4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #ifdef CONFIG_USER_ONLY
32 #include "qemu-common.h"
33 #include "qemu-char.h"
38 #include "qemu_socket.h"
40 /* XXX: these constants may be independent of the host ones even for Unix */
60 typedef struct GDBState {
61 CPUState *env; /* current CPU */
62 enum RSState state; /* parsing state */
66 uint8_t last_packet[4100];
68 #ifdef CONFIG_USER_ONLY
76 #ifdef CONFIG_USER_ONLY
77 /* XXX: This is not thread safe. Do we care? */
78 static int gdbserver_fd = -1;
80 /* XXX: remove this hack. */
81 static GDBState gdbserver_state;
83 static int get_char(GDBState *s)
89 ret = recv(s->fd, &ch, 1, 0);
91 if (errno != EINTR && errno != EAGAIN)
93 } else if (ret == 0) {
103 /* GDB stub state for use by semihosting syscalls. */
104 static GDBState *gdb_syscall_state;
105 static gdb_syscall_complete_cb gdb_current_syscall_cb;
113 /* If gdb is connected when the first semihosting syscall occurs then use
114 remote gdb syscalls. Otherwise use native file IO. */
115 int use_gdb_syscalls(void)
117 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
118 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
121 return gdb_syscall_mode == GDB_SYS_ENABLED;
124 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
126 #ifdef CONFIG_USER_ONLY
130 ret = send(s->fd, buf, len, 0);
132 if (errno != EINTR && errno != EAGAIN)
140 qemu_chr_write(s->chr, buf, len);
144 static inline int fromhex(int v)
146 if (v >= '0' && v <= '9')
148 else if (v >= 'A' && v <= 'F')
150 else if (v >= 'a' && v <= 'f')
156 static inline int tohex(int v)
164 static void memtohex(char *buf, const uint8_t *mem, int len)
169 for(i = 0; i < len; i++) {
171 *q++ = tohex(c >> 4);
172 *q++ = tohex(c & 0xf);
177 static void hextomem(uint8_t *mem, const char *buf, int len)
181 for(i = 0; i < len; i++) {
182 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
187 /* return -1 if error, 0 if OK */
188 static int put_packet(GDBState *s, char *buf)
194 printf("reply='%s'\n", buf);
204 for(i = 0; i < len; i++) {
208 *(p++) = tohex((csum >> 4) & 0xf);
209 *(p++) = tohex((csum) & 0xf);
211 s->last_packet_len = p - s->last_packet;
212 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
214 #ifdef CONFIG_USER_ONLY
227 #if defined(TARGET_I386)
229 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
232 uint32_t *registers = (uint32_t *)mem_buf;
235 /* This corresponds with amd64_register_info[] in gdb/amd64-tdep.c */
236 uint64_t *registers64 = (uint64_t *)mem_buf;
238 if (env->hflags & HF_CS64_MASK) {
239 registers64[0] = tswap64(env->regs[R_EAX]);
240 registers64[1] = tswap64(env->regs[R_EBX]);
241 registers64[2] = tswap64(env->regs[R_ECX]);
242 registers64[3] = tswap64(env->regs[R_EDX]);
243 registers64[4] = tswap64(env->regs[R_ESI]);
244 registers64[5] = tswap64(env->regs[R_EDI]);
245 registers64[6] = tswap64(env->regs[R_EBP]);
246 registers64[7] = tswap64(env->regs[R_ESP]);
247 for(i = 8; i < 16; i++) {
248 registers64[i] = tswap64(env->regs[i]);
250 registers64[16] = tswap64(env->eip);
252 registers = (uint32_t *)®isters64[17];
253 registers[0] = tswap32(env->eflags);
254 registers[1] = tswap32(env->segs[R_CS].selector);
255 registers[2] = tswap32(env->segs[R_SS].selector);
256 registers[3] = tswap32(env->segs[R_DS].selector);
257 registers[4] = tswap32(env->segs[R_ES].selector);
258 registers[5] = tswap32(env->segs[R_FS].selector);
259 registers[6] = tswap32(env->segs[R_GS].selector);
260 /* XXX: convert floats */
261 for(i = 0; i < 8; i++) {
262 memcpy(mem_buf + 16 * 8 + 7 * 4 + i * 10, &env->fpregs[i], 10);
264 registers[27] = tswap32(env->fpuc); /* fctrl */
265 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
266 registers[28] = tswap32(fpus); /* fstat */
267 registers[29] = 0; /* ftag */
268 registers[30] = 0; /* fiseg */
269 registers[31] = 0; /* fioff */
270 registers[32] = 0; /* foseg */
271 registers[33] = 0; /* fooff */
272 registers[34] = 0; /* fop */
273 for(i = 0; i < 16; i++) {
274 memcpy(mem_buf + 16 * 8 + 35 * 4 + i * 16, &env->xmm_regs[i], 16);
276 registers[99] = tswap32(env->mxcsr);
278 return 8 * 17 + 4 * 7 + 10 * 8 + 4 * 8 + 16 * 16 + 4;
282 for(i = 0; i < 8; i++) {
283 registers[i] = env->regs[i];
285 registers[8] = env->eip;
286 registers[9] = env->eflags;
287 registers[10] = env->segs[R_CS].selector;
288 registers[11] = env->segs[R_SS].selector;
289 registers[12] = env->segs[R_DS].selector;
290 registers[13] = env->segs[R_ES].selector;
291 registers[14] = env->segs[R_FS].selector;
292 registers[15] = env->segs[R_GS].selector;
293 /* XXX: convert floats */
294 for(i = 0; i < 8; i++) {
295 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
297 registers[36] = env->fpuc;
298 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
299 registers[37] = fpus;
300 registers[38] = 0; /* XXX: convert tags */
301 registers[39] = 0; /* fiseg */
302 registers[40] = 0; /* fioff */
303 registers[41] = 0; /* foseg */
304 registers[42] = 0; /* fooff */
305 registers[43] = 0; /* fop */
307 for(i = 0; i < 16; i++)
308 tswapls(®isters[i]);
309 for(i = 36; i < 44; i++)
310 tswapls(®isters[i]);
314 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
316 uint32_t *registers = (uint32_t *)mem_buf;
319 for(i = 0; i < 8; i++) {
320 env->regs[i] = tswapl(registers[i]);
322 env->eip = tswapl(registers[8]);
323 env->eflags = tswapl(registers[9]);
324 #if defined(CONFIG_USER_ONLY)
325 #define LOAD_SEG(index, sreg)\
326 if (tswapl(registers[index]) != env->segs[sreg].selector)\
327 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
337 #elif defined (TARGET_PPC)
338 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
340 uint32_t *registers = (uint32_t *)mem_buf, tmp;
344 for(i = 0; i < 32; i++) {
345 registers[i] = tswapl(env->gpr[i]);
348 for (i = 0; i < 32; i++) {
349 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
350 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
352 /* nip, msr, ccr, lnk, ctr, xer, mq */
353 registers[96] = tswapl(env->nip);
354 registers[97] = tswapl(env->msr);
356 for (i = 0; i < 8; i++)
357 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
358 registers[98] = tswapl(tmp);
359 registers[99] = tswapl(env->lr);
360 registers[100] = tswapl(env->ctr);
361 registers[101] = tswapl(ppc_load_xer(env));
367 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
369 uint32_t *registers = (uint32_t *)mem_buf;
373 for (i = 0; i < 32; i++) {
374 env->gpr[i] = tswapl(registers[i]);
377 for (i = 0; i < 32; i++) {
378 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
379 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
381 /* nip, msr, ccr, lnk, ctr, xer, mq */
382 env->nip = tswapl(registers[96]);
383 ppc_store_msr(env, tswapl(registers[97]));
384 registers[98] = tswapl(registers[98]);
385 for (i = 0; i < 8; i++)
386 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
387 env->lr = tswapl(registers[99]);
388 env->ctr = tswapl(registers[100]);
389 ppc_store_xer(env, tswapl(registers[101]));
391 #elif defined (TARGET_SPARC)
392 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
394 target_ulong *registers = (target_ulong *)mem_buf;
398 for(i = 0; i < 8; i++) {
399 registers[i] = tswapl(env->gregs[i]);
401 /* fill in register window */
402 for(i = 0; i < 24; i++) {
403 registers[i + 8] = tswapl(env->regwptr[i]);
405 #ifndef TARGET_SPARC64
407 for (i = 0; i < 32; i++) {
408 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
410 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
411 registers[64] = tswapl(env->y);
416 registers[65] = tswapl(tmp);
418 registers[66] = tswapl(env->wim);
419 registers[67] = tswapl(env->tbr);
420 registers[68] = tswapl(env->pc);
421 registers[69] = tswapl(env->npc);
422 registers[70] = tswapl(env->fsr);
423 registers[71] = 0; /* csr */
425 return 73 * sizeof(target_ulong);
428 for (i = 0; i < 64; i += 2) {
431 tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
432 tmp |= *(uint32_t *)&env->fpr[i + 1];
433 registers[i / 2 + 32] = tswap64(tmp);
435 registers[64] = tswapl(env->pc);
436 registers[65] = tswapl(env->npc);
437 registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
438 ((env->asi & 0xff) << 24) |
439 ((env->pstate & 0xfff) << 8) |
441 registers[67] = tswapl(env->fsr);
442 registers[68] = tswapl(env->fprs);
443 registers[69] = tswapl(env->y);
444 return 70 * sizeof(target_ulong);
448 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
450 target_ulong *registers = (target_ulong *)mem_buf;
454 for(i = 0; i < 7; i++) {
455 env->gregs[i] = tswapl(registers[i]);
457 /* fill in register window */
458 for(i = 0; i < 24; i++) {
459 env->regwptr[i] = tswapl(registers[i + 8]);
461 #ifndef TARGET_SPARC64
463 for (i = 0; i < 32; i++) {
464 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
466 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
467 env->y = tswapl(registers[64]);
468 PUT_PSR(env, tswapl(registers[65]));
469 env->wim = tswapl(registers[66]);
470 env->tbr = tswapl(registers[67]);
471 env->pc = tswapl(registers[68]);
472 env->npc = tswapl(registers[69]);
473 env->fsr = tswapl(registers[70]);
475 for (i = 0; i < 64; i += 2) {
478 tmp = tswap64(registers[i / 2 + 32]);
479 *((uint32_t *)&env->fpr[i]) = tmp >> 32;
480 *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
482 env->pc = tswapl(registers[64]);
483 env->npc = tswapl(registers[65]);
485 uint64_t tmp = tswapl(registers[66]);
487 PUT_CCR(env, tmp >> 32);
488 env->asi = (tmp >> 24) & 0xff;
489 env->pstate = (tmp >> 8) & 0xfff;
490 PUT_CWP64(env, tmp & 0xff);
492 env->fsr = tswapl(registers[67]);
493 env->fprs = tswapl(registers[68]);
494 env->y = tswapl(registers[69]);
497 #elif defined (TARGET_ARM)
498 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
504 /* 16 core integer registers (4 bytes each). */
505 for (i = 0; i < 16; i++)
507 *(uint32_t *)ptr = tswapl(env->regs[i]);
510 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
511 Not yet implemented. */
512 memset (ptr, 0, 8 * 12 + 4);
514 /* CPSR (4 bytes). */
515 *(uint32_t *)ptr = tswapl (cpsr_read(env));
518 return ptr - mem_buf;
521 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
527 /* Core integer registers. */
528 for (i = 0; i < 16; i++)
530 env->regs[i] = tswapl(*(uint32_t *)ptr);
533 /* Ignore FPA regs and scr. */
535 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
537 #elif defined (TARGET_M68K)
538 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
546 for (i = 0; i < 8; i++) {
547 *(uint32_t *)ptr = tswapl(env->dregs[i]);
551 for (i = 0; i < 8; i++) {
552 *(uint32_t *)ptr = tswapl(env->aregs[i]);
555 *(uint32_t *)ptr = tswapl(env->sr);
557 *(uint32_t *)ptr = tswapl(env->pc);
559 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
560 ColdFire has 8-bit double precision registers. */
561 for (i = 0; i < 8; i++) {
563 *(uint32_t *)ptr = tswap32(u.l.upper);
564 *(uint32_t *)ptr = tswap32(u.l.lower);
566 /* FP control regs (not implemented). */
567 memset (ptr, 0, 3 * 4);
570 return ptr - mem_buf;
573 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
581 for (i = 0; i < 8; i++) {
582 env->dregs[i] = tswapl(*(uint32_t *)ptr);
586 for (i = 0; i < 8; i++) {
587 env->aregs[i] = tswapl(*(uint32_t *)ptr);
590 env->sr = tswapl(*(uint32_t *)ptr);
592 env->pc = tswapl(*(uint32_t *)ptr);
594 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
595 ColdFire has 8-bit double precision registers. */
596 for (i = 0; i < 8; i++) {
597 u.l.upper = tswap32(*(uint32_t *)ptr);
598 u.l.lower = tswap32(*(uint32_t *)ptr);
601 /* FP control regs (not implemented). */
604 #elif defined (TARGET_MIPS)
605 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
611 for (i = 0; i < 32; i++)
613 *(target_ulong *)ptr = tswapl(env->gpr[i][env->current_tc]);
614 ptr += sizeof(target_ulong);
617 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
618 ptr += sizeof(target_ulong);
620 *(target_ulong *)ptr = tswapl(env->LO[0][env->current_tc]);
621 ptr += sizeof(target_ulong);
623 *(target_ulong *)ptr = tswapl(env->HI[0][env->current_tc]);
624 ptr += sizeof(target_ulong);
626 *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
627 ptr += sizeof(target_ulong);
629 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
630 ptr += sizeof(target_ulong);
632 *(target_ulong *)ptr = tswapl(env->PC[env->current_tc]);
633 ptr += sizeof(target_ulong);
635 if (env->CP0_Config1 & (1 << CP0C1_FP))
637 for (i = 0; i < 32; i++)
639 if (env->CP0_Status & (1 << CP0St_FR))
640 *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
642 *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
643 ptr += sizeof(target_ulong);
646 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
647 ptr += sizeof(target_ulong);
649 *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
650 ptr += sizeof(target_ulong);
653 /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
654 *(target_ulong *)ptr = 0;
655 ptr += sizeof(target_ulong);
657 /* Registers for embedded use, we just pad them. */
658 for (i = 0; i < 16; i++)
660 *(target_ulong *)ptr = 0;
661 ptr += sizeof(target_ulong);
665 *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
666 ptr += sizeof(target_ulong);
668 return ptr - mem_buf;
671 /* convert MIPS rounding mode in FCR31 to IEEE library */
672 static unsigned int ieee_rm[] =
674 float_round_nearest_even,
679 #define RESTORE_ROUNDING_MODE \
680 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
682 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
688 for (i = 0; i < 32; i++)
690 env->gpr[i][env->current_tc] = tswapl(*(target_ulong *)ptr);
691 ptr += sizeof(target_ulong);
694 env->CP0_Status = tswapl(*(target_ulong *)ptr);
695 ptr += sizeof(target_ulong);
697 env->LO[0][env->current_tc] = tswapl(*(target_ulong *)ptr);
698 ptr += sizeof(target_ulong);
700 env->HI[0][env->current_tc] = tswapl(*(target_ulong *)ptr);
701 ptr += sizeof(target_ulong);
703 env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
704 ptr += sizeof(target_ulong);
706 env->CP0_Cause = tswapl(*(target_ulong *)ptr);
707 ptr += sizeof(target_ulong);
709 env->PC[env->current_tc] = tswapl(*(target_ulong *)ptr);
710 ptr += sizeof(target_ulong);
712 if (env->CP0_Config1 & (1 << CP0C1_FP))
714 for (i = 0; i < 32; i++)
716 if (env->CP0_Status & (1 << CP0St_FR))
717 env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
719 env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
720 ptr += sizeof(target_ulong);
723 env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
724 ptr += sizeof(target_ulong);
726 /* The remaining registers are assumed to be read-only. */
728 /* set rounding mode */
729 RESTORE_ROUNDING_MODE;
731 #ifndef CONFIG_SOFTFLOAT
732 /* no floating point exception for native float */
733 SET_FP_ENABLE(env->fcr31, 0);
737 #elif defined (TARGET_SH4)
739 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
741 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
743 uint32_t *ptr = (uint32_t *)mem_buf;
746 #define SAVE(x) *ptr++=tswapl(x)
747 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
748 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
750 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
752 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
762 for (i = 0; i < 16; i++)
763 SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
766 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
767 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
768 return ((uint8_t *)ptr - mem_buf);
771 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
773 uint32_t *ptr = (uint32_t *)mem_buf;
776 #define LOAD(x) (x)=*ptr++;
777 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
778 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
780 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
782 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
792 for (i = 0; i < 16; i++)
793 LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
796 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
797 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
799 #elif defined (TARGET_CRIS)
801 static int cris_save_32 (unsigned char *d, uint32_t value)
804 *d++ = (value >>= 8);
805 *d++ = (value >>= 8);
806 *d++ = (value >>= 8);
809 static int cris_save_16 (unsigned char *d, uint32_t value)
812 *d++ = (value >>= 8);
815 static int cris_save_8 (unsigned char *d, uint32_t value)
821 /* FIXME: this will bug on archs not supporting unaligned word accesses. */
822 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
824 uint8_t *ptr = mem_buf;
828 for (i = 0; i < 16; i++)
829 ptr += cris_save_32 (ptr, env->regs[i]);
831 srs = env->pregs[SR_SRS];
833 ptr += cris_save_8 (ptr, env->pregs[0]);
834 ptr += cris_save_8 (ptr, env->pregs[1]);
835 ptr += cris_save_32 (ptr, env->pregs[2]);
836 ptr += cris_save_8 (ptr, srs);
837 ptr += cris_save_16 (ptr, env->pregs[4]);
839 for (i = 5; i < 16; i++)
840 ptr += cris_save_32 (ptr, env->pregs[i]);
842 ptr += cris_save_32 (ptr, env->pc);
844 for (i = 0; i < 16; i++)
845 ptr += cris_save_32 (ptr, env->sregs[srs][i]);
847 return ((uint8_t *)ptr - mem_buf);
850 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
852 uint32_t *ptr = (uint32_t *)mem_buf;
855 #define LOAD(x) (x)=*ptr++;
856 for (i = 0; i < 16; i++) LOAD(env->regs[i]);
860 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
865 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
871 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
874 int ch, reg_size, type;
876 uint8_t mem_buf[4096];
878 target_ulong addr, len;
881 printf("command='%s'\n", line_buf);
887 /* TODO: Make this return the correct value for user-mode. */
888 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
893 addr = strtoull(p, (char **)&p, 16);
894 #if defined(TARGET_I386)
896 #elif defined (TARGET_PPC)
898 #elif defined (TARGET_SPARC)
901 #elif defined (TARGET_ARM)
902 env->regs[15] = addr;
903 #elif defined (TARGET_SH4)
905 #elif defined (TARGET_MIPS)
906 env->PC[env->current_tc] = addr;
907 #elif defined (TARGET_CRIS)
911 #ifdef CONFIG_USER_ONLY
912 s->running_state = 1;
919 addr = strtoull(p, (char **)&p, 16);
920 #if defined(TARGET_I386)
922 #elif defined (TARGET_PPC)
924 #elif defined (TARGET_SPARC)
927 #elif defined (TARGET_ARM)
928 env->regs[15] = addr;
929 #elif defined (TARGET_SH4)
931 #elif defined (TARGET_MIPS)
932 env->PC[env->current_tc] = addr;
933 #elif defined (TARGET_CRIS)
937 cpu_single_step(env, 1);
938 #ifdef CONFIG_USER_ONLY
939 s->running_state = 1;
949 ret = strtoull(p, (char **)&p, 16);
952 err = strtoull(p, (char **)&p, 16);
959 if (gdb_current_syscall_cb)
960 gdb_current_syscall_cb(s->env, ret, err);
962 put_packet(s, "T02");
964 #ifdef CONFIG_USER_ONLY
965 s->running_state = 1;
973 reg_size = cpu_gdb_read_registers(env, mem_buf);
974 memtohex(buf, mem_buf, reg_size);
978 registers = (void *)mem_buf;
980 hextomem((uint8_t *)registers, p, len);
981 cpu_gdb_write_registers(env, mem_buf, len);
985 addr = strtoull(p, (char **)&p, 16);
988 len = strtoull(p, NULL, 16);
989 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
990 put_packet (s, "E14");
992 memtohex(buf, mem_buf, len);
997 addr = strtoull(p, (char **)&p, 16);
1000 len = strtoull(p, (char **)&p, 16);
1003 hextomem(mem_buf, p, len);
1004 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1005 put_packet(s, "E14");
1007 put_packet(s, "OK");
1010 type = strtoul(p, (char **)&p, 16);
1013 addr = strtoull(p, (char **)&p, 16);
1016 len = strtoull(p, (char **)&p, 16);
1017 if (type == 0 || type == 1) {
1018 if (cpu_breakpoint_insert(env, addr) < 0)
1019 goto breakpoint_error;
1020 put_packet(s, "OK");
1021 #ifndef CONFIG_USER_ONLY
1022 } else if (type == 2) {
1023 if (cpu_watchpoint_insert(env, addr) < 0)
1024 goto breakpoint_error;
1025 put_packet(s, "OK");
1029 put_packet(s, "E22");
1033 type = strtoul(p, (char **)&p, 16);
1036 addr = strtoull(p, (char **)&p, 16);
1039 len = strtoull(p, (char **)&p, 16);
1040 if (type == 0 || type == 1) {
1041 cpu_breakpoint_remove(env, addr);
1042 put_packet(s, "OK");
1043 #ifndef CONFIG_USER_ONLY
1044 } else if (type == 2) {
1045 cpu_watchpoint_remove(env, addr);
1046 put_packet(s, "OK");
1049 goto breakpoint_error;
1052 #ifdef CONFIG_LINUX_USER
1054 if (strncmp(p, "Offsets", 7) == 0) {
1055 TaskState *ts = env->opaque;
1058 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1059 ";Bss=" TARGET_ABI_FMT_lx,
1060 ts->info->code_offset,
1061 ts->info->data_offset,
1062 ts->info->data_offset);
1070 /* put empty packet */
1078 extern void tb_flush(CPUState *env);
1080 #ifndef CONFIG_USER_ONLY
1081 static void gdb_vm_stopped(void *opaque, int reason)
1083 GDBState *s = opaque;
1087 if (s->state == RS_SYSCALL)
1090 /* disable single step if it was enable */
1091 cpu_single_step(s->env, 0);
1093 if (reason == EXCP_DEBUG) {
1094 if (s->env->watchpoint_hit) {
1095 snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1097 s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1099 s->env->watchpoint_hit = 0;
1104 } else if (reason == EXCP_INTERRUPT) {
1109 snprintf(buf, sizeof(buf), "S%02x", ret);
1114 /* Send a gdb syscall request.
1115 This accepts limited printf-style format specifiers, specifically:
1116 %x - target_ulong argument printed in hex.
1117 %lx - 64-bit argument printed in hex.
1118 %s - string pointer (target_ulong) and length (int) pair. */
1119 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1128 s = gdb_syscall_state;
1131 gdb_current_syscall_cb = cb;
1132 s->state = RS_SYSCALL;
1133 #ifndef CONFIG_USER_ONLY
1134 vm_stop(EXCP_DEBUG);
1145 addr = va_arg(va, target_ulong);
1146 p += sprintf(p, TARGET_FMT_lx, addr);
1149 if (*(fmt++) != 'x')
1151 i64 = va_arg(va, uint64_t);
1152 p += sprintf(p, "%" PRIx64, i64);
1155 addr = va_arg(va, target_ulong);
1156 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
1160 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1171 #ifdef CONFIG_USER_ONLY
1172 gdb_handlesig(s->env, 0);
1174 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1178 static void gdb_read_byte(GDBState *s, int ch)
1180 CPUState *env = s->env;
1184 #ifndef CONFIG_USER_ONLY
1185 if (s->last_packet_len) {
1186 /* Waiting for a response to the last packet. If we see the start
1187 of a new command then abandon the previous response. */
1190 printf("Got NACK, retransmitting\n");
1192 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1196 printf("Got ACK\n");
1198 printf("Got '%c' when expecting ACK/NACK\n", ch);
1200 if (ch == '+' || ch == '$')
1201 s->last_packet_len = 0;
1206 /* when the CPU is running, we cannot do anything except stop
1207 it when receiving a char */
1208 vm_stop(EXCP_INTERRUPT);
1215 s->line_buf_index = 0;
1216 s->state = RS_GETLINE;
1221 s->state = RS_CHKSUM1;
1222 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1225 s->line_buf[s->line_buf_index++] = ch;
1229 s->line_buf[s->line_buf_index] = '\0';
1230 s->line_csum = fromhex(ch) << 4;
1231 s->state = RS_CHKSUM2;
1234 s->line_csum |= fromhex(ch);
1236 for(i = 0; i < s->line_buf_index; i++) {
1237 csum += s->line_buf[i];
1239 if (s->line_csum != (csum & 0xff)) {
1241 put_buffer(s, &reply, 1);
1245 put_buffer(s, &reply, 1);
1246 s->state = gdb_handle_packet(s, env, s->line_buf);
1255 #ifdef CONFIG_USER_ONLY
1257 gdb_handlesig (CPUState *env, int sig)
1263 if (gdbserver_fd < 0)
1266 s = &gdbserver_state;
1268 /* disable single step if it was enabled */
1269 cpu_single_step(env, 0);
1274 snprintf(buf, sizeof(buf), "S%02x", sig);
1280 s->running_state = 0;
1281 while (s->running_state == 0) {
1282 n = read (s->fd, buf, 256);
1287 for (i = 0; i < n; i++)
1288 gdb_read_byte (s, buf[i]);
1290 else if (n == 0 || errno != EAGAIN)
1292 /* XXX: Connection closed. Should probably wait for annother
1293 connection before continuing. */
1300 /* Tell the remote gdb that the process has exited. */
1301 void gdb_exit(CPUState *env, int code)
1306 if (gdbserver_fd < 0)
1309 s = &gdbserver_state;
1311 snprintf(buf, sizeof(buf), "W%02x", code);
1316 static void gdb_accept(void *opaque)
1319 struct sockaddr_in sockaddr;
1324 len = sizeof(sockaddr);
1325 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1326 if (fd < 0 && errno != EINTR) {
1329 } else if (fd >= 0) {
1334 /* set short latency */
1336 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1338 s = &gdbserver_state;
1339 memset (s, 0, sizeof (GDBState));
1340 s->env = first_cpu; /* XXX: allow to change CPU */
1343 gdb_syscall_state = s;
1345 fcntl(fd, F_SETFL, O_NONBLOCK);
1348 static int gdbserver_open(int port)
1350 struct sockaddr_in sockaddr;
1353 fd = socket(PF_INET, SOCK_STREAM, 0);
1359 /* allow fast reuse */
1361 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1363 sockaddr.sin_family = AF_INET;
1364 sockaddr.sin_port = htons(port);
1365 sockaddr.sin_addr.s_addr = 0;
1366 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1371 ret = listen(fd, 0);
1379 int gdbserver_start(int port)
1381 gdbserver_fd = gdbserver_open(port);
1382 if (gdbserver_fd < 0)
1384 /* accept connections */
1389 static int gdb_chr_can_receive(void *opaque)
1394 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1396 GDBState *s = opaque;
1399 for (i = 0; i < size; i++) {
1400 gdb_read_byte(s, buf[i]);
1404 static void gdb_chr_event(void *opaque, int event)
1407 case CHR_EVENT_RESET:
1408 vm_stop(EXCP_INTERRUPT);
1409 gdb_syscall_state = opaque;
1416 int gdbserver_start(const char *port)
1419 char gdbstub_port_name[128];
1422 CharDriverState *chr;
1424 if (!port || !*port)
1427 port_num = strtol(port, &p, 10);
1429 /* A numeric value is interpreted as a port number. */
1430 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1431 "tcp::%d,nowait,nodelay,server", port_num);
1432 port = gdbstub_port_name;
1435 chr = qemu_chr_open(port);
1439 s = qemu_mallocz(sizeof(GDBState));
1443 s->env = first_cpu; /* XXX: allow to change CPU */
1445 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1447 qemu_add_vm_stop_handler(gdb_vm_stopped, s);