2 * QEMU Sparc SLAVIO timer controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
31 #define DPRINTF(fmt, args...) \
32 do { printf("TIMER: " fmt , ##args); } while (0)
34 #define DPRINTF(fmt, args...)
38 * Registers of hardware timer in sun4m.
40 * This is the timer/counter part of chip STP2001 (Slave I/O), also
41 * produced as NCR89C105. See
42 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
45 * are zero. Bit 31 is 1 when count has been reached.
47 * Per-CPU timers interrupt local CPU, system timer uses normal
54 typedef struct SLAVIO_TIMERState {
57 uint32_t count, counthigh, reached;
61 struct SLAVIO_TIMERState *master;
64 unsigned int num_slaves;
65 struct SLAVIO_TIMERState *slave[MAX_CPUS];
69 #define TIMER_MAXADDR 0x1f
70 #define SYS_TIMER_SIZE 0x14
71 #define CPU_TIMER_SIZE 0x10
73 #define SYS_TIMER_OFFSET 0x10000ULL
74 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
77 #define TIMER_COUNTER 1
78 #define TIMER_COUNTER_NORST 2
79 #define TIMER_STATUS 3
82 #define TIMER_COUNT_MASK32 0xfffffe00
83 #define TIMER_LIMIT_MASK32 0x7fffffff
84 #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
85 #define TIMER_MAX_COUNT32 0x7ffffe00ULL
86 #define TIMER_REACHED 0x80000000
87 #define TIMER_PERIOD 500ULL // 500ns
88 #define LIMIT_TO_PERIODS(l) ((l) >> 9)
89 #define PERIODS_TO_LIMIT(l) ((l) << 9)
91 static int slavio_timer_is_user(SLAVIO_TIMERState *s)
93 return s->master && (s->master->slave_mode & (1 << s->slave_index));
96 // Update count, set irq, update expire_time
97 // Convert from ptimer countdown units
98 static void slavio_timer_get_out(SLAVIO_TIMERState *s)
100 uint64_t count, limit;
102 if (s->limit == 0) /* free-run processor or system counter */
103 limit = TIMER_MAX_COUNT32;
108 count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
112 DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
113 s->counthigh, s->count);
114 s->count = count & TIMER_COUNT_MASK32;
115 s->counthigh = count >> 32;
119 static void slavio_timer_irq(void *opaque)
121 SLAVIO_TIMERState *s = opaque;
123 slavio_timer_get_out(s);
124 DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
125 s->reached = TIMER_REACHED;
126 if (!slavio_timer_is_user(s))
127 qemu_irq_raise(s->irq);
130 static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
132 SLAVIO_TIMERState *s = opaque;
135 saddr = (addr & TIMER_MAXADDR) >> 2;
138 // read limit (system counter mode) or read most signifying
139 // part of counter (user mode)
140 if (slavio_timer_is_user(s)) {
141 // read user timer MSW
142 slavio_timer_get_out(s);
143 ret = s->counthigh | s->reached;
147 qemu_irq_lower(s->irq);
149 ret = s->limit & TIMER_LIMIT_MASK32;
153 // read counter and reached bit (system mode) or read lsbits
154 // of counter (user mode)
155 slavio_timer_get_out(s);
156 if (slavio_timer_is_user(s)) // read user timer LSW
157 ret = s->count & TIMER_MAX_COUNT64;
159 ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
162 // only available in processor counter/timer
163 // read start/stop status
167 // only available in system counter
168 // read user/system mode
172 DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
176 DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
181 static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
184 SLAVIO_TIMERState *s = opaque;
187 DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
188 saddr = (addr & TIMER_MAXADDR) >> 2;
191 if (slavio_timer_is_user(s)) {
194 // set user counter MSW, reset counter
195 s->limit = TIMER_MAX_COUNT64;
196 s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
198 count = ((uint64_t)s->counthigh << 32) | s->count;
199 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
202 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
204 // set limit, reset counter
205 qemu_irq_lower(s->irq);
206 s->limit = val & TIMER_MAX_COUNT32;
208 if (s->limit == 0) /* free-run */
209 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
211 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
216 if (slavio_timer_is_user(s)) {
219 // set user counter LSW, reset counter
220 s->limit = TIMER_MAX_COUNT64;
221 s->count = val & TIMER_MAX_COUNT64;
223 count = ((uint64_t)s->counthigh) << 32 | s->count;
224 DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
227 ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
229 DPRINTF("not user timer\n");
231 case TIMER_COUNTER_NORST:
232 // set limit without resetting counter
233 s->limit = val & TIMER_MAX_COUNT32;
235 if (s->limit == 0) /* free-run */
236 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
238 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
242 if (slavio_timer_is_user(s)) {
243 // start/stop user counter
244 if ((val & 1) && !s->running) {
245 DPRINTF("processor %d user timer started\n", s->slave_index);
247 ptimer_run(s->timer, 0);
249 } else if (!(val & 1) && s->running) {
250 DPRINTF("processor %d user timer stopped\n", s->slave_index);
252 ptimer_stop(s->timer);
258 if (s->master == NULL) {
261 for (i = 0; i < s->num_slaves; i++) {
262 unsigned int processor = 1 << i;
264 // check for a change in timer mode for this processor
265 if ((val & processor) != (s->slave_mode & processor)) {
266 if (val & processor) { // counter -> user timer
267 qemu_irq_lower(s->slave[i]->irq);
268 // counters are always running
269 ptimer_stop(s->slave[i]->timer);
270 s->slave[i]->running = 0;
271 // user timer limit is always the same
272 s->slave[i]->limit = TIMER_MAX_COUNT64;
273 ptimer_set_limit(s->slave[i]->timer,
274 LIMIT_TO_PERIODS(s->slave[i]->limit), 1);
275 // set this processors user timer bit in config
277 s->slave_mode |= processor;
278 DPRINTF("processor %d changed from counter to user "
279 "timer\n", s->slave[i]->slave_index);
280 } else { // user timer -> counter
281 // stop the user timer if it is running
282 if (s->slave[i]->running)
283 ptimer_stop(s->slave[i]->timer);
285 ptimer_run(s->slave[i]->timer, 0);
286 s->slave[i]->running = 1;
287 // clear this processors user timer bit in config
289 s->slave_mode &= ~processor;
290 DPRINTF("processor %d changed from user timer to "
291 "counter\n", s->slave[i]->slave_index);
296 DPRINTF("not system timer\n");
299 DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
304 static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
307 slavio_timer_mem_readl,
310 static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
313 slavio_timer_mem_writel,
316 static void slavio_timer_save(QEMUFile *f, void *opaque)
318 SLAVIO_TIMERState *s = opaque;
320 qemu_put_be64s(f, &s->limit);
321 qemu_put_be32s(f, &s->count);
322 qemu_put_be32s(f, &s->counthigh);
323 qemu_put_be32s(f, &s->reached);
324 qemu_put_be32s(f, &s->running);
326 qemu_put_ptimer(f, s->timer);
329 static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
331 SLAVIO_TIMERState *s = opaque;
336 qemu_get_be64s(f, &s->limit);
337 qemu_get_be32s(f, &s->count);
338 qemu_get_be32s(f, &s->counthigh);
339 qemu_get_be32s(f, &s->reached);
340 qemu_get_be32s(f, &s->running);
342 qemu_get_ptimer(f, s->timer);
347 static void slavio_timer_reset(void *opaque)
349 SLAVIO_TIMERState *s = opaque;
355 if (!s->master || s->slave_index < s->master->num_slaves) {
356 ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
357 ptimer_run(s->timer, 0);
360 qemu_irq_lower(s->irq);
363 static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
365 SLAVIO_TIMERState *master,
368 int slavio_timer_io_memory;
369 SLAVIO_TIMERState *s;
372 s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
377 s->slave_index = slave_index;
378 if (!master || slave_index < master->num_slaves) {
379 bh = qemu_bh_new(slavio_timer_irq, s);
380 s->timer = ptimer_init(bh);
381 ptimer_set_period(s->timer, TIMER_PERIOD);
384 slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
385 slavio_timer_mem_write, s);
387 cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
388 slavio_timer_io_memory);
390 cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
391 slavio_timer_io_memory);
392 register_savevm("slavio_timer", addr, 3, slavio_timer_save,
393 slavio_timer_load, s);
394 qemu_register_reset(slavio_timer_reset, s);
395 slavio_timer_reset(s);
400 void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
401 qemu_irq *cpu_irqs, unsigned int num_cpus)
403 SLAVIO_TIMERState *master;
406 master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
408 master->num_slaves = num_cpus;
410 for (i = 0; i < MAX_CPUS; i++) {
411 master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
413 cpu_irqs[i], master, i);