2 * ARM IoTKit system control element
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * This is a model of the "system control element" which is part of the
14 * Arm IoTKit and documented in
15 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
16 * Specifically, it implements the "system control register" blocks.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "hw/sysbus.h"
26 #include "hw/registerfields.h"
27 #include "hw/misc/iotkit-sysctl.h"
28 #include "target/arm/arm-powerctl.h"
29 #include "target/arm/cpu.h"
31 REG32(SECDBGSTAT, 0x0)
36 REG32(SYSCLK_DIV, 0x14)
37 REG32(CLOCK_FORCE, 0x18)
38 REG32(RESET_SYNDROME, 0x100)
39 REG32(RESET_MASK, 0x104)
41 FIELD(SWRESET, SWRESETREQ, 9, 1)
43 REG32(INITSVTOR0, 0x110)
44 REG32(INITSVTOR1, 0x114)
46 REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */
49 REG32(PDCM_PD_SYS_SENSE, 0x200)
50 REG32(PDCM_PD_SRAM0_SENSE, 0x20c)
51 REG32(PDCM_PD_SRAM1_SENSE, 0x210)
52 REG32(PDCM_PD_SRAM2_SENSE, 0x214)
53 REG32(PDCM_PD_SRAM3_SENSE, 0x218)
68 static const int sysctl_id[] = {
69 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
70 0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
71 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
75 * Set the initial secure vector table offset address for the core.
76 * This will take effect when the CPU next resets.
78 static void set_init_vtor(uint64_t cpuid, uint32_t vtor)
80 Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid));
83 if (object_property_find(cpuobj, "init-svtor", NULL)) {
84 object_property_set_uint(cpuobj, vtor, "init-svtor", &error_abort);
89 static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
92 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
123 case A_RESET_SYNDROME:
124 r = s->reset_syndrome;
145 /* In IoTKit this is named BUSWAIT but is marked reserved, R/O, zero */
161 case A_PDCM_PD_SYS_SENSE:
165 r = s->pdcm_pd_sys_sense;
167 case A_PDCM_PD_SRAM0_SENSE:
171 r = s->pdcm_pd_sram0_sense;
173 case A_PDCM_PD_SRAM1_SENSE:
177 r = s->pdcm_pd_sram1_sense;
179 case A_PDCM_PD_SRAM2_SENSE:
183 r = s->pdcm_pd_sram2_sense;
185 case A_PDCM_PD_SRAM3_SENSE:
189 r = s->pdcm_pd_sram3_sense;
191 case A_PID4 ... A_CID3:
192 r = sysctl_id[(offset - A_PID4) / 4];
197 qemu_log_mask(LOG_GUEST_ERROR,
198 "IoTKit SysCtl read: read of WO offset %x\n",
204 qemu_log_mask(LOG_GUEST_ERROR,
205 "IoTKit SysCtl read: bad offset %x\n", (int)offset);
209 trace_iotkit_sysctl_read(offset, r, size);
213 static void iotkit_sysctl_write(void *opaque, hwaddr offset,
214 uint64_t value, unsigned size)
216 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
218 trace_iotkit_sysctl_write(offset, value, size);
221 * Most of the state here has to do with control of reset and
222 * similar kinds of power up -- for instance the guest can ask
223 * what the reason for the last reset was, or forbid reset for
224 * some causes (like the non-secure watchdog). Most of this is
225 * not relevant to QEMU, which doesn't really model anything other
226 * than a full power-on reset.
227 * We just model the registers as reads-as-written.
231 case A_RESET_SYNDROME:
232 qemu_log_mask(LOG_UNIMP,
233 "IoTKit SysCtl RESET_SYNDROME unimplemented\n");
234 s->reset_syndrome = value;
237 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
238 s->reset_mask = value;
242 * General retention register, which is only reset by a power-on
243 * reset. Technically this implementation is complete, since
244 * QEMU only supports power-on resets...
249 s->initsvtor0 = value;
250 set_init_vtor(0, s->initsvtor0);
253 if ((s->cpuwait & 1) && !(value & 1)) {
254 /* Powering up CPU 0 */
255 arm_set_cpu_on_and_reset(0);
257 if ((s->cpuwait & 2) && !(value & 2)) {
258 /* Powering up CPU 1 */
259 arm_set_cpu_on_and_reset(1);
264 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
269 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
270 s->secure_debug |= value;
273 /* write-1-to-clear */
274 s->secure_debug &= ~value;
277 /* One w/o bit to request a reset; all other bits reserved */
278 if (value & R_SWRESET_SWRESETREQ_MASK) {
279 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
286 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n");
287 s->scsecctrl = value;
293 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n");
300 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n");
301 s->sysclk_div = value;
307 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n");
308 s->clock_force = value;
314 s->initsvtor1 = value;
315 set_init_vtor(1, s->initsvtor1);
321 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n");
324 case A_PDCM_PD_SYS_SENSE:
328 qemu_log_mask(LOG_UNIMP,
329 "IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n");
330 s->pdcm_pd_sys_sense = value;
332 case A_PDCM_PD_SRAM0_SENSE:
336 qemu_log_mask(LOG_UNIMP,
337 "IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n");
338 s->pdcm_pd_sram0_sense = value;
340 case A_PDCM_PD_SRAM1_SENSE:
344 qemu_log_mask(LOG_UNIMP,
345 "IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n");
346 s->pdcm_pd_sram1_sense = value;
348 case A_PDCM_PD_SRAM2_SENSE:
352 qemu_log_mask(LOG_UNIMP,
353 "IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n");
354 s->pdcm_pd_sram2_sense = value;
356 case A_PDCM_PD_SRAM3_SENSE:
360 qemu_log_mask(LOG_UNIMP,
361 "IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n");
362 s->pdcm_pd_sram3_sense = value;
365 /* In IoTKit this is BUSWAIT: reserved, R/O, zero */
369 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
370 s->nmi_enable = value;
373 case A_PID4 ... A_CID3:
375 qemu_log_mask(LOG_GUEST_ERROR,
376 "IoTKit SysCtl write: write of RO offset %x\n",
381 qemu_log_mask(LOG_GUEST_ERROR,
382 "IoTKit SysCtl write: bad offset %x\n", (int)offset);
387 static const MemoryRegionOps iotkit_sysctl_ops = {
388 .read = iotkit_sysctl_read,
389 .write = iotkit_sysctl_write,
390 .endianness = DEVICE_LITTLE_ENDIAN,
391 /* byte/halfword accesses are just zero-padded on reads and writes */
392 .impl.min_access_size = 4,
393 .impl.max_access_size = 4,
394 .valid.min_access_size = 1,
395 .valid.max_access_size = 4,
398 static void iotkit_sysctl_reset(DeviceState *dev)
400 IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
402 trace_iotkit_sysctl_reset();
404 s->reset_syndrome = 1;
407 s->initsvtor0 = s->initsvtor0_rst;
408 s->initsvtor1 = s->initsvtor1_rst;
409 s->cpuwait = s->cpuwait_rst;
417 s->pdcm_pd_sys_sense = 0x7f;
418 s->pdcm_pd_sram0_sense = 0;
419 s->pdcm_pd_sram1_sense = 0;
420 s->pdcm_pd_sram2_sense = 0;
421 s->pdcm_pd_sram3_sense = 0;
424 static void iotkit_sysctl_init(Object *obj)
426 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
427 IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
429 memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
430 s, "iotkit-sysctl", 0x1000);
431 sysbus_init_mmio(sbd, &s->iomem);
434 static void iotkit_sysctl_realize(DeviceState *dev, Error **errp)
436 IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
438 /* The top 4 bits of the SYS_VERSION register tell us if we're an SSE-200 */
439 if (extract32(s->sys_version, 28, 4) == 2) {
444 static bool sse200_needed(void *opaque)
446 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
451 static const VMStateDescription iotkit_sysctl_sse200_vmstate = {
452 .name = "iotkit-sysctl/sse-200",
454 .minimum_version_id = 1,
455 .needed = sse200_needed,
456 .fields = (VMStateField[]) {
457 VMSTATE_UINT32(scsecctrl, IoTKitSysCtl),
458 VMSTATE_UINT32(fclk_div, IoTKitSysCtl),
459 VMSTATE_UINT32(sysclk_div, IoTKitSysCtl),
460 VMSTATE_UINT32(clock_force, IoTKitSysCtl),
461 VMSTATE_UINT32(initsvtor1, IoTKitSysCtl),
462 VMSTATE_UINT32(nmi_enable, IoTKitSysCtl),
463 VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl),
464 VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl),
465 VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl),
466 VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl),
467 VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl),
468 VMSTATE_END_OF_LIST()
472 static const VMStateDescription iotkit_sysctl_vmstate = {
473 .name = "iotkit-sysctl",
475 .minimum_version_id = 1,
476 .fields = (VMStateField[]) {
477 VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
478 VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
479 VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
480 VMSTATE_UINT32(gretreg, IoTKitSysCtl),
481 VMSTATE_UINT32(initsvtor0, IoTKitSysCtl),
482 VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
483 VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
484 VMSTATE_END_OF_LIST()
486 .subsections = (const VMStateDescription*[]) {
487 &iotkit_sysctl_sse200_vmstate,
492 static Property iotkit_sysctl_props[] = {
493 DEFINE_PROP_UINT32("SYS_VERSION", IoTKitSysCtl, sys_version, 0),
494 DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0),
495 DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst,
497 DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst,
499 DEFINE_PROP_END_OF_LIST()
502 static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
504 DeviceClass *dc = DEVICE_CLASS(klass);
506 dc->vmsd = &iotkit_sysctl_vmstate;
507 dc->reset = iotkit_sysctl_reset;
508 dc->props = iotkit_sysctl_props;
509 dc->realize = iotkit_sysctl_realize;
512 static const TypeInfo iotkit_sysctl_info = {
513 .name = TYPE_IOTKIT_SYSCTL,
514 .parent = TYPE_SYS_BUS_DEVICE,
515 .instance_size = sizeof(IoTKitSysCtl),
516 .instance_init = iotkit_sysctl_init,
517 .class_init = iotkit_sysctl_class_init,
520 static void iotkit_sysctl_register_types(void)
522 type_register_static(&iotkit_sysctl_info);
525 type_init(iotkit_sysctl_register_types);