]> Git Repo - qemu.git/blob - qemu-doc.texi
Fix msr_mask.
[qemu.git] / qemu-doc.texi
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
8
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
18
19 @ifnottex
20 @node Top
21 @top
22
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
33
34 @contents
35
36 @node Introduction
37 @chapter Introduction
38
39 @menu
40 * intro_features:: Features
41 @end menu
42
43 @node intro_features
44 @section Features
45
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
48
49 QEMU has two operating modes:
50
51 @itemize @minus
52
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
58
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
64
65 @end itemize
66
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
69
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 BW PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m (32-bit Sparc processor)
78 @item Sun4u (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit MIPS processor)
80 @item ARM Integrator/CP (ARM)
81 @item ARM Versatile baseboard (ARM)
82 @item ARM RealView Emulation baseboard (ARM)
83 @item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
85 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
86 @item Freescale MCF5208EVB (ColdFire V2).
87 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
88 @item Palm Tungsten|E PDA (OMAP310 processor)
89 @end itemize
90
91 For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
92
93 @node Installation
94 @chapter Installation
95
96 If you want to compile QEMU yourself, see @ref{compilation}.
97
98 @menu
99 * install_linux::   Linux
100 * install_windows:: Windows
101 * install_mac::     Macintosh
102 @end menu
103
104 @node install_linux
105 @section Linux
106
107 If a precompiled package is available for your distribution - you just
108 have to install it. Otherwise, see @ref{compilation}.
109
110 @node install_windows
111 @section Windows
112
113 Download the experimental binary installer at
114 @url{http://www.free.oszoo.org/@/download.html}.
115
116 @node install_mac
117 @section Mac OS X
118
119 Download the experimental binary installer at
120 @url{http://www.free.oszoo.org/@/download.html}.
121
122 @node QEMU PC System emulator
123 @chapter QEMU PC System emulator
124
125 @menu
126 * pcsys_introduction:: Introduction
127 * pcsys_quickstart::   Quick Start
128 * sec_invocation::     Invocation
129 * pcsys_keys::         Keys
130 * pcsys_monitor::      QEMU Monitor
131 * disk_images::        Disk Images
132 * pcsys_network::      Network emulation
133 * direct_linux_boot::  Direct Linux Boot
134 * pcsys_usb::          USB emulation
135 * vnc_security::       VNC security
136 * gdb_usage::          GDB usage
137 * pcsys_os_specific::  Target OS specific information
138 @end menu
139
140 @node pcsys_introduction
141 @section Introduction
142
143 @c man begin DESCRIPTION
144
145 The QEMU PC System emulator simulates the
146 following peripherals:
147
148 @itemize @minus
149 @item
150 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
151 @item
152 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
153 extensions (hardware level, including all non standard modes).
154 @item
155 PS/2 mouse and keyboard
156 @item
157 2 PCI IDE interfaces with hard disk and CD-ROM support
158 @item
159 Floppy disk
160 @item
161 PCI/ISA PCI network adapters
162 @item
163 Serial ports
164 @item
165 Creative SoundBlaster 16 sound card
166 @item
167 ENSONIQ AudioPCI ES1370 sound card
168 @item
169 Adlib(OPL2) - Yamaha YM3812 compatible chip
170 @item
171 PCI UHCI USB controller and a virtual USB hub.
172 @end itemize
173
174 SMP is supported with up to 255 CPUs.
175
176 Note that adlib is only available when QEMU was configured with
177 -enable-adlib
178
179 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
180 VGA BIOS.
181
182 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
183
184 @c man end
185
186 @node pcsys_quickstart
187 @section Quick Start
188
189 Download and uncompress the linux image (@file{linux.img}) and type:
190
191 @example
192 qemu linux.img
193 @end example
194
195 Linux should boot and give you a prompt.
196
197 @node sec_invocation
198 @section Invocation
199
200 @example
201 @c man begin SYNOPSIS
202 usage: qemu [options] [disk_image]
203 @c man end
204 @end example
205
206 @c man begin OPTIONS
207 @var{disk_image} is a raw hard disk image for IDE hard disk 0.
208
209 General options:
210 @table @option
211 @item -M machine
212 Select the emulated machine (@code{-M ?} for list)
213
214 @item -fda file
215 @item -fdb file
216 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
217 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
218
219 @item -hda file
220 @item -hdb file
221 @item -hdc file
222 @item -hdd file
223 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
224
225 @item -cdrom file
226 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
227 @option{-cdrom} at the same time). You can use the host CD-ROM by
228 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
229
230 @item -boot [a|c|d|n]
231 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
232 is the default.
233
234 @item -snapshot
235 Write to temporary files instead of disk image files. In this case,
236 the raw disk image you use is not written back. You can however force
237 the write back by pressing @key{C-a s} (@pxref{disk_images}).
238
239 @item -no-fd-bootchk
240 Disable boot signature checking for floppy disks in Bochs BIOS. It may
241 be needed to boot from old floppy disks.
242
243 @item -m megs
244 Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
245
246 @item -smp n
247 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
248 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
249 to 4.
250
251 @item -audio-help
252
253 Will show the audio subsystem help: list of drivers, tunable
254 parameters.
255
256 @item -soundhw card1,card2,... or -soundhw all
257
258 Enable audio and selected sound hardware. Use ? to print all
259 available sound hardware.
260
261 @example
262 qemu -soundhw sb16,adlib hda
263 qemu -soundhw es1370 hda
264 qemu -soundhw all hda
265 qemu -soundhw ?
266 @end example
267
268 @item -localtime
269 Set the real time clock to local time (the default is to UTC
270 time). This option is needed to have correct date in MS-DOS or
271 Windows.
272
273 @item -startdate date
274 Set the initial date of the real time clock. Valid format for
275 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
276 @code{2006-06-17}. The default value is @code{now}.
277
278 @item -pidfile file
279 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
280 from a script.
281
282 @item -daemonize
283 Daemonize the QEMU process after initialization.  QEMU will not detach from
284 standard IO until it is ready to receive connections on any of its devices.
285 This option is a useful way for external programs to launch QEMU without having
286 to cope with initialization race conditions.
287
288 @item -win2k-hack
289 Use it when installing Windows 2000 to avoid a disk full bug. After
290 Windows 2000 is installed, you no longer need this option (this option
291 slows down the IDE transfers).
292
293 @item -option-rom file
294 Load the contents of file as an option ROM.  This option is useful to load
295 things like EtherBoot.
296
297 @item -name string
298 Sets the name of the guest.  This name will be display in the SDL window
299 caption.  The name will also be used for the VNC server.
300
301 @end table
302
303 Display options:
304 @table @option
305
306 @item -nographic
307
308 Normally, QEMU uses SDL to display the VGA output. With this option,
309 you can totally disable graphical output so that QEMU is a simple
310 command line application. The emulated serial port is redirected on
311 the console. Therefore, you can still use QEMU to debug a Linux kernel
312 with a serial console.
313
314 @item -no-frame
315
316 Do not use decorations for SDL windows and start them using the whole
317 available screen space. This makes the using QEMU in a dedicated desktop
318 workspace more convenient.
319
320 @item -full-screen
321 Start in full screen.
322
323 @item -vnc display[,option[,option[,...]]]
324
325 Normally, QEMU uses SDL to display the VGA output.  With this option,
326 you can have QEMU listen on VNC display @var{display} and redirect the VGA
327 display over the VNC session.  It is very useful to enable the usb
328 tablet device when using this option (option @option{-usbdevice
329 tablet}). When using the VNC display, you must use the @option{-k}
330 parameter to set the keyboard layout if you are not using en-us. Valid
331 syntax for the @var{display} is
332
333 @table @code
334
335 @item @var{interface:d}
336
337 TCP connections will only be allowed from @var{interface} on display @var{d}.
338 By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
339 be omitted in which case the server will bind to all interfaces.
340
341 @item @var{unix:path}
342
343 Connections will be allowed over UNIX domain sockets where @var{path} is the
344 location of a unix socket to listen for connections on.
345
346 @item @var{none}
347
348 VNC is initialized by not started. The monitor @code{change} command can be used
349 to later start the VNC server.
350
351 @end table
352
353 Following the @var{display} value there may be one or more @var{option} flags
354 separated by commas. Valid options are
355
356 @table @code
357
358 @item @var{password}
359
360 Require that password based authentication is used for client connections.
361 The password must be set separately using the @code{change} command in the
362 @ref{pcsys_monitor}
363
364 @item @var{tls}
365
366 Require that client use TLS when communicating with the VNC server. This
367 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
368 attack. It is recommended that this option be combined with either the
369 @var{x509} or @var{x509verify} options.
370
371 @item @var{x509=/path/to/certificate/dir}
372
373 Valid if @var{tls} is specified. Require that x509 credentials are used
374 for negotiating the TLS session. The server will send its x509 certificate
375 to the client. It is recommended that a password be set on the VNC server
376 to provide authentication of the client when this is used. The path following
377 this option specifies where the x509 certificates are to be loaded from.
378 See the @ref{vnc_security} section for details on generating certificates.
379
380 @item @var{x509verify=/path/to/certificate/dir}
381
382 Valid if @var{tls} is specified. Require that x509 credentials are used
383 for negotiating the TLS session. The server will send its x509 certificate
384 to the client, and request that the client send its own x509 certificate.
385 The server will validate the client's certificate against the CA certificate,
386 and reject clients when validation fails. If the certificate authority is
387 trusted, this is a sufficient authentication mechanism. You may still wish
388 to set a password on the VNC server as a second authentication layer. The
389 path following this option specifies where the x509 certificates are to
390 be loaded from. See the @ref{vnc_security} section for details on generating
391 certificates.
392
393 @end table
394
395 @item -k language
396
397 Use keyboard layout @var{language} (for example @code{fr} for
398 French). This option is only needed where it is not easy to get raw PC
399 keycodes (e.g. on Macs, with some X11 servers or with a VNC
400 display). You don't normally need to use it on PC/Linux or PC/Windows
401 hosts.
402
403 The available layouts are:
404 @example
405 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
406 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
407 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
408 @end example
409
410 The default is @code{en-us}.
411
412 @end table
413
414 USB options:
415 @table @option
416
417 @item -usb
418 Enable the USB driver (will be the default soon)
419
420 @item -usbdevice devname
421 Add the USB device @var{devname}. @xref{usb_devices}.
422 @end table
423
424 Network options:
425
426 @table @option
427
428 @item -net nic[,vlan=n][,macaddr=addr][,model=type]
429 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
430 = 0 is the default). The NIC is an ne2k_pci by default on the PC
431 target. Optionally, the MAC address can be changed. If no
432 @option{-net} option is specified, a single NIC is created.
433 Qemu can emulate several different models of network card.
434 Valid values for @var{type} are
435 @code{i82551}, @code{i82557b}, @code{i82559er},
436 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
437 @code{smc91c111}, @code{lance} and @code{mcf_fec}.
438 Not all devices are supported on all targets.  Use -net nic,model=?
439 for a list of available devices for your target.
440
441 @item -net user[,vlan=n][,hostname=name]
442 Use the user mode network stack which requires no administrator
443 privilege to run.  @option{hostname=name} can be used to specify the client
444 hostname reported by the builtin DHCP server.
445
446 @item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
447 Connect the host TAP network interface @var{name} to VLAN @var{n} and
448 use the network script @var{file} to configure it. The default
449 network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
450 disable script execution. If @var{name} is not
451 provided, the OS automatically provides one.  @option{fd=h} can be
452 used to specify the handle of an already opened host TAP interface. Example:
453
454 @example
455 qemu linux.img -net nic -net tap
456 @end example
457
458 More complicated example (two NICs, each one connected to a TAP device)
459 @example
460 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
461                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
462 @end example
463
464
465 @item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
466
467 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
468 machine using a TCP socket connection. If @option{listen} is
469 specified, QEMU waits for incoming connections on @var{port}
470 (@var{host} is optional). @option{connect} is used to connect to
471 another QEMU instance using the @option{listen} option. @option{fd=h}
472 specifies an already opened TCP socket.
473
474 Example:
475 @example
476 # launch a first QEMU instance
477 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
478                -net socket,listen=:1234
479 # connect the VLAN 0 of this instance to the VLAN 0
480 # of the first instance
481 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
482                -net socket,connect=127.0.0.1:1234
483 @end example
484
485 @item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
486
487 Create a VLAN @var{n} shared with another QEMU virtual
488 machines using a UDP multicast socket, effectively making a bus for
489 every QEMU with same multicast address @var{maddr} and @var{port}.
490 NOTES:
491 @enumerate
492 @item
493 Several QEMU can be running on different hosts and share same bus (assuming
494 correct multicast setup for these hosts).
495 @item
496 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
497 @url{http://user-mode-linux.sf.net}.
498 @item
499 Use @option{fd=h} to specify an already opened UDP multicast socket.
500 @end enumerate
501
502 Example:
503 @example
504 # launch one QEMU instance
505 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
506                -net socket,mcast=230.0.0.1:1234
507 # launch another QEMU instance on same "bus"
508 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
509                -net socket,mcast=230.0.0.1:1234
510 # launch yet another QEMU instance on same "bus"
511 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
512                -net socket,mcast=230.0.0.1:1234
513 @end example
514
515 Example (User Mode Linux compat.):
516 @example
517 # launch QEMU instance (note mcast address selected
518 # is UML's default)
519 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
520                -net socket,mcast=239.192.168.1:1102
521 # launch UML
522 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
523 @end example
524
525 @item -net none
526 Indicate that no network devices should be configured. It is used to
527 override the default configuration (@option{-net nic -net user}) which
528 is activated if no @option{-net} options are provided.
529
530 @item -tftp dir
531 When using the user mode network stack, activate a built-in TFTP
532 server. The files in @var{dir} will be exposed as the root of a TFTP server.
533 The TFTP client on the guest must be configured in binary mode (use the command
534 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
535 usual 10.0.2.2.
536
537 @item -bootp file
538 When using the user mode network stack, broadcast @var{file} as the BOOTP
539 filename.  In conjunction with @option{-tftp}, this can be used to network boot
540 a guest from a local directory.
541
542 Example (using pxelinux):
543 @example
544 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
545 @end example
546
547 @item -smb dir
548 When using the user mode network stack, activate a built-in SMB
549 server so that Windows OSes can access to the host files in @file{dir}
550 transparently.
551
552 In the guest Windows OS, the line:
553 @example
554 10.0.2.4 smbserver
555 @end example
556 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
557 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
558
559 Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
560
561 Note that a SAMBA server must be installed on the host OS in
562 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
563 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
564
565 @item -redir [tcp|udp]:host-port:[guest-host]:guest-port
566
567 When using the user mode network stack, redirect incoming TCP or UDP
568 connections to the host port @var{host-port} to the guest
569 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
570 is not specified, its value is 10.0.2.15 (default address given by the
571 built-in DHCP server).
572
573 For example, to redirect host X11 connection from screen 1 to guest
574 screen 0, use the following:
575
576 @example
577 # on the host
578 qemu -redir tcp:6001::6000 [...]
579 # this host xterm should open in the guest X11 server
580 xterm -display :1
581 @end example
582
583 To redirect telnet connections from host port 5555 to telnet port on
584 the guest, use the following:
585
586 @example
587 # on the host
588 qemu -redir tcp:5555::23 [...]
589 telnet localhost 5555
590 @end example
591
592 Then when you use on the host @code{telnet localhost 5555}, you
593 connect to the guest telnet server.
594
595 @end table
596
597 Linux boot specific: When using these options, you can use a given
598 Linux kernel without installing it in the disk image. It can be useful
599 for easier testing of various kernels.
600
601 @table @option
602
603 @item -kernel bzImage
604 Use @var{bzImage} as kernel image.
605
606 @item -append cmdline
607 Use @var{cmdline} as kernel command line
608
609 @item -initrd file
610 Use @var{file} as initial ram disk.
611
612 @end table
613
614 Debug/Expert options:
615 @table @option
616
617 @item -serial dev
618 Redirect the virtual serial port to host character device
619 @var{dev}. The default device is @code{vc} in graphical mode and
620 @code{stdio} in non graphical mode.
621
622 This option can be used several times to simulate up to 4 serials
623 ports.
624
625 Use @code{-serial none} to disable all serial ports.
626
627 Available character devices are:
628 @table @code
629 @item vc[:WxH]
630 Virtual console. Optionally, a width and height can be given in pixel with
631 @example
632 vc:800x600
633 @end example
634 It is also possible to specify width or height in characters:
635 @example
636 vc:80Cx24C
637 @end example
638 @item pty
639 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
640 @item none
641 No device is allocated.
642 @item null
643 void device
644 @item /dev/XXX
645 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
646 parameters are set according to the emulated ones.
647 @item /dev/parportN
648 [Linux only, parallel port only] Use host parallel port
649 @var{N}. Currently SPP and EPP parallel port features can be used.
650 @item file:filename
651 Write output to filename. No character can be read.
652 @item stdio
653 [Unix only] standard input/output
654 @item pipe:filename
655 name pipe @var{filename}
656 @item COMn
657 [Windows only] Use host serial port @var{n}
658 @item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
659 This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
660
661 If you just want a simple readonly console you can use @code{netcat} or
662 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
663 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
664 will appear in the netconsole session.
665
666 If you plan to send characters back via netconsole or you want to stop
667 and start qemu a lot of times, you should have qemu use the same
668 source port each time by using something like @code{-serial
669 udp::4555@@:4556} to qemu. Another approach is to use a patched
670 version of netcat which can listen to a TCP port and send and receive
671 characters via udp.  If you have a patched version of netcat which
672 activates telnet remote echo and single char transfer, then you can
673 use the following options to step up a netcat redirector to allow
674 telnet on port 5555 to access the qemu port.
675 @table @code
676 @item Qemu Options:
677 -serial udp::4555@@:4556
678 @item netcat options:
679 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
680 @item telnet options:
681 localhost 5555
682 @end table
683
684
685 @item tcp:[host]:port[,server][,nowait][,nodelay]
686 The TCP Net Console has two modes of operation.  It can send the serial
687 I/O to a location or wait for a connection from a location.  By default
688 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
689 the @var{server} option QEMU will wait for a client socket application
690 to connect to the port before continuing, unless the @code{nowait}
691 option was specified.  The @code{nodelay} option disables the Nagle buffering
692 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
693 one TCP connection at a time is accepted. You can use @code{telnet} to
694 connect to the corresponding character device.
695 @table @code
696 @item Example to send tcp console to 192.168.0.2 port 4444
697 -serial tcp:192.168.0.2:4444
698 @item Example to listen and wait on port 4444 for connection
699 -serial tcp::4444,server
700 @item Example to not wait and listen on ip 192.168.0.100 port 4444
701 -serial tcp:192.168.0.100:4444,server,nowait
702 @end table
703
704 @item telnet:host:port[,server][,nowait][,nodelay]
705 The telnet protocol is used instead of raw tcp sockets.  The options
706 work the same as if you had specified @code{-serial tcp}.  The
707 difference is that the port acts like a telnet server or client using
708 telnet option negotiation.  This will also allow you to send the
709 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
710 sequence.  Typically in unix telnet you do it with Control-] and then
711 type "send break" followed by pressing the enter key.
712
713 @item unix:path[,server][,nowait]
714 A unix domain socket is used instead of a tcp socket.  The option works the
715 same as if you had specified @code{-serial tcp} except the unix domain socket
716 @var{path} is used for connections.
717
718 @item mon:dev_string
719 This is a special option to allow the monitor to be multiplexed onto
720 another serial port.  The monitor is accessed with key sequence of
721 @key{Control-a} and then pressing @key{c}. See monitor access
722 @ref{pcsys_keys} in the -nographic section for more keys.
723 @var{dev_string} should be any one of the serial devices specified
724 above.  An example to multiplex the monitor onto a telnet server
725 listening on port 4444 would be:
726 @table @code
727 @item -serial mon:telnet::4444,server,nowait
728 @end table
729
730 @end table
731
732 @item -parallel dev
733 Redirect the virtual parallel port to host device @var{dev} (same
734 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
735 be used to use hardware devices connected on the corresponding host
736 parallel port.
737
738 This option can be used several times to simulate up to 3 parallel
739 ports.
740
741 Use @code{-parallel none} to disable all parallel ports.
742
743 @item -monitor dev
744 Redirect the monitor to host device @var{dev} (same devices as the
745 serial port).
746 The default device is @code{vc} in graphical mode and @code{stdio} in
747 non graphical mode.
748
749 @item -echr numeric_ascii_value
750 Change the escape character used for switching to the monitor when using
751 monitor and serial sharing.  The default is @code{0x01} when using the
752 @code{-nographic} option.  @code{0x01} is equal to pressing
753 @code{Control-a}.  You can select a different character from the ascii
754 control keys where 1 through 26 map to Control-a through Control-z.  For
755 instance you could use the either of the following to change the escape
756 character to Control-t.
757 @table @code
758 @item -echr 0x14
759 @item -echr 20
760 @end table
761
762 @item -s
763 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
764 @item -p port
765 Change gdb connection port.  @var{port} can be either a decimal number
766 to specify a TCP port, or a host device (same devices as the serial port).
767 @item -S
768 Do not start CPU at startup (you must type 'c' in the monitor).
769 @item -d
770 Output log in /tmp/qemu.log
771 @item -hdachs c,h,s,[,t]
772 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
773 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
774 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
775 all those parameters. This option is useful for old MS-DOS disk
776 images.
777
778 @item -L path
779 Set the directory for the BIOS, VGA BIOS and keymaps.
780
781 @item -std-vga
782 Simulate a standard VGA card with Bochs VBE extensions (default is
783 Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
784 VBE extensions (e.g. Windows XP) and if you want to use high
785 resolution modes (>= 1280x1024x16) then you should use this option.
786
787 @item -no-acpi
788 Disable ACPI (Advanced Configuration and Power Interface) support. Use
789 it if your guest OS complains about ACPI problems (PC target machine
790 only).
791
792 @item -no-reboot
793 Exit instead of rebooting.
794
795 @item -loadvm file
796 Start right away with a saved state (@code{loadvm} in monitor)
797
798 @item -semihosting
799 Enable semihosting syscall emulation (ARM and M68K target machines only).
800
801 On ARM this implements the "Angel" interface.
802 On M68K this implements the "ColdFire GDB" interface used by libgloss.
803
804 Note that this allows guest direct access to the host filesystem,
805 so should only be used with trusted guest OS.
806 @end table
807
808 @c man end
809
810 @node pcsys_keys
811 @section Keys
812
813 @c man begin OPTIONS
814
815 During the graphical emulation, you can use the following keys:
816 @table @key
817 @item Ctrl-Alt-f
818 Toggle full screen
819
820 @item Ctrl-Alt-n
821 Switch to virtual console 'n'. Standard console mappings are:
822 @table @emph
823 @item 1
824 Target system display
825 @item 2
826 Monitor
827 @item 3
828 Serial port
829 @end table
830
831 @item Ctrl-Alt
832 Toggle mouse and keyboard grab.
833 @end table
834
835 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
836 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
837
838 During emulation, if you are using the @option{-nographic} option, use
839 @key{Ctrl-a h} to get terminal commands:
840
841 @table @key
842 @item Ctrl-a h
843 Print this help
844 @item Ctrl-a x
845 Exit emulator
846 @item Ctrl-a s
847 Save disk data back to file (if -snapshot)
848 @item Ctrl-a t
849 toggle console timestamps
850 @item Ctrl-a b
851 Send break (magic sysrq in Linux)
852 @item Ctrl-a c
853 Switch between console and monitor
854 @item Ctrl-a Ctrl-a
855 Send Ctrl-a
856 @end table
857 @c man end
858
859 @ignore
860
861 @c man begin SEEALSO
862 The HTML documentation of QEMU for more precise information and Linux
863 user mode emulator invocation.
864 @c man end
865
866 @c man begin AUTHOR
867 Fabrice Bellard
868 @c man end
869
870 @end ignore
871
872 @node pcsys_monitor
873 @section QEMU Monitor
874
875 The QEMU monitor is used to give complex commands to the QEMU
876 emulator. You can use it to:
877
878 @itemize @minus
879
880 @item
881 Remove or insert removable media images
882 (such as CD-ROM or floppies)
883
884 @item
885 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
886 from a disk file.
887
888 @item Inspect the VM state without an external debugger.
889
890 @end itemize
891
892 @subsection Commands
893
894 The following commands are available:
895
896 @table @option
897
898 @item help or ? [cmd]
899 Show the help for all commands or just for command @var{cmd}.
900
901 @item commit
902 Commit changes to the disk images (if -snapshot is used)
903
904 @item info subcommand
905 show various information about the system state
906
907 @table @option
908 @item info network
909 show the various VLANs and the associated devices
910 @item info block
911 show the block devices
912 @item info registers
913 show the cpu registers
914 @item info history
915 show the command line history
916 @item info pci
917 show emulated PCI device
918 @item info usb
919 show USB devices plugged on the virtual USB hub
920 @item info usbhost
921 show all USB host devices
922 @item info capture
923 show information about active capturing
924 @item info snapshots
925 show list of VM snapshots
926 @item info mice
927 show which guest mouse is receiving events
928 @end table
929
930 @item q or quit
931 Quit the emulator.
932
933 @item eject [-f] device
934 Eject a removable medium (use -f to force it).
935
936 @item change device setting
937
938 Change the configuration of a device
939
940 @table @option
941 @item change @var{diskdevice} @var{filename}
942 Change the medium for a removable disk device to point to @var{filename}. eg
943
944 @example
945 (qemu) change cdrom /path/to/some.iso
946 @end example
947
948 @item change vnc @var{display,options}
949 Change the configuration of the VNC server. The valid syntax for @var{display}
950 and @var{options} are described at @ref{sec_invocation}. eg
951
952 @example
953 (qemu) change vnc localhost:1
954 @end example
955
956 @item change vnc password
957
958 Change the password associated with the VNC server. The monitor will prompt for
959 the new password to be entered. VNC passwords are only significant upto 8 letters.
960 eg.
961
962 @example
963 (qemu) change vnc password
964 Password: ********
965 @end example
966
967 @end table
968
969 @item screendump filename
970 Save screen into PPM image @var{filename}.
971
972 @item mouse_move dx dy [dz]
973 Move the active mouse to the specified coordinates @var{dx} @var{dy}
974 with optional scroll axis @var{dz}.
975
976 @item mouse_button val
977 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
978
979 @item mouse_set index
980 Set which mouse device receives events at given @var{index}, index
981 can be obtained with
982 @example
983 info mice
984 @end example
985
986 @item wavcapture filename [frequency [bits [channels]]]
987 Capture audio into @var{filename}. Using sample rate @var{frequency}
988 bits per sample @var{bits} and number of channels @var{channels}.
989
990 Defaults:
991 @itemize @minus
992 @item Sample rate = 44100 Hz - CD quality
993 @item Bits = 16
994 @item Number of channels = 2 - Stereo
995 @end itemize
996
997 @item stopcapture index
998 Stop capture with a given @var{index}, index can be obtained with
999 @example
1000 info capture
1001 @end example
1002
1003 @item log item1[,...]
1004 Activate logging of the specified items to @file{/tmp/qemu.log}.
1005
1006 @item savevm [tag|id]
1007 Create a snapshot of the whole virtual machine. If @var{tag} is
1008 provided, it is used as human readable identifier. If there is already
1009 a snapshot with the same tag or ID, it is replaced. More info at
1010 @ref{vm_snapshots}.
1011
1012 @item loadvm tag|id
1013 Set the whole virtual machine to the snapshot identified by the tag
1014 @var{tag} or the unique snapshot ID @var{id}.
1015
1016 @item delvm tag|id
1017 Delete the snapshot identified by @var{tag} or @var{id}.
1018
1019 @item stop
1020 Stop emulation.
1021
1022 @item c or cont
1023 Resume emulation.
1024
1025 @item gdbserver [port]
1026 Start gdbserver session (default port=1234)
1027
1028 @item x/fmt addr
1029 Virtual memory dump starting at @var{addr}.
1030
1031 @item xp /fmt addr
1032 Physical memory dump starting at @var{addr}.
1033
1034 @var{fmt} is a format which tells the command how to format the
1035 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1036
1037 @table @var
1038 @item count
1039 is the number of items to be dumped.
1040
1041 @item format
1042 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1043 c (char) or i (asm instruction).
1044
1045 @item size
1046 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1047 @code{h} or @code{w} can be specified with the @code{i} format to
1048 respectively select 16 or 32 bit code instruction size.
1049
1050 @end table
1051
1052 Examples:
1053 @itemize
1054 @item
1055 Dump 10 instructions at the current instruction pointer:
1056 @example
1057 (qemu) x/10i $eip
1058 0x90107063:  ret
1059 0x90107064:  sti
1060 0x90107065:  lea    0x0(%esi,1),%esi
1061 0x90107069:  lea    0x0(%edi,1),%edi
1062 0x90107070:  ret
1063 0x90107071:  jmp    0x90107080
1064 0x90107073:  nop
1065 0x90107074:  nop
1066 0x90107075:  nop
1067 0x90107076:  nop
1068 @end example
1069
1070 @item
1071 Dump 80 16 bit values at the start of the video memory.
1072 @smallexample
1073 (qemu) xp/80hx 0xb8000
1074 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1075 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1076 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1077 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1078 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1079 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1080 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1081 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1082 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1083 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1084 @end smallexample
1085 @end itemize
1086
1087 @item p or print/fmt expr
1088
1089 Print expression value. Only the @var{format} part of @var{fmt} is
1090 used.
1091
1092 @item sendkey keys
1093
1094 Send @var{keys} to the emulator. Use @code{-} to press several keys
1095 simultaneously. Example:
1096 @example
1097 sendkey ctrl-alt-f1
1098 @end example
1099
1100 This command is useful to send keys that your graphical user interface
1101 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1102
1103 @item system_reset
1104
1105 Reset the system.
1106
1107 @item usb_add devname
1108
1109 Add the USB device @var{devname}.  For details of available devices see
1110 @ref{usb_devices}
1111
1112 @item usb_del devname
1113
1114 Remove the USB device @var{devname} from the QEMU virtual USB
1115 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1116 command @code{info usb} to see the devices you can remove.
1117
1118 @end table
1119
1120 @subsection Integer expressions
1121
1122 The monitor understands integers expressions for every integer
1123 argument. You can use register names to get the value of specifics
1124 CPU registers by prefixing them with @emph{$}.
1125
1126 @node disk_images
1127 @section Disk Images
1128
1129 Since version 0.6.1, QEMU supports many disk image formats, including
1130 growable disk images (their size increase as non empty sectors are
1131 written), compressed and encrypted disk images. Version 0.8.3 added
1132 the new qcow2 disk image format which is essential to support VM
1133 snapshots.
1134
1135 @menu
1136 * disk_images_quickstart::    Quick start for disk image creation
1137 * disk_images_snapshot_mode:: Snapshot mode
1138 * vm_snapshots::              VM snapshots
1139 * qemu_img_invocation::       qemu-img Invocation
1140 * host_drives::               Using host drives
1141 * disk_images_fat_images::    Virtual FAT disk images
1142 @end menu
1143
1144 @node disk_images_quickstart
1145 @subsection Quick start for disk image creation
1146
1147 You can create a disk image with the command:
1148 @example
1149 qemu-img create myimage.img mysize
1150 @end example
1151 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1152 size in kilobytes. You can add an @code{M} suffix to give the size in
1153 megabytes and a @code{G} suffix for gigabytes.
1154
1155 See @ref{qemu_img_invocation} for more information.
1156
1157 @node disk_images_snapshot_mode
1158 @subsection Snapshot mode
1159
1160 If you use the option @option{-snapshot}, all disk images are
1161 considered as read only. When sectors in written, they are written in
1162 a temporary file created in @file{/tmp}. You can however force the
1163 write back to the raw disk images by using the @code{commit} monitor
1164 command (or @key{C-a s} in the serial console).
1165
1166 @node vm_snapshots
1167 @subsection VM snapshots
1168
1169 VM snapshots are snapshots of the complete virtual machine including
1170 CPU state, RAM, device state and the content of all the writable
1171 disks. In order to use VM snapshots, you must have at least one non
1172 removable and writable block device using the @code{qcow2} disk image
1173 format. Normally this device is the first virtual hard drive.
1174
1175 Use the monitor command @code{savevm} to create a new VM snapshot or
1176 replace an existing one. A human readable name can be assigned to each
1177 snapshot in addition to its numerical ID.
1178
1179 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1180 a VM snapshot. @code{info snapshots} lists the available snapshots
1181 with their associated information:
1182
1183 @example
1184 (qemu) info snapshots
1185 Snapshot devices: hda
1186 Snapshot list (from hda):
1187 ID        TAG                 VM SIZE                DATE       VM CLOCK
1188 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1189 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1190 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1191 @end example
1192
1193 A VM snapshot is made of a VM state info (its size is shown in
1194 @code{info snapshots}) and a snapshot of every writable disk image.
1195 The VM state info is stored in the first @code{qcow2} non removable
1196 and writable block device. The disk image snapshots are stored in
1197 every disk image. The size of a snapshot in a disk image is difficult
1198 to evaluate and is not shown by @code{info snapshots} because the
1199 associated disk sectors are shared among all the snapshots to save
1200 disk space (otherwise each snapshot would need a full copy of all the
1201 disk images).
1202
1203 When using the (unrelated) @code{-snapshot} option
1204 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1205 but they are deleted as soon as you exit QEMU.
1206
1207 VM snapshots currently have the following known limitations:
1208 @itemize
1209 @item
1210 They cannot cope with removable devices if they are removed or
1211 inserted after a snapshot is done.
1212 @item
1213 A few device drivers still have incomplete snapshot support so their
1214 state is not saved or restored properly (in particular USB).
1215 @end itemize
1216
1217 @node qemu_img_invocation
1218 @subsection @code{qemu-img} Invocation
1219
1220 @include qemu-img.texi
1221
1222 @node host_drives
1223 @subsection Using host drives
1224
1225 In addition to disk image files, QEMU can directly access host
1226 devices. We describe here the usage for QEMU version >= 0.8.3.
1227
1228 @subsubsection Linux
1229
1230 On Linux, you can directly use the host device filename instead of a
1231 disk image filename provided you have enough privileges to access
1232 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1233 @file{/dev/fd0} for the floppy.
1234
1235 @table @code
1236 @item CD
1237 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1238 specific code to detect CDROM insertion or removal. CDROM ejection by
1239 the guest OS is supported. Currently only data CDs are supported.
1240 @item Floppy
1241 You can specify a floppy device even if no floppy is loaded. Floppy
1242 removal is currently not detected accurately (if you change floppy
1243 without doing floppy access while the floppy is not loaded, the guest
1244 OS will think that the same floppy is loaded).
1245 @item Hard disks
1246 Hard disks can be used. Normally you must specify the whole disk
1247 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1248 see it as a partitioned disk. WARNING: unless you know what you do, it
1249 is better to only make READ-ONLY accesses to the hard disk otherwise
1250 you may corrupt your host data (use the @option{-snapshot} command
1251 line option or modify the device permissions accordingly).
1252 @end table
1253
1254 @subsubsection Windows
1255
1256 @table @code
1257 @item CD
1258 The preferred syntax is the drive letter (e.g. @file{d:}). The
1259 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1260 supported as an alias to the first CDROM drive.
1261
1262 Currently there is no specific code to handle removable media, so it
1263 is better to use the @code{change} or @code{eject} monitor commands to
1264 change or eject media.
1265 @item Hard disks
1266 Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1267 where @var{N} is the drive number (0 is the first hard disk).
1268
1269 WARNING: unless you know what you do, it is better to only make
1270 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1271 host data (use the @option{-snapshot} command line so that the
1272 modifications are written in a temporary file).
1273 @end table
1274
1275
1276 @subsubsection Mac OS X
1277
1278 @file{/dev/cdrom} is an alias to the first CDROM.
1279
1280 Currently there is no specific code to handle removable media, so it
1281 is better to use the @code{change} or @code{eject} monitor commands to
1282 change or eject media.
1283
1284 @node disk_images_fat_images
1285 @subsection Virtual FAT disk images
1286
1287 QEMU can automatically create a virtual FAT disk image from a
1288 directory tree. In order to use it, just type:
1289
1290 @example
1291 qemu linux.img -hdb fat:/my_directory
1292 @end example
1293
1294 Then you access access to all the files in the @file{/my_directory}
1295 directory without having to copy them in a disk image or to export
1296 them via SAMBA or NFS. The default access is @emph{read-only}.
1297
1298 Floppies can be emulated with the @code{:floppy:} option:
1299
1300 @example
1301 qemu linux.img -fda fat:floppy:/my_directory
1302 @end example
1303
1304 A read/write support is available for testing (beta stage) with the
1305 @code{:rw:} option:
1306
1307 @example
1308 qemu linux.img -fda fat:floppy:rw:/my_directory
1309 @end example
1310
1311 What you should @emph{never} do:
1312 @itemize
1313 @item use non-ASCII filenames ;
1314 @item use "-snapshot" together with ":rw:" ;
1315 @item expect it to work when loadvm'ing ;
1316 @item write to the FAT directory on the host system while accessing it with the guest system.
1317 @end itemize
1318
1319 @node pcsys_network
1320 @section Network emulation
1321
1322 QEMU can simulate several network cards (PCI or ISA cards on the PC
1323 target) and can connect them to an arbitrary number of Virtual Local
1324 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1325 VLAN. VLAN can be connected between separate instances of QEMU to
1326 simulate large networks. For simpler usage, a non privileged user mode
1327 network stack can replace the TAP device to have a basic network
1328 connection.
1329
1330 @subsection VLANs
1331
1332 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1333 connection between several network devices. These devices can be for
1334 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1335 (TAP devices).
1336
1337 @subsection Using TAP network interfaces
1338
1339 This is the standard way to connect QEMU to a real network. QEMU adds
1340 a virtual network device on your host (called @code{tapN}), and you
1341 can then configure it as if it was a real ethernet card.
1342
1343 @subsubsection Linux host
1344
1345 As an example, you can download the @file{linux-test-xxx.tar.gz}
1346 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1347 configure properly @code{sudo} so that the command @code{ifconfig}
1348 contained in @file{qemu-ifup} can be executed as root. You must verify
1349 that your host kernel supports the TAP network interfaces: the
1350 device @file{/dev/net/tun} must be present.
1351
1352 See @ref{sec_invocation} to have examples of command lines using the
1353 TAP network interfaces.
1354
1355 @subsubsection Windows host
1356
1357 There is a virtual ethernet driver for Windows 2000/XP systems, called
1358 TAP-Win32. But it is not included in standard QEMU for Windows,
1359 so you will need to get it separately. It is part of OpenVPN package,
1360 so download OpenVPN from : @url{http://openvpn.net/}.
1361
1362 @subsection Using the user mode network stack
1363
1364 By using the option @option{-net user} (default configuration if no
1365 @option{-net} option is specified), QEMU uses a completely user mode
1366 network stack (you don't need root privilege to use the virtual
1367 network). The virtual network configuration is the following:
1368
1369 @example
1370
1371          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1372                            |          (10.0.2.2)
1373                            |
1374                            ---->  DNS server (10.0.2.3)
1375                            |
1376                            ---->  SMB server (10.0.2.4)
1377 @end example
1378
1379 The QEMU VM behaves as if it was behind a firewall which blocks all
1380 incoming connections. You can use a DHCP client to automatically
1381 configure the network in the QEMU VM. The DHCP server assign addresses
1382 to the hosts starting from 10.0.2.15.
1383
1384 In order to check that the user mode network is working, you can ping
1385 the address 10.0.2.2 and verify that you got an address in the range
1386 10.0.2.x from the QEMU virtual DHCP server.
1387
1388 Note that @code{ping} is not supported reliably to the internet as it
1389 would require root privileges. It means you can only ping the local
1390 router (10.0.2.2).
1391
1392 When using the built-in TFTP server, the router is also the TFTP
1393 server.
1394
1395 When using the @option{-redir} option, TCP or UDP connections can be
1396 redirected from the host to the guest. It allows for example to
1397 redirect X11, telnet or SSH connections.
1398
1399 @subsection Connecting VLANs between QEMU instances
1400
1401 Using the @option{-net socket} option, it is possible to make VLANs
1402 that span several QEMU instances. See @ref{sec_invocation} to have a
1403 basic example.
1404
1405 @node direct_linux_boot
1406 @section Direct Linux Boot
1407
1408 This section explains how to launch a Linux kernel inside QEMU without
1409 having to make a full bootable image. It is very useful for fast Linux
1410 kernel testing.
1411
1412 The syntax is:
1413 @example
1414 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1415 @end example
1416
1417 Use @option{-kernel} to provide the Linux kernel image and
1418 @option{-append} to give the kernel command line arguments. The
1419 @option{-initrd} option can be used to provide an INITRD image.
1420
1421 When using the direct Linux boot, a disk image for the first hard disk
1422 @file{hda} is required because its boot sector is used to launch the
1423 Linux kernel.
1424
1425 If you do not need graphical output, you can disable it and redirect
1426 the virtual serial port and the QEMU monitor to the console with the
1427 @option{-nographic} option. The typical command line is:
1428 @example
1429 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1430      -append "root=/dev/hda console=ttyS0" -nographic
1431 @end example
1432
1433 Use @key{Ctrl-a c} to switch between the serial console and the
1434 monitor (@pxref{pcsys_keys}).
1435
1436 @node pcsys_usb
1437 @section USB emulation
1438
1439 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1440 virtual USB devices or real host USB devices (experimental, works only
1441 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1442 as necessary to connect multiple USB devices.
1443
1444 @menu
1445 * usb_devices::
1446 * host_usb_devices::
1447 @end menu
1448 @node usb_devices
1449 @subsection Connecting USB devices
1450
1451 USB devices can be connected with the @option{-usbdevice} commandline option
1452 or the @code{usb_add} monitor command.  Available devices are:
1453
1454 @table @var
1455 @item @code{mouse}
1456 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1457 @item @code{tablet}
1458 Pointer device that uses absolute coordinates (like a touchscreen).
1459 This means qemu is able to report the mouse position without having
1460 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1461 @item @code{disk:file}
1462 Mass storage device based on @var{file} (@pxref{disk_images})
1463 @item @code{host:bus.addr}
1464 Pass through the host device identified by @var{bus.addr}
1465 (Linux only)
1466 @item @code{host:vendor_id:product_id}
1467 Pass through the host device identified by @var{vendor_id:product_id}
1468 (Linux only)
1469 @item @code{wacom-tablet}
1470 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1471 above but it can be used with the tslib library because in addition to touch
1472 coordinates it reports touch pressure.
1473 @item @code{keyboard}
1474 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1475 @end table
1476
1477 @node host_usb_devices
1478 @subsection Using host USB devices on a Linux host
1479
1480 WARNING: this is an experimental feature. QEMU will slow down when
1481 using it. USB devices requiring real time streaming (i.e. USB Video
1482 Cameras) are not supported yet.
1483
1484 @enumerate
1485 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
1486 is actually using the USB device. A simple way to do that is simply to
1487 disable the corresponding kernel module by renaming it from @file{mydriver.o}
1488 to @file{mydriver.o.disabled}.
1489
1490 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1491 @example
1492 ls /proc/bus/usb
1493 001  devices  drivers
1494 @end example
1495
1496 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1497 @example
1498 chown -R myuid /proc/bus/usb
1499 @end example
1500
1501 @item Launch QEMU and do in the monitor:
1502 @example
1503 info usbhost
1504   Device 1.2, speed 480 Mb/s
1505     Class 00: USB device 1234:5678, USB DISK
1506 @end example
1507 You should see the list of the devices you can use (Never try to use
1508 hubs, it won't work).
1509
1510 @item Add the device in QEMU by using:
1511 @example
1512 usb_add host:1234:5678
1513 @end example
1514
1515 Normally the guest OS should report that a new USB device is
1516 plugged. You can use the option @option{-usbdevice} to do the same.
1517
1518 @item Now you can try to use the host USB device in QEMU.
1519
1520 @end enumerate
1521
1522 When relaunching QEMU, you may have to unplug and plug again the USB
1523 device to make it work again (this is a bug).
1524
1525 @node vnc_security
1526 @section VNC security
1527
1528 The VNC server capability provides access to the graphical console
1529 of the guest VM across the network. This has a number of security
1530 considerations depending on the deployment scenarios.
1531
1532 @menu
1533 * vnc_sec_none::
1534 * vnc_sec_password::
1535 * vnc_sec_certificate::
1536 * vnc_sec_certificate_verify::
1537 * vnc_sec_certificate_pw::
1538 * vnc_generate_cert::
1539 @end menu
1540 @node vnc_sec_none
1541 @subsection Without passwords
1542
1543 The simplest VNC server setup does not include any form of authentication.
1544 For this setup it is recommended to restrict it to listen on a UNIX domain
1545 socket only. For example
1546
1547 @example
1548 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1549 @end example
1550
1551 This ensures that only users on local box with read/write access to that
1552 path can access the VNC server. To securely access the VNC server from a
1553 remote machine, a combination of netcat+ssh can be used to provide a secure
1554 tunnel.
1555
1556 @node vnc_sec_password
1557 @subsection With passwords
1558
1559 The VNC protocol has limited support for password based authentication. Since
1560 the protocol limits passwords to 8 characters it should not be considered
1561 to provide high security. The password can be fairly easily brute-forced by
1562 a client making repeat connections. For this reason, a VNC server using password
1563 authentication should be restricted to only listen on the loopback interface
1564 or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1565 option, and then once QEMU is running the password is set with the monitor. Until
1566 the monitor is used to set the password all clients will be rejected.
1567
1568 @example
1569 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1570 (qemu) change vnc password
1571 Password: ********
1572 (qemu)
1573 @end example
1574
1575 @node vnc_sec_certificate
1576 @subsection With x509 certificates
1577
1578 The QEMU VNC server also implements the VeNCrypt extension allowing use of
1579 TLS for encryption of the session, and x509 certificates for authentication.
1580 The use of x509 certificates is strongly recommended, because TLS on its
1581 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1582 support provides a secure session, but no authentication. This allows any
1583 client to connect, and provides an encrypted session.
1584
1585 @example
1586 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1587 @end example
1588
1589 In the above example @code{/etc/pki/qemu} should contain at least three files,
1590 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1591 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1592 NB the @code{server-key.pem} file should be protected with file mode 0600 to
1593 only be readable by the user owning it.
1594
1595 @node vnc_sec_certificate_verify
1596 @subsection With x509 certificates and client verification
1597
1598 Certificates can also provide a means to authenticate the client connecting.
1599 The server will request that the client provide a certificate, which it will
1600 then validate against the CA certificate. This is a good choice if deploying
1601 in an environment with a private internal certificate authority.
1602
1603 @example
1604 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1605 @end example
1606
1607
1608 @node vnc_sec_certificate_pw
1609 @subsection With x509 certificates, client verification and passwords
1610
1611 Finally, the previous method can be combined with VNC password authentication
1612 to provide two layers of authentication for clients.
1613
1614 @example
1615 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1616 (qemu) change vnc password
1617 Password: ********
1618 (qemu)
1619 @end example
1620
1621 @node vnc_generate_cert
1622 @subsection Generating certificates for VNC
1623
1624 The GNU TLS packages provides a command called @code{certtool} which can
1625 be used to generate certificates and keys in PEM format. At a minimum it
1626 is neccessary to setup a certificate authority, and issue certificates to
1627 each server. If using certificates for authentication, then each client
1628 will also need to be issued a certificate. The recommendation is for the
1629 server to keep its certificates in either @code{/etc/pki/qemu} or for
1630 unprivileged users in @code{$HOME/.pki/qemu}.
1631
1632 @menu
1633 * vnc_generate_ca::
1634 * vnc_generate_server::
1635 * vnc_generate_client::
1636 @end menu
1637 @node vnc_generate_ca
1638 @subsubsection Setup the Certificate Authority
1639
1640 This step only needs to be performed once per organization / organizational
1641 unit. First the CA needs a private key. This key must be kept VERY secret
1642 and secure. If this key is compromised the entire trust chain of the certificates
1643 issued with it is lost.
1644
1645 @example
1646 # certtool --generate-privkey > ca-key.pem
1647 @end example
1648
1649 A CA needs to have a public certificate. For simplicity it can be a self-signed
1650 certificate, or one issue by a commercial certificate issuing authority. To
1651 generate a self-signed certificate requires one core piece of information, the
1652 name of the organization.
1653
1654 @example
1655 # cat > ca.info <<EOF
1656 cn = Name of your organization
1657 ca
1658 cert_signing_key
1659 EOF
1660 # certtool --generate-self-signed \
1661            --load-privkey ca-key.pem
1662            --template ca.info \
1663            --outfile ca-cert.pem
1664 @end example
1665
1666 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1667 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1668
1669 @node vnc_generate_server
1670 @subsubsection Issuing server certificates
1671
1672 Each server (or host) needs to be issued with a key and certificate. When connecting
1673 the certificate is sent to the client which validates it against the CA certificate.
1674 The core piece of information for a server certificate is the hostname. This should
1675 be the fully qualified hostname that the client will connect with, since the client
1676 will typically also verify the hostname in the certificate. On the host holding the
1677 secure CA private key:
1678
1679 @example
1680 # cat > server.info <<EOF
1681 organization = Name  of your organization
1682 cn = server.foo.example.com
1683 tls_www_server
1684 encryption_key
1685 signing_key
1686 EOF
1687 # certtool --generate-privkey > server-key.pem
1688 # certtool --generate-certificate \
1689            --load-ca-certificate ca-cert.pem \
1690            --load-ca-privkey ca-key.pem \
1691            --load-privkey server server-key.pem \
1692            --template server.info \
1693            --outfile server-cert.pem
1694 @end example
1695
1696 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1697 to the server for which they were generated. The @code{server-key.pem} is security
1698 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1699
1700 @node vnc_generate_client
1701 @subsubsection Issuing client certificates
1702
1703 If the QEMU VNC server is to use the @code{x509verify} option to validate client
1704 certificates as its authentication mechanism, each client also needs to be issued
1705 a certificate. The client certificate contains enough metadata to uniquely identify
1706 the client, typically organization, state, city, building, etc. On the host holding
1707 the secure CA private key:
1708
1709 @example
1710 # cat > client.info <<EOF
1711 country = GB
1712 state = London
1713 locality = London
1714 organiazation = Name of your organization
1715 cn = client.foo.example.com
1716 tls_www_client
1717 encryption_key
1718 signing_key
1719 EOF
1720 # certtool --generate-privkey > client-key.pem
1721 # certtool --generate-certificate \
1722            --load-ca-certificate ca-cert.pem \
1723            --load-ca-privkey ca-key.pem \
1724            --load-privkey client-key.pem \
1725            --template client.info \
1726            --outfile client-cert.pem
1727 @end example
1728
1729 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1730 copied to the client for which they were generated.
1731
1732 @node gdb_usage
1733 @section GDB usage
1734
1735 QEMU has a primitive support to work with gdb, so that you can do
1736 'Ctrl-C' while the virtual machine is running and inspect its state.
1737
1738 In order to use gdb, launch qemu with the '-s' option. It will wait for a
1739 gdb connection:
1740 @example
1741 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1742        -append "root=/dev/hda"
1743 Connected to host network interface: tun0
1744 Waiting gdb connection on port 1234
1745 @end example
1746
1747 Then launch gdb on the 'vmlinux' executable:
1748 @example
1749 > gdb vmlinux
1750 @end example
1751
1752 In gdb, connect to QEMU:
1753 @example
1754 (gdb) target remote localhost:1234
1755 @end example
1756
1757 Then you can use gdb normally. For example, type 'c' to launch the kernel:
1758 @example
1759 (gdb) c
1760 @end example
1761
1762 Here are some useful tips in order to use gdb on system code:
1763
1764 @enumerate
1765 @item
1766 Use @code{info reg} to display all the CPU registers.
1767 @item
1768 Use @code{x/10i $eip} to display the code at the PC position.
1769 @item
1770 Use @code{set architecture i8086} to dump 16 bit code. Then use
1771 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
1772 @end enumerate
1773
1774 @node pcsys_os_specific
1775 @section Target OS specific information
1776
1777 @subsection Linux
1778
1779 To have access to SVGA graphic modes under X11, use the @code{vesa} or
1780 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1781 color depth in the guest and the host OS.
1782
1783 When using a 2.6 guest Linux kernel, you should add the option
1784 @code{clock=pit} on the kernel command line because the 2.6 Linux
1785 kernels make very strict real time clock checks by default that QEMU
1786 cannot simulate exactly.
1787
1788 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1789 not activated because QEMU is slower with this patch. The QEMU
1790 Accelerator Module is also much slower in this case. Earlier Fedora
1791 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1792 patch by default. Newer kernels don't have it.
1793
1794 @subsection Windows
1795
1796 If you have a slow host, using Windows 95 is better as it gives the
1797 best speed. Windows 2000 is also a good choice.
1798
1799 @subsubsection SVGA graphic modes support
1800
1801 QEMU emulates a Cirrus Logic GD5446 Video
1802 card. All Windows versions starting from Windows 95 should recognize
1803 and use this graphic card. For optimal performances, use 16 bit color
1804 depth in the guest and the host OS.
1805
1806 If you are using Windows XP as guest OS and if you want to use high
1807 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1808 1280x1024x16), then you should use the VESA VBE virtual graphic card
1809 (option @option{-std-vga}).
1810
1811 @subsubsection CPU usage reduction
1812
1813 Windows 9x does not correctly use the CPU HLT
1814 instruction. The result is that it takes host CPU cycles even when
1815 idle. You can install the utility from
1816 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1817 problem. Note that no such tool is needed for NT, 2000 or XP.
1818
1819 @subsubsection Windows 2000 disk full problem
1820
1821 Windows 2000 has a bug which gives a disk full problem during its
1822 installation. When installing it, use the @option{-win2k-hack} QEMU
1823 option to enable a specific workaround. After Windows 2000 is
1824 installed, you no longer need this option (this option slows down the
1825 IDE transfers).
1826
1827 @subsubsection Windows 2000 shutdown
1828
1829 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1830 can. It comes from the fact that Windows 2000 does not automatically
1831 use the APM driver provided by the BIOS.
1832
1833 In order to correct that, do the following (thanks to Struan
1834 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1835 Add/Troubleshoot a device => Add a new device & Next => No, select the
1836 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1837 (again) a few times. Now the driver is installed and Windows 2000 now
1838 correctly instructs QEMU to shutdown at the appropriate moment.
1839
1840 @subsubsection Share a directory between Unix and Windows
1841
1842 See @ref{sec_invocation} about the help of the option @option{-smb}.
1843
1844 @subsubsection Windows XP security problem
1845
1846 Some releases of Windows XP install correctly but give a security
1847 error when booting:
1848 @example
1849 A problem is preventing Windows from accurately checking the
1850 license for this computer. Error code: 0x800703e6.
1851 @end example
1852
1853 The workaround is to install a service pack for XP after a boot in safe
1854 mode. Then reboot, and the problem should go away. Since there is no
1855 network while in safe mode, its recommended to download the full
1856 installation of SP1 or SP2 and transfer that via an ISO or using the
1857 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1858
1859 @subsection MS-DOS and FreeDOS
1860
1861 @subsubsection CPU usage reduction
1862
1863 DOS does not correctly use the CPU HLT instruction. The result is that
1864 it takes host CPU cycles even when idle. You can install the utility
1865 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1866 problem.
1867
1868 @node QEMU System emulator for non PC targets
1869 @chapter QEMU System emulator for non PC targets
1870
1871 QEMU is a generic emulator and it emulates many non PC
1872 machines. Most of the options are similar to the PC emulator. The
1873 differences are mentioned in the following sections.
1874
1875 @menu
1876 * QEMU PowerPC System emulator::
1877 * Sparc32 System emulator::
1878 * Sparc64 System emulator::
1879 * MIPS System emulator::
1880 * ARM System emulator::
1881 * ColdFire System emulator::
1882 @end menu
1883
1884 @node QEMU PowerPC System emulator
1885 @section QEMU PowerPC System emulator
1886
1887 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1888 or PowerMac PowerPC system.
1889
1890 QEMU emulates the following PowerMac peripherals:
1891
1892 @itemize @minus
1893 @item
1894 UniNorth PCI Bridge
1895 @item
1896 PCI VGA compatible card with VESA Bochs Extensions
1897 @item
1898 2 PMAC IDE interfaces with hard disk and CD-ROM support
1899 @item
1900 NE2000 PCI adapters
1901 @item
1902 Non Volatile RAM
1903 @item
1904 VIA-CUDA with ADB keyboard and mouse.
1905 @end itemize
1906
1907 QEMU emulates the following PREP peripherals:
1908
1909 @itemize @minus
1910 @item
1911 PCI Bridge
1912 @item
1913 PCI VGA compatible card with VESA Bochs Extensions
1914 @item
1915 2 IDE interfaces with hard disk and CD-ROM support
1916 @item
1917 Floppy disk
1918 @item
1919 NE2000 network adapters
1920 @item
1921 Serial port
1922 @item
1923 PREP Non Volatile RAM
1924 @item
1925 PC compatible keyboard and mouse.
1926 @end itemize
1927
1928 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1929 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1930
1931 @c man begin OPTIONS
1932
1933 The following options are specific to the PowerPC emulation:
1934
1935 @table @option
1936
1937 @item -g WxH[xDEPTH]
1938
1939 Set the initial VGA graphic mode. The default is 800x600x15.
1940
1941 @end table
1942
1943 @c man end
1944
1945
1946 More information is available at
1947 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1948
1949 @node Sparc32 System emulator
1950 @section Sparc32 System emulator
1951
1952 Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1953 or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1954 SMP up to 16 CPUs is supported, but Linux limits the number of usable CPUs
1955 to 4.
1956
1957 QEMU emulates the following sun4m peripherals:
1958
1959 @itemize @minus
1960 @item
1961 IOMMU
1962 @item
1963 TCX Frame buffer
1964 @item
1965 Lance (Am7990) Ethernet
1966 @item
1967 Non Volatile RAM M48T08
1968 @item
1969 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1970 and power/reset logic
1971 @item
1972 ESP SCSI controller with hard disk and CD-ROM support
1973 @item
1974 Floppy drive
1975 @item
1976 CS4231 sound device (only on SS-5, not working yet)
1977 @end itemize
1978
1979 The number of peripherals is fixed in the architecture.  Maximum memory size
1980 depends on the machine type, for SS-5 it is 256MB and for SS-10 2047MB.
1981
1982 Since version 0.8.2, QEMU uses OpenBIOS
1983 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1984 firmware implementation. The goal is to implement a 100% IEEE
1985 1275-1994 (referred to as Open Firmware) compliant firmware.
1986
1987 A sample Linux 2.6 series kernel and ram disk image are available on
1988 the QEMU web site. Please note that currently NetBSD, OpenBSD or
1989 Solaris kernels don't work.
1990
1991 @c man begin OPTIONS
1992
1993 The following options are specific to the Sparc32 emulation:
1994
1995 @table @option
1996
1997 @item -g WxHx[xDEPTH]
1998
1999 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2000 the only other possible mode is 1024x768x24.
2001
2002 @item -prom-env string
2003
2004 Set OpenBIOS variables in NVRAM, for example:
2005
2006 @example
2007 qemu-system-sparc -prom-env 'auto-boot?=false' \
2008  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2009 @end example
2010
2011 @item -M [SS-5|SS-10]
2012
2013 Set the emulated machine type. Default is SS-5.
2014
2015 @end table
2016
2017 @c man end
2018
2019 @node Sparc64 System emulator
2020 @section Sparc64 System emulator
2021
2022 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2023 The emulator is not usable for anything yet.
2024
2025 QEMU emulates the following sun4u peripherals:
2026
2027 @itemize @minus
2028 @item
2029 UltraSparc IIi APB PCI Bridge
2030 @item
2031 PCI VGA compatible card with VESA Bochs Extensions
2032 @item
2033 Non Volatile RAM M48T59
2034 @item
2035 PC-compatible serial ports
2036 @end itemize
2037
2038 @node MIPS System emulator
2039 @section MIPS System emulator
2040
2041 Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2042 Three different machine types are emulated:
2043
2044 @itemize @minus
2045 @item
2046 A generic ISA PC-like machine "mips"
2047 @item
2048 The MIPS Malta prototype board "malta"
2049 @item
2050 An ACER Pica "pica61"
2051 @item
2052 MIPS emulator pseudo board "mipssim"
2053 @end itemize
2054
2055 The generic emulation is supported by Debian 'Etch' and is able to
2056 install Debian into a virtual disk image. The following devices are
2057 emulated:
2058
2059 @itemize @minus
2060 @item
2061 A range of MIPS CPUs, default is the 24Kf
2062 @item
2063 PC style serial port
2064 @item
2065 PC style IDE disk
2066 @item
2067 NE2000 network card
2068 @end itemize
2069
2070 The Malta emulation supports the following devices:
2071
2072 @itemize @minus
2073 @item
2074 Core board with MIPS 24Kf CPU and Galileo system controller
2075 @item
2076 PIIX4 PCI/USB/SMbus controller
2077 @item
2078 The Multi-I/O chip's serial device
2079 @item
2080 PCnet32 PCI network card
2081 @item
2082 Malta FPGA serial device
2083 @item
2084 Cirrus VGA graphics card
2085 @end itemize
2086
2087 The ACER Pica emulation supports:
2088
2089 @itemize @minus
2090 @item
2091 MIPS R4000 CPU
2092 @item
2093 PC-style IRQ and DMA controllers
2094 @item
2095 PC Keyboard
2096 @item
2097 IDE controller
2098 @end itemize
2099
2100 The mipssim pseudo board emulation provides an environment similiar
2101 to what the proprietary MIPS emulator uses for running Linux.
2102 It supports:
2103
2104 @itemize @minus
2105 @item
2106 A range of MIPS CPUs, default is the 24Kf
2107 @item
2108 PC style serial port
2109 @item
2110 MIPSnet network emulation
2111 @end itemize
2112
2113 @node ARM System emulator
2114 @section ARM System emulator
2115
2116 Use the executable @file{qemu-system-arm} to simulate a ARM
2117 machine. The ARM Integrator/CP board is emulated with the following
2118 devices:
2119
2120 @itemize @minus
2121 @item
2122 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2123 @item
2124 Two PL011 UARTs
2125 @item
2126 SMC 91c111 Ethernet adapter
2127 @item
2128 PL110 LCD controller
2129 @item
2130 PL050 KMI with PS/2 keyboard and mouse.
2131 @item
2132 PL181 MultiMedia Card Interface with SD card.
2133 @end itemize
2134
2135 The ARM Versatile baseboard is emulated with the following devices:
2136
2137 @itemize @minus
2138 @item
2139 ARM926E, ARM1136 or Cortex-A8 CPU
2140 @item
2141 PL190 Vectored Interrupt Controller
2142 @item
2143 Four PL011 UARTs
2144 @item
2145 SMC 91c111 Ethernet adapter
2146 @item
2147 PL110 LCD controller
2148 @item
2149 PL050 KMI with PS/2 keyboard and mouse.
2150 @item
2151 PCI host bridge.  Note the emulated PCI bridge only provides access to
2152 PCI memory space.  It does not provide access to PCI IO space.
2153 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2154 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2155 mapped control registers.
2156 @item
2157 PCI OHCI USB controller.
2158 @item
2159 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2160 @item
2161 PL181 MultiMedia Card Interface with SD card.
2162 @end itemize
2163
2164 The ARM RealView Emulation baseboard is emulated with the following devices:
2165
2166 @itemize @minus
2167 @item
2168 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2169 @item
2170 ARM AMBA Generic/Distributed Interrupt Controller
2171 @item
2172 Four PL011 UARTs
2173 @item
2174 SMC 91c111 Ethernet adapter
2175 @item
2176 PL110 LCD controller
2177 @item
2178 PL050 KMI with PS/2 keyboard and mouse
2179 @item
2180 PCI host bridge
2181 @item
2182 PCI OHCI USB controller
2183 @item
2184 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2185 @item
2186 PL181 MultiMedia Card Interface with SD card.
2187 @end itemize
2188
2189 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2190 and "Terrier") emulation includes the following peripherals:
2191
2192 @itemize @minus
2193 @item
2194 Intel PXA270 System-on-chip (ARM V5TE core)
2195 @item
2196 NAND Flash memory
2197 @item
2198 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2199 @item
2200 On-chip OHCI USB controller
2201 @item
2202 On-chip LCD controller
2203 @item
2204 On-chip Real Time Clock
2205 @item
2206 TI ADS7846 touchscreen controller on SSP bus
2207 @item
2208 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2209 @item
2210 GPIO-connected keyboard controller and LEDs
2211 @item
2212 Secure Digital card connected to PXA MMC/SD host
2213 @item
2214 Three on-chip UARTs
2215 @item
2216 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2217 @end itemize
2218
2219 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2220 following elements:
2221
2222 @itemize @minus
2223 @item
2224 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2225 @item
2226 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2227 @item
2228 On-chip LCD controller
2229 @item
2230 On-chip Real Time Clock
2231 @item
2232 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2233 CODEC, connected through MicroWire and I@math{^2}S busses
2234 @item
2235 GPIO-connected matrix keypad
2236 @item
2237 Secure Digital card connected to OMAP MMC/SD host
2238 @item
2239 Three on-chip UARTs
2240 @end itemize
2241
2242 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2243 devices:
2244
2245 @itemize @minus
2246 @item
2247 Cortex-M3 CPU core.
2248 @item
2249 64k Flash and 8k SRAM.
2250 @item
2251 Timers, UARTs, ADC and I@math{^2}C interface.
2252 @item
2253 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2254 @end itemize
2255
2256 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2257 devices:
2258
2259 @itemize @minus
2260 @item
2261 Cortex-M3 CPU core.
2262 @item
2263 256k Flash and 64k SRAM.
2264 @item
2265 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2266 @item
2267 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2268 @end itemize
2269
2270 A Linux 2.6 test image is available on the QEMU web site. More
2271 information is available in the QEMU mailing-list archive.
2272
2273 @node ColdFire System emulator
2274 @section ColdFire System emulator
2275
2276 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2277 The emulator is able to boot a uClinux kernel.
2278
2279 The M5208EVB emulation includes the following devices:
2280
2281 @itemize @minus
2282 @item
2283 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2284 @item
2285 Three Two on-chip UARTs.
2286 @item
2287 Fast Ethernet Controller (FEC)
2288 @end itemize
2289
2290 The AN5206 emulation includes the following devices:
2291
2292 @itemize @minus
2293 @item
2294 MCF5206 ColdFire V2 Microprocessor.
2295 @item
2296 Two on-chip UARTs.
2297 @end itemize
2298
2299 @node QEMU User space emulator
2300 @chapter QEMU User space emulator
2301
2302 @menu
2303 * Supported Operating Systems ::
2304 * Linux User space emulator::
2305 * Mac OS X/Darwin User space emulator ::
2306 @end menu
2307
2308 @node Supported Operating Systems
2309 @section Supported Operating Systems
2310
2311 The following OS are supported in user space emulation:
2312
2313 @itemize @minus
2314 @item
2315 Linux (referred as qemu-linux-user)
2316 @item
2317 Mac OS X/Darwin (referred as qemu-darwin-user)
2318 @end itemize
2319
2320 @node Linux User space emulator
2321 @section Linux User space emulator
2322
2323 @menu
2324 * Quick Start::
2325 * Wine launch::
2326 * Command line options::
2327 * Other binaries::
2328 @end menu
2329
2330 @node Quick Start
2331 @subsection Quick Start
2332
2333 In order to launch a Linux process, QEMU needs the process executable
2334 itself and all the target (x86) dynamic libraries used by it.
2335
2336 @itemize
2337
2338 @item On x86, you can just try to launch any process by using the native
2339 libraries:
2340
2341 @example
2342 qemu-i386 -L / /bin/ls
2343 @end example
2344
2345 @code{-L /} tells that the x86 dynamic linker must be searched with a
2346 @file{/} prefix.
2347
2348 @item Since QEMU is also a linux process, you can launch qemu with
2349 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2350
2351 @example
2352 qemu-i386 -L / qemu-i386 -L / /bin/ls
2353 @end example
2354
2355 @item On non x86 CPUs, you need first to download at least an x86 glibc
2356 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2357 @code{LD_LIBRARY_PATH} is not set:
2358
2359 @example
2360 unset LD_LIBRARY_PATH
2361 @end example
2362
2363 Then you can launch the precompiled @file{ls} x86 executable:
2364
2365 @example
2366 qemu-i386 tests/i386/ls
2367 @end example
2368 You can look at @file{qemu-binfmt-conf.sh} so that
2369 QEMU is automatically launched by the Linux kernel when you try to
2370 launch x86 executables. It requires the @code{binfmt_misc} module in the
2371 Linux kernel.
2372
2373 @item The x86 version of QEMU is also included. You can try weird things such as:
2374 @example
2375 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2376           /usr/local/qemu-i386/bin/ls-i386
2377 @end example
2378
2379 @end itemize
2380
2381 @node Wine launch
2382 @subsection Wine launch
2383
2384 @itemize
2385
2386 @item Ensure that you have a working QEMU with the x86 glibc
2387 distribution (see previous section). In order to verify it, you must be
2388 able to do:
2389
2390 @example
2391 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2392 @end example
2393
2394 @item Download the binary x86 Wine install
2395 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2396
2397 @item Configure Wine on your account. Look at the provided script
2398 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2399 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2400
2401 @item Then you can try the example @file{putty.exe}:
2402
2403 @example
2404 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2405           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2406 @end example
2407
2408 @end itemize
2409
2410 @node Command line options
2411 @subsection Command line options
2412
2413 @example
2414 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2415 @end example
2416
2417 @table @option
2418 @item -h
2419 Print the help
2420 @item -L path
2421 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2422 @item -s size
2423 Set the x86 stack size in bytes (default=524288)
2424 @end table
2425
2426 Debug options:
2427
2428 @table @option
2429 @item -d
2430 Activate log (logfile=/tmp/qemu.log)
2431 @item -p pagesize
2432 Act as if the host page size was 'pagesize' bytes
2433 @end table
2434
2435 @node Other binaries
2436 @subsection Other binaries
2437
2438 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2439 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2440 configurations), and arm-uclinux bFLT format binaries.
2441
2442 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
2443 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2444 coldfire uClinux bFLT format binaries.
2445
2446 The binary format is detected automatically.
2447
2448 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2449 (Sparc64 CPU, 32 bit ABI).
2450
2451 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2452 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2453
2454 @node Mac OS X/Darwin User space emulator
2455 @section Mac OS X/Darwin User space emulator
2456
2457 @menu
2458 * Mac OS X/Darwin Status::
2459 * Mac OS X/Darwin Quick Start::
2460 * Mac OS X/Darwin Command line options::
2461 @end menu
2462
2463 @node Mac OS X/Darwin Status
2464 @subsection Mac OS X/Darwin Status
2465
2466 @itemize @minus
2467 @item
2468 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2469 @item
2470 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2471 @item
2472 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2473 @item
2474 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2475 @end itemize
2476
2477 [1] If you're host commpage can be executed by qemu.
2478
2479 @node Mac OS X/Darwin Quick Start
2480 @subsection Quick Start
2481
2482 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2483 itself and all the target dynamic libraries used by it. If you don't have the FAT
2484 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2485 CD or compile them by hand.
2486
2487 @itemize
2488
2489 @item On x86, you can just try to launch any process by using the native
2490 libraries:
2491
2492 @example
2493 qemu-i386 /bin/ls
2494 @end example
2495
2496 or to run the ppc version of the executable:
2497
2498 @example
2499 qemu-ppc /bin/ls
2500 @end example
2501
2502 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2503 are installed:
2504
2505 @example
2506 qemu-i386 -L /opt/x86_root/ /bin/ls
2507 @end example
2508
2509 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2510 @file{/opt/x86_root/usr/bin/dyld}.
2511
2512 @end itemize
2513
2514 @node Mac OS X/Darwin Command line options
2515 @subsection Command line options
2516
2517 @example
2518 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2519 @end example
2520
2521 @table @option
2522 @item -h
2523 Print the help
2524 @item -L path
2525 Set the library root path (default=/)
2526 @item -s size
2527 Set the stack size in bytes (default=524288)
2528 @end table
2529
2530 Debug options:
2531
2532 @table @option
2533 @item -d
2534 Activate log (logfile=/tmp/qemu.log)
2535 @item -p pagesize
2536 Act as if the host page size was 'pagesize' bytes
2537 @end table
2538
2539 @node compilation
2540 @chapter Compilation from the sources
2541
2542 @menu
2543 * Linux/Unix::
2544 * Windows::
2545 * Cross compilation for Windows with Linux::
2546 * Mac OS X::
2547 @end menu
2548
2549 @node Linux/Unix
2550 @section Linux/Unix
2551
2552 @subsection Compilation
2553
2554 First you must decompress the sources:
2555 @example
2556 cd /tmp
2557 tar zxvf qemu-x.y.z.tar.gz
2558 cd qemu-x.y.z
2559 @end example
2560
2561 Then you configure QEMU and build it (usually no options are needed):
2562 @example
2563 ./configure
2564 make
2565 @end example
2566
2567 Then type as root user:
2568 @example
2569 make install
2570 @end example
2571 to install QEMU in @file{/usr/local}.
2572
2573 @subsection GCC version
2574
2575 In order to compile QEMU successfully, it is very important that you
2576 have the right tools. The most important one is gcc. On most hosts and
2577 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2578 Linux distribution includes a gcc 4.x compiler, you can usually
2579 install an older version (it is invoked by @code{gcc32} or
2580 @code{gcc34}). The QEMU configure script automatically probes for
2581 these older versions so that usually you don't have to do anything.
2582
2583 @node Windows
2584 @section Windows
2585
2586 @itemize
2587 @item Install the current versions of MSYS and MinGW from
2588 @url{http://www.mingw.org/}. You can find detailed installation
2589 instructions in the download section and the FAQ.
2590
2591 @item Download
2592 the MinGW development library of SDL 1.2.x
2593 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2594 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
2595 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2596 directory. Edit the @file{sdl-config} script so that it gives the
2597 correct SDL directory when invoked.
2598
2599 @item Extract the current version of QEMU.
2600
2601 @item Start the MSYS shell (file @file{msys.bat}).
2602
2603 @item Change to the QEMU directory. Launch @file{./configure} and
2604 @file{make}.  If you have problems using SDL, verify that
2605 @file{sdl-config} can be launched from the MSYS command line.
2606
2607 @item You can install QEMU in @file{Program Files/Qemu} by typing
2608 @file{make install}. Don't forget to copy @file{SDL.dll} in
2609 @file{Program Files/Qemu}.
2610
2611 @end itemize
2612
2613 @node Cross compilation for Windows with Linux
2614 @section Cross compilation for Windows with Linux
2615
2616 @itemize
2617 @item
2618 Install the MinGW cross compilation tools available at
2619 @url{http://www.mingw.org/}.
2620
2621 @item
2622 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2623 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2624 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2625 the QEMU configuration script.
2626
2627 @item
2628 Configure QEMU for Windows cross compilation:
2629 @example
2630 ./configure --enable-mingw32
2631 @end example
2632 If necessary, you can change the cross-prefix according to the prefix
2633 chosen for the MinGW tools with --cross-prefix. You can also use
2634 --prefix to set the Win32 install path.
2635
2636 @item You can install QEMU in the installation directory by typing
2637 @file{make install}. Don't forget to copy @file{SDL.dll} in the
2638 installation directory.
2639
2640 @end itemize
2641
2642 Note: Currently, Wine does not seem able to launch
2643 QEMU for Win32.
2644
2645 @node Mac OS X
2646 @section Mac OS X
2647
2648 The Mac OS X patches are not fully merged in QEMU, so you should look
2649 at the QEMU mailing list archive to have all the necessary
2650 information.
2651
2652 @node Index
2653 @chapter Index
2654 @printindex cp
2655
2656 @bye
This page took 0.162058 seconds and 4 git commands to generate.