4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "qemu/osdep.h"
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
38 #include "migration.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
59 /***********************************************************/
60 /* ram save/restore */
62 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
63 * worked for pages that where filled with the same char. We switched
64 * it to only search for the zero value. And to avoid confusion with
65 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
69 #define RAM_SAVE_FLAG_ZERO 0x02
70 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
71 #define RAM_SAVE_FLAG_PAGE 0x08
72 #define RAM_SAVE_FLAG_EOS 0x10
73 #define RAM_SAVE_FLAG_CONTINUE 0x20
74 #define RAM_SAVE_FLAG_XBZRLE 0x40
75 /* 0x80 is reserved in migration.h start with 0x100 next */
76 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
78 static inline bool is_zero_range(uint8_t *p, uint64_t size)
80 return buffer_is_zero(p, size);
83 XBZRLECacheStats xbzrle_counters;
85 /* struct contains XBZRLE cache and a static page
86 used by the compression */
88 /* buffer used for XBZRLE encoding */
90 /* buffer for storing page content */
92 /* Cache for XBZRLE, Protected by lock. */
95 /* it will store a page full of zeros */
96 uint8_t *zero_target_page;
97 /* buffer used for XBZRLE decoding */
101 static void XBZRLE_cache_lock(void)
103 if (migrate_use_xbzrle())
104 qemu_mutex_lock(&XBZRLE.lock);
107 static void XBZRLE_cache_unlock(void)
109 if (migrate_use_xbzrle())
110 qemu_mutex_unlock(&XBZRLE.lock);
114 * xbzrle_cache_resize: resize the xbzrle cache
116 * This function is called from qmp_migrate_set_cache_size in main
117 * thread, possibly while a migration is in progress. A running
118 * migration may be using the cache and might finish during this call,
119 * hence changes to the cache are protected by XBZRLE.lock().
121 * Returns 0 for success or -1 for error
123 * @new_size: new cache size
124 * @errp: set *errp if the check failed, with reason
126 int xbzrle_cache_resize(int64_t new_size, Error **errp)
128 PageCache *new_cache;
131 /* Check for truncation */
132 if (new_size != (size_t)new_size) {
133 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
134 "exceeding address space");
138 if (new_size == migrate_xbzrle_cache_size()) {
145 if (XBZRLE.cache != NULL) {
146 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
152 cache_fini(XBZRLE.cache);
153 XBZRLE.cache = new_cache;
156 XBZRLE_cache_unlock();
160 /* Should be holding either ram_list.mutex, or the RCU lock. */
161 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
162 INTERNAL_RAMBLOCK_FOREACH(block) \
163 if (!qemu_ram_is_migratable(block)) {} else
165 #undef RAMBLOCK_FOREACH
167 static void ramblock_recv_map_init(void)
171 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
172 assert(!rb->receivedmap);
173 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
177 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
179 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
183 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
185 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
188 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
190 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
193 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
196 bitmap_set_atomic(rb->receivedmap,
197 ramblock_recv_bitmap_offset(host_addr, rb),
201 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
204 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
206 * Returns >0 if success with sent bytes, or <0 if error.
208 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
209 const char *block_name)
211 RAMBlock *block = qemu_ram_block_by_name(block_name);
212 unsigned long *le_bitmap, nbits;
216 error_report("%s: invalid block name: %s", __func__, block_name);
220 nbits = block->used_length >> TARGET_PAGE_BITS;
223 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
224 * machines we may need 4 more bytes for padding (see below
225 * comment). So extend it a bit before hand.
227 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
230 * Always use little endian when sending the bitmap. This is
231 * required that when source and destination VMs are not using the
232 * same endianess. (Note: big endian won't work.)
234 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
236 /* Size of the bitmap, in bytes */
240 * size is always aligned to 8 bytes for 64bit machines, but it
241 * may not be true for 32bit machines. We need this padding to
242 * make sure the migration can survive even between 32bit and
245 size = ROUND_UP(size, 8);
247 qemu_put_be64(file, size);
248 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
250 * Mark as an end, in case the middle part is screwed up due to
251 * some "misterious" reason.
253 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
258 if (qemu_file_get_error(file)) {
259 return qemu_file_get_error(file);
262 return size + sizeof(size);
266 * An outstanding page request, on the source, having been received
269 struct RAMSrcPageRequest {
274 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
277 /* State of RAM for migration */
279 /* QEMUFile used for this migration */
281 /* Last block that we have visited searching for dirty pages */
282 RAMBlock *last_seen_block;
283 /* Last block from where we have sent data */
284 RAMBlock *last_sent_block;
285 /* Last dirty target page we have sent */
286 ram_addr_t last_page;
287 /* last ram version we have seen */
288 uint32_t last_version;
289 /* We are in the first round */
291 /* How many times we have dirty too many pages */
292 int dirty_rate_high_cnt;
293 /* these variables are used for bitmap sync */
294 /* last time we did a full bitmap_sync */
295 int64_t time_last_bitmap_sync;
296 /* bytes transferred at start_time */
297 uint64_t bytes_xfer_prev;
298 /* number of dirty pages since start_time */
299 uint64_t num_dirty_pages_period;
300 /* xbzrle misses since the beginning of the period */
301 uint64_t xbzrle_cache_miss_prev;
302 /* number of iterations at the beginning of period */
303 uint64_t iterations_prev;
304 /* Iterations since start */
306 /* number of dirty bits in the bitmap */
307 uint64_t migration_dirty_pages;
308 /* protects modification of the bitmap */
309 QemuMutex bitmap_mutex;
310 /* The RAMBlock used in the last src_page_requests */
311 RAMBlock *last_req_rb;
312 /* Queue of outstanding page requests from the destination */
313 QemuMutex src_page_req_mutex;
314 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
316 typedef struct RAMState RAMState;
318 static RAMState *ram_state;
320 uint64_t ram_bytes_remaining(void)
322 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
326 MigrationStats ram_counters;
328 /* used by the search for pages to send */
329 struct PageSearchStatus {
330 /* Current block being searched */
332 /* Current page to search from */
334 /* Set once we wrap around */
337 typedef struct PageSearchStatus PageSearchStatus;
339 struct CompressParam {
348 /* internally used fields */
352 typedef struct CompressParam CompressParam;
354 struct DecompressParam {
364 typedef struct DecompressParam DecompressParam;
366 static CompressParam *comp_param;
367 static QemuThread *compress_threads;
368 /* comp_done_cond is used to wake up the migration thread when
369 * one of the compression threads has finished the compression.
370 * comp_done_lock is used to co-work with comp_done_cond.
372 static QemuMutex comp_done_lock;
373 static QemuCond comp_done_cond;
374 /* The empty QEMUFileOps will be used by file in CompressParam */
375 static const QEMUFileOps empty_ops = { };
377 static QEMUFile *decomp_file;
378 static DecompressParam *decomp_param;
379 static QemuThread *decompress_threads;
380 static QemuMutex decomp_done_lock;
381 static QemuCond decomp_done_cond;
383 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
384 ram_addr_t offset, uint8_t *source_buf);
386 static void *do_data_compress(void *opaque)
388 CompressParam *param = opaque;
392 qemu_mutex_lock(¶m->mutex);
393 while (!param->quit) {
395 block = param->block;
396 offset = param->offset;
398 qemu_mutex_unlock(¶m->mutex);
400 do_compress_ram_page(param->file, ¶m->stream, block, offset,
403 qemu_mutex_lock(&comp_done_lock);
405 qemu_cond_signal(&comp_done_cond);
406 qemu_mutex_unlock(&comp_done_lock);
408 qemu_mutex_lock(¶m->mutex);
410 qemu_cond_wait(¶m->cond, ¶m->mutex);
413 qemu_mutex_unlock(¶m->mutex);
418 static inline void terminate_compression_threads(void)
420 int idx, thread_count;
422 thread_count = migrate_compress_threads();
424 for (idx = 0; idx < thread_count; idx++) {
425 qemu_mutex_lock(&comp_param[idx].mutex);
426 comp_param[idx].quit = true;
427 qemu_cond_signal(&comp_param[idx].cond);
428 qemu_mutex_unlock(&comp_param[idx].mutex);
432 static void compress_threads_save_cleanup(void)
436 if (!migrate_use_compression()) {
439 terminate_compression_threads();
440 thread_count = migrate_compress_threads();
441 for (i = 0; i < thread_count; i++) {
443 * we use it as a indicator which shows if the thread is
444 * properly init'd or not
446 if (!comp_param[i].file) {
449 qemu_thread_join(compress_threads + i);
450 qemu_mutex_destroy(&comp_param[i].mutex);
451 qemu_cond_destroy(&comp_param[i].cond);
452 deflateEnd(&comp_param[i].stream);
453 g_free(comp_param[i].originbuf);
454 qemu_fclose(comp_param[i].file);
455 comp_param[i].file = NULL;
457 qemu_mutex_destroy(&comp_done_lock);
458 qemu_cond_destroy(&comp_done_cond);
459 g_free(compress_threads);
461 compress_threads = NULL;
465 static int compress_threads_save_setup(void)
469 if (!migrate_use_compression()) {
472 thread_count = migrate_compress_threads();
473 compress_threads = g_new0(QemuThread, thread_count);
474 comp_param = g_new0(CompressParam, thread_count);
475 qemu_cond_init(&comp_done_cond);
476 qemu_mutex_init(&comp_done_lock);
477 for (i = 0; i < thread_count; i++) {
478 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
479 if (!comp_param[i].originbuf) {
483 if (deflateInit(&comp_param[i].stream,
484 migrate_compress_level()) != Z_OK) {
485 g_free(comp_param[i].originbuf);
489 /* comp_param[i].file is just used as a dummy buffer to save data,
490 * set its ops to empty.
492 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
493 comp_param[i].done = true;
494 comp_param[i].quit = false;
495 qemu_mutex_init(&comp_param[i].mutex);
496 qemu_cond_init(&comp_param[i].cond);
497 qemu_thread_create(compress_threads + i, "compress",
498 do_data_compress, comp_param + i,
499 QEMU_THREAD_JOINABLE);
504 compress_threads_save_cleanup();
510 #define MULTIFD_MAGIC 0x11223344U
511 #define MULTIFD_VERSION 1
516 unsigned char uuid[16]; /* QemuUUID */
518 } __attribute__((packed)) MultiFDInit_t;
521 /* this fields are not changed once the thread is created */
524 /* channel thread name */
526 /* channel thread id */
528 /* communication channel */
530 /* sem where to wait for more work */
532 /* this mutex protects the following parameters */
534 /* is this channel thread running */
536 /* should this thread finish */
541 /* this fields are not changed once the thread is created */
544 /* channel thread name */
546 /* channel thread id */
548 /* communication channel */
550 /* sem where to wait for more work */
552 /* this mutex protects the following parameters */
554 /* is this channel thread running */
556 /* should this thread finish */
560 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
565 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
566 msg.version = cpu_to_be32(MULTIFD_VERSION);
568 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
570 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
577 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
582 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
587 be32_to_cpus(&msg.magic);
588 be32_to_cpus(&msg.version);
590 if (msg.magic != MULTIFD_MAGIC) {
591 error_setg(errp, "multifd: received packet magic %x "
592 "expected %x", msg.magic, MULTIFD_MAGIC);
596 if (msg.version != MULTIFD_VERSION) {
597 error_setg(errp, "multifd: received packet version %d "
598 "expected %d", msg.version, MULTIFD_VERSION);
602 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
603 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
604 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
606 error_setg(errp, "multifd: received uuid '%s' and expected "
607 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
613 if (msg.id > migrate_multifd_channels()) {
614 error_setg(errp, "multifd: received channel version %d "
615 "expected %d", msg.version, MULTIFD_VERSION);
623 MultiFDSendParams *params;
624 /* number of created threads */
626 } *multifd_send_state;
628 static void multifd_send_terminate_threads(Error *err)
633 MigrationState *s = migrate_get_current();
634 migrate_set_error(s, err);
635 if (s->state == MIGRATION_STATUS_SETUP ||
636 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
637 s->state == MIGRATION_STATUS_DEVICE ||
638 s->state == MIGRATION_STATUS_ACTIVE) {
639 migrate_set_state(&s->state, s->state,
640 MIGRATION_STATUS_FAILED);
644 for (i = 0; i < migrate_multifd_channels(); i++) {
645 MultiFDSendParams *p = &multifd_send_state->params[i];
647 qemu_mutex_lock(&p->mutex);
649 qemu_sem_post(&p->sem);
650 qemu_mutex_unlock(&p->mutex);
654 int multifd_save_cleanup(Error **errp)
659 if (!migrate_use_multifd()) {
662 multifd_send_terminate_threads(NULL);
663 for (i = 0; i < migrate_multifd_channels(); i++) {
664 MultiFDSendParams *p = &multifd_send_state->params[i];
667 qemu_thread_join(&p->thread);
669 socket_send_channel_destroy(p->c);
671 qemu_mutex_destroy(&p->mutex);
672 qemu_sem_destroy(&p->sem);
676 g_free(multifd_send_state->params);
677 multifd_send_state->params = NULL;
678 g_free(multifd_send_state);
679 multifd_send_state = NULL;
683 static void *multifd_send_thread(void *opaque)
685 MultiFDSendParams *p = opaque;
686 Error *local_err = NULL;
688 if (multifd_send_initial_packet(p, &local_err) < 0) {
693 qemu_mutex_lock(&p->mutex);
695 qemu_mutex_unlock(&p->mutex);
698 qemu_mutex_unlock(&p->mutex);
699 qemu_sem_wait(&p->sem);
704 multifd_send_terminate_threads(local_err);
707 qemu_mutex_lock(&p->mutex);
709 qemu_mutex_unlock(&p->mutex);
714 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
716 MultiFDSendParams *p = opaque;
717 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
718 Error *local_err = NULL;
720 if (qio_task_propagate_error(task, &local_err)) {
721 if (multifd_save_cleanup(&local_err) != 0) {
722 migrate_set_error(migrate_get_current(), local_err);
725 p->c = QIO_CHANNEL(sioc);
726 qio_channel_set_delay(p->c, false);
728 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
729 QEMU_THREAD_JOINABLE);
731 atomic_inc(&multifd_send_state->count);
735 int multifd_save_setup(void)
740 if (!migrate_use_multifd()) {
743 thread_count = migrate_multifd_channels();
744 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
745 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
746 atomic_set(&multifd_send_state->count, 0);
747 for (i = 0; i < thread_count; i++) {
748 MultiFDSendParams *p = &multifd_send_state->params[i];
750 qemu_mutex_init(&p->mutex);
751 qemu_sem_init(&p->sem, 0);
754 p->name = g_strdup_printf("multifdsend_%d", i);
755 socket_send_channel_create(multifd_new_send_channel_async, p);
761 MultiFDRecvParams *params;
762 /* number of created threads */
764 } *multifd_recv_state;
766 static void multifd_recv_terminate_threads(Error *err)
771 MigrationState *s = migrate_get_current();
772 migrate_set_error(s, err);
773 if (s->state == MIGRATION_STATUS_SETUP ||
774 s->state == MIGRATION_STATUS_ACTIVE) {
775 migrate_set_state(&s->state, s->state,
776 MIGRATION_STATUS_FAILED);
780 for (i = 0; i < migrate_multifd_channels(); i++) {
781 MultiFDRecvParams *p = &multifd_recv_state->params[i];
783 qemu_mutex_lock(&p->mutex);
785 qemu_sem_post(&p->sem);
786 qemu_mutex_unlock(&p->mutex);
790 int multifd_load_cleanup(Error **errp)
795 if (!migrate_use_multifd()) {
798 multifd_recv_terminate_threads(NULL);
799 for (i = 0; i < migrate_multifd_channels(); i++) {
800 MultiFDRecvParams *p = &multifd_recv_state->params[i];
803 qemu_thread_join(&p->thread);
805 object_unref(OBJECT(p->c));
807 qemu_mutex_destroy(&p->mutex);
808 qemu_sem_destroy(&p->sem);
812 g_free(multifd_recv_state->params);
813 multifd_recv_state->params = NULL;
814 g_free(multifd_recv_state);
815 multifd_recv_state = NULL;
820 static void *multifd_recv_thread(void *opaque)
822 MultiFDRecvParams *p = opaque;
825 qemu_mutex_lock(&p->mutex);
827 qemu_mutex_unlock(&p->mutex);
830 qemu_mutex_unlock(&p->mutex);
831 qemu_sem_wait(&p->sem);
834 qemu_mutex_lock(&p->mutex);
836 qemu_mutex_unlock(&p->mutex);
841 int multifd_load_setup(void)
846 if (!migrate_use_multifd()) {
849 thread_count = migrate_multifd_channels();
850 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
851 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
852 atomic_set(&multifd_recv_state->count, 0);
853 for (i = 0; i < thread_count; i++) {
854 MultiFDRecvParams *p = &multifd_recv_state->params[i];
856 qemu_mutex_init(&p->mutex);
857 qemu_sem_init(&p->sem, 0);
860 p->name = g_strdup_printf("multifdrecv_%d", i);
865 bool multifd_recv_all_channels_created(void)
867 int thread_count = migrate_multifd_channels();
869 if (!migrate_use_multifd()) {
873 return thread_count == atomic_read(&multifd_recv_state->count);
876 void multifd_recv_new_channel(QIOChannel *ioc)
878 MultiFDRecvParams *p;
879 Error *local_err = NULL;
882 id = multifd_recv_initial_packet(ioc, &local_err);
884 multifd_recv_terminate_threads(local_err);
888 p = &multifd_recv_state->params[id];
890 error_setg(&local_err, "multifd: received id '%d' already setup'",
892 multifd_recv_terminate_threads(local_err);
896 object_ref(OBJECT(ioc));
899 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
900 QEMU_THREAD_JOINABLE);
901 atomic_inc(&multifd_recv_state->count);
902 if (multifd_recv_state->count == migrate_multifd_channels()) {
903 migration_incoming_process();
908 * save_page_header: write page header to wire
910 * If this is the 1st block, it also writes the block identification
912 * Returns the number of bytes written
914 * @f: QEMUFile where to send the data
915 * @block: block that contains the page we want to send
916 * @offset: offset inside the block for the page
917 * in the lower bits, it contains flags
919 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
924 if (block == rs->last_sent_block) {
925 offset |= RAM_SAVE_FLAG_CONTINUE;
927 qemu_put_be64(f, offset);
930 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
931 len = strlen(block->idstr);
932 qemu_put_byte(f, len);
933 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
935 rs->last_sent_block = block;
941 * mig_throttle_guest_down: throotle down the guest
943 * Reduce amount of guest cpu execution to hopefully slow down memory
944 * writes. If guest dirty memory rate is reduced below the rate at
945 * which we can transfer pages to the destination then we should be
946 * able to complete migration. Some workloads dirty memory way too
947 * fast and will not effectively converge, even with auto-converge.
949 static void mig_throttle_guest_down(void)
951 MigrationState *s = migrate_get_current();
952 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
953 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
955 /* We have not started throttling yet. Let's start it. */
956 if (!cpu_throttle_active()) {
957 cpu_throttle_set(pct_initial);
959 /* Throttling already on, just increase the rate */
960 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
965 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
967 * @rs: current RAM state
968 * @current_addr: address for the zero page
970 * Update the xbzrle cache to reflect a page that's been sent as all 0.
971 * The important thing is that a stale (not-yet-0'd) page be replaced
973 * As a bonus, if the page wasn't in the cache it gets added so that
974 * when a small write is made into the 0'd page it gets XBZRLE sent.
976 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
978 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
982 /* We don't care if this fails to allocate a new cache page
983 * as long as it updated an old one */
984 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
985 ram_counters.dirty_sync_count);
988 #define ENCODING_FLAG_XBZRLE 0x1
991 * save_xbzrle_page: compress and send current page
993 * Returns: 1 means that we wrote the page
994 * 0 means that page is identical to the one already sent
995 * -1 means that xbzrle would be longer than normal
997 * @rs: current RAM state
998 * @current_data: pointer to the address of the page contents
999 * @current_addr: addr of the page
1000 * @block: block that contains the page we want to send
1001 * @offset: offset inside the block for the page
1002 * @last_stage: if we are at the completion stage
1004 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1005 ram_addr_t current_addr, RAMBlock *block,
1006 ram_addr_t offset, bool last_stage)
1008 int encoded_len = 0, bytes_xbzrle;
1009 uint8_t *prev_cached_page;
1011 if (!cache_is_cached(XBZRLE.cache, current_addr,
1012 ram_counters.dirty_sync_count)) {
1013 xbzrle_counters.cache_miss++;
1015 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1016 ram_counters.dirty_sync_count) == -1) {
1019 /* update *current_data when the page has been
1020 inserted into cache */
1021 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1027 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1029 /* save current buffer into memory */
1030 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1032 /* XBZRLE encoding (if there is no overflow) */
1033 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1034 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1036 if (encoded_len == 0) {
1037 trace_save_xbzrle_page_skipping();
1039 } else if (encoded_len == -1) {
1040 trace_save_xbzrle_page_overflow();
1041 xbzrle_counters.overflow++;
1042 /* update data in the cache */
1044 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1045 *current_data = prev_cached_page;
1050 /* we need to update the data in the cache, in order to get the same data */
1052 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1055 /* Send XBZRLE based compressed page */
1056 bytes_xbzrle = save_page_header(rs, rs->f, block,
1057 offset | RAM_SAVE_FLAG_XBZRLE);
1058 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1059 qemu_put_be16(rs->f, encoded_len);
1060 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1061 bytes_xbzrle += encoded_len + 1 + 2;
1062 xbzrle_counters.pages++;
1063 xbzrle_counters.bytes += bytes_xbzrle;
1064 ram_counters.transferred += bytes_xbzrle;
1070 * migration_bitmap_find_dirty: find the next dirty page from start
1072 * Called with rcu_read_lock() to protect migration_bitmap
1074 * Returns the byte offset within memory region of the start of a dirty page
1076 * @rs: current RAM state
1077 * @rb: RAMBlock where to search for dirty pages
1078 * @start: page where we start the search
1081 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1082 unsigned long start)
1084 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1085 unsigned long *bitmap = rb->bmap;
1088 if (!qemu_ram_is_migratable(rb)) {
1092 if (rs->ram_bulk_stage && start > 0) {
1095 next = find_next_bit(bitmap, size, start);
1101 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1107 ret = test_and_clear_bit(page, rb->bmap);
1110 rs->migration_dirty_pages--;
1115 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1116 ram_addr_t start, ram_addr_t length)
1118 rs->migration_dirty_pages +=
1119 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1120 &rs->num_dirty_pages_period);
1124 * ram_pagesize_summary: calculate all the pagesizes of a VM
1126 * Returns a summary bitmap of the page sizes of all RAMBlocks
1128 * For VMs with just normal pages this is equivalent to the host page
1129 * size. If it's got some huge pages then it's the OR of all the
1130 * different page sizes.
1132 uint64_t ram_pagesize_summary(void)
1135 uint64_t summary = 0;
1137 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1138 summary |= block->page_size;
1144 static void migration_update_rates(RAMState *rs, int64_t end_time)
1146 uint64_t iter_count = rs->iterations - rs->iterations_prev;
1148 /* calculate period counters */
1149 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1150 / (end_time - rs->time_last_bitmap_sync);
1156 if (migrate_use_xbzrle()) {
1157 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1158 rs->xbzrle_cache_miss_prev) / iter_count;
1159 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1163 static void migration_bitmap_sync(RAMState *rs)
1167 uint64_t bytes_xfer_now;
1169 ram_counters.dirty_sync_count++;
1171 if (!rs->time_last_bitmap_sync) {
1172 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1175 trace_migration_bitmap_sync_start();
1176 memory_global_dirty_log_sync();
1178 qemu_mutex_lock(&rs->bitmap_mutex);
1180 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1181 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1184 qemu_mutex_unlock(&rs->bitmap_mutex);
1186 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1188 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1190 /* more than 1 second = 1000 millisecons */
1191 if (end_time > rs->time_last_bitmap_sync + 1000) {
1192 bytes_xfer_now = ram_counters.transferred;
1194 /* During block migration the auto-converge logic incorrectly detects
1195 * that ram migration makes no progress. Avoid this by disabling the
1196 * throttling logic during the bulk phase of block migration. */
1197 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1198 /* The following detection logic can be refined later. For now:
1199 Check to see if the dirtied bytes is 50% more than the approx.
1200 amount of bytes that just got transferred since the last time we
1201 were in this routine. If that happens twice, start or increase
1204 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1205 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1206 (++rs->dirty_rate_high_cnt >= 2)) {
1207 trace_migration_throttle();
1208 rs->dirty_rate_high_cnt = 0;
1209 mig_throttle_guest_down();
1213 migration_update_rates(rs, end_time);
1215 rs->iterations_prev = rs->iterations;
1217 /* reset period counters */
1218 rs->time_last_bitmap_sync = end_time;
1219 rs->num_dirty_pages_period = 0;
1220 rs->bytes_xfer_prev = bytes_xfer_now;
1222 if (migrate_use_events()) {
1223 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
1228 * save_zero_page: send the zero page to the stream
1230 * Returns the number of pages written.
1232 * @rs: current RAM state
1233 * @block: block that contains the page we want to send
1234 * @offset: offset inside the block for the page
1236 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1238 uint8_t *p = block->host + offset;
1241 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1242 ram_counters.duplicate++;
1243 ram_counters.transferred +=
1244 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
1245 qemu_put_byte(rs->f, 0);
1246 ram_counters.transferred += 1;
1253 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1255 if (!migrate_release_ram() || !migration_in_postcopy()) {
1259 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1263 * @pages: the number of pages written by the control path,
1265 * > 0 - number of pages written
1267 * Return true if the pages has been saved, otherwise false is returned.
1269 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1272 uint64_t bytes_xmit = 0;
1276 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1278 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1283 ram_counters.transferred += bytes_xmit;
1287 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1291 if (bytes_xmit > 0) {
1292 ram_counters.normal++;
1293 } else if (bytes_xmit == 0) {
1294 ram_counters.duplicate++;
1301 * directly send the page to the stream
1303 * Returns the number of pages written.
1305 * @rs: current RAM state
1306 * @block: block that contains the page we want to send
1307 * @offset: offset inside the block for the page
1308 * @buf: the page to be sent
1309 * @async: send to page asyncly
1311 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1312 uint8_t *buf, bool async)
1314 ram_counters.transferred += save_page_header(rs, rs->f, block,
1315 offset | RAM_SAVE_FLAG_PAGE);
1317 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1318 migrate_release_ram() &
1319 migration_in_postcopy());
1321 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1323 ram_counters.transferred += TARGET_PAGE_SIZE;
1324 ram_counters.normal++;
1329 * ram_save_page: send the given page to the stream
1331 * Returns the number of pages written.
1333 * >=0 - Number of pages written - this might legally be 0
1334 * if xbzrle noticed the page was the same.
1336 * @rs: current RAM state
1337 * @block: block that contains the page we want to send
1338 * @offset: offset inside the block for the page
1339 * @last_stage: if we are at the completion stage
1341 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1345 bool send_async = true;
1346 RAMBlock *block = pss->block;
1347 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1348 ram_addr_t current_addr = block->offset + offset;
1350 p = block->host + offset;
1351 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1353 XBZRLE_cache_lock();
1354 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1355 migrate_use_xbzrle()) {
1356 pages = save_xbzrle_page(rs, &p, current_addr, block,
1357 offset, last_stage);
1359 /* Can't send this cached data async, since the cache page
1360 * might get updated before it gets to the wire
1366 /* XBZRLE overflow or normal page */
1368 pages = save_normal_page(rs, block, offset, p, send_async);
1371 XBZRLE_cache_unlock();
1376 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1377 ram_addr_t offset, uint8_t *source_buf)
1379 RAMState *rs = ram_state;
1380 int bytes_sent, blen;
1381 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1383 bytes_sent = save_page_header(rs, f, block, offset |
1384 RAM_SAVE_FLAG_COMPRESS_PAGE);
1387 * copy it to a internal buffer to avoid it being modified by VM
1388 * so that we can catch up the error during compression and
1391 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1392 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1395 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1396 error_report("compressed data failed!");
1399 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1405 static void flush_compressed_data(RAMState *rs)
1407 int idx, len, thread_count;
1409 if (!migrate_use_compression()) {
1412 thread_count = migrate_compress_threads();
1414 qemu_mutex_lock(&comp_done_lock);
1415 for (idx = 0; idx < thread_count; idx++) {
1416 while (!comp_param[idx].done) {
1417 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1420 qemu_mutex_unlock(&comp_done_lock);
1422 for (idx = 0; idx < thread_count; idx++) {
1423 qemu_mutex_lock(&comp_param[idx].mutex);
1424 if (!comp_param[idx].quit) {
1425 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1426 ram_counters.transferred += len;
1428 qemu_mutex_unlock(&comp_param[idx].mutex);
1432 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1435 param->block = block;
1436 param->offset = offset;
1439 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1442 int idx, thread_count, bytes_xmit = -1, pages = -1;
1444 thread_count = migrate_compress_threads();
1445 qemu_mutex_lock(&comp_done_lock);
1447 for (idx = 0; idx < thread_count; idx++) {
1448 if (comp_param[idx].done) {
1449 comp_param[idx].done = false;
1450 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1451 qemu_mutex_lock(&comp_param[idx].mutex);
1452 set_compress_params(&comp_param[idx], block, offset);
1453 qemu_cond_signal(&comp_param[idx].cond);
1454 qemu_mutex_unlock(&comp_param[idx].mutex);
1456 ram_counters.normal++;
1457 ram_counters.transferred += bytes_xmit;
1464 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1467 qemu_mutex_unlock(&comp_done_lock);
1473 * find_dirty_block: find the next dirty page and update any state
1474 * associated with the search process.
1476 * Returns if a page is found
1478 * @rs: current RAM state
1479 * @pss: data about the state of the current dirty page scan
1480 * @again: set to false if the search has scanned the whole of RAM
1482 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1484 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1485 if (pss->complete_round && pss->block == rs->last_seen_block &&
1486 pss->page >= rs->last_page) {
1488 * We've been once around the RAM and haven't found anything.
1494 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1495 /* Didn't find anything in this RAM Block */
1497 pss->block = QLIST_NEXT_RCU(pss->block, next);
1499 /* Hit the end of the list */
1500 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1501 /* Flag that we've looped */
1502 pss->complete_round = true;
1503 rs->ram_bulk_stage = false;
1504 if (migrate_use_xbzrle()) {
1505 /* If xbzrle is on, stop using the data compression at this
1506 * point. In theory, xbzrle can do better than compression.
1508 flush_compressed_data(rs);
1511 /* Didn't find anything this time, but try again on the new block */
1515 /* Can go around again, but... */
1517 /* We've found something so probably don't need to */
1523 * unqueue_page: gets a page of the queue
1525 * Helper for 'get_queued_page' - gets a page off the queue
1527 * Returns the block of the page (or NULL if none available)
1529 * @rs: current RAM state
1530 * @offset: used to return the offset within the RAMBlock
1532 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1534 RAMBlock *block = NULL;
1536 qemu_mutex_lock(&rs->src_page_req_mutex);
1537 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1538 struct RAMSrcPageRequest *entry =
1539 QSIMPLEQ_FIRST(&rs->src_page_requests);
1541 *offset = entry->offset;
1543 if (entry->len > TARGET_PAGE_SIZE) {
1544 entry->len -= TARGET_PAGE_SIZE;
1545 entry->offset += TARGET_PAGE_SIZE;
1547 memory_region_unref(block->mr);
1548 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1550 migration_consume_urgent_request();
1553 qemu_mutex_unlock(&rs->src_page_req_mutex);
1559 * get_queued_page: unqueue a page from the postocpy requests
1561 * Skips pages that are already sent (!dirty)
1563 * Returns if a queued page is found
1565 * @rs: current RAM state
1566 * @pss: data about the state of the current dirty page scan
1568 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1575 block = unqueue_page(rs, &offset);
1577 * We're sending this page, and since it's postcopy nothing else
1578 * will dirty it, and we must make sure it doesn't get sent again
1579 * even if this queue request was received after the background
1580 * search already sent it.
1585 page = offset >> TARGET_PAGE_BITS;
1586 dirty = test_bit(page, block->bmap);
1588 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1589 page, test_bit(page, block->unsentmap));
1591 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1595 } while (block && !dirty);
1599 * As soon as we start servicing pages out of order, then we have
1600 * to kill the bulk stage, since the bulk stage assumes
1601 * in (migration_bitmap_find_and_reset_dirty) that every page is
1602 * dirty, that's no longer true.
1604 rs->ram_bulk_stage = false;
1607 * We want the background search to continue from the queued page
1608 * since the guest is likely to want other pages near to the page
1609 * it just requested.
1612 pss->page = offset >> TARGET_PAGE_BITS;
1619 * migration_page_queue_free: drop any remaining pages in the ram
1622 * It should be empty at the end anyway, but in error cases there may
1623 * be some left. in case that there is any page left, we drop it.
1626 static void migration_page_queue_free(RAMState *rs)
1628 struct RAMSrcPageRequest *mspr, *next_mspr;
1629 /* This queue generally should be empty - but in the case of a failed
1630 * migration might have some droppings in.
1633 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1634 memory_region_unref(mspr->rb->mr);
1635 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1642 * ram_save_queue_pages: queue the page for transmission
1644 * A request from postcopy destination for example.
1646 * Returns zero on success or negative on error
1648 * @rbname: Name of the RAMBLock of the request. NULL means the
1649 * same that last one.
1650 * @start: starting address from the start of the RAMBlock
1651 * @len: length (in bytes) to send
1653 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1656 RAMState *rs = ram_state;
1658 ram_counters.postcopy_requests++;
1661 /* Reuse last RAMBlock */
1662 ramblock = rs->last_req_rb;
1666 * Shouldn't happen, we can't reuse the last RAMBlock if
1667 * it's the 1st request.
1669 error_report("ram_save_queue_pages no previous block");
1673 ramblock = qemu_ram_block_by_name(rbname);
1676 /* We shouldn't be asked for a non-existent RAMBlock */
1677 error_report("ram_save_queue_pages no block '%s'", rbname);
1680 rs->last_req_rb = ramblock;
1682 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1683 if (start+len > ramblock->used_length) {
1684 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1685 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1686 __func__, start, len, ramblock->used_length);
1690 struct RAMSrcPageRequest *new_entry =
1691 g_malloc0(sizeof(struct RAMSrcPageRequest));
1692 new_entry->rb = ramblock;
1693 new_entry->offset = start;
1694 new_entry->len = len;
1696 memory_region_ref(ramblock->mr);
1697 qemu_mutex_lock(&rs->src_page_req_mutex);
1698 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1699 migration_make_urgent_request();
1700 qemu_mutex_unlock(&rs->src_page_req_mutex);
1710 static bool save_page_use_compression(RAMState *rs)
1712 if (!migrate_use_compression()) {
1717 * If xbzrle is on, stop using the data compression after first
1718 * round of migration even if compression is enabled. In theory,
1719 * xbzrle can do better than compression.
1721 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1729 * ram_save_target_page: save one target page
1731 * Returns the number of pages written
1733 * @rs: current RAM state
1734 * @pss: data about the page we want to send
1735 * @last_stage: if we are at the completion stage
1737 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1740 RAMBlock *block = pss->block;
1741 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1744 if (control_save_page(rs, block, offset, &res)) {
1749 * When starting the process of a new block, the first page of
1750 * the block should be sent out before other pages in the same
1751 * block, and all the pages in last block should have been sent
1752 * out, keeping this order is important, because the 'cont' flag
1753 * is used to avoid resending the block name.
1755 if (block != rs->last_sent_block && save_page_use_compression(rs)) {
1756 flush_compressed_data(rs);
1759 res = save_zero_page(rs, block, offset);
1761 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
1762 * page would be stale
1764 if (!save_page_use_compression(rs)) {
1765 XBZRLE_cache_lock();
1766 xbzrle_cache_zero_page(rs, block->offset + offset);
1767 XBZRLE_cache_unlock();
1769 ram_release_pages(block->idstr, offset, res);
1774 * Make sure the first page is sent out before other pages.
1776 * we post it as normal page as compression will take much
1779 if (block == rs->last_sent_block && save_page_use_compression(rs)) {
1780 return compress_page_with_multi_thread(rs, block, offset);
1783 return ram_save_page(rs, pss, last_stage);
1787 * ram_save_host_page: save a whole host page
1789 * Starting at *offset send pages up to the end of the current host
1790 * page. It's valid for the initial offset to point into the middle of
1791 * a host page in which case the remainder of the hostpage is sent.
1792 * Only dirty target pages are sent. Note that the host page size may
1793 * be a huge page for this block.
1794 * The saving stops at the boundary of the used_length of the block
1795 * if the RAMBlock isn't a multiple of the host page size.
1797 * Returns the number of pages written or negative on error
1799 * @rs: current RAM state
1800 * @ms: current migration state
1801 * @pss: data about the page we want to send
1802 * @last_stage: if we are at the completion stage
1804 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1807 int tmppages, pages = 0;
1808 size_t pagesize_bits =
1809 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1811 if (!qemu_ram_is_migratable(pss->block)) {
1812 error_report("block %s should not be migrated !", pss->block->idstr);
1817 /* Check the pages is dirty and if it is send it */
1818 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
1823 tmppages = ram_save_target_page(rs, pss, last_stage);
1829 if (pss->block->unsentmap) {
1830 clear_bit(pss->page, pss->block->unsentmap);
1834 } while ((pss->page & (pagesize_bits - 1)) &&
1835 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
1837 /* The offset we leave with is the last one we looked at */
1843 * ram_find_and_save_block: finds a dirty page and sends it to f
1845 * Called within an RCU critical section.
1847 * Returns the number of pages written where zero means no dirty pages
1849 * @rs: current RAM state
1850 * @last_stage: if we are at the completion stage
1852 * On systems where host-page-size > target-page-size it will send all the
1853 * pages in a host page that are dirty.
1856 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1858 PageSearchStatus pss;
1862 /* No dirty page as there is zero RAM */
1863 if (!ram_bytes_total()) {
1867 pss.block = rs->last_seen_block;
1868 pss.page = rs->last_page;
1869 pss.complete_round = false;
1872 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1877 found = get_queued_page(rs, &pss);
1880 /* priority queue empty, so just search for something dirty */
1881 found = find_dirty_block(rs, &pss, &again);
1885 pages = ram_save_host_page(rs, &pss, last_stage);
1887 } while (!pages && again);
1889 rs->last_seen_block = pss.block;
1890 rs->last_page = pss.page;
1895 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1897 uint64_t pages = size / TARGET_PAGE_SIZE;
1900 ram_counters.duplicate += pages;
1902 ram_counters.normal += pages;
1903 ram_counters.transferred += size;
1904 qemu_update_position(f, size);
1908 uint64_t ram_bytes_total(void)
1914 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1915 total += block->used_length;
1921 static void xbzrle_load_setup(void)
1923 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
1926 static void xbzrle_load_cleanup(void)
1928 g_free(XBZRLE.decoded_buf);
1929 XBZRLE.decoded_buf = NULL;
1932 static void ram_state_cleanup(RAMState **rsp)
1935 migration_page_queue_free(*rsp);
1936 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
1937 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
1943 static void xbzrle_cleanup(void)
1945 XBZRLE_cache_lock();
1947 cache_fini(XBZRLE.cache);
1948 g_free(XBZRLE.encoded_buf);
1949 g_free(XBZRLE.current_buf);
1950 g_free(XBZRLE.zero_target_page);
1951 XBZRLE.cache = NULL;
1952 XBZRLE.encoded_buf = NULL;
1953 XBZRLE.current_buf = NULL;
1954 XBZRLE.zero_target_page = NULL;
1956 XBZRLE_cache_unlock();
1959 static void ram_save_cleanup(void *opaque)
1961 RAMState **rsp = opaque;
1964 /* caller have hold iothread lock or is in a bh, so there is
1965 * no writing race against this migration_bitmap
1967 memory_global_dirty_log_stop();
1969 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1970 g_free(block->bmap);
1972 g_free(block->unsentmap);
1973 block->unsentmap = NULL;
1977 compress_threads_save_cleanup();
1978 ram_state_cleanup(rsp);
1981 static void ram_state_reset(RAMState *rs)
1983 rs->last_seen_block = NULL;
1984 rs->last_sent_block = NULL;
1986 rs->last_version = ram_list.version;
1987 rs->ram_bulk_stage = true;
1990 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1993 * 'expected' is the value you expect the bitmap mostly to be full
1994 * of; it won't bother printing lines that are all this value.
1995 * If 'todump' is null the migration bitmap is dumped.
1997 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1998 unsigned long pages)
2001 int64_t linelen = 128;
2004 for (cur = 0; cur < pages; cur += linelen) {
2008 * Last line; catch the case where the line length
2009 * is longer than remaining ram
2011 if (cur + linelen > pages) {
2012 linelen = pages - cur;
2014 for (curb = 0; curb < linelen; curb++) {
2015 bool thisbit = test_bit(cur + curb, todump);
2016 linebuf[curb] = thisbit ? '1' : '.';
2017 found = found || (thisbit != expected);
2020 linebuf[curb] = '\0';
2021 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2026 /* **** functions for postcopy ***** */
2028 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2030 struct RAMBlock *block;
2032 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2033 unsigned long *bitmap = block->bmap;
2034 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2035 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2037 while (run_start < range) {
2038 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2039 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2040 (run_end - run_start) << TARGET_PAGE_BITS);
2041 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2047 * postcopy_send_discard_bm_ram: discard a RAMBlock
2049 * Returns zero on success
2051 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2052 * Note: At this point the 'unsentmap' is the processed bitmap combined
2053 * with the dirtymap; so a '1' means it's either dirty or unsent.
2055 * @ms: current migration state
2056 * @pds: state for postcopy
2057 * @start: RAMBlock starting page
2058 * @length: RAMBlock size
2060 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2061 PostcopyDiscardState *pds,
2064 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2065 unsigned long current;
2066 unsigned long *unsentmap = block->unsentmap;
2068 for (current = 0; current < end; ) {
2069 unsigned long one = find_next_bit(unsentmap, end, current);
2072 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2073 unsigned long discard_length;
2076 discard_length = end - one;
2078 discard_length = zero - one;
2080 if (discard_length) {
2081 postcopy_discard_send_range(ms, pds, one, discard_length);
2083 current = one + discard_length;
2093 * postcopy_each_ram_send_discard: discard all RAMBlocks
2095 * Returns 0 for success or negative for error
2097 * Utility for the outgoing postcopy code.
2098 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2099 * passing it bitmap indexes and name.
2100 * (qemu_ram_foreach_block ends up passing unscaled lengths
2101 * which would mean postcopy code would have to deal with target page)
2103 * @ms: current migration state
2105 static int postcopy_each_ram_send_discard(MigrationState *ms)
2107 struct RAMBlock *block;
2110 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2111 PostcopyDiscardState *pds =
2112 postcopy_discard_send_init(ms, block->idstr);
2115 * Postcopy sends chunks of bitmap over the wire, but it
2116 * just needs indexes at this point, avoids it having
2117 * target page specific code.
2119 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2120 postcopy_discard_send_finish(ms, pds);
2130 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2132 * Helper for postcopy_chunk_hostpages; it's called twice to
2133 * canonicalize the two bitmaps, that are similar, but one is
2136 * Postcopy requires that all target pages in a hostpage are dirty or
2137 * clean, not a mix. This function canonicalizes the bitmaps.
2139 * @ms: current migration state
2140 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2141 * otherwise we need to canonicalize partially dirty host pages
2142 * @block: block that contains the page we want to canonicalize
2143 * @pds: state for postcopy
2145 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2147 PostcopyDiscardState *pds)
2149 RAMState *rs = ram_state;
2150 unsigned long *bitmap = block->bmap;
2151 unsigned long *unsentmap = block->unsentmap;
2152 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2153 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2154 unsigned long run_start;
2156 if (block->page_size == TARGET_PAGE_SIZE) {
2157 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2162 /* Find a sent page */
2163 run_start = find_next_zero_bit(unsentmap, pages, 0);
2165 /* Find a dirty page */
2166 run_start = find_next_bit(bitmap, pages, 0);
2169 while (run_start < pages) {
2170 bool do_fixup = false;
2171 unsigned long fixup_start_addr;
2172 unsigned long host_offset;
2175 * If the start of this run of pages is in the middle of a host
2176 * page, then we need to fixup this host page.
2178 host_offset = run_start % host_ratio;
2181 run_start -= host_offset;
2182 fixup_start_addr = run_start;
2183 /* For the next pass */
2184 run_start = run_start + host_ratio;
2186 /* Find the end of this run */
2187 unsigned long run_end;
2189 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2191 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2194 * If the end isn't at the start of a host page, then the
2195 * run doesn't finish at the end of a host page
2196 * and we need to discard.
2198 host_offset = run_end % host_ratio;
2201 fixup_start_addr = run_end - host_offset;
2203 * This host page has gone, the next loop iteration starts
2204 * from after the fixup
2206 run_start = fixup_start_addr + host_ratio;
2209 * No discards on this iteration, next loop starts from
2210 * next sent/dirty page
2212 run_start = run_end + 1;
2219 /* Tell the destination to discard this page */
2220 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2221 /* For the unsent_pass we:
2222 * discard partially sent pages
2223 * For the !unsent_pass (dirty) we:
2224 * discard partially dirty pages that were sent
2225 * (any partially sent pages were already discarded
2226 * by the previous unsent_pass)
2228 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2232 /* Clean up the bitmap */
2233 for (page = fixup_start_addr;
2234 page < fixup_start_addr + host_ratio; page++) {
2235 /* All pages in this host page are now not sent */
2236 set_bit(page, unsentmap);
2239 * Remark them as dirty, updating the count for any pages
2240 * that weren't previously dirty.
2242 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2247 /* Find the next sent page for the next iteration */
2248 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2250 /* Find the next dirty page for the next iteration */
2251 run_start = find_next_bit(bitmap, pages, run_start);
2257 * postcopy_chuck_hostpages: discrad any partially sent host page
2259 * Utility for the outgoing postcopy code.
2261 * Discard any partially sent host-page size chunks, mark any partially
2262 * dirty host-page size chunks as all dirty. In this case the host-page
2263 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2265 * Returns zero on success
2267 * @ms: current migration state
2268 * @block: block we want to work with
2270 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2272 PostcopyDiscardState *pds =
2273 postcopy_discard_send_init(ms, block->idstr);
2275 /* First pass: Discard all partially sent host pages */
2276 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2278 * Second pass: Ensure that all partially dirty host pages are made
2281 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2283 postcopy_discard_send_finish(ms, pds);
2288 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2290 * Returns zero on success
2292 * Transmit the set of pages to be discarded after precopy to the target
2293 * these are pages that:
2294 * a) Have been previously transmitted but are now dirty again
2295 * b) Pages that have never been transmitted, this ensures that
2296 * any pages on the destination that have been mapped by background
2297 * tasks get discarded (transparent huge pages is the specific concern)
2298 * Hopefully this is pretty sparse
2300 * @ms: current migration state
2302 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2304 RAMState *rs = ram_state;
2310 /* This should be our last sync, the src is now paused */
2311 migration_bitmap_sync(rs);
2313 /* Easiest way to make sure we don't resume in the middle of a host-page */
2314 rs->last_seen_block = NULL;
2315 rs->last_sent_block = NULL;
2318 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2319 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2320 unsigned long *bitmap = block->bmap;
2321 unsigned long *unsentmap = block->unsentmap;
2324 /* We don't have a safe way to resize the sentmap, so
2325 * if the bitmap was resized it will be NULL at this
2328 error_report("migration ram resized during precopy phase");
2332 /* Deal with TPS != HPS and huge pages */
2333 ret = postcopy_chunk_hostpages(ms, block);
2340 * Update the unsentmap to be unsentmap = unsentmap | dirty
2342 bitmap_or(unsentmap, unsentmap, bitmap, pages);
2343 #ifdef DEBUG_POSTCOPY
2344 ram_debug_dump_bitmap(unsentmap, true, pages);
2347 trace_ram_postcopy_send_discard_bitmap();
2349 ret = postcopy_each_ram_send_discard(ms);
2356 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2358 * Returns zero on success
2360 * @rbname: name of the RAMBlock of the request. NULL means the
2361 * same that last one.
2362 * @start: RAMBlock starting page
2363 * @length: RAMBlock size
2365 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2369 trace_ram_discard_range(rbname, start, length);
2372 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2375 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2379 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2380 length >> qemu_target_page_bits());
2381 ret = ram_block_discard_range(rb, start, length);
2390 * For every allocation, we will try not to crash the VM if the
2391 * allocation failed.
2393 static int xbzrle_init(void)
2395 Error *local_err = NULL;
2397 if (!migrate_use_xbzrle()) {
2401 XBZRLE_cache_lock();
2403 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2404 if (!XBZRLE.zero_target_page) {
2405 error_report("%s: Error allocating zero page", __func__);
2409 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2410 TARGET_PAGE_SIZE, &local_err);
2411 if (!XBZRLE.cache) {
2412 error_report_err(local_err);
2413 goto free_zero_page;
2416 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2417 if (!XBZRLE.encoded_buf) {
2418 error_report("%s: Error allocating encoded_buf", __func__);
2422 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2423 if (!XBZRLE.current_buf) {
2424 error_report("%s: Error allocating current_buf", __func__);
2425 goto free_encoded_buf;
2428 /* We are all good */
2429 XBZRLE_cache_unlock();
2433 g_free(XBZRLE.encoded_buf);
2434 XBZRLE.encoded_buf = NULL;
2436 cache_fini(XBZRLE.cache);
2437 XBZRLE.cache = NULL;
2439 g_free(XBZRLE.zero_target_page);
2440 XBZRLE.zero_target_page = NULL;
2442 XBZRLE_cache_unlock();
2446 static int ram_state_init(RAMState **rsp)
2448 *rsp = g_try_new0(RAMState, 1);
2451 error_report("%s: Init ramstate fail", __func__);
2455 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2456 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2457 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2460 * Count the total number of pages used by ram blocks not including any
2461 * gaps due to alignment or unplugs.
2463 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2465 ram_state_reset(*rsp);
2470 static void ram_list_init_bitmaps(void)
2473 unsigned long pages;
2475 /* Skip setting bitmap if there is no RAM */
2476 if (ram_bytes_total()) {
2477 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2478 pages = block->max_length >> TARGET_PAGE_BITS;
2479 block->bmap = bitmap_new(pages);
2480 bitmap_set(block->bmap, 0, pages);
2481 if (migrate_postcopy_ram()) {
2482 block->unsentmap = bitmap_new(pages);
2483 bitmap_set(block->unsentmap, 0, pages);
2489 static void ram_init_bitmaps(RAMState *rs)
2491 /* For memory_global_dirty_log_start below. */
2492 qemu_mutex_lock_iothread();
2493 qemu_mutex_lock_ramlist();
2496 ram_list_init_bitmaps();
2497 memory_global_dirty_log_start();
2498 migration_bitmap_sync(rs);
2501 qemu_mutex_unlock_ramlist();
2502 qemu_mutex_unlock_iothread();
2505 static int ram_init_all(RAMState **rsp)
2507 if (ram_state_init(rsp)) {
2511 if (xbzrle_init()) {
2512 ram_state_cleanup(rsp);
2516 ram_init_bitmaps(*rsp);
2521 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2527 * Postcopy is not using xbzrle/compression, so no need for that.
2528 * Also, since source are already halted, we don't need to care
2529 * about dirty page logging as well.
2532 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2533 pages += bitmap_count_one(block->bmap,
2534 block->used_length >> TARGET_PAGE_BITS);
2537 /* This may not be aligned with current bitmaps. Recalculate. */
2538 rs->migration_dirty_pages = pages;
2540 rs->last_seen_block = NULL;
2541 rs->last_sent_block = NULL;
2543 rs->last_version = ram_list.version;
2545 * Disable the bulk stage, otherwise we'll resend the whole RAM no
2546 * matter what we have sent.
2548 rs->ram_bulk_stage = false;
2550 /* Update RAMState cache of output QEMUFile */
2553 trace_ram_state_resume_prepare(pages);
2557 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2558 * long-running RCU critical section. When rcu-reclaims in the code
2559 * start to become numerous it will be necessary to reduce the
2560 * granularity of these critical sections.
2564 * ram_save_setup: Setup RAM for migration
2566 * Returns zero to indicate success and negative for error
2568 * @f: QEMUFile where to send the data
2569 * @opaque: RAMState pointer
2571 static int ram_save_setup(QEMUFile *f, void *opaque)
2573 RAMState **rsp = opaque;
2576 if (compress_threads_save_setup()) {
2580 /* migration has already setup the bitmap, reuse it. */
2581 if (!migration_in_colo_state()) {
2582 if (ram_init_all(rsp) != 0) {
2583 compress_threads_save_cleanup();
2591 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
2593 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2594 qemu_put_byte(f, strlen(block->idstr));
2595 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2596 qemu_put_be64(f, block->used_length);
2597 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
2598 qemu_put_be64(f, block->page_size);
2604 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2605 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2607 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2613 * ram_save_iterate: iterative stage for migration
2615 * Returns zero to indicate success and negative for error
2617 * @f: QEMUFile where to send the data
2618 * @opaque: RAMState pointer
2620 static int ram_save_iterate(QEMUFile *f, void *opaque)
2622 RAMState **temp = opaque;
2623 RAMState *rs = *temp;
2629 if (blk_mig_bulk_active()) {
2630 /* Avoid transferring ram during bulk phase of block migration as
2631 * the bulk phase will usually take a long time and transferring
2632 * ram updates during that time is pointless. */
2637 if (ram_list.version != rs->last_version) {
2638 ram_state_reset(rs);
2641 /* Read version before ram_list.blocks */
2644 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2646 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2648 while ((ret = qemu_file_rate_limit(f)) == 0 ||
2649 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2652 if (qemu_file_get_error(f)) {
2656 pages = ram_find_and_save_block(rs, false);
2657 /* no more pages to sent */
2664 /* we want to check in the 1st loop, just in case it was the 1st time
2665 and we had to sync the dirty bitmap.
2666 qemu_get_clock_ns() is a bit expensive, so we only check each some
2669 if ((i & 63) == 0) {
2670 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2671 if (t1 > MAX_WAIT) {
2672 trace_ram_save_iterate_big_wait(t1, i);
2678 flush_compressed_data(rs);
2682 * Must occur before EOS (or any QEMUFile operation)
2683 * because of RDMA protocol.
2685 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2688 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2689 ram_counters.transferred += 8;
2691 ret = qemu_file_get_error(f);
2700 * ram_save_complete: function called to send the remaining amount of ram
2702 * Returns zero to indicate success
2704 * Called with iothread lock
2706 * @f: QEMUFile where to send the data
2707 * @opaque: RAMState pointer
2709 static int ram_save_complete(QEMUFile *f, void *opaque)
2711 RAMState **temp = opaque;
2712 RAMState *rs = *temp;
2716 if (!migration_in_postcopy()) {
2717 migration_bitmap_sync(rs);
2720 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2722 /* try transferring iterative blocks of memory */
2724 /* flush all remaining blocks regardless of rate limiting */
2728 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2729 /* no more blocks to sent */
2735 flush_compressed_data(rs);
2736 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2740 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2745 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2746 uint64_t *res_precopy_only,
2747 uint64_t *res_compatible,
2748 uint64_t *res_postcopy_only)
2750 RAMState **temp = opaque;
2751 RAMState *rs = *temp;
2752 uint64_t remaining_size;
2754 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2756 if (!migration_in_postcopy() &&
2757 remaining_size < max_size) {
2758 qemu_mutex_lock_iothread();
2760 migration_bitmap_sync(rs);
2762 qemu_mutex_unlock_iothread();
2763 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2766 if (migrate_postcopy_ram()) {
2767 /* We can do postcopy, and all the data is postcopiable */
2768 *res_compatible += remaining_size;
2770 *res_precopy_only += remaining_size;
2774 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2776 unsigned int xh_len;
2778 uint8_t *loaded_data;
2780 /* extract RLE header */
2781 xh_flags = qemu_get_byte(f);
2782 xh_len = qemu_get_be16(f);
2784 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2785 error_report("Failed to load XBZRLE page - wrong compression!");
2789 if (xh_len > TARGET_PAGE_SIZE) {
2790 error_report("Failed to load XBZRLE page - len overflow!");
2793 loaded_data = XBZRLE.decoded_buf;
2794 /* load data and decode */
2795 /* it can change loaded_data to point to an internal buffer */
2796 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2799 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2800 TARGET_PAGE_SIZE) == -1) {
2801 error_report("Failed to load XBZRLE page - decode error!");
2809 * ram_block_from_stream: read a RAMBlock id from the migration stream
2811 * Must be called from within a rcu critical section.
2813 * Returns a pointer from within the RCU-protected ram_list.
2815 * @f: QEMUFile where to read the data from
2816 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2818 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2820 static RAMBlock *block = NULL;
2824 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2826 error_report("Ack, bad migration stream!");
2832 len = qemu_get_byte(f);
2833 qemu_get_buffer(f, (uint8_t *)id, len);
2836 block = qemu_ram_block_by_name(id);
2838 error_report("Can't find block %s", id);
2842 if (!qemu_ram_is_migratable(block)) {
2843 error_report("block %s should not be migrated !", id);
2850 static inline void *host_from_ram_block_offset(RAMBlock *block,
2853 if (!offset_in_ramblock(block, offset)) {
2857 return block->host + offset;
2861 * ram_handle_compressed: handle the zero page case
2863 * If a page (or a whole RDMA chunk) has been
2864 * determined to be zero, then zap it.
2866 * @host: host address for the zero page
2867 * @ch: what the page is filled from. We only support zero
2868 * @size: size of the zero page
2870 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2872 if (ch != 0 || !is_zero_range(host, size)) {
2873 memset(host, ch, size);
2877 /* return the size after decompression, or negative value on error */
2879 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
2880 const uint8_t *source, size_t source_len)
2884 err = inflateReset(stream);
2889 stream->avail_in = source_len;
2890 stream->next_in = (uint8_t *)source;
2891 stream->avail_out = dest_len;
2892 stream->next_out = dest;
2894 err = inflate(stream, Z_NO_FLUSH);
2895 if (err != Z_STREAM_END) {
2899 return stream->total_out;
2902 static void *do_data_decompress(void *opaque)
2904 DecompressParam *param = opaque;
2905 unsigned long pagesize;
2909 qemu_mutex_lock(¶m->mutex);
2910 while (!param->quit) {
2915 qemu_mutex_unlock(¶m->mutex);
2917 pagesize = TARGET_PAGE_SIZE;
2919 ret = qemu_uncompress_data(¶m->stream, des, pagesize,
2920 param->compbuf, len);
2921 if (ret < 0 && migrate_get_current()->decompress_error_check) {
2922 error_report("decompress data failed");
2923 qemu_file_set_error(decomp_file, ret);
2926 qemu_mutex_lock(&decomp_done_lock);
2928 qemu_cond_signal(&decomp_done_cond);
2929 qemu_mutex_unlock(&decomp_done_lock);
2931 qemu_mutex_lock(¶m->mutex);
2933 qemu_cond_wait(¶m->cond, ¶m->mutex);
2936 qemu_mutex_unlock(¶m->mutex);
2941 static int wait_for_decompress_done(void)
2943 int idx, thread_count;
2945 if (!migrate_use_compression()) {
2949 thread_count = migrate_decompress_threads();
2950 qemu_mutex_lock(&decomp_done_lock);
2951 for (idx = 0; idx < thread_count; idx++) {
2952 while (!decomp_param[idx].done) {
2953 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2956 qemu_mutex_unlock(&decomp_done_lock);
2957 return qemu_file_get_error(decomp_file);
2960 static void compress_threads_load_cleanup(void)
2962 int i, thread_count;
2964 if (!migrate_use_compression()) {
2967 thread_count = migrate_decompress_threads();
2968 for (i = 0; i < thread_count; i++) {
2970 * we use it as a indicator which shows if the thread is
2971 * properly init'd or not
2973 if (!decomp_param[i].compbuf) {
2977 qemu_mutex_lock(&decomp_param[i].mutex);
2978 decomp_param[i].quit = true;
2979 qemu_cond_signal(&decomp_param[i].cond);
2980 qemu_mutex_unlock(&decomp_param[i].mutex);
2982 for (i = 0; i < thread_count; i++) {
2983 if (!decomp_param[i].compbuf) {
2987 qemu_thread_join(decompress_threads + i);
2988 qemu_mutex_destroy(&decomp_param[i].mutex);
2989 qemu_cond_destroy(&decomp_param[i].cond);
2990 inflateEnd(&decomp_param[i].stream);
2991 g_free(decomp_param[i].compbuf);
2992 decomp_param[i].compbuf = NULL;
2994 g_free(decompress_threads);
2995 g_free(decomp_param);
2996 decompress_threads = NULL;
2997 decomp_param = NULL;
3001 static int compress_threads_load_setup(QEMUFile *f)
3003 int i, thread_count;
3005 if (!migrate_use_compression()) {
3009 thread_count = migrate_decompress_threads();
3010 decompress_threads = g_new0(QemuThread, thread_count);
3011 decomp_param = g_new0(DecompressParam, thread_count);
3012 qemu_mutex_init(&decomp_done_lock);
3013 qemu_cond_init(&decomp_done_cond);
3015 for (i = 0; i < thread_count; i++) {
3016 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3020 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3021 qemu_mutex_init(&decomp_param[i].mutex);
3022 qemu_cond_init(&decomp_param[i].cond);
3023 decomp_param[i].done = true;
3024 decomp_param[i].quit = false;
3025 qemu_thread_create(decompress_threads + i, "decompress",
3026 do_data_decompress, decomp_param + i,
3027 QEMU_THREAD_JOINABLE);
3031 compress_threads_load_cleanup();
3035 static void decompress_data_with_multi_threads(QEMUFile *f,
3036 void *host, int len)
3038 int idx, thread_count;
3040 thread_count = migrate_decompress_threads();
3041 qemu_mutex_lock(&decomp_done_lock);
3043 for (idx = 0; idx < thread_count; idx++) {
3044 if (decomp_param[idx].done) {
3045 decomp_param[idx].done = false;
3046 qemu_mutex_lock(&decomp_param[idx].mutex);
3047 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3048 decomp_param[idx].des = host;
3049 decomp_param[idx].len = len;
3050 qemu_cond_signal(&decomp_param[idx].cond);
3051 qemu_mutex_unlock(&decomp_param[idx].mutex);
3055 if (idx < thread_count) {
3058 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3061 qemu_mutex_unlock(&decomp_done_lock);
3065 * ram_load_setup: Setup RAM for migration incoming side
3067 * Returns zero to indicate success and negative for error
3069 * @f: QEMUFile where to receive the data
3070 * @opaque: RAMState pointer
3072 static int ram_load_setup(QEMUFile *f, void *opaque)
3074 if (compress_threads_load_setup(f)) {
3078 xbzrle_load_setup();
3079 ramblock_recv_map_init();
3083 static int ram_load_cleanup(void *opaque)
3086 xbzrle_load_cleanup();
3087 compress_threads_load_cleanup();
3089 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3090 g_free(rb->receivedmap);
3091 rb->receivedmap = NULL;
3097 * ram_postcopy_incoming_init: allocate postcopy data structures
3099 * Returns 0 for success and negative if there was one error
3101 * @mis: current migration incoming state
3103 * Allocate data structures etc needed by incoming migration with
3104 * postcopy-ram. postcopy-ram's similarly names
3105 * postcopy_ram_incoming_init does the work.
3107 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3109 unsigned long ram_pages = last_ram_page();
3111 return postcopy_ram_incoming_init(mis, ram_pages);
3115 * ram_load_postcopy: load a page in postcopy case
3117 * Returns 0 for success or -errno in case of error
3119 * Called in postcopy mode by ram_load().
3120 * rcu_read_lock is taken prior to this being called.
3122 * @f: QEMUFile where to send the data
3124 static int ram_load_postcopy(QEMUFile *f)
3126 int flags = 0, ret = 0;
3127 bool place_needed = false;
3128 bool matching_page_sizes = false;
3129 MigrationIncomingState *mis = migration_incoming_get_current();
3130 /* Temporary page that is later 'placed' */
3131 void *postcopy_host_page = postcopy_get_tmp_page(mis);
3132 void *last_host = NULL;
3133 bool all_zero = false;
3135 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3138 void *page_buffer = NULL;
3139 void *place_source = NULL;
3140 RAMBlock *block = NULL;
3143 addr = qemu_get_be64(f);
3146 * If qemu file error, we should stop here, and then "addr"
3149 ret = qemu_file_get_error(f);
3154 flags = addr & ~TARGET_PAGE_MASK;
3155 addr &= TARGET_PAGE_MASK;
3157 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3158 place_needed = false;
3159 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3160 block = ram_block_from_stream(f, flags);
3162 host = host_from_ram_block_offset(block, addr);
3164 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3168 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
3170 * Postcopy requires that we place whole host pages atomically;
3171 * these may be huge pages for RAMBlocks that are backed by
3173 * To make it atomic, the data is read into a temporary page
3174 * that's moved into place later.
3175 * The migration protocol uses, possibly smaller, target-pages
3176 * however the source ensures it always sends all the components
3177 * of a host page in order.
3179 page_buffer = postcopy_host_page +
3180 ((uintptr_t)host & (block->page_size - 1));
3181 /* If all TP are zero then we can optimise the place */
3182 if (!((uintptr_t)host & (block->page_size - 1))) {
3185 /* not the 1st TP within the HP */
3186 if (host != (last_host + TARGET_PAGE_SIZE)) {
3187 error_report("Non-sequential target page %p/%p",
3196 * If it's the last part of a host page then we place the host
3199 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
3200 (block->page_size - 1)) == 0;
3201 place_source = postcopy_host_page;
3205 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3206 case RAM_SAVE_FLAG_ZERO:
3207 ch = qemu_get_byte(f);
3208 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3214 case RAM_SAVE_FLAG_PAGE:
3216 if (!place_needed || !matching_page_sizes) {
3217 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3219 /* Avoids the qemu_file copy during postcopy, which is
3220 * going to do a copy later; can only do it when we
3221 * do this read in one go (matching page sizes)
3223 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3227 case RAM_SAVE_FLAG_EOS:
3231 error_report("Unknown combination of migration flags: %#x"
3232 " (postcopy mode)", flags);
3237 /* Detect for any possible file errors */
3238 if (!ret && qemu_file_get_error(f)) {
3239 ret = qemu_file_get_error(f);
3242 if (!ret && place_needed) {
3243 /* This gets called at the last target page in the host page */
3244 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3247 ret = postcopy_place_page_zero(mis, place_dest,
3250 ret = postcopy_place_page(mis, place_dest,
3251 place_source, block);
3259 static bool postcopy_is_advised(void)
3261 PostcopyState ps = postcopy_state_get();
3262 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3265 static bool postcopy_is_running(void)
3267 PostcopyState ps = postcopy_state_get();
3268 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3271 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3273 int flags = 0, ret = 0, invalid_flags = 0;
3274 static uint64_t seq_iter;
3277 * If system is running in postcopy mode, page inserts to host memory must
3280 bool postcopy_running = postcopy_is_running();
3281 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3282 bool postcopy_advised = postcopy_is_advised();
3286 if (version_id != 4) {
3290 if (!migrate_use_compression()) {
3291 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3293 /* This RCU critical section can be very long running.
3294 * When RCU reclaims in the code start to become numerous,
3295 * it will be necessary to reduce the granularity of this
3300 if (postcopy_running) {
3301 ret = ram_load_postcopy(f);
3304 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3305 ram_addr_t addr, total_ram_bytes;
3309 addr = qemu_get_be64(f);
3310 flags = addr & ~TARGET_PAGE_MASK;
3311 addr &= TARGET_PAGE_MASK;
3313 if (flags & invalid_flags) {
3314 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3315 error_report("Received an unexpected compressed page");
3322 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3323 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3324 RAMBlock *block = ram_block_from_stream(f, flags);
3326 host = host_from_ram_block_offset(block, addr);
3328 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3332 ramblock_recv_bitmap_set(block, host);
3333 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3336 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3337 case RAM_SAVE_FLAG_MEM_SIZE:
3338 /* Synchronize RAM block list */
3339 total_ram_bytes = addr;
3340 while (!ret && total_ram_bytes) {
3345 len = qemu_get_byte(f);
3346 qemu_get_buffer(f, (uint8_t *)id, len);
3348 length = qemu_get_be64(f);
3350 block = qemu_ram_block_by_name(id);
3351 if (block && !qemu_ram_is_migratable(block)) {
3352 error_report("block %s should not be migrated !", id);
3355 if (length != block->used_length) {
3356 Error *local_err = NULL;
3358 ret = qemu_ram_resize(block, length,
3361 error_report_err(local_err);
3364 /* For postcopy we need to check hugepage sizes match */
3365 if (postcopy_advised &&
3366 block->page_size != qemu_host_page_size) {
3367 uint64_t remote_page_size = qemu_get_be64(f);
3368 if (remote_page_size != block->page_size) {
3369 error_report("Mismatched RAM page size %s "
3370 "(local) %zd != %" PRId64,
3371 id, block->page_size,
3376 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3379 error_report("Unknown ramblock \"%s\", cannot "
3380 "accept migration", id);
3384 total_ram_bytes -= length;
3388 case RAM_SAVE_FLAG_ZERO:
3389 ch = qemu_get_byte(f);
3390 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3393 case RAM_SAVE_FLAG_PAGE:
3394 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3397 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3398 len = qemu_get_be32(f);
3399 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3400 error_report("Invalid compressed data length: %d", len);
3404 decompress_data_with_multi_threads(f, host, len);
3407 case RAM_SAVE_FLAG_XBZRLE:
3408 if (load_xbzrle(f, addr, host) < 0) {
3409 error_report("Failed to decompress XBZRLE page at "
3410 RAM_ADDR_FMT, addr);
3415 case RAM_SAVE_FLAG_EOS:
3419 if (flags & RAM_SAVE_FLAG_HOOK) {
3420 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
3422 error_report("Unknown combination of migration flags: %#x",
3428 ret = qemu_file_get_error(f);
3432 ret |= wait_for_decompress_done();
3434 trace_ram_load_complete(ret, seq_iter);
3438 static bool ram_has_postcopy(void *opaque)
3440 return migrate_postcopy_ram();
3443 /* Sync all the dirty bitmap with destination VM. */
3444 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3447 QEMUFile *file = s->to_dst_file;
3448 int ramblock_count = 0;
3450 trace_ram_dirty_bitmap_sync_start();
3452 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3453 qemu_savevm_send_recv_bitmap(file, block->idstr);
3454 trace_ram_dirty_bitmap_request(block->idstr);
3458 trace_ram_dirty_bitmap_sync_wait();
3460 /* Wait until all the ramblocks' dirty bitmap synced */
3461 while (ramblock_count--) {
3462 qemu_sem_wait(&s->rp_state.rp_sem);
3465 trace_ram_dirty_bitmap_sync_complete();
3470 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3472 qemu_sem_post(&s->rp_state.rp_sem);
3476 * Read the received bitmap, revert it as the initial dirty bitmap.
3477 * This is only used when the postcopy migration is paused but wants
3478 * to resume from a middle point.
3480 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3483 QEMUFile *file = s->rp_state.from_dst_file;
3484 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
3485 uint64_t local_size = nbits / 8;
3486 uint64_t size, end_mark;
3488 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3490 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
3491 error_report("%s: incorrect state %s", __func__,
3492 MigrationStatus_str(s->state));
3497 * Note: see comments in ramblock_recv_bitmap_send() on why we
3498 * need the endianess convertion, and the paddings.
3500 local_size = ROUND_UP(local_size, 8);
3503 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
3505 size = qemu_get_be64(file);
3507 /* The size of the bitmap should match with our ramblock */
3508 if (size != local_size) {
3509 error_report("%s: ramblock '%s' bitmap size mismatch "
3510 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
3511 block->idstr, size, local_size);
3516 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
3517 end_mark = qemu_get_be64(file);
3519 ret = qemu_file_get_error(file);
3520 if (ret || size != local_size) {
3521 error_report("%s: read bitmap failed for ramblock '%s': %d"
3522 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
3523 __func__, block->idstr, ret, local_size, size);
3528 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
3529 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
3530 __func__, block->idstr, end_mark);
3536 * Endianess convertion. We are during postcopy (though paused).
3537 * The dirty bitmap won't change. We can directly modify it.
3539 bitmap_from_le(block->bmap, le_bitmap, nbits);
3542 * What we received is "received bitmap". Revert it as the initial
3543 * dirty bitmap for this ramblock.
3545 bitmap_complement(block->bmap, block->bmap, nbits);
3547 trace_ram_dirty_bitmap_reload_complete(block->idstr);
3550 * We succeeded to sync bitmap for current ramblock. If this is
3551 * the last one to sync, we need to notify the main send thread.
3553 ram_dirty_bitmap_reload_notify(s);
3561 static int ram_resume_prepare(MigrationState *s, void *opaque)
3563 RAMState *rs = *(RAMState **)opaque;
3566 ret = ram_dirty_bitmap_sync_all(s, rs);
3571 ram_state_resume_prepare(rs, s->to_dst_file);
3576 static SaveVMHandlers savevm_ram_handlers = {
3577 .save_setup = ram_save_setup,
3578 .save_live_iterate = ram_save_iterate,
3579 .save_live_complete_postcopy = ram_save_complete,
3580 .save_live_complete_precopy = ram_save_complete,
3581 .has_postcopy = ram_has_postcopy,
3582 .save_live_pending = ram_save_pending,
3583 .load_state = ram_load,
3584 .save_cleanup = ram_save_cleanup,
3585 .load_setup = ram_load_setup,
3586 .load_cleanup = ram_load_cleanup,
3587 .resume_prepare = ram_resume_prepare,
3590 void ram_mig_init(void)
3592 qemu_mutex_init(&XBZRLE.lock);
3593 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);