pages);
182 qemu_vfree(q->sq.queue);
183 qemu_vfree(q->cq.queue);
184 qemu_mutex_destroy(&q->lock);
188 static void nvme_free_req_queue_cb(void *opaque)
190 NVMeQueuePair *q = opaque;
192 qemu_mutex_lock(&q->lock);
193 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
194 /* Retry all pending requests */
196 qemu_mutex_unlock(&q->lock);
199 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
200 AioContext *aio_context,
205 Error *local_err = NULL;
207 uint64_t prp_list_iova;
209 q = g_try_new0(NVMeQueuePair, 1);
213 q->prp_list_pages = qemu_try_memalign(s->page_size,
214 s->page_size * NVME_NUM_REQS);
215 if (!q->prp_list_pages) {
218 memset(q->prp_list_pages, 0, s->page_size * NVME_NUM_REQS);
219 qemu_mutex_init(&q->lock);
222 qemu_co_queue_init(&q->free_req_queue);
223 q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
224 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
225 s->page_size * NVME_NUM_REQS,
226 false, &prp_list_iova);
230 q->free_req_head = -1;
231 for (i = 0; i < NVME_NUM_REQS; i++) {
232 NVMeRequest *req = &q->reqs[i];
234 req->free_req_next = q->free_req_head;
235 q->free_req_head = i;
236 req->prp_list_page = q->prp_list_pages + i * s->page_size;
237 req->prp_list_iova = prp_list_iova + i * s->page_size;
240 nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
242 error_propagate(errp, local_err);
245 q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
247 nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
249 error_propagate(errp, local_err);
252 q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
256 nvme_free_queue_pair(q);
261 static void nvme_kick(NVMeQueuePair *q)
263 BDRVNVMeState *s = q->s;
265 if (s->plugged || !q->need_kick) {
268 trace_nvme_kick(s, q->index);
269 assert(!(q->sq.tail & 0xFF00));
270 /* Fence the write to submission queue entry before notifying the device. */
272 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
273 q->inflight += q->need_kick;
277 /* Find a free request element if any, otherwise:
278 * a) if in coroutine context, try to wait for one to become available;
279 * b) if not in coroutine, return NULL;
281 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
285 qemu_mutex_lock(&q->lock);
287 while (q->free_req_head == -1) {
288 if (qemu_in_coroutine()) {
289 trace_nvme_free_req_queue_wait(q);
290 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
292 qemu_mutex_unlock(&q->lock);
297 req = &q->reqs[q->free_req_head];
298 q->free_req_head = req->free_req_next;
299 req->free_req_next = -1;
301 qemu_mutex_unlock(&q->lock);
306 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
308 req->free_req_next = q->free_req_head;
309 q->free_req_head = req - q->reqs;
313 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
315 if (!qemu_co_queue_empty(&q->free_req_queue)) {
316 replay_bh_schedule_oneshot_event(q->s->aio_context,
317 nvme_free_req_queue_cb, q);
321 /* Insert a request in the freelist and wake waiters */
322 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
324 qemu_mutex_lock(&q->lock);
325 nvme_put_free_req_locked(q, req);
326 nvme_wake_free_req_locked(q);
327 qemu_mutex_unlock(&q->lock);
330 static inline int nvme_translate_error(const NvmeCqe *c)
332 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
334 trace_nvme_error(le32_to_cpu(c->result),
335 le16_to_cpu(c->sq_head),
336 le16_to_cpu(c->sq_id),
338 le16_to_cpu(status));
353 static bool nvme_process_completion(NVMeQueuePair *q)
355 BDRVNVMeState *s = q->s;
356 bool progress = false;
361 trace_nvme_process_completion(s, q->index, q->inflight);
363 trace_nvme_process_completion_queue_plugged(s, q->index);
368 * Support re-entrancy when a request cb() function invokes aio_poll().
369 * Pending completions must be visible to aio_poll() so that a cb()
370 * function can wait for the completion of another request.
372 * The aio_poll() loop will execute our BH and we'll resume completion
375 qemu_bh_schedule(q->completion_bh);
377 assert(q->inflight >= 0);
378 while (q->inflight) {
382 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
383 if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
386 ret = nvme_translate_error(c);
387 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
389 q->cq_phase = !q->cq_phase;
391 cid = le16_to_cpu(c->cid);
392 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
393 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
397 trace_nvme_complete_command(s, q->index, cid);
398 preq = &q->reqs[cid - 1];
400 assert(req.cid == cid);
402 nvme_put_free_req_locked(q, preq);
403 preq->cb = preq->opaque = NULL;
405 qemu_mutex_unlock(&q->lock);
406 req.cb(req.opaque, ret);
407 qemu_mutex_lock(&q->lock);
411 /* Notify the device so it can post more completions. */
413 *q->cq.doorbell = cpu_to_le32(q->cq.head);
414 nvme_wake_free_req_locked(q);
417 qemu_bh_cancel(q->completion_bh);
422 static void nvme_process_completion_bh(void *opaque)
424 NVMeQueuePair *q = opaque;
427 * We're being invoked because a nvme_process_completion() cb() function
428 * called aio_poll(). The callback may be waiting for further completions
429 * so notify the device that it has space to fill in more completions now.
432 *q->cq.doorbell = cpu_to_le32(q->cq.head);
433 nvme_wake_free_req_locked(q);
435 nvme_process_completion(q);
438 static void nvme_trace_command(const NvmeCmd *cmd)
442 if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
445 for (i = 0; i < 8; ++i) {
446 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
447 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
448 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
452 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
453 NvmeCmd *cmd, BlockCompletionFunc cb,
458 req->opaque = opaque;
459 cmd->cid = cpu_to_le32(req->cid);
461 trace_nvme_submit_command(q->s, q->index, req->cid);
462 nvme_trace_command(cmd);
463 qemu_mutex_lock(&q->lock);
464 memcpy((uint8_t *)q->sq.queue +
465 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
466 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
469 nvme_process_completion(q);
470 qemu_mutex_unlock(&q->lock);
473 static void nvme_cmd_sync_cb(void *opaque, int ret)
480 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
483 AioContext *aio_context = bdrv_get_aio_context(bs);
485 int ret = -EINPROGRESS;
486 req = nvme_get_free_req(q);
490 nvme_submit_command(q, req, cmd, nvme_cmd_sync_cb, &ret);
492 AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
496 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
498 BDRVNVMeState *s = bs->opaque;
508 .opcode = NVME_ADM_CMD_IDENTIFY,
509 .cdw10 = cpu_to_le32(0x1),
512 id = qemu_try_memalign(s->page_size, sizeof(*id));
514 error_setg(errp, "Cannot allocate buffer for identify response");
517 r = qemu_vfio_dma_map(s->vfio, id, sizeof(*id), true, &iova);
519 error_setg(errp, "Cannot map buffer for DMA");
523 memset(id, 0, sizeof(*id));
524 cmd.dptr.prp1 = cpu_to_le64(iova);
525 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
526 error_setg(errp, "Failed to identify controller");
530 if (le32_to_cpu(id->ctrl.nn) < namespace) {
531 error_setg(errp, "Invalid namespace");
534 s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
535 s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
536 /* For now the page list buffer per command is one page, to hold at most
537 * s->page_size / sizeof(uint64_t) entries. */
538 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
539 s->page_size / sizeof(uint64_t) * s->page_size);
541 oncs = le16_to_cpu(id->ctrl.oncs);
542 s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
543 s->supports_discard = !!(oncs & NVME_ONCS_DSM);
545 memset(id, 0, sizeof(*id));
547 cmd.nsid = cpu_to_le32(namespace);
548 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
549 error_setg(errp, "Failed to identify namespace");
553 s->nsze = le64_to_cpu(id->ns.nsze);
554 lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
556 if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
557 NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
558 NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
559 bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
563 error_setg(errp, "Namespaces with metadata are not yet supported");
567 if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
568 (1 << lbaf->ds) > s->page_size)
570 error_setg(errp, "Namespace has unsupported block size (2^%d)",
575 s->blkshift = lbaf->ds;
577 qemu_vfio_dma_unmap(s->vfio, id);
581 static bool nvme_poll_queue(NVMeQueuePair *q)
583 bool progress = false;
585 const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
586 NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
589 * Do an early check for completions. q->lock isn't needed because
590 * nvme_process_completion() only runs in the event loop thread and
591 * cannot race with itself.
593 if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
597 qemu_mutex_lock(&q->lock);
598 while (nvme_process_completion(q)) {
602 qemu_mutex_unlock(&q->lock);
607 static bool nvme_poll_queues(BDRVNVMeState *s)
609 bool progress = false;
612 for (i = 0; i < s->nr_queues; i++) {
613 if (nvme_poll_queue(s->queues[i])) {
620 static void nvme_handle_event(EventNotifier *n)
622 BDRVNVMeState *s = container_of(n, BDRVNVMeState,
623 irq_notifier[MSIX_SHARED_IRQ_IDX]);
625 trace_nvme_handle_event(s);
626 event_notifier_test_and_clear(n);
630 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
632 BDRVNVMeState *s = bs->opaque;
633 int n = s->nr_queues;
636 int queue_size = NVME_QUEUE_SIZE;
638 q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
639 n, queue_size, errp);
644 .opcode = NVME_ADM_CMD_CREATE_CQ,
645 .dptr.prp1 = cpu_to_le64(q->cq.iova),
646 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
647 .cdw11 = cpu_to_le32(0x3),
649 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
650 error_setg(errp, "Failed to create CQ io queue [%d]", n);
654 .opcode = NVME_ADM_CMD_CREATE_SQ,
655 .dptr.prp1 = cpu_to_le64(q->sq.iova),
656 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
657 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
659 if (nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd)) {
660 error_setg(errp, "Failed to create SQ io queue [%d]", n);
663 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
668 nvme_free_queue_pair(q);
672 static bool nvme_poll_cb(void *opaque)
674 EventNotifier *e = opaque;
675 BDRVNVMeState *s = container_of(e, BDRVNVMeState,
676 irq_notifier[MSIX_SHARED_IRQ_IDX]);
678 trace_nvme_poll_cb(s);
679 return nvme_poll_queues(s);
682 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
685 BDRVNVMeState *s = bs->opaque;
686 AioContext *aio_context = bdrv_get_aio_context(bs);
690 uint64_t deadline, now;
691 Error *local_err = NULL;
692 volatile NvmeBar *regs = NULL;
694 qemu_co_mutex_init(&s->dma_map_lock);
695 qemu_co_queue_init(&s->dma_flush_queue);
696 s->device = g_strdup(device);
698 s->aio_context = bdrv_get_aio_context(bs);
699 ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
701 error_setg(errp, "Failed to init event notifier");
705 s->vfio = qemu_vfio_open_pci(device, errp);
711 regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
712 PROT_READ | PROT_WRITE, errp);
717 /* Perform initialize sequence as described in NVMe spec "7.6.1
718 * Initialization". */
720 cap = le64_to_cpu(regs->cap);
721 if (!NVME_CAP_CSS(cap)) {
722 error_setg(errp, "Device doesn't support NVMe command set");
727 s->page_size = MAX(4096, 1 << NVME_CAP_MPSMIN(cap));
728 s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
729 bs->bl.opt_mem_alignment = s->page_size;
730 timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
732 /* Reset device to get a clean state. */
733 regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
734 /* Wait for CSTS.RDY = 0. */
735 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
736 while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
737 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
738 error_setg(errp, "Timeout while waiting for device to reset (%"
746 s->doorbells = qemu_vfio_pci_map_bar(s->vfio, 0, sizeof(NvmeBar),
747 NVME_DOORBELL_SIZE, PROT_WRITE, errp);
753 /* Set up admin queue. */
754 s->queues = g_new(NVMeQueuePair *, 1);
755 s->queues[INDEX_ADMIN] = nvme_create_queue_pair(s, aio_context, 0,
758 if (!s->queues[INDEX_ADMIN]) {
763 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
764 regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << AQA_ACQS_SHIFT) |
765 (NVME_QUEUE_SIZE << AQA_ASQS_SHIFT));
766 regs->asq = cpu_to_le64(s->queues[INDEX_ADMIN]->sq.iova);
767 regs->acq = cpu_to_le64(s->queues[INDEX_ADMIN]->cq.iova);
769 /* After setting up all control registers we can enable device now. */
770 regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
771 (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
773 /* Wait for CSTS.RDY = 1. */
774 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
775 deadline = now + timeout_ms * SCALE_MS;
776 while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
777 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
778 error_setg(errp, "Timeout while waiting for device to start (%"
786 ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
787 VFIO_PCI_MSIX_IRQ_INDEX, errp);
791 aio_set_event_notifier(bdrv_get_aio_context(bs),
792 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
793 false, nvme_handle_event, nvme_poll_cb);
795 nvme_identify(bs, namespace, &local_err);
797 error_propagate(errp, local_err);
802 /* Set up command queues. */
803 if (!nvme_add_io_queue(bs, errp)) {
808 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
811 /* Cleaning up is done in nvme_file_open() upon error. */
815 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
817 * nvme://0000:44:00.0/1
819 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
820 * is the PCI address, and the last part is the namespace number starting from
821 * 1 according to the NVMe spec. */
822 static void nvme_parse_filename(const char *filename, QDict *options,
825 int pref = strlen("nvme://");
827 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
828 const char *tmp = filename + pref;
830 const char *namespace;
832 const char *slash = strchr(tmp, '/');
834 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
837 device = g_strndup(tmp, slash - tmp);
838 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
840 namespace = slash + 1;
841 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
842 error_setg(errp, "Invalid namespace '%s', positive number expected",
846 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
847 *namespace ? namespace : "1");
851 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
855 BDRVNVMeState *s = bs->opaque;
857 .opcode = NVME_ADM_CMD_SET_FEATURES,
858 .nsid = cpu_to_le32(s->nsid),
859 .cdw10 = cpu_to_le32(0x06),
860 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
863 ret = nvme_cmd_sync(bs, s->queues[INDEX_ADMIN], &cmd);
865 error_setg(errp, "Failed to configure NVMe write cache");
870 static void nvme_close(BlockDriverState *bs)
873 BDRVNVMeState *s = bs->opaque;
875 for (i = 0; i < s->nr_queues; ++i) {
876 nvme_free_queue_pair(s->queues[i]);
879 aio_set_event_notifier(bdrv_get_aio_context(bs),
880 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
882 event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
883 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->doorbells,
884 sizeof(NvmeBar), NVME_DOORBELL_SIZE);
885 qemu_vfio_close(s->vfio);
890 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
897 BDRVNVMeState *s = bs->opaque;
899 bs->supported_write_flags = BDRV_REQ_FUA;
901 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
902 qemu_opts_absorb_qdict(opts, options, &error_abort);
903 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
905 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
910 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
911 ret = nvme_init(bs, device, namespace, errp);
916 if (flags & BDRV_O_NOCACHE) {
917 if (!s->write_cache_supported) {
919 "NVMe controller doesn't support write cache configuration");
922 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
935 static int64_t nvme_getlength(BlockDriverState *bs)
937 BDRVNVMeState *s = bs->opaque;
938 return s->nsze << s->blkshift;
941 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
943 BDRVNVMeState *s = bs->opaque;
944 assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
945 return UINT32_C(1) << s->blkshift;
948 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
950 uint32_t blocksize = nvme_get_blocksize(bs);
951 bsz->phys = blocksize;
952 bsz->log = blocksize;
956 /* Called with s->dma_map_lock */
957 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
961 BDRVNVMeState *s = bs->opaque;
963 s->dma_map_count -= qiov->size;
964 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
965 r = qemu_vfio_dma_reset_temporary(s->vfio);
967 qemu_co_queue_restart_all(&s->dma_flush_queue);
973 /* Called with s->dma_map_lock */
974 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
975 NVMeRequest *req, QEMUIOVector *qiov)
977 BDRVNVMeState *s = bs->opaque;
978 uint64_t *pagelist = req->prp_list_page;
983 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
984 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
985 for (i = 0; i < qiov->niov; ++i) {
989 r = qemu_vfio_dma_map(s->vfio,
990 qiov->iov[i].iov_base,
991 qiov->iov[i].iov_len,
993 if (r == -ENOMEM && retry) {
995 trace_nvme_dma_flush_queue_wait(s);
996 if (s->dma_map_count) {
997 trace_nvme_dma_map_flush(s);
998 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1000 r = qemu_vfio_dma_reset_temporary(s->vfio);
1011 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1012 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1014 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1015 qiov->iov[i].iov_len / s->page_size);
1018 s->dma_map_count += qiov->size;
1020 assert(entries <= s->page_size / sizeof(uint64_t));
1025 cmd->dptr.prp1 = pagelist[0];
1029 cmd->dptr.prp1 = pagelist[0];
1030 cmd->dptr.prp2 = pagelist[1];
1033 cmd->dptr.prp1 = pagelist[0];
1034 cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1037 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1038 for (i = 0; i < entries; ++i) {
1039 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1043 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1044 * increment s->dma_map_count. This is okay for fixed mapping memory areas
1045 * because they are already mapped before calling this function; for
1046 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1047 * calling qemu_vfio_dma_reset_temporary when necessary. */
1057 static void nvme_rw_cb_bh(void *opaque)
1059 NVMeCoData *data = opaque;
1060 qemu_coroutine_enter(data->co);
1063 static void nvme_rw_cb(void *opaque, int ret)
1065 NVMeCoData *data = opaque;
1068 /* The rw coroutine hasn't yielded, don't try to enter. */
1071 replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1074 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1075 uint64_t offset, uint64_t bytes,
1081 BDRVNVMeState *s = bs->opaque;
1082 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1085 uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1086 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1088 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1089 .nsid = cpu_to_le32(s->nsid),
1090 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1091 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1092 .cdw12 = cpu_to_le32(cdw12),
1095 .ctx = bdrv_get_aio_context(bs),
1096 .ret = -EINPROGRESS,
1099 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1100 assert(s->nr_queues > 1);
1101 req = nvme_get_free_req(ioq);
1104 qemu_co_mutex_lock(&s->dma_map_lock);
1105 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1106 qemu_co_mutex_unlock(&s->dma_map_lock);
1108 nvme_put_free_req_and_wake(ioq, req);
1111 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1113 data.co = qemu_coroutine_self();
1114 while (data.ret == -EINPROGRESS) {
1115 qemu_coroutine_yield();
1118 qemu_co_mutex_lock(&s->dma_map_lock);
1119 r = nvme_cmd_unmap_qiov(bs, qiov);
1120 qemu_co_mutex_unlock(&s->dma_map_lock);
1125 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1129 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1130 const QEMUIOVector *qiov)
1133 BDRVNVMeState *s = bs->opaque;
1135 for (i = 0; i < qiov->niov; ++i) {
1136 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
1137 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
1138 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1139 qiov->iov[i].iov_len, s->page_size);
1146 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
1147 QEMUIOVector *qiov, bool is_write, int flags)
1149 BDRVNVMeState *s = bs->opaque;
1151 uint8_t *buf = NULL;
1152 QEMUIOVector local_qiov;
1154 assert(QEMU_IS_ALIGNED(offset, s->page_size));
1155 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1156 assert(bytes <= s->max_transfer);
1157 if (nvme_qiov_aligned(bs, qiov)) {
1158 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1160 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1161 buf = qemu_try_memalign(s->page_size, bytes);
1166 qemu_iovec_init(&local_qiov, 1);
1168 qemu_iovec_to_buf(qiov, 0, buf, bytes);
1170 qemu_iovec_add(&local_qiov, buf, bytes);
1171 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1172 qemu_iovec_destroy(&local_qiov);
1173 if (!r && !is_write) {
1174 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1180 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1181 uint64_t offset, uint64_t bytes,
1182 QEMUIOVector *qiov, int flags)
1184 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1187 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1188 uint64_t offset, uint64_t bytes,
1189 QEMUIOVector *qiov, int flags)
1191 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1194 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1196 BDRVNVMeState *s = bs->opaque;
1197 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1200 .opcode = NVME_CMD_FLUSH,
1201 .nsid = cpu_to_le32(s->nsid),
1204 .ctx = bdrv_get_aio_context(bs),
1205 .ret = -EINPROGRESS,
1208 assert(s->nr_queues > 1);
1209 req = nvme_get_free_req(ioq);
1211 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1213 data.co = qemu_coroutine_self();
1214 if (data.ret == -EINPROGRESS) {
1215 qemu_coroutine_yield();
1222 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1225 BdrvRequestFlags flags)
1227 BDRVNVMeState *s = bs->opaque;
1228 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1231 uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1233 if (!s->supports_write_zeroes) {
1238 .opcode = NVME_CMD_WRITE_ZEROES,
1239 .nsid = cpu_to_le32(s->nsid),
1240 .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1241 .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1245 .ctx = bdrv_get_aio_context(bs),
1246 .ret = -EINPROGRESS,
1249 if (flags & BDRV_REQ_MAY_UNMAP) {
1253 if (flags & BDRV_REQ_FUA) {
1257 cmd.cdw12 = cpu_to_le32(cdw12);
1259 trace_nvme_write_zeroes(s, offset, bytes, flags);
1260 assert(s->nr_queues > 1);
1261 req = nvme_get_free_req(ioq);
1264 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1266 data.co = qemu_coroutine_self();
1267 while (data.ret == -EINPROGRESS) {
1268 qemu_coroutine_yield();
1271 trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1276 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1280 BDRVNVMeState *s = bs->opaque;
1281 NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1284 QEMUIOVector local_qiov;
1288 .opcode = NVME_CMD_DSM,
1289 .nsid = cpu_to_le32(s->nsid),
1290 .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1291 .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1295 .ctx = bdrv_get_aio_context(bs),
1296 .ret = -EINPROGRESS,
1299 if (!s->supports_discard) {
1303 assert(s->nr_queues > 1);
1305 buf = qemu_try_memalign(s->page_size, s->page_size);
1309 memset(buf, 0, s->page_size);
1310 buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1311 buf->slba = cpu_to_le64(offset >> s->blkshift);
1314 qemu_iovec_init(&local_qiov, 1);
1315 qemu_iovec_add(&local_qiov, buf, 4096);
1317 req = nvme_get_free_req(ioq);
1320 qemu_co_mutex_lock(&s->dma_map_lock);
1321 ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1322 qemu_co_mutex_unlock(&s->dma_map_lock);
1325 nvme_put_free_req_and_wake(ioq, req);
1329 trace_nvme_dsm(s, offset, bytes);
1331 nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1333 data.co = qemu_coroutine_self();
1334 while (data.ret == -EINPROGRESS) {
1335 qemu_coroutine_yield();
1338 qemu_co_mutex_lock(&s->dma_map_lock);
1339 ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1340 qemu_co_mutex_unlock(&s->dma_map_lock);
1347 trace_nvme_dsm_done(s, offset, bytes, ret);
1349 qemu_iovec_destroy(&local_qiov);
1356 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1357 BlockReopenQueue *queue, Error **errp)
1362 static void nvme_refresh_filename(BlockDriverState *bs)
1364 BDRVNVMeState *s = bs->opaque;
1366 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1367 s->device, s->nsid);
1370 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1372 BDRVNVMeState *s = bs->opaque;
1374 bs->bl.opt_mem_alignment = s->page_size;
1375 bs->bl.request_alignment = s->page_size;
1376 bs->bl.max_transfer = s->max_transfer;
1379 static void nvme_detach_aio_context(BlockDriverState *bs)
1381 BDRVNVMeState *s = bs->opaque;
1383 for (int i = 0; i < s->nr_queues; i++) {
1384 NVMeQueuePair *q = s->queues[i];
1386 qemu_bh_delete(q->completion_bh);
1387 q->completion_bh = NULL;
1390 aio_set_event_notifier(bdrv_get_aio_context(bs),
1391 &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1395 static void nvme_attach_aio_context(BlockDriverState *bs,
1396 AioContext *new_context)
1398 BDRVNVMeState *s = bs->opaque;
1400 s->aio_context = new_context;
1401 aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1402 false, nvme_handle_event, nvme_poll_cb);
1404 for (int i = 0; i < s->nr_queues; i++) {
1405 NVMeQueuePair *q = s->queues[i];
1408 aio_bh_new(new_context, nvme_process_completion_bh, q);
1412 static void nvme_aio_plug(BlockDriverState *bs)
1414 BDRVNVMeState *s = bs->opaque;
1415 assert(!s->plugged);
1419 static void nvme_aio_unplug(BlockDriverState *bs)
1422 BDRVNVMeState *s = bs->opaque;
1425 for (i = INDEX_IO(0); i < s->nr_queues; i++) {
1426 NVMeQueuePair *q = s->queues[i];
1427 qemu_mutex_lock(&q->lock);
1429 nvme_process_completion(q);
1430 qemu_mutex_unlock(&q->lock);
1434 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1437 BDRVNVMeState *s = bs->opaque;
1439 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1441 /* FIXME: we may run out of IOVA addresses after repeated
1442 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1443 * doesn't reclaim addresses for fixed mappings. */
1444 error_report("nvme_register_buf failed: %s", strerror(-ret));
1448 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1450 BDRVNVMeState *s = bs->opaque;
1452 qemu_vfio_dma_unmap(s->vfio, host);
1455 static const char *const nvme_strong_runtime_opts[] = {
1456 NVME_BLOCK_OPT_DEVICE,
1457 NVME_BLOCK_OPT_NAMESPACE,
1462 static BlockDriver bdrv_nvme = {
1463 .format_name = "nvme",
1464 .protocol_name = "nvme",
1465 .instance_size = sizeof(BDRVNVMeState),
1467 .bdrv_co_create_opts = bdrv_co_create_opts_simple,
1468 .create_opts = &bdrv_create_opts_simple,
1470 .bdrv_parse_filename = nvme_parse_filename,
1471 .bdrv_file_open = nvme_file_open,
1472 .bdrv_close = nvme_close,
1473 .bdrv_getlength = nvme_getlength,
1474 .bdrv_probe_blocksizes = nvme_probe_blocksizes,
1476 .bdrv_co_preadv = nvme_co_preadv,
1477 .bdrv_co_pwritev = nvme_co_pwritev,
1479 .bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
1480 .bdrv_co_pdiscard = nvme_co_pdiscard,
1482 .bdrv_co_flush_to_disk = nvme_co_flush,
1483 .bdrv_reopen_prepare = nvme_reopen_prepare,
1485 .bdrv_refresh_filename = nvme_refresh_filename,
1486 .bdrv_refresh_limits = nvme_refresh_limits,
1487 .strong_runtime_opts = nvme_strong_runtime_opts,
1489 .bdrv_detach_aio_context = nvme_detach_aio_context,
1490 .bdrv_attach_aio_context = nvme_attach_aio_context,
1492 .bdrv_io_plug = nvme_aio_plug,
1493 .bdrv_io_unplug = nvme_aio_unplug,
1495 .bdrv_register_buf = nvme_register_buf,
1496 .bdrv_unregister_buf = nvme_unregister_buf,
1499 static void bdrv_nvme_init(void)
1501 bdrv_register(&bdrv_nvme);
1504 block_init(bdrv_nvme_init);