]> Git Repo - qemu.git/blob - hw/i386/kvmvapic.c
cpus: pass CPUState to run_on_cpu helpers
[qemu.git] / hw / i386 / kvmvapic.c
1 /*
2  * TPR optimization for 32-bit Windows guests (XP and Server 2003)
3  *
4  * Copyright (C) 2007-2008 Qumranet Technologies
5  * Copyright (C) 2012      Jan Kiszka, Siemens AG
6  *
7  * This work is licensed under the terms of the GNU GPL version 2, or
8  * (at your option) any later version. See the COPYING file in the
9  * top-level directory.
10  */
11 #include "qemu/osdep.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "exec/exec-all.h"
15 #include "sysemu/sysemu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/kvm.h"
18 #include "hw/i386/apic_internal.h"
19 #include "hw/sysbus.h"
20
21 #define VAPIC_IO_PORT           0x7e
22
23 #define VAPIC_CPU_SHIFT         7
24
25 #define ROM_BLOCK_SIZE          512
26 #define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
27
28 typedef enum VAPICMode {
29     VAPIC_INACTIVE = 0,
30     VAPIC_ACTIVE   = 1,
31     VAPIC_STANDBY  = 2,
32 } VAPICMode;
33
34 typedef struct VAPICHandlers {
35     uint32_t set_tpr;
36     uint32_t set_tpr_eax;
37     uint32_t get_tpr[8];
38     uint32_t get_tpr_stack;
39 } QEMU_PACKED VAPICHandlers;
40
41 typedef struct GuestROMState {
42     char signature[8];
43     uint32_t vaddr;
44     uint32_t fixup_start;
45     uint32_t fixup_end;
46     uint32_t vapic_vaddr;
47     uint32_t vapic_size;
48     uint32_t vcpu_shift;
49     uint32_t real_tpr_addr;
50     VAPICHandlers up;
51     VAPICHandlers mp;
52 } QEMU_PACKED GuestROMState;
53
54 typedef struct VAPICROMState {
55     SysBusDevice busdev;
56     MemoryRegion io;
57     MemoryRegion rom;
58     uint32_t state;
59     uint32_t rom_state_paddr;
60     uint32_t rom_state_vaddr;
61     uint32_t vapic_paddr;
62     uint32_t real_tpr_addr;
63     GuestROMState rom_state;
64     size_t rom_size;
65     bool rom_mapped_writable;
66     VMChangeStateEntry *vmsentry;
67 } VAPICROMState;
68
69 #define TYPE_VAPIC "kvmvapic"
70 #define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
71
72 #define TPR_INSTR_ABS_MODRM             0x1
73 #define TPR_INSTR_MATCH_MODRM_REG       0x2
74
75 typedef struct TPRInstruction {
76     uint8_t opcode;
77     uint8_t modrm_reg;
78     unsigned int flags;
79     TPRAccess access;
80     size_t length;
81     off_t addr_offset;
82 } TPRInstruction;
83
84 /* must be sorted by length, shortest first */
85 static const TPRInstruction tpr_instr[] = {
86     { /* mov abs to eax */
87         .opcode = 0xa1,
88         .access = TPR_ACCESS_READ,
89         .length = 5,
90         .addr_offset = 1,
91     },
92     { /* mov eax to abs */
93         .opcode = 0xa3,
94         .access = TPR_ACCESS_WRITE,
95         .length = 5,
96         .addr_offset = 1,
97     },
98     { /* mov r32 to r/m32 */
99         .opcode = 0x89,
100         .flags = TPR_INSTR_ABS_MODRM,
101         .access = TPR_ACCESS_WRITE,
102         .length = 6,
103         .addr_offset = 2,
104     },
105     { /* mov r/m32 to r32 */
106         .opcode = 0x8b,
107         .flags = TPR_INSTR_ABS_MODRM,
108         .access = TPR_ACCESS_READ,
109         .length = 6,
110         .addr_offset = 2,
111     },
112     { /* push r/m32 */
113         .opcode = 0xff,
114         .modrm_reg = 6,
115         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
116         .access = TPR_ACCESS_READ,
117         .length = 6,
118         .addr_offset = 2,
119     },
120     { /* mov imm32, r/m32 (c7/0) */
121         .opcode = 0xc7,
122         .modrm_reg = 0,
123         .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
124         .access = TPR_ACCESS_WRITE,
125         .length = 10,
126         .addr_offset = 2,
127     },
128 };
129
130 static void read_guest_rom_state(VAPICROMState *s)
131 {
132     cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
133                              sizeof(GuestROMState));
134 }
135
136 static void write_guest_rom_state(VAPICROMState *s)
137 {
138     cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
139                               sizeof(GuestROMState));
140 }
141
142 static void update_guest_rom_state(VAPICROMState *s)
143 {
144     read_guest_rom_state(s);
145
146     s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
147     s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
148
149     write_guest_rom_state(s);
150 }
151
152 static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
153 {
154     CPUState *cs = CPU(x86_env_get_cpu(env));
155     hwaddr paddr;
156     target_ulong addr;
157
158     if (s->state == VAPIC_ACTIVE) {
159         return 0;
160     }
161     /*
162      * If there is no prior TPR access instruction we could analyze (which is
163      * the case after resume from hibernation), we need to scan the possible
164      * virtual address space for the APIC mapping.
165      */
166     for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
167         paddr = cpu_get_phys_page_debug(cs, addr);
168         if (paddr != APIC_DEFAULT_ADDRESS) {
169             continue;
170         }
171         s->real_tpr_addr = addr + 0x80;
172         update_guest_rom_state(s);
173         return 0;
174     }
175     return -1;
176 }
177
178 static uint8_t modrm_reg(uint8_t modrm)
179 {
180     return (modrm >> 3) & 7;
181 }
182
183 static bool is_abs_modrm(uint8_t modrm)
184 {
185     return (modrm & 0xc7) == 0x05;
186 }
187
188 static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
189 {
190     return opcode[0] == instr->opcode &&
191         (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
192         (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
193          modrm_reg(opcode[1]) == instr->modrm_reg);
194 }
195
196 static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
197                                     target_ulong *pip, TPRAccess access)
198 {
199     CPUState *cs = CPU(cpu);
200     const TPRInstruction *instr;
201     target_ulong ip = *pip;
202     uint8_t opcode[2];
203     uint32_t real_tpr_addr;
204     int i;
205
206     if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
207         (ip & 0xf0000000ULL) != 0xe0000000ULL) {
208         return -1;
209     }
210
211     /*
212      * Early Windows 2003 SMP initialization contains a
213      *
214      *   mov imm32, r/m32
215      *
216      * instruction that is patched by TPR optimization. The problem is that
217      * RSP, used by the patched instruction, is zero, so the guest gets a
218      * double fault and dies.
219      */
220     if (cpu->env.regs[R_ESP] == 0) {
221         return -1;
222     }
223
224     if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
225         /*
226          * KVM without kernel-based TPR access reporting will pass an IP that
227          * points after the accessing instruction. So we need to look backward
228          * to find the reason.
229          */
230         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
231             instr = &tpr_instr[i];
232             if (instr->access != access) {
233                 continue;
234             }
235             if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
236                                     sizeof(opcode), 0) < 0) {
237                 return -1;
238             }
239             if (opcode_matches(opcode, instr)) {
240                 ip -= instr->length;
241                 goto instruction_ok;
242             }
243         }
244         return -1;
245     } else {
246         if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
247             return -1;
248         }
249         for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
250             instr = &tpr_instr[i];
251             if (opcode_matches(opcode, instr)) {
252                 goto instruction_ok;
253             }
254         }
255         return -1;
256     }
257
258 instruction_ok:
259     /*
260      * Grab the virtual TPR address from the instruction
261      * and update the cached values.
262      */
263     if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
264                             (void *)&real_tpr_addr,
265                             sizeof(real_tpr_addr), 0) < 0) {
266         return -1;
267     }
268     real_tpr_addr = le32_to_cpu(real_tpr_addr);
269     if ((real_tpr_addr & 0xfff) != 0x80) {
270         return -1;
271     }
272     s->real_tpr_addr = real_tpr_addr;
273     update_guest_rom_state(s);
274
275     *pip = ip;
276     return 0;
277 }
278
279 static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
280 {
281     CPUState *cs = CPU(x86_env_get_cpu(env));
282     hwaddr paddr;
283     uint32_t rom_state_vaddr;
284     uint32_t pos, patch, offset;
285
286     /* nothing to do if already activated */
287     if (s->state == VAPIC_ACTIVE) {
288         return 0;
289     }
290
291     /* bail out if ROM init code was not executed (missing ROM?) */
292     if (s->state == VAPIC_INACTIVE) {
293         return -1;
294     }
295
296     /* find out virtual address of the ROM */
297     rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
298     paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
299     if (paddr == -1) {
300         return -1;
301     }
302     paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
303     if (paddr != s->rom_state_paddr) {
304         return -1;
305     }
306     read_guest_rom_state(s);
307     if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
308         return -1;
309     }
310     s->rom_state_vaddr = rom_state_vaddr;
311
312     /* fixup addresses in ROM if needed */
313     if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
314         return 0;
315     }
316     for (pos = le32_to_cpu(s->rom_state.fixup_start);
317          pos < le32_to_cpu(s->rom_state.fixup_end);
318          pos += 4) {
319         cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
320                                  &offset, sizeof(offset));
321         offset = le32_to_cpu(offset);
322         cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
323         patch = le32_to_cpu(patch);
324         patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
325         patch = cpu_to_le32(patch);
326         cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
327     }
328     read_guest_rom_state(s);
329     s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
330         le32_to_cpu(s->rom_state.vaddr);
331
332     return 0;
333 }
334
335 /*
336  * Tries to read the unique processor number from the Kernel Processor Control
337  * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
338  * cannot be accessed or is considered invalid. This also ensures that we are
339  * not patching the wrong guest.
340  */
341 static int get_kpcr_number(X86CPU *cpu)
342 {
343     CPUX86State *env = &cpu->env;
344     struct kpcr {
345         uint8_t  fill1[0x1c];
346         uint32_t self;
347         uint8_t  fill2[0x31];
348         uint8_t  number;
349     } QEMU_PACKED kpcr;
350
351     if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
352                             (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
353         kpcr.self != env->segs[R_FS].base) {
354         return -1;
355     }
356     return kpcr.number;
357 }
358
359 static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
360 {
361     int cpu_number = get_kpcr_number(cpu);
362     hwaddr vapic_paddr;
363     static const uint8_t enabled = 1;
364
365     if (cpu_number < 0) {
366         return -1;
367     }
368     vapic_paddr = s->vapic_paddr +
369         (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
370     cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
371                               &enabled, sizeof(enabled));
372     apic_enable_vapic(cpu->apic_state, vapic_paddr);
373
374     s->state = VAPIC_ACTIVE;
375
376     return 0;
377 }
378
379 static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
380 {
381     cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
382 }
383
384 static void patch_call(VAPICROMState *s, X86CPU *cpu, target_ulong ip,
385                        uint32_t target)
386 {
387     uint32_t offset;
388
389     offset = cpu_to_le32(target - ip - 5);
390     patch_byte(cpu, ip, 0xe8); /* call near */
391     cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
392 }
393
394 static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
395 {
396     CPUState *cs = CPU(cpu);
397     CPUX86State *env = &cpu->env;
398     VAPICHandlers *handlers;
399     uint8_t opcode[2];
400     uint32_t imm32 = 0;
401     target_ulong current_pc = 0;
402     target_ulong current_cs_base = 0;
403     uint32_t current_flags = 0;
404
405     if (smp_cpus == 1) {
406         handlers = &s->rom_state.up;
407     } else {
408         handlers = &s->rom_state.mp;
409     }
410
411     if (!kvm_enabled()) {
412         cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
413                              &current_flags);
414     }
415
416     pause_all_vcpus();
417
418     cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
419
420     switch (opcode[0]) {
421     case 0x89: /* mov r32 to r/m32 */
422         patch_byte(cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
423         patch_call(s, cpu, ip + 1, handlers->set_tpr);
424         break;
425     case 0x8b: /* mov r/m32 to r32 */
426         patch_byte(cpu, ip, 0x90);
427         patch_call(s, cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
428         break;
429     case 0xa1: /* mov abs to eax */
430         patch_call(s, cpu, ip, handlers->get_tpr[0]);
431         break;
432     case 0xa3: /* mov eax to abs */
433         patch_call(s, cpu, ip, handlers->set_tpr_eax);
434         break;
435     case 0xc7: /* mov imm32, r/m32 (c7/0) */
436         patch_byte(cpu, ip, 0x68);  /* push imm32 */
437         cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
438         cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
439         patch_call(s, cpu, ip + 5, handlers->set_tpr);
440         break;
441     case 0xff: /* push r/m32 */
442         patch_byte(cpu, ip, 0x50); /* push eax */
443         patch_call(s, cpu, ip + 1, handlers->get_tpr_stack);
444         break;
445     default:
446         abort();
447     }
448
449     resume_all_vcpus();
450
451     if (!kvm_enabled()) {
452         tb_gen_code(cs, current_pc, current_cs_base, current_flags, 1);
453         cpu_loop_exit_noexc(cs);
454     }
455 }
456
457 void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
458                              TPRAccess access)
459 {
460     VAPICROMState *s = VAPIC(dev);
461     X86CPU *cpu = X86_CPU(cs);
462     CPUX86State *env = &cpu->env;
463
464     cpu_synchronize_state(cs);
465
466     if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
467         if (s->state == VAPIC_ACTIVE) {
468             vapic_enable(s, cpu);
469         }
470         return;
471     }
472     if (update_rom_mapping(s, env, ip) < 0) {
473         return;
474     }
475     if (vapic_enable(s, cpu) < 0) {
476         return;
477     }
478     patch_instruction(s, cpu, ip);
479 }
480
481 typedef struct VAPICEnableTPRReporting {
482     DeviceState *apic;
483     bool enable;
484 } VAPICEnableTPRReporting;
485
486 static void vapic_do_enable_tpr_reporting(CPUState *cpu, void *data)
487 {
488     VAPICEnableTPRReporting *info = data;
489
490     apic_enable_tpr_access_reporting(info->apic, info->enable);
491 }
492
493 static void vapic_enable_tpr_reporting(bool enable)
494 {
495     VAPICEnableTPRReporting info = {
496         .enable = enable,
497     };
498     CPUState *cs;
499     X86CPU *cpu;
500
501     CPU_FOREACH(cs) {
502         cpu = X86_CPU(cs);
503         info.apic = cpu->apic_state;
504         run_on_cpu(cs, vapic_do_enable_tpr_reporting, &info);
505     }
506 }
507
508 static void vapic_reset(DeviceState *dev)
509 {
510     VAPICROMState *s = VAPIC(dev);
511
512     s->state = VAPIC_INACTIVE;
513     s->rom_state_paddr = 0;
514     vapic_enable_tpr_reporting(false);
515 }
516
517 /*
518  * Set the IRQ polling hypercalls to the supported variant:
519  *  - vmcall if using KVM in-kernel irqchip
520  *  - 32-bit VAPIC port write otherwise
521  */
522 static int patch_hypercalls(VAPICROMState *s)
523 {
524     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
525     static const uint8_t vmcall_pattern[] = { /* vmcall */
526         0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
527     };
528     static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
529         0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
530     };
531     uint8_t alternates[2];
532     const uint8_t *pattern;
533     const uint8_t *patch;
534     int patches = 0;
535     off_t pos;
536     uint8_t *rom;
537
538     rom = g_malloc(s->rom_size);
539     cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
540
541     for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
542         if (kvm_irqchip_in_kernel()) {
543             pattern = outl_pattern;
544             alternates[0] = outl_pattern[7];
545             alternates[1] = outl_pattern[7];
546             patch = &vmcall_pattern[5];
547         } else {
548             pattern = vmcall_pattern;
549             alternates[0] = vmcall_pattern[7];
550             alternates[1] = 0xd9; /* AMD's VMMCALL */
551             patch = &outl_pattern[5];
552         }
553         if (memcmp(rom + pos, pattern, 7) == 0 &&
554             (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
555             cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
556             /*
557              * Don't flush the tb here. Under ordinary conditions, the patched
558              * calls are miles away from the current IP. Under malicious
559              * conditions, the guest could trick us to crash.
560              */
561         }
562     }
563
564     g_free(rom);
565
566     if (patches != 0 && patches != 2) {
567         return -1;
568     }
569
570     return 0;
571 }
572
573 /*
574  * For TCG mode or the time KVM honors read-only memory regions, we need to
575  * enable write access to the option ROM so that variables can be updated by
576  * the guest.
577  */
578 static int vapic_map_rom_writable(VAPICROMState *s)
579 {
580     hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
581     MemoryRegionSection section;
582     MemoryRegion *as;
583     size_t rom_size;
584     uint8_t *ram;
585
586     as = sysbus_address_space(&s->busdev);
587
588     if (s->rom_mapped_writable) {
589         memory_region_del_subregion(as, &s->rom);
590         object_unparent(OBJECT(&s->rom));
591     }
592
593     /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
594     section = memory_region_find(as, 0, 1);
595
596     /* read ROM size from RAM region */
597     if (rom_paddr + 2 >= memory_region_size(section.mr)) {
598         return -1;
599     }
600     ram = memory_region_get_ram_ptr(section.mr);
601     rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
602     if (rom_size == 0) {
603         return -1;
604     }
605     s->rom_size = rom_size;
606
607     /* We need to round to avoid creating subpages
608      * from which we cannot run code. */
609     rom_size += rom_paddr & ~TARGET_PAGE_MASK;
610     rom_paddr &= TARGET_PAGE_MASK;
611     rom_size = TARGET_PAGE_ALIGN(rom_size);
612
613     memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
614                              rom_paddr, rom_size);
615     memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
616     s->rom_mapped_writable = true;
617     memory_region_unref(section.mr);
618
619     return 0;
620 }
621
622 static int vapic_prepare(VAPICROMState *s)
623 {
624     if (vapic_map_rom_writable(s) < 0) {
625         return -1;
626     }
627
628     if (patch_hypercalls(s) < 0) {
629         return -1;
630     }
631
632     vapic_enable_tpr_reporting(true);
633
634     return 0;
635 }
636
637 static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
638                         unsigned int size)
639 {
640     VAPICROMState *s = opaque;
641     X86CPU *cpu;
642     CPUX86State *env;
643     hwaddr rom_paddr;
644
645     if (!current_cpu) {
646         return;
647     }
648
649     cpu_synchronize_state(current_cpu);
650     cpu = X86_CPU(current_cpu);
651     env = &cpu->env;
652
653     /*
654      * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
655      *  o 16-bit write access:
656      *    Reports the option ROM initialization to the hypervisor. Written
657      *    value is the offset of the state structure in the ROM.
658      *  o 8-bit write access:
659      *    Reactivates the VAPIC after a guest hibernation, i.e. after the
660      *    option ROM content has been re-initialized by a guest power cycle.
661      *  o 32-bit write access:
662      *    Poll for pending IRQs, considering the current VAPIC state.
663      */
664     switch (size) {
665     case 2:
666         if (s->state == VAPIC_INACTIVE) {
667             rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
668             s->rom_state_paddr = rom_paddr + data;
669
670             s->state = VAPIC_STANDBY;
671         }
672         if (vapic_prepare(s) < 0) {
673             s->state = VAPIC_INACTIVE;
674             s->rom_state_paddr = 0;
675             break;
676         }
677         break;
678     case 1:
679         if (kvm_enabled()) {
680             /*
681              * Disable triggering instruction in ROM by writing a NOP.
682              *
683              * We cannot do this in TCG mode as the reported IP is not
684              * accurate.
685              */
686             pause_all_vcpus();
687             patch_byte(cpu, env->eip - 2, 0x66);
688             patch_byte(cpu, env->eip - 1, 0x90);
689             resume_all_vcpus();
690         }
691
692         if (s->state == VAPIC_ACTIVE) {
693             break;
694         }
695         if (update_rom_mapping(s, env, env->eip) < 0) {
696             break;
697         }
698         if (find_real_tpr_addr(s, env) < 0) {
699             break;
700         }
701         vapic_enable(s, cpu);
702         break;
703     default:
704     case 4:
705         if (!kvm_irqchip_in_kernel()) {
706             apic_poll_irq(cpu->apic_state);
707         }
708         break;
709     }
710 }
711
712 static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
713 {
714     return 0xffffffff;
715 }
716
717 static const MemoryRegionOps vapic_ops = {
718     .write = vapic_write,
719     .read = vapic_read,
720     .endianness = DEVICE_NATIVE_ENDIAN,
721 };
722
723 static void vapic_realize(DeviceState *dev, Error **errp)
724 {
725     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
726     VAPICROMState *s = VAPIC(dev);
727
728     memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
729     sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
730     sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
731
732     option_rom[nb_option_roms].name = "kvmvapic.bin";
733     option_rom[nb_option_roms].bootindex = -1;
734     nb_option_roms++;
735 }
736
737 static void do_vapic_enable(CPUState *cs, void *data)
738 {
739     VAPICROMState *s = data;
740     X86CPU *cpu = X86_CPU(cs);
741
742     static const uint8_t enabled = 1;
743     cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
744                               &enabled, sizeof(enabled));
745     apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
746     s->state = VAPIC_ACTIVE;
747 }
748
749 static void kvmvapic_vm_state_change(void *opaque, int running,
750                                      RunState state)
751 {
752     VAPICROMState *s = opaque;
753     uint8_t *zero;
754
755     if (!running) {
756         return;
757     }
758
759     if (s->state == VAPIC_ACTIVE) {
760         if (smp_cpus == 1) {
761             run_on_cpu(first_cpu, do_vapic_enable, s);
762         } else {
763             zero = g_malloc0(s->rom_state.vapic_size);
764             cpu_physical_memory_write(s->vapic_paddr, zero,
765                                       s->rom_state.vapic_size);
766             g_free(zero);
767         }
768     }
769
770     qemu_del_vm_change_state_handler(s->vmsentry);
771     s->vmsentry = NULL;
772 }
773
774 static int vapic_post_load(void *opaque, int version_id)
775 {
776     VAPICROMState *s = opaque;
777
778     /*
779      * The old implementation of qemu-kvm did not provide the state
780      * VAPIC_STANDBY. Reconstruct it.
781      */
782     if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
783         s->state = VAPIC_STANDBY;
784     }
785
786     if (s->state != VAPIC_INACTIVE) {
787         if (vapic_prepare(s) < 0) {
788             return -1;
789         }
790     }
791
792     if (!s->vmsentry) {
793         s->vmsentry =
794             qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
795     }
796     return 0;
797 }
798
799 static const VMStateDescription vmstate_handlers = {
800     .name = "kvmvapic-handlers",
801     .version_id = 1,
802     .minimum_version_id = 1,
803     .fields = (VMStateField[]) {
804         VMSTATE_UINT32(set_tpr, VAPICHandlers),
805         VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
806         VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
807         VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
808         VMSTATE_END_OF_LIST()
809     }
810 };
811
812 static const VMStateDescription vmstate_guest_rom = {
813     .name = "kvmvapic-guest-rom",
814     .version_id = 1,
815     .minimum_version_id = 1,
816     .fields = (VMStateField[]) {
817         VMSTATE_UNUSED(8),     /* signature */
818         VMSTATE_UINT32(vaddr, GuestROMState),
819         VMSTATE_UINT32(fixup_start, GuestROMState),
820         VMSTATE_UINT32(fixup_end, GuestROMState),
821         VMSTATE_UINT32(vapic_vaddr, GuestROMState),
822         VMSTATE_UINT32(vapic_size, GuestROMState),
823         VMSTATE_UINT32(vcpu_shift, GuestROMState),
824         VMSTATE_UINT32(real_tpr_addr, GuestROMState),
825         VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
826         VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
827         VMSTATE_END_OF_LIST()
828     }
829 };
830
831 static const VMStateDescription vmstate_vapic = {
832     .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
833     .version_id = 1,
834     .minimum_version_id = 1,
835     .post_load = vapic_post_load,
836     .fields = (VMStateField[]) {
837         VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
838                        GuestROMState),
839         VMSTATE_UINT32(state, VAPICROMState),
840         VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
841         VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
842         VMSTATE_UINT32(vapic_paddr, VAPICROMState),
843         VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
844         VMSTATE_END_OF_LIST()
845     }
846 };
847
848 static void vapic_class_init(ObjectClass *klass, void *data)
849 {
850     DeviceClass *dc = DEVICE_CLASS(klass);
851
852     dc->reset   = vapic_reset;
853     dc->vmsd    = &vmstate_vapic;
854     dc->realize = vapic_realize;
855 }
856
857 static const TypeInfo vapic_type = {
858     .name          = TYPE_VAPIC,
859     .parent        = TYPE_SYS_BUS_DEVICE,
860     .instance_size = sizeof(VAPICROMState),
861     .class_init    = vapic_class_init,
862 };
863
864 static void vapic_register(void)
865 {
866     type_register_static(&vapic_type);
867 }
868
869 type_init(vapic_register);
This page took 0.075049 seconds and 4 git commands to generate.