2 * QEMU emulation of an Intel IOMMU (VT-d)
3 * (DMA Remapping device)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "exec/address-spaces.h"
28 #include "intel_iommu_internal.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci/pci_bus.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/boards.h"
34 #include "hw/i386/x86-iommu.h"
35 #include "hw/pci-host/q35.h"
36 #include "sysemu/kvm.h"
37 #include "hw/i386/apic_internal.h"
39 #include "migration/vmstate.h"
42 /* context entry operations */
43 #define VTD_CE_GET_RID2PASID(ce) \
44 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
45 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
46 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
49 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
50 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
51 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
54 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \
55 trace_vtd_fault_disabled(); \
57 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \
63 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
64 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
66 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
67 uint64_t wmask, uint64_t w1cmask)
69 stq_le_p(&s->csr[addr], val);
70 stq_le_p(&s->wmask[addr], wmask);
71 stq_le_p(&s->w1cmask[addr], w1cmask);
74 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
76 stq_le_p(&s->womask[addr], mask);
79 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
80 uint32_t wmask, uint32_t w1cmask)
82 stl_le_p(&s->csr[addr], val);
83 stl_le_p(&s->wmask[addr], wmask);
84 stl_le_p(&s->w1cmask[addr], w1cmask);
87 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
89 stl_le_p(&s->womask[addr], mask);
92 /* "External" get/set operations */
93 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
95 uint64_t oldval = ldq_le_p(&s->csr[addr]);
96 uint64_t wmask = ldq_le_p(&s->wmask[addr]);
97 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
98 stq_le_p(&s->csr[addr],
99 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
102 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
104 uint32_t oldval = ldl_le_p(&s->csr[addr]);
105 uint32_t wmask = ldl_le_p(&s->wmask[addr]);
106 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
107 stl_le_p(&s->csr[addr],
108 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
111 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
113 uint64_t val = ldq_le_p(&s->csr[addr]);
114 uint64_t womask = ldq_le_p(&s->womask[addr]);
115 return val & ~womask;
118 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
120 uint32_t val = ldl_le_p(&s->csr[addr]);
121 uint32_t womask = ldl_le_p(&s->womask[addr]);
122 return val & ~womask;
125 /* "Internal" get/set operations */
126 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
128 return ldq_le_p(&s->csr[addr]);
131 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
133 return ldl_le_p(&s->csr[addr]);
136 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
138 stq_le_p(&s->csr[addr], val);
141 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
142 uint32_t clear, uint32_t mask)
144 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
145 stl_le_p(&s->csr[addr], new_val);
149 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
150 uint64_t clear, uint64_t mask)
152 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
153 stq_le_p(&s->csr[addr], new_val);
157 static inline void vtd_iommu_lock(IntelIOMMUState *s)
159 qemu_mutex_lock(&s->iommu_lock);
162 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
164 qemu_mutex_unlock(&s->iommu_lock);
167 static void vtd_update_scalable_state(IntelIOMMUState *s)
169 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
171 if (s->scalable_mode) {
172 s->root_scalable = val & VTD_RTADDR_SMT;
176 /* Whether the address space needs to notify new mappings */
177 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
179 return as->notifier_flags & IOMMU_NOTIFIER_MAP;
182 /* GHashTable functions */
183 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
185 return *((const uint64_t *)v1) == *((const uint64_t *)v2);
188 static guint vtd_uint64_hash(gconstpointer v)
190 return (guint)*(const uint64_t *)v;
193 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
196 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
197 uint16_t domain_id = *(uint16_t *)user_data;
198 return entry->domain_id == domain_id;
201 /* The shift of an addr for a certain level of paging structure */
202 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
205 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
208 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
210 return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
213 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
216 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
217 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
218 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
219 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
220 return (entry->domain_id == info->domain_id) &&
221 (((entry->gfn & info->mask) == gfn) ||
222 (entry->gfn == gfn_tlb));
225 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
226 * IntelIOMMUState to 1. Must be called with IOMMU lock held.
228 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
230 VTDAddressSpace *vtd_as;
232 GHashTableIter bus_it;
235 trace_vtd_context_cache_reset();
237 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
239 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
240 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
241 vtd_as = vtd_bus->dev_as[devfn_it];
245 vtd_as->context_cache_entry.context_cache_gen = 0;
248 s->context_cache_gen = 1;
251 /* Must be called with IOMMU lock held. */
252 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
255 g_hash_table_remove_all(s->iotlb);
258 static void vtd_reset_iotlb(IntelIOMMUState *s)
261 vtd_reset_iotlb_locked(s);
265 static void vtd_reset_caches(IntelIOMMUState *s)
268 vtd_reset_iotlb_locked(s);
269 vtd_reset_context_cache_locked(s);
273 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
276 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
277 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
280 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
282 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
285 /* Must be called with IOMMU lock held */
286 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
289 VTDIOTLBEntry *entry;
293 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
294 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
296 entry = g_hash_table_lookup(s->iotlb, &key);
306 /* Must be with IOMMU lock held */
307 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
308 uint16_t domain_id, hwaddr addr, uint64_t slpte,
309 uint8_t access_flags, uint32_t level)
311 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
312 uint64_t *key = g_malloc(sizeof(*key));
313 uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
315 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
316 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
317 trace_vtd_iotlb_reset("iotlb exceeds size limit");
318 vtd_reset_iotlb_locked(s);
322 entry->domain_id = domain_id;
323 entry->slpte = slpte;
324 entry->access_flags = access_flags;
325 entry->mask = vtd_slpt_level_page_mask(level);
326 *key = vtd_get_iotlb_key(gfn, source_id, level);
327 g_hash_table_replace(s->iotlb, key, entry);
330 /* Given the reg addr of both the message data and address, generate an
333 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
334 hwaddr mesg_data_reg)
338 assert(mesg_data_reg < DMAR_REG_SIZE);
339 assert(mesg_addr_reg < DMAR_REG_SIZE);
341 msi.address = vtd_get_long_raw(s, mesg_addr_reg);
342 msi.data = vtd_get_long_raw(s, mesg_data_reg);
344 trace_vtd_irq_generate(msi.address, msi.data);
346 apic_get_class()->send_msi(&msi);
349 /* Generate a fault event to software via MSI if conditions are met.
350 * Notice that the value of FSTS_REG being passed to it should be the one
353 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
355 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
356 pre_fsts & VTD_FSTS_IQE) {
357 error_report_once("There are previous interrupt conditions "
358 "to be serviced by software, fault event "
362 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
363 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
364 error_report_once("Interrupt Mask set, irq is not generated");
366 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
367 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
371 /* Check if the Fault (F) field of the Fault Recording Register referenced by
374 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
376 /* Each reg is 128-bit */
377 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
378 addr += 8; /* Access the high 64-bit half */
380 assert(index < DMAR_FRCD_REG_NR);
382 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
385 /* Update the PPF field of Fault Status Register.
386 * Should be called whenever change the F field of any fault recording
389 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
392 uint32_t ppf_mask = 0;
394 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
395 if (vtd_is_frcd_set(s, i)) {
396 ppf_mask = VTD_FSTS_PPF;
400 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
401 trace_vtd_fsts_ppf(!!ppf_mask);
404 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
406 /* Each reg is 128-bit */
407 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
408 addr += 8; /* Access the high 64-bit half */
410 assert(index < DMAR_FRCD_REG_NR);
412 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
413 vtd_update_fsts_ppf(s);
416 /* Must not update F field now, should be done later */
417 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
418 uint16_t source_id, hwaddr addr,
419 VTDFaultReason fault, bool is_write)
422 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
424 assert(index < DMAR_FRCD_REG_NR);
426 lo = VTD_FRCD_FI(addr);
427 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
431 vtd_set_quad_raw(s, frcd_reg_addr, lo);
432 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
434 trace_vtd_frr_new(index, hi, lo);
437 /* Try to collapse multiple pending faults from the same requester */
438 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
442 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
444 for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
445 frcd_reg = vtd_get_quad_raw(s, addr);
446 if ((frcd_reg & VTD_FRCD_F) &&
447 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
450 addr += 16; /* 128-bit for each */
455 /* Log and report an DMAR (address translation) fault to software */
456 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
457 hwaddr addr, VTDFaultReason fault,
460 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
462 assert(fault < VTD_FR_MAX);
464 if (fault == VTD_FR_RESERVED_ERR) {
465 /* This is not a normal fault reason case. Drop it. */
469 trace_vtd_dmar_fault(source_id, fault, addr, is_write);
471 if (fsts_reg & VTD_FSTS_PFO) {
472 error_report_once("New fault is not recorded due to "
473 "Primary Fault Overflow");
477 if (vtd_try_collapse_fault(s, source_id)) {
478 error_report_once("New fault is not recorded due to "
479 "compression of faults");
483 if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
484 error_report_once("Next Fault Recording Reg is used, "
485 "new fault is not recorded, set PFO field");
486 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
490 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
492 if (fsts_reg & VTD_FSTS_PPF) {
493 error_report_once("There are pending faults already, "
494 "fault event is not generated");
495 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
497 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
498 s->next_frcd_reg = 0;
501 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
502 VTD_FSTS_FRI(s->next_frcd_reg));
503 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
505 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
506 s->next_frcd_reg = 0;
508 /* This case actually cause the PPF to be Set.
509 * So generate fault event (interrupt).
511 vtd_generate_fault_event(s, fsts_reg);
515 /* Handle Invalidation Queue Errors of queued invalidation interface error
518 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
520 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
522 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
523 vtd_generate_fault_event(s, fsts_reg);
526 /* Set the IWC field and try to generate an invalidation completion interrupt */
527 static void vtd_generate_completion_event(IntelIOMMUState *s)
529 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
530 trace_vtd_inv_desc_wait_irq("One pending, skip current");
533 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
534 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
535 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
536 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
537 "new event not generated");
540 /* Generate the interrupt event */
541 trace_vtd_inv_desc_wait_irq("Generating complete event");
542 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
543 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
547 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
551 if (s->root_scalable && devfn > UINT8_MAX / 2) {
552 return re->hi & VTD_ROOT_ENTRY_P;
555 return re->lo & VTD_ROOT_ENTRY_P;
558 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
563 addr = s->root + index * sizeof(*re);
564 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
566 return -VTD_FR_ROOT_TABLE_INV;
568 re->lo = le64_to_cpu(re->lo);
569 re->hi = le64_to_cpu(re->hi);
573 static inline bool vtd_ce_present(VTDContextEntry *context)
575 return context->lo & VTD_CONTEXT_ENTRY_P;
578 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
583 dma_addr_t addr, ce_size;
585 /* we have checked that root entry is present */
586 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
587 VTD_CTX_ENTRY_LEGACY_SIZE;
589 if (s->root_scalable && index > UINT8_MAX / 2) {
590 index = index & (~VTD_DEVFN_CHECK_MASK);
591 addr = re->hi & VTD_ROOT_ENTRY_CTP;
593 addr = re->lo & VTD_ROOT_ENTRY_CTP;
596 addr = addr + index * ce_size;
597 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) {
598 return -VTD_FR_CONTEXT_TABLE_INV;
601 ce->lo = le64_to_cpu(ce->lo);
602 ce->hi = le64_to_cpu(ce->hi);
603 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
604 ce->val[2] = le64_to_cpu(ce->val[2]);
605 ce->val[3] = le64_to_cpu(ce->val[3]);
610 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
612 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
615 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
617 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
620 /* Whether the pte indicates the address of the page frame */
621 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
623 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
626 /* Get the content of a spte located in @base_addr[@index] */
627 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
631 assert(index < VTD_SL_PT_ENTRY_NR);
633 if (dma_memory_read(&address_space_memory,
634 base_addr + index * sizeof(slpte), &slpte,
636 slpte = (uint64_t)-1;
639 slpte = le64_to_cpu(slpte);
643 /* Given an iova and the level of paging structure, return the offset
646 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
648 return (iova >> vtd_slpt_level_shift(level)) &
649 ((1ULL << VTD_SL_LEVEL_BITS) - 1);
652 /* Check Capability Register to see if the @level of page-table is supported */
653 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
655 return VTD_CAP_SAGAW_MASK & s->cap &
656 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
659 /* Return true if check passed, otherwise false */
660 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
663 switch (VTD_PE_GET_TYPE(pe)) {
664 case VTD_SM_PASID_ENTRY_FLT:
665 case VTD_SM_PASID_ENTRY_SLT:
666 case VTD_SM_PASID_ENTRY_NESTED:
668 case VTD_SM_PASID_ENTRY_PT:
669 if (!x86_iommu->pt_supported) {
680 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base,
682 VTDPASIDDirEntry *pdire)
685 dma_addr_t addr, entry_size;
687 index = VTD_PASID_DIR_INDEX(pasid);
688 entry_size = VTD_PASID_DIR_ENTRY_SIZE;
689 addr = pasid_dir_base + index * entry_size;
690 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) {
691 return -VTD_FR_PASID_TABLE_INV;
697 static int vtd_get_pasid_entry(IntelIOMMUState *s,
699 VTDPASIDDirEntry *pdire,
703 dma_addr_t addr, entry_size;
704 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
706 index = VTD_PASID_TABLE_INDEX(pasid);
707 entry_size = VTD_PASID_ENTRY_SIZE;
708 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
709 addr = addr + index * entry_size;
710 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) {
711 return -VTD_FR_PASID_TABLE_INV;
714 /* Do translation type check */
715 if (!vtd_pe_type_check(x86_iommu, pe)) {
716 return -VTD_FR_PASID_TABLE_INV;
719 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
720 return -VTD_FR_PASID_TABLE_INV;
726 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s,
727 dma_addr_t pasid_dir_base,
732 VTDPASIDDirEntry pdire;
734 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
739 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe);
747 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
752 dma_addr_t pasid_dir_base;
755 pasid = VTD_CE_GET_RID2PASID(ce);
756 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
757 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe);
762 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
768 dma_addr_t pasid_dir_base;
769 VTDPASIDDirEntry pdire;
772 pasid = VTD_CE_GET_RID2PASID(ce);
773 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
775 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire);
780 if (pdire.val & VTD_PASID_DIR_FPD) {
785 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe);
790 if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
797 /* Get the page-table level that hardware should use for the second-level
798 * page-table walk from the Address Width field of context-entry.
800 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
802 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
805 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
810 if (s->root_scalable) {
811 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
812 return VTD_PE_GET_LEVEL(&pe);
815 return vtd_ce_get_level(ce);
818 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
820 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
823 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
828 if (s->root_scalable) {
829 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
830 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
833 return vtd_ce_get_agaw(ce);
836 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
838 return ce->lo & VTD_CONTEXT_ENTRY_TT;
841 /* Only for Legacy Mode. Return true if check passed, otherwise false */
842 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
845 switch (vtd_ce_get_type(ce)) {
846 case VTD_CONTEXT_TT_MULTI_LEVEL:
847 /* Always supported */
849 case VTD_CONTEXT_TT_DEV_IOTLB:
850 if (!x86_iommu->dt_supported) {
851 error_report_once("%s: DT specified but not supported", __func__);
855 case VTD_CONTEXT_TT_PASS_THROUGH:
856 if (!x86_iommu->pt_supported) {
857 error_report_once("%s: PT specified but not supported", __func__);
863 error_report_once("%s: unknown ce type: %"PRIu32, __func__,
864 vtd_ce_get_type(ce));
870 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
871 VTDContextEntry *ce, uint8_t aw)
873 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
874 return 1ULL << MIN(ce_agaw, aw);
877 /* Return true if IOVA passes range check, otherwise false. */
878 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
879 uint64_t iova, VTDContextEntry *ce,
883 * Check if @iova is above 2^X-1, where X is the minimum of MGAW
884 * in CAP_REG and AW in context-entry.
886 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
889 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
894 if (s->root_scalable) {
895 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
896 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
899 return vtd_ce_get_slpt_base(ce);
903 * Rsvd field masks for spte:
904 * Index [1] to [4] 4k pages
905 * Index [5] to [8] large pages
907 static uint64_t vtd_paging_entry_rsvd_field[9];
909 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
911 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
912 /* Maybe large page */
913 return slpte & vtd_paging_entry_rsvd_field[level + 4];
915 return slpte & vtd_paging_entry_rsvd_field[level];
919 /* Find the VTD address space associated with a given bus number */
920 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
922 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
925 * Iterate over the registered buses to find the one which
926 * currently hold this bus number, and update the bus_num
931 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
932 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
933 if (pci_bus_num(vtd_bus->bus) == bus_num) {
934 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
942 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
943 * of the translation, can be used for deciding the size of large page.
945 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
946 uint64_t iova, bool is_write,
947 uint64_t *slptep, uint32_t *slpte_level,
948 bool *reads, bool *writes, uint8_t aw_bits)
950 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
951 uint32_t level = vtd_get_iova_level(s, ce);
954 uint64_t access_right_check;
956 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
957 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
959 return -VTD_FR_ADDR_BEYOND_MGAW;
962 /* FIXME: what is the Atomics request here? */
963 access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
966 offset = vtd_iova_level_offset(iova, level);
967 slpte = vtd_get_slpte(addr, offset);
969 if (slpte == (uint64_t)-1) {
970 error_report_once("%s: detected read error on DMAR slpte "
971 "(iova=0x%" PRIx64 ")", __func__, iova);
972 if (level == vtd_get_iova_level(s, ce)) {
973 /* Invalid programming of context-entry */
974 return -VTD_FR_CONTEXT_ENTRY_INV;
976 return -VTD_FR_PAGING_ENTRY_INV;
979 *reads = (*reads) && (slpte & VTD_SL_R);
980 *writes = (*writes) && (slpte & VTD_SL_W);
981 if (!(slpte & access_right_check)) {
982 error_report_once("%s: detected slpte permission error "
983 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
984 "slpte=0x%" PRIx64 ", write=%d)", __func__,
985 iova, level, slpte, is_write);
986 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
988 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
989 error_report_once("%s: detected splte reserve non-zero "
990 "iova=0x%" PRIx64 ", level=0x%" PRIx32
991 "slpte=0x%" PRIx64 ")", __func__, iova,
993 return -VTD_FR_PAGING_ENTRY_RSVD;
996 if (vtd_is_last_slpte(slpte, level)) {
998 *slpte_level = level;
1001 addr = vtd_get_slpte_addr(slpte, aw_bits);
1006 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
1009 * Constant information used during page walking
1011 * @hook_fn: hook func to be called when detected page
1012 * @private: private data to be passed into hook func
1013 * @notify_unmap: whether we should notify invalid entries
1014 * @as: VT-d address space of the device
1015 * @aw: maximum address width
1016 * @domain: domain ID of the page walk
1019 VTDAddressSpace *as;
1020 vtd_page_walk_hook hook_fn;
1025 } vtd_page_walk_info;
1027 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info)
1029 VTDAddressSpace *as = info->as;
1030 vtd_page_walk_hook hook_fn = info->hook_fn;
1031 void *private = info->private;
1033 .iova = entry->iova,
1034 .size = entry->addr_mask,
1035 .translated_addr = entry->translated_addr,
1036 .perm = entry->perm,
1038 DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1040 if (entry->perm == IOMMU_NONE && !info->notify_unmap) {
1041 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1047 /* Update local IOVA mapped ranges */
1050 /* If it's exactly the same translation, skip */
1051 if (!memcmp(mapped, &target, sizeof(target))) {
1052 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1053 entry->translated_addr);
1057 * Translation changed. Normally this should not
1058 * happen, but it can happen when with buggy guest
1059 * OSes. Note that there will be a small window that
1060 * we don't have map at all. But that's the best
1061 * effort we can do. The ideal way to emulate this is
1062 * atomically modify the PTE to follow what has
1063 * changed, but we can't. One example is that vfio
1064 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1065 * interface to modify a mapping (meanwhile it seems
1066 * meaningless to even provide one). Anyway, let's
1067 * mark this as a TODO in case one day we'll have
1068 * a better solution.
1070 IOMMUAccessFlags cache_perm = entry->perm;
1073 /* Emulate an UNMAP */
1074 entry->perm = IOMMU_NONE;
1075 trace_vtd_page_walk_one(info->domain_id,
1077 entry->translated_addr,
1080 ret = hook_fn(entry, private);
1084 /* Drop any existing mapping */
1085 iova_tree_remove(as->iova_tree, &target);
1086 /* Recover the correct permission */
1087 entry->perm = cache_perm;
1090 iova_tree_insert(as->iova_tree, &target);
1093 /* Skip since we didn't map this range at all */
1094 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1097 iova_tree_remove(as->iova_tree, &target);
1100 trace_vtd_page_walk_one(info->domain_id, entry->iova,
1101 entry->translated_addr, entry->addr_mask,
1103 return hook_fn(entry, private);
1107 * vtd_page_walk_level - walk over specific level for IOVA range
1109 * @addr: base GPA addr to start the walk
1110 * @start: IOVA range start address
1111 * @end: IOVA range end address (start <= addr < end)
1112 * @read: whether parent level has read permission
1113 * @write: whether parent level has write permission
1114 * @info: constant information for the page walk
1116 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1117 uint64_t end, uint32_t level, bool read,
1118 bool write, vtd_page_walk_info *info)
1120 bool read_cur, write_cur, entry_valid;
1123 uint64_t subpage_size, subpage_mask;
1124 IOMMUTLBEntry entry;
1125 uint64_t iova = start;
1129 trace_vtd_page_walk_level(addr, level, start, end);
1131 subpage_size = 1ULL << vtd_slpt_level_shift(level);
1132 subpage_mask = vtd_slpt_level_page_mask(level);
1134 while (iova < end) {
1135 iova_next = (iova & subpage_mask) + subpage_size;
1137 offset = vtd_iova_level_offset(iova, level);
1138 slpte = vtd_get_slpte(addr, offset);
1140 if (slpte == (uint64_t)-1) {
1141 trace_vtd_page_walk_skip_read(iova, iova_next);
1145 if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1146 trace_vtd_page_walk_skip_reserve(iova, iova_next);
1150 /* Permissions are stacked with parents' */
1151 read_cur = read && (slpte & VTD_SL_R);
1152 write_cur = write && (slpte & VTD_SL_W);
1155 * As long as we have either read/write permission, this is a
1156 * valid entry. The rule works for both page entries and page
1159 entry_valid = read_cur | write_cur;
1161 if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1163 * This is a valid PDE (or even bigger than PDE). We need
1164 * to walk one further level.
1166 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1167 iova, MIN(iova_next, end), level - 1,
1168 read_cur, write_cur, info);
1171 * This means we are either:
1173 * (1) the real page entry (either 4K page, or huge page)
1174 * (2) the whole range is invalid
1176 * In either case, we send an IOTLB notification down.
1178 entry.target_as = &address_space_memory;
1179 entry.iova = iova & subpage_mask;
1180 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1181 entry.addr_mask = ~subpage_mask;
1182 /* NOTE: this is only meaningful if entry_valid == true */
1183 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1184 ret = vtd_page_walk_one(&entry, info);
1199 * vtd_page_walk - walk specific IOVA range, and call the hook
1201 * @s: intel iommu state
1202 * @ce: context entry to walk upon
1203 * @start: IOVA address to start the walk
1204 * @end: IOVA range end address (start <= addr < end)
1205 * @info: page walking information struct
1207 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1208 uint64_t start, uint64_t end,
1209 vtd_page_walk_info *info)
1211 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1212 uint32_t level = vtd_get_iova_level(s, ce);
1214 if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1215 return -VTD_FR_ADDR_BEYOND_MGAW;
1218 if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1219 /* Fix end so that it reaches the maximum */
1220 end = vtd_iova_limit(s, ce, info->aw);
1223 return vtd_page_walk_level(addr, start, end, level, true, true, info);
1226 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1229 /* Legacy Mode reserved bits check */
1230 if (!s->root_scalable &&
1231 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1234 /* Scalable Mode reserved bits check */
1235 if (s->root_scalable &&
1236 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1237 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1243 error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1245 __func__, re->hi, re->lo);
1246 return -VTD_FR_ROOT_ENTRY_RSVD;
1249 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1250 VTDContextEntry *ce)
1252 if (!s->root_scalable &&
1253 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1254 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1255 error_report_once("%s: invalid context entry: hi=%"PRIx64
1256 ", lo=%"PRIx64" (reserved nonzero)",
1257 __func__, ce->hi, ce->lo);
1258 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1261 if (s->root_scalable &&
1262 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1263 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1266 error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1269 ", val[0]=%"PRIx64" (reserved nonzero)",
1270 __func__, ce->val[3], ce->val[2],
1271 ce->val[1], ce->val[0]);
1272 return -VTD_FR_CONTEXT_ENTRY_RSVD;
1278 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1279 VTDContextEntry *ce)
1284 * Make sure in Scalable Mode, a present context entry
1285 * has valid rid2pasid setting, which includes valid
1286 * rid2pasid field and corresponding pasid entry setting
1288 return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1291 /* Map a device to its corresponding domain (context-entry) */
1292 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1293 uint8_t devfn, VTDContextEntry *ce)
1297 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1299 ret_fr = vtd_get_root_entry(s, bus_num, &re);
1304 if (!vtd_root_entry_present(s, &re, devfn)) {
1305 /* Not error - it's okay we don't have root entry. */
1306 trace_vtd_re_not_present(bus_num);
1307 return -VTD_FR_ROOT_ENTRY_P;
1310 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1315 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1320 if (!vtd_ce_present(ce)) {
1321 /* Not error - it's okay we don't have context entry. */
1322 trace_vtd_ce_not_present(bus_num, devfn);
1323 return -VTD_FR_CONTEXT_ENTRY_P;
1326 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1331 /* Check if the programming of context-entry is valid */
1332 if (!s->root_scalable &&
1333 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1334 error_report_once("%s: invalid context entry: hi=%"PRIx64
1335 ", lo=%"PRIx64" (level %d not supported)",
1336 __func__, ce->hi, ce->lo,
1337 vtd_ce_get_level(ce));
1338 return -VTD_FR_CONTEXT_ENTRY_INV;
1341 if (!s->root_scalable) {
1342 /* Do translation type check */
1343 if (!vtd_ce_type_check(x86_iommu, ce)) {
1344 /* Errors dumped in vtd_ce_type_check() */
1345 return -VTD_FR_CONTEXT_ENTRY_INV;
1349 * Check if the programming of context-entry.rid2pasid
1350 * and corresponding pasid setting is valid, and thus
1351 * avoids to check pasid entry fetching result in future
1352 * helper function calling.
1354 ret_fr = vtd_ce_rid2pasid_check(s, ce);
1363 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry,
1366 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry);
1370 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1371 VTDContextEntry *ce)
1375 if (s->root_scalable) {
1376 vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1377 return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1380 return VTD_CONTEXT_ENTRY_DID(ce->hi);
1383 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1384 VTDContextEntry *ce,
1385 hwaddr addr, hwaddr size)
1387 IntelIOMMUState *s = vtd_as->iommu_state;
1388 vtd_page_walk_info info = {
1389 .hook_fn = vtd_sync_shadow_page_hook,
1390 .private = (void *)&vtd_as->iommu,
1391 .notify_unmap = true,
1394 .domain_id = vtd_get_domain_id(s, ce),
1397 return vtd_page_walk(s, ce, addr, addr + size, &info);
1400 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1406 ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1407 pci_bus_num(vtd_as->bus),
1408 vtd_as->devfn, &ce);
1410 if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1412 * It's a valid scenario to have a context entry that is
1413 * not present. For example, when a device is removed
1414 * from an existing domain then the context entry will be
1415 * zeroed by the guest before it was put into another
1416 * domain. When this happens, instead of synchronizing
1417 * the shadow pages we should invalidate all existing
1418 * mappings and notify the backends.
1420 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1421 vtd_address_space_unmap(vtd_as, n);
1428 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1432 * Check if specific device is configed to bypass address
1433 * translation for DMA requests. In Scalable Mode, bypass
1434 * 1st-level translation or 2nd-level translation, it depends
1437 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
1446 s = as->iommu_state;
1447 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1451 * Possibly failed to parse the context entry for some reason
1452 * (e.g., during init, or any guest configuration errors on
1453 * context entries). We should assume PT not enabled for
1459 if (s->root_scalable) {
1460 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe);
1462 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1466 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1469 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1472 /* Return whether the device is using IOMMU translation. */
1473 static bool vtd_switch_address_space(VTDAddressSpace *as)
1476 /* Whether we need to take the BQL on our own */
1477 bool take_bql = !qemu_mutex_iothread_locked();
1481 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as);
1483 trace_vtd_switch_address_space(pci_bus_num(as->bus),
1484 VTD_PCI_SLOT(as->devfn),
1485 VTD_PCI_FUNC(as->devfn),
1489 * It's possible that we reach here without BQL, e.g., when called
1490 * from vtd_pt_enable_fast_path(). However the memory APIs need
1491 * it. We'd better make sure we have had it already, or, take it.
1494 qemu_mutex_lock_iothread();
1497 /* Turn off first then on the other */
1499 memory_region_set_enabled(&as->nodmar, false);
1500 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1502 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1503 memory_region_set_enabled(&as->nodmar, true);
1507 qemu_mutex_unlock_iothread();
1513 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1515 GHashTableIter iter;
1519 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1520 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1521 for (i = 0; i < PCI_DEVFN_MAX; i++) {
1522 if (!vtd_bus->dev_as[i]) {
1525 vtd_switch_address_space(vtd_bus->dev_as[i]);
1530 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1532 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1535 static const bool vtd_qualified_faults[] = {
1536 [VTD_FR_RESERVED] = false,
1537 [VTD_FR_ROOT_ENTRY_P] = false,
1538 [VTD_FR_CONTEXT_ENTRY_P] = true,
1539 [VTD_FR_CONTEXT_ENTRY_INV] = true,
1540 [VTD_FR_ADDR_BEYOND_MGAW] = true,
1541 [VTD_FR_WRITE] = true,
1542 [VTD_FR_READ] = true,
1543 [VTD_FR_PAGING_ENTRY_INV] = true,
1544 [VTD_FR_ROOT_TABLE_INV] = false,
1545 [VTD_FR_CONTEXT_TABLE_INV] = false,
1546 [VTD_FR_ROOT_ENTRY_RSVD] = false,
1547 [VTD_FR_PAGING_ENTRY_RSVD] = true,
1548 [VTD_FR_CONTEXT_ENTRY_TT] = true,
1549 [VTD_FR_PASID_TABLE_INV] = false,
1550 [VTD_FR_RESERVED_ERR] = false,
1551 [VTD_FR_MAX] = false,
1554 /* To see if a fault condition is "qualified", which is reported to software
1555 * only if the FPD field in the context-entry used to process the faulting
1558 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1560 return vtd_qualified_faults[fault];
1563 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1565 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1568 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1571 VTDAddressSpace *vtd_as;
1572 bool success = false;
1574 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1579 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1584 if (vtd_switch_address_space(vtd_as) == false) {
1585 /* We switched off IOMMU region successfully. */
1590 trace_vtd_pt_enable_fast_path(source_id, success);
1593 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1596 * Called from RCU critical section.
1598 * @bus_num: The bus number
1599 * @devfn: The devfn, which is the combined of device and function number
1600 * @is_write: The access is a write operation
1601 * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1603 * Returns true if translation is successful, otherwise false.
1605 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1606 uint8_t devfn, hwaddr addr, bool is_write,
1607 IOMMUTLBEntry *entry)
1609 IntelIOMMUState *s = vtd_as->iommu_state;
1611 uint8_t bus_num = pci_bus_num(bus);
1612 VTDContextCacheEntry *cc_entry;
1613 uint64_t slpte, page_mask;
1615 uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1617 bool is_fpd_set = false;
1620 uint8_t access_flags;
1621 VTDIOTLBEntry *iotlb_entry;
1624 * We have standalone memory region for interrupt addresses, we
1625 * should never receive translation requests in this region.
1627 assert(!vtd_is_interrupt_addr(addr));
1631 cc_entry = &vtd_as->context_cache_entry;
1633 /* Try to fetch slpte form IOTLB */
1634 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1636 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1637 iotlb_entry->domain_id);
1638 slpte = iotlb_entry->slpte;
1639 access_flags = iotlb_entry->access_flags;
1640 page_mask = iotlb_entry->mask;
1644 /* Try to fetch context-entry from cache first */
1645 if (cc_entry->context_cache_gen == s->context_cache_gen) {
1646 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1647 cc_entry->context_entry.lo,
1648 cc_entry->context_cache_gen);
1649 ce = cc_entry->context_entry;
1650 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1651 if (!is_fpd_set && s->root_scalable) {
1652 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1653 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1656 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1657 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1658 if (!ret_fr && !is_fpd_set && s->root_scalable) {
1659 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1661 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1662 /* Update context-cache */
1663 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1664 cc_entry->context_cache_gen,
1665 s->context_cache_gen);
1666 cc_entry->context_entry = ce;
1667 cc_entry->context_cache_gen = s->context_cache_gen;
1671 * We don't need to translate for pass-through context entries.
1672 * Also, let's ignore IOTLB caching as well for PT devices.
1674 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1675 entry->iova = addr & VTD_PAGE_MASK_4K;
1676 entry->translated_addr = entry->iova;
1677 entry->addr_mask = ~VTD_PAGE_MASK_4K;
1678 entry->perm = IOMMU_RW;
1679 trace_vtd_translate_pt(source_id, entry->iova);
1682 * When this happens, it means firstly caching-mode is not
1683 * enabled, and this is the first passthrough translation for
1684 * the device. Let's enable the fast path for passthrough.
1686 * When passthrough is disabled again for the device, we can
1687 * capture it via the context entry invalidation, then the
1688 * IOMMU region can be swapped back.
1690 vtd_pt_enable_fast_path(s, source_id);
1691 vtd_iommu_unlock(s);
1695 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1696 &reads, &writes, s->aw_bits);
1697 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1699 page_mask = vtd_slpt_level_page_mask(level);
1700 access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1701 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1702 access_flags, level);
1704 vtd_iommu_unlock(s);
1705 entry->iova = addr & page_mask;
1706 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1707 entry->addr_mask = ~page_mask;
1708 entry->perm = access_flags;
1712 vtd_iommu_unlock(s);
1714 entry->translated_addr = 0;
1715 entry->addr_mask = 0;
1716 entry->perm = IOMMU_NONE;
1720 static void vtd_root_table_setup(IntelIOMMUState *s)
1722 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1723 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1725 vtd_update_scalable_state(s);
1727 trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1730 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1731 uint32_t index, uint32_t mask)
1733 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1736 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1739 value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1740 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1741 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1742 s->intr_eime = value & VTD_IRTA_EIME;
1744 /* Notify global invalidation */
1745 vtd_iec_notify_all(s, true, 0, 0);
1747 trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1750 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1752 VTDAddressSpace *vtd_as;
1754 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1755 vtd_sync_shadow_page_table(vtd_as);
1759 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1761 trace_vtd_inv_desc_cc_global();
1762 /* Protects context cache */
1764 s->context_cache_gen++;
1765 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1766 vtd_reset_context_cache_locked(s);
1768 vtd_iommu_unlock(s);
1769 vtd_address_space_refresh_all(s);
1771 * From VT-d spec 6.5.2.1, a global context entry invalidation
1772 * should be followed by a IOTLB global invalidation, so we should
1773 * be safe even without this. Hoewever, let's replay the region as
1774 * well to be safer, and go back here when we need finer tunes for
1775 * VT-d emulation codes.
1777 vtd_iommu_replay_all(s);
1780 /* Do a context-cache device-selective invalidation.
1781 * @func_mask: FM field after shifting
1783 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1789 VTDAddressSpace *vtd_as;
1790 uint8_t bus_n, devfn;
1793 trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1795 switch (func_mask & 3) {
1797 mask = 0; /* No bits in the SID field masked */
1800 mask = 4; /* Mask bit 2 in the SID field */
1803 mask = 6; /* Mask bit 2:1 in the SID field */
1806 mask = 7; /* Mask bit 2:0 in the SID field */
1811 bus_n = VTD_SID_TO_BUS(source_id);
1812 vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1814 devfn = VTD_SID_TO_DEVFN(source_id);
1815 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1816 vtd_as = vtd_bus->dev_as[devfn_it];
1817 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1818 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1819 VTD_PCI_FUNC(devfn_it));
1821 vtd_as->context_cache_entry.context_cache_gen = 0;
1822 vtd_iommu_unlock(s);
1824 * Do switch address space when needed, in case if the
1825 * device passthrough bit is switched.
1827 vtd_switch_address_space(vtd_as);
1829 * So a device is moving out of (or moving into) a
1830 * domain, resync the shadow page table.
1831 * This won't bring bad even if we have no such
1832 * notifier registered - the IOMMU notification
1833 * framework will skip MAP notifications if that
1836 vtd_sync_shadow_page_table(vtd_as);
1842 /* Context-cache invalidation
1843 * Returns the Context Actual Invalidation Granularity.
1844 * @val: the content of the CCMD_REG
1846 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1849 uint64_t type = val & VTD_CCMD_CIRG_MASK;
1852 case VTD_CCMD_DOMAIN_INVL:
1854 case VTD_CCMD_GLOBAL_INVL:
1855 caig = VTD_CCMD_GLOBAL_INVL_A;
1856 vtd_context_global_invalidate(s);
1859 case VTD_CCMD_DEVICE_INVL:
1860 caig = VTD_CCMD_DEVICE_INVL_A;
1861 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1865 error_report_once("%s: invalid context: 0x%" PRIx64,
1872 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1874 trace_vtd_inv_desc_iotlb_global();
1876 vtd_iommu_replay_all(s);
1879 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1882 VTDAddressSpace *vtd_as;
1884 trace_vtd_inv_desc_iotlb_domain(domain_id);
1887 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1889 vtd_iommu_unlock(s);
1891 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1892 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1893 vtd_as->devfn, &ce) &&
1894 domain_id == vtd_get_domain_id(s, &ce)) {
1895 vtd_sync_shadow_page_table(vtd_as);
1900 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1901 uint16_t domain_id, hwaddr addr,
1904 VTDAddressSpace *vtd_as;
1907 hwaddr size = (1 << am) * VTD_PAGE_SIZE;
1909 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
1910 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1911 vtd_as->devfn, &ce);
1912 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
1913 if (vtd_as_has_map_notifier(vtd_as)) {
1915 * As long as we have MAP notifications registered in
1916 * any of our IOMMU notifiers, we need to sync the
1917 * shadow page table.
1919 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
1922 * For UNMAP-only notifiers, we don't need to walk the
1923 * page tables. We just deliver the PSI down to
1924 * invalidate caches.
1926 IOMMUTLBEntry entry = {
1927 .target_as = &address_space_memory,
1929 .translated_addr = 0,
1930 .addr_mask = size - 1,
1933 memory_region_notify_iommu(&vtd_as->iommu, 0, entry);
1939 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1940 hwaddr addr, uint8_t am)
1942 VTDIOTLBPageInvInfo info;
1944 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1946 assert(am <= VTD_MAMV);
1947 info.domain_id = domain_id;
1949 info.mask = ~((1 << am) - 1);
1951 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1952 vtd_iommu_unlock(s);
1953 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1957 * Returns the IOTLB Actual Invalidation Granularity.
1958 * @val: the content of the IOTLB_REG
1960 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1963 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1969 case VTD_TLB_GLOBAL_FLUSH:
1970 iaig = VTD_TLB_GLOBAL_FLUSH_A;
1971 vtd_iotlb_global_invalidate(s);
1974 case VTD_TLB_DSI_FLUSH:
1975 domain_id = VTD_TLB_DID(val);
1976 iaig = VTD_TLB_DSI_FLUSH_A;
1977 vtd_iotlb_domain_invalidate(s, domain_id);
1980 case VTD_TLB_PSI_FLUSH:
1981 domain_id = VTD_TLB_DID(val);
1982 addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1983 am = VTD_IVA_AM(addr);
1984 addr = VTD_IVA_ADDR(addr);
1985 if (am > VTD_MAMV) {
1986 error_report_once("%s: address mask overflow: 0x%" PRIx64,
1987 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
1991 iaig = VTD_TLB_PSI_FLUSH_A;
1992 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1996 error_report_once("%s: invalid granularity: 0x%" PRIx64,
2003 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2005 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2007 return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2008 (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2011 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2013 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2015 trace_vtd_inv_qi_enable(en);
2018 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2019 /* 2^(x+8) entries */
2020 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2021 s->qi_enabled = true;
2022 trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2023 /* Ok - report back to driver */
2024 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2026 if (s->iq_tail != 0) {
2028 * This is a spec violation but Windows guests are known to set up
2029 * Queued Invalidation this way so we allow the write and process
2030 * Invalidation Descriptors right away.
2032 trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2033 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2034 vtd_fetch_inv_desc(s);
2038 if (vtd_queued_inv_disable_check(s)) {
2039 /* disable Queued Invalidation */
2040 vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2042 s->qi_enabled = false;
2043 /* Ok - report back to driver */
2044 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2046 error_report_once("%s: detected improper state when disable QI "
2047 "(head=0x%x, tail=0x%x, last_type=%d)",
2049 s->iq_head, s->iq_tail, s->iq_last_desc_type);
2054 /* Set Root Table Pointer */
2055 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2057 vtd_root_table_setup(s);
2058 /* Ok - report back to driver */
2059 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2060 vtd_reset_caches(s);
2061 vtd_address_space_refresh_all(s);
2064 /* Set Interrupt Remap Table Pointer */
2065 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2067 vtd_interrupt_remap_table_setup(s);
2068 /* Ok - report back to driver */
2069 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2072 /* Handle Translation Enable/Disable */
2073 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2075 if (s->dmar_enabled == en) {
2079 trace_vtd_dmar_enable(en);
2082 s->dmar_enabled = true;
2083 /* Ok - report back to driver */
2084 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2086 s->dmar_enabled = false;
2088 /* Clear the index of Fault Recording Register */
2089 s->next_frcd_reg = 0;
2090 /* Ok - report back to driver */
2091 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2094 vtd_reset_caches(s);
2095 vtd_address_space_refresh_all(s);
2098 /* Handle Interrupt Remap Enable/Disable */
2099 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2101 trace_vtd_ir_enable(en);
2104 s->intr_enabled = true;
2105 /* Ok - report back to driver */
2106 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2108 s->intr_enabled = false;
2109 /* Ok - report back to driver */
2110 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2114 /* Handle write to Global Command Register */
2115 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2117 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2118 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2119 uint32_t changed = status ^ val;
2121 trace_vtd_reg_write_gcmd(status, val);
2122 if (changed & VTD_GCMD_TE) {
2123 /* Translation enable/disable */
2124 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2126 if (val & VTD_GCMD_SRTP) {
2127 /* Set/update the root-table pointer */
2128 vtd_handle_gcmd_srtp(s);
2130 if (changed & VTD_GCMD_QIE) {
2131 /* Queued Invalidation Enable */
2132 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2134 if (val & VTD_GCMD_SIRTP) {
2135 /* Set/update the interrupt remapping root-table pointer */
2136 vtd_handle_gcmd_sirtp(s);
2138 if (changed & VTD_GCMD_IRE) {
2139 /* Interrupt remap enable/disable */
2140 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2144 /* Handle write to Context Command Register */
2145 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2148 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2150 /* Context-cache invalidation request */
2151 if (val & VTD_CCMD_ICC) {
2152 if (s->qi_enabled) {
2153 error_report_once("Queued Invalidation enabled, "
2154 "should not use register-based invalidation");
2157 ret = vtd_context_cache_invalidate(s, val);
2158 /* Invalidation completed. Change something to show */
2159 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2160 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2165 /* Handle write to IOTLB Invalidation Register */
2166 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2169 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2171 /* IOTLB invalidation request */
2172 if (val & VTD_TLB_IVT) {
2173 if (s->qi_enabled) {
2174 error_report_once("Queued Invalidation enabled, "
2175 "should not use register-based invalidation");
2178 ret = vtd_iotlb_flush(s, val);
2179 /* Invalidation completed. Change something to show */
2180 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2181 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2182 VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2186 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2187 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2188 VTDInvDesc *inv_desc)
2190 dma_addr_t base_addr = s->iq;
2191 uint32_t offset = s->iq_head;
2192 uint32_t dw = s->iq_dw ? 32 : 16;
2193 dma_addr_t addr = base_addr + offset * dw;
2195 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) {
2196 error_report_once("Read INV DESC failed.");
2199 inv_desc->lo = le64_to_cpu(inv_desc->lo);
2200 inv_desc->hi = le64_to_cpu(inv_desc->hi);
2202 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2203 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2208 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2210 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2211 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2212 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2213 " (reserved nonzero)", __func__, inv_desc->hi,
2217 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2219 uint32_t status_data = (uint32_t)(inv_desc->lo >>
2220 VTD_INV_DESC_WAIT_DATA_SHIFT);
2222 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2224 /* FIXME: need to be masked with HAW? */
2225 dma_addr_t status_addr = inv_desc->hi;
2226 trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2227 status_data = cpu_to_le32(status_data);
2228 if (dma_memory_write(&address_space_memory, status_addr, &status_data,
2229 sizeof(status_data))) {
2230 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2233 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2234 /* Interrupt flag */
2235 vtd_generate_completion_event(s);
2237 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2238 " (unknown type)", __func__, inv_desc->hi,
2245 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2246 VTDInvDesc *inv_desc)
2248 uint16_t sid, fmask;
2250 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2251 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2252 " (reserved nonzero)", __func__, inv_desc->hi,
2256 switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2257 case VTD_INV_DESC_CC_DOMAIN:
2258 trace_vtd_inv_desc_cc_domain(
2259 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2261 case VTD_INV_DESC_CC_GLOBAL:
2262 vtd_context_global_invalidate(s);
2265 case VTD_INV_DESC_CC_DEVICE:
2266 sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2267 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2268 vtd_context_device_invalidate(s, sid, fmask);
2272 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2273 " (invalid type)", __func__, inv_desc->hi,
2280 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2286 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2287 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2288 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2289 ", lo=0x%"PRIx64" (reserved bits unzero)\n",
2290 __func__, inv_desc->hi, inv_desc->lo);
2294 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2295 case VTD_INV_DESC_IOTLB_GLOBAL:
2296 vtd_iotlb_global_invalidate(s);
2299 case VTD_INV_DESC_IOTLB_DOMAIN:
2300 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2301 vtd_iotlb_domain_invalidate(s, domain_id);
2304 case VTD_INV_DESC_IOTLB_PAGE:
2305 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2306 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2307 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2308 if (am > VTD_MAMV) {
2309 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2310 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n",
2311 __func__, inv_desc->hi, inv_desc->lo,
2312 am, (unsigned)VTD_MAMV);
2315 vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2319 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2320 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n",
2321 __func__, inv_desc->hi, inv_desc->lo,
2322 inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2328 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2329 VTDInvDesc *inv_desc)
2331 trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2332 inv_desc->iec.index,
2333 inv_desc->iec.index_mask);
2335 vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2336 inv_desc->iec.index,
2337 inv_desc->iec.index_mask);
2341 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2342 VTDInvDesc *inv_desc)
2344 VTDAddressSpace *vtd_dev_as;
2345 IOMMUTLBEntry entry;
2346 struct VTDBus *vtd_bus;
2354 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2355 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2358 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2360 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2361 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2362 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2363 ", lo=%"PRIx64" (reserved nonzero)", __func__,
2364 inv_desc->hi, inv_desc->lo);
2368 vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2373 vtd_dev_as = vtd_bus->dev_as[devfn];
2378 /* According to ATS spec table 2.4:
2379 * S = 0, bits 15:12 = xxxx range size: 4K
2380 * S = 1, bits 15:12 = xxx0 range size: 8K
2381 * S = 1, bits 15:12 = xx01 range size: 16K
2382 * S = 1, bits 15:12 = x011 range size: 32K
2383 * S = 1, bits 15:12 = 0111 range size: 64K
2387 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2393 entry.target_as = &vtd_dev_as->as;
2394 entry.addr_mask = sz - 1;
2396 entry.perm = IOMMU_NONE;
2397 entry.translated_addr = 0;
2398 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry);
2404 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2406 VTDInvDesc inv_desc;
2409 trace_vtd_inv_qi_head(s->iq_head);
2410 if (!vtd_get_inv_desc(s, &inv_desc)) {
2411 s->iq_last_desc_type = VTD_INV_DESC_NONE;
2415 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2416 /* FIXME: should update at first or at last? */
2417 s->iq_last_desc_type = desc_type;
2419 switch (desc_type) {
2420 case VTD_INV_DESC_CC:
2421 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2422 if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2427 case VTD_INV_DESC_IOTLB:
2428 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2429 if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2435 * TODO: the entity of below two cases will be implemented in future series.
2436 * To make guest (which integrates scalable mode support patch set in
2437 * iommu driver) work, just return true is enough so far.
2439 case VTD_INV_DESC_PC:
2442 case VTD_INV_DESC_PIOTLB:
2445 case VTD_INV_DESC_WAIT:
2446 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2447 if (!vtd_process_wait_desc(s, &inv_desc)) {
2452 case VTD_INV_DESC_IEC:
2453 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2454 if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2459 case VTD_INV_DESC_DEVICE:
2460 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2461 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2467 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2468 " (unknown type)", __func__, inv_desc.hi,
2473 if (s->iq_head == s->iq_size) {
2479 /* Try to fetch and process more Invalidation Descriptors */
2480 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2482 trace_vtd_inv_qi_fetch();
2484 if (s->iq_tail >= s->iq_size) {
2485 /* Detects an invalid Tail pointer */
2486 error_report_once("%s: detected invalid QI tail "
2487 "(tail=0x%x, size=0x%x)",
2488 __func__, s->iq_tail, s->iq_size);
2489 vtd_handle_inv_queue_error(s);
2492 while (s->iq_head != s->iq_tail) {
2493 if (!vtd_process_inv_desc(s)) {
2494 /* Invalidation Queue Errors */
2495 vtd_handle_inv_queue_error(s);
2498 /* Must update the IQH_REG in time */
2499 vtd_set_quad_raw(s, DMAR_IQH_REG,
2500 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
2505 /* Handle write to Invalidation Queue Tail Register */
2506 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2508 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2510 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2511 error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2515 s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2516 trace_vtd_inv_qi_tail(s->iq_tail);
2518 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2519 /* Process Invalidation Queue here */
2520 vtd_fetch_inv_desc(s);
2524 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2526 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2527 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2528 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2530 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2531 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2532 trace_vtd_fsts_clear_ip();
2534 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2535 * Descriptors if there are any when Queued Invalidation is enabled?
2539 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2542 /* FIXME: when software clears the IM field, check the IP field. But do we
2543 * need to compare the old value and the new value to conclude that
2544 * software clears the IM field? Or just check if the IM field is zero?
2546 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2548 trace_vtd_reg_write_fectl(fectl_reg);
2550 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2551 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2552 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2556 static void vtd_handle_ics_write(IntelIOMMUState *s)
2558 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2559 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2561 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2562 trace_vtd_reg_ics_clear_ip();
2563 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2567 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2570 /* FIXME: when software clears the IM field, check the IP field. But do we
2571 * need to compare the old value and the new value to conclude that
2572 * software clears the IM field? Or just check if the IM field is zero?
2574 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2576 trace_vtd_reg_write_iectl(iectl_reg);
2578 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2579 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2580 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2584 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2586 IntelIOMMUState *s = opaque;
2589 trace_vtd_reg_read(addr, size);
2591 if (addr + size > DMAR_REG_SIZE) {
2592 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2593 " size=0x%u", __func__, addr, size);
2594 return (uint64_t)-1;
2598 /* Root Table Address Register, 64-bit */
2599 case DMAR_RTADDR_REG:
2601 val = s->root & ((1ULL << 32) - 1);
2607 case DMAR_RTADDR_REG_HI:
2609 val = s->root >> 32;
2612 /* Invalidation Queue Address Register, 64-bit */
2614 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2616 val = val & ((1ULL << 32) - 1);
2620 case DMAR_IQA_REG_HI:
2627 val = vtd_get_long(s, addr);
2629 val = vtd_get_quad(s, addr);
2636 static void vtd_mem_write(void *opaque, hwaddr addr,
2637 uint64_t val, unsigned size)
2639 IntelIOMMUState *s = opaque;
2641 trace_vtd_reg_write(addr, size, val);
2643 if (addr + size > DMAR_REG_SIZE) {
2644 error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2645 " size=0x%u", __func__, addr, size);
2650 /* Global Command Register, 32-bit */
2652 vtd_set_long(s, addr, val);
2653 vtd_handle_gcmd_write(s);
2656 /* Context Command Register, 64-bit */
2659 vtd_set_long(s, addr, val);
2661 vtd_set_quad(s, addr, val);
2662 vtd_handle_ccmd_write(s);
2666 case DMAR_CCMD_REG_HI:
2668 vtd_set_long(s, addr, val);
2669 vtd_handle_ccmd_write(s);
2672 /* IOTLB Invalidation Register, 64-bit */
2673 case DMAR_IOTLB_REG:
2675 vtd_set_long(s, addr, val);
2677 vtd_set_quad(s, addr, val);
2678 vtd_handle_iotlb_write(s);
2682 case DMAR_IOTLB_REG_HI:
2684 vtd_set_long(s, addr, val);
2685 vtd_handle_iotlb_write(s);
2688 /* Invalidate Address Register, 64-bit */
2691 vtd_set_long(s, addr, val);
2693 vtd_set_quad(s, addr, val);
2697 case DMAR_IVA_REG_HI:
2699 vtd_set_long(s, addr, val);
2702 /* Fault Status Register, 32-bit */
2705 vtd_set_long(s, addr, val);
2706 vtd_handle_fsts_write(s);
2709 /* Fault Event Control Register, 32-bit */
2710 case DMAR_FECTL_REG:
2712 vtd_set_long(s, addr, val);
2713 vtd_handle_fectl_write(s);
2716 /* Fault Event Data Register, 32-bit */
2717 case DMAR_FEDATA_REG:
2719 vtd_set_long(s, addr, val);
2722 /* Fault Event Address Register, 32-bit */
2723 case DMAR_FEADDR_REG:
2725 vtd_set_long(s, addr, val);
2728 * While the register is 32-bit only, some guests (Xen...) write to
2731 vtd_set_quad(s, addr, val);
2735 /* Fault Event Upper Address Register, 32-bit */
2736 case DMAR_FEUADDR_REG:
2738 vtd_set_long(s, addr, val);
2741 /* Protected Memory Enable Register, 32-bit */
2744 vtd_set_long(s, addr, val);
2747 /* Root Table Address Register, 64-bit */
2748 case DMAR_RTADDR_REG:
2750 vtd_set_long(s, addr, val);
2752 vtd_set_quad(s, addr, val);
2756 case DMAR_RTADDR_REG_HI:
2758 vtd_set_long(s, addr, val);
2761 /* Invalidation Queue Tail Register, 64-bit */
2764 vtd_set_long(s, addr, val);
2766 vtd_set_quad(s, addr, val);
2768 vtd_handle_iqt_write(s);
2771 case DMAR_IQT_REG_HI:
2773 vtd_set_long(s, addr, val);
2774 /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2777 /* Invalidation Queue Address Register, 64-bit */
2780 vtd_set_long(s, addr, val);
2782 vtd_set_quad(s, addr, val);
2784 if (s->ecap & VTD_ECAP_SMTS &&
2785 val & VTD_IQA_DW_MASK) {
2792 case DMAR_IQA_REG_HI:
2794 vtd_set_long(s, addr, val);
2797 /* Invalidation Completion Status Register, 32-bit */
2800 vtd_set_long(s, addr, val);
2801 vtd_handle_ics_write(s);
2804 /* Invalidation Event Control Register, 32-bit */
2805 case DMAR_IECTL_REG:
2807 vtd_set_long(s, addr, val);
2808 vtd_handle_iectl_write(s);
2811 /* Invalidation Event Data Register, 32-bit */
2812 case DMAR_IEDATA_REG:
2814 vtd_set_long(s, addr, val);
2817 /* Invalidation Event Address Register, 32-bit */
2818 case DMAR_IEADDR_REG:
2820 vtd_set_long(s, addr, val);
2823 /* Invalidation Event Upper Address Register, 32-bit */
2824 case DMAR_IEUADDR_REG:
2826 vtd_set_long(s, addr, val);
2829 /* Fault Recording Registers, 128-bit */
2830 case DMAR_FRCD_REG_0_0:
2832 vtd_set_long(s, addr, val);
2834 vtd_set_quad(s, addr, val);
2838 case DMAR_FRCD_REG_0_1:
2840 vtd_set_long(s, addr, val);
2843 case DMAR_FRCD_REG_0_2:
2845 vtd_set_long(s, addr, val);
2847 vtd_set_quad(s, addr, val);
2848 /* May clear bit 127 (Fault), update PPF */
2849 vtd_update_fsts_ppf(s);
2853 case DMAR_FRCD_REG_0_3:
2855 vtd_set_long(s, addr, val);
2856 /* May clear bit 127 (Fault), update PPF */
2857 vtd_update_fsts_ppf(s);
2862 vtd_set_long(s, addr, val);
2864 vtd_set_quad(s, addr, val);
2868 case DMAR_IRTA_REG_HI:
2870 vtd_set_long(s, addr, val);
2875 vtd_set_long(s, addr, val);
2877 vtd_set_quad(s, addr, val);
2882 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2883 IOMMUAccessFlags flag, int iommu_idx)
2885 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2886 IntelIOMMUState *s = vtd_as->iommu_state;
2887 IOMMUTLBEntry iotlb = {
2888 /* We'll fill in the rest later. */
2889 .target_as = &address_space_memory,
2893 if (likely(s->dmar_enabled)) {
2894 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2895 addr, flag & IOMMU_WO, &iotlb);
2897 /* DMAR disabled, passthrough, use 4k-page*/
2898 iotlb.iova = addr & VTD_PAGE_MASK_4K;
2899 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2900 iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2901 iotlb.perm = IOMMU_RW;
2905 if (likely(success)) {
2906 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2907 VTD_PCI_SLOT(vtd_as->devfn),
2908 VTD_PCI_FUNC(vtd_as->devfn),
2909 iotlb.iova, iotlb.translated_addr,
2912 error_report_once("%s: detected translation failure "
2913 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
2914 __func__, pci_bus_num(vtd_as->bus),
2915 VTD_PCI_SLOT(vtd_as->devfn),
2916 VTD_PCI_FUNC(vtd_as->devfn),
2923 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2924 IOMMUNotifierFlag old,
2925 IOMMUNotifierFlag new)
2927 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2928 IntelIOMMUState *s = vtd_as->iommu_state;
2930 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2931 error_report("We need to set caching-mode=on for intel-iommu to enable "
2932 "device assignment with IOMMU protection.");
2936 /* Update per-address-space notifier flags */
2937 vtd_as->notifier_flags = new;
2939 if (old == IOMMU_NOTIFIER_NONE) {
2940 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
2941 } else if (new == IOMMU_NOTIFIER_NONE) {
2942 QLIST_REMOVE(vtd_as, next);
2946 static int vtd_post_load(void *opaque, int version_id)
2948 IntelIOMMUState *iommu = opaque;
2951 * Memory regions are dynamically turned on/off depending on
2952 * context entry configurations from the guest. After migration,
2953 * we need to make sure the memory regions are still correct.
2955 vtd_switch_address_space_all(iommu);
2958 * We don't need to migrate the root_scalable because we can
2959 * simply do the calculation after the loading is complete. We
2960 * can actually do similar things with root, dmar_enabled, etc.
2961 * however since we've had them already so we'd better keep them
2962 * for compatibility of migration.
2964 vtd_update_scalable_state(iommu);
2969 static const VMStateDescription vtd_vmstate = {
2970 .name = "iommu-intel",
2972 .minimum_version_id = 1,
2973 .priority = MIG_PRI_IOMMU,
2974 .post_load = vtd_post_load,
2975 .fields = (VMStateField[]) {
2976 VMSTATE_UINT64(root, IntelIOMMUState),
2977 VMSTATE_UINT64(intr_root, IntelIOMMUState),
2978 VMSTATE_UINT64(iq, IntelIOMMUState),
2979 VMSTATE_UINT32(intr_size, IntelIOMMUState),
2980 VMSTATE_UINT16(iq_head, IntelIOMMUState),
2981 VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2982 VMSTATE_UINT16(iq_size, IntelIOMMUState),
2983 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2984 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2985 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2986 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */
2987 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2988 VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2989 VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2990 VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2991 VMSTATE_END_OF_LIST()
2995 static const MemoryRegionOps vtd_mem_ops = {
2996 .read = vtd_mem_read,
2997 .write = vtd_mem_write,
2998 .endianness = DEVICE_LITTLE_ENDIAN,
3000 .min_access_size = 4,
3001 .max_access_size = 8,
3004 .min_access_size = 4,
3005 .max_access_size = 8,
3009 static Property vtd_properties[] = {
3010 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3011 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3013 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3014 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3015 VTD_HOST_ADDRESS_WIDTH),
3016 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3017 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3018 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3019 DEFINE_PROP_END_OF_LIST(),
3022 /* Read IRTE entry with specific index */
3023 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3024 VTD_IR_TableEntry *entry, uint16_t sid)
3026 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3027 {0xffff, 0xfffb, 0xfff9, 0xfff8};
3028 dma_addr_t addr = 0x00;
3029 uint16_t mask, source_id;
3030 uint8_t bus, bus_max, bus_min;
3032 addr = iommu->intr_root + index * sizeof(*entry);
3033 if (dma_memory_read(&address_space_memory, addr, entry,
3035 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3036 __func__, index, addr);
3037 return -VTD_FR_IR_ROOT_INVAL;
3040 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3041 le64_to_cpu(entry->data[0]));
3043 if (!entry->irte.present) {
3044 error_report_once("%s: detected non-present IRTE "
3045 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3046 __func__, index, le64_to_cpu(entry->data[1]),
3047 le64_to_cpu(entry->data[0]));
3048 return -VTD_FR_IR_ENTRY_P;
3051 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3052 entry->irte.__reserved_2) {
3053 error_report_once("%s: detected non-zero reserved IRTE "
3054 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3055 __func__, index, le64_to_cpu(entry->data[1]),
3056 le64_to_cpu(entry->data[0]));
3057 return -VTD_FR_IR_IRTE_RSVD;
3060 if (sid != X86_IOMMU_SID_INVALID) {
3061 /* Validate IRTE SID */
3062 source_id = le32_to_cpu(entry->irte.source_id);
3063 switch (entry->irte.sid_vtype) {
3068 mask = vtd_svt_mask[entry->irte.sid_q];
3069 if ((source_id & mask) != (sid & mask)) {
3070 error_report_once("%s: invalid IRTE SID "
3071 "(index=%u, sid=%u, source_id=%u)",
3072 __func__, index, sid, source_id);
3073 return -VTD_FR_IR_SID_ERR;
3078 bus_max = source_id >> 8;
3079 bus_min = source_id & 0xff;
3081 if (bus > bus_max || bus < bus_min) {
3082 error_report_once("%s: invalid SVT_BUS "
3083 "(index=%u, bus=%u, min=%u, max=%u)",
3084 __func__, index, bus, bus_min, bus_max);
3085 return -VTD_FR_IR_SID_ERR;
3090 error_report_once("%s: detected invalid IRTE SVT "
3091 "(index=%u, type=%d)", __func__,
3092 index, entry->irte.sid_vtype);
3093 /* Take this as verification failure. */
3094 return -VTD_FR_IR_SID_ERR;
3102 /* Fetch IRQ information of specific IR index */
3103 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3104 X86IOMMUIrq *irq, uint16_t sid)
3106 VTD_IR_TableEntry irte = {};
3109 ret = vtd_irte_get(iommu, index, &irte, sid);
3114 irq->trigger_mode = irte.irte.trigger_mode;
3115 irq->vector = irte.irte.vector;
3116 irq->delivery_mode = irte.irte.delivery_mode;
3117 irq->dest = le32_to_cpu(irte.irte.dest_id);
3118 if (!iommu->intr_eime) {
3119 #define VTD_IR_APIC_DEST_MASK (0xff00ULL)
3120 #define VTD_IR_APIC_DEST_SHIFT (8)
3121 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3122 VTD_IR_APIC_DEST_SHIFT;
3124 irq->dest_mode = irte.irte.dest_mode;
3125 irq->redir_hint = irte.irte.redir_hint;
3127 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3128 irq->delivery_mode, irq->dest, irq->dest_mode);
3133 /* Interrupt remapping for MSI/MSI-X entry */
3134 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3136 MSIMessage *translated,
3140 VTD_IR_MSIAddress addr;
3142 X86IOMMUIrq irq = {};
3144 assert(origin && translated);
3146 trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3148 if (!iommu || !iommu->intr_enabled) {
3149 memcpy(translated, origin, sizeof(*origin));
3153 if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3154 error_report_once("%s: MSI address high 32 bits non-zero detected: "
3155 "address=0x%" PRIx64, __func__, origin->address);
3156 return -VTD_FR_IR_REQ_RSVD;
3159 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3160 if (addr.addr.__head != 0xfee) {
3161 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3162 __func__, addr.data);
3163 return -VTD_FR_IR_REQ_RSVD;
3166 /* This is compatible mode. */
3167 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3168 memcpy(translated, origin, sizeof(*origin));
3172 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3174 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff)
3175 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000)
3177 if (addr.addr.sub_valid) {
3178 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3179 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3182 ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3187 if (addr.addr.sub_valid) {
3188 trace_vtd_ir_remap_type("MSI");
3189 if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3190 error_report_once("%s: invalid IR MSI "
3191 "(sid=%u, address=0x%" PRIx64
3192 ", data=0x%" PRIx32 ")",
3193 __func__, sid, origin->address, origin->data);
3194 return -VTD_FR_IR_REQ_RSVD;
3197 uint8_t vector = origin->data & 0xff;
3198 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3200 trace_vtd_ir_remap_type("IOAPIC");
3201 /* IOAPIC entry vector should be aligned with IRTE vector
3202 * (see vt-d spec 5.1.5.1). */
3203 if (vector != irq.vector) {
3204 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3207 /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3208 * (see vt-d spec 5.1.5.1). */
3209 if (trigger_mode != irq.trigger_mode) {
3210 trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3216 * We'd better keep the last two bits, assuming that guest OS
3217 * might modify it. Keep it does not hurt after all.
3219 irq.msi_addr_last_bits = addr.addr.__not_care;
3221 /* Translate X86IOMMUIrq to MSI message */
3222 x86_iommu_irq_to_msi_message(&irq, translated);
3225 trace_vtd_ir_remap_msi(origin->address, origin->data,
3226 translated->address, translated->data);
3230 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3231 MSIMessage *dst, uint16_t sid)
3233 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3237 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3238 uint64_t *data, unsigned size,
3244 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3245 uint64_t value, unsigned size,
3249 MSIMessage from = {}, to = {};
3250 uint16_t sid = X86_IOMMU_SID_INVALID;
3252 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3253 from.data = (uint32_t) value;
3255 if (!attrs.unspecified) {
3256 /* We have explicit Source ID */
3257 sid = attrs.requester_id;
3260 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3262 /* TODO: report error */
3263 /* Drop this interrupt */
3267 apic_get_class()->send_msi(&to);
3272 static const MemoryRegionOps vtd_mem_ir_ops = {
3273 .read_with_attrs = vtd_mem_ir_read,
3274 .write_with_attrs = vtd_mem_ir_write,
3275 .endianness = DEVICE_LITTLE_ENDIAN,
3277 .min_access_size = 4,
3278 .max_access_size = 4,
3281 .min_access_size = 4,
3282 .max_access_size = 4,
3286 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3288 uintptr_t key = (uintptr_t)bus;
3289 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3290 VTDAddressSpace *vtd_dev_as;
3294 uintptr_t *new_key = g_malloc(sizeof(*new_key));
3295 *new_key = (uintptr_t)bus;
3296 /* No corresponding free() */
3297 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3300 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3303 vtd_dev_as = vtd_bus->dev_as[devfn];
3306 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3308 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
3310 vtd_dev_as->bus = bus;
3311 vtd_dev_as->devfn = (uint8_t)devfn;
3312 vtd_dev_as->iommu_state = s;
3313 vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3314 vtd_dev_as->iova_tree = iova_tree_new();
3316 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3317 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3320 * Build the DMAR-disabled container with aliases to the
3321 * shared MRs. Note that aliasing to a shared memory region
3322 * could help the memory API to detect same FlatViews so we
3323 * can have devices to share the same FlatView when DMAR is
3324 * disabled (either by not providing "intel_iommu=on" or with
3325 * "iommu=pt"). It will greatly reduce the total number of
3326 * FlatViews of the system hence VM runs faster.
3328 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3329 "vtd-nodmar", &s->mr_nodmar, 0,
3330 memory_region_size(&s->mr_nodmar));
3333 * Build the per-device DMAR-enabled container.
3335 * TODO: currently we have per-device IOMMU memory region only
3336 * because we have per-device IOMMU notifiers for devices. If
3337 * one day we can abstract the IOMMU notifiers out of the
3338 * memory regions then we can also share the same memory
3339 * region here just like what we've done above with the nodmar
3342 strcat(name, "-dmar");
3343 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3344 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3346 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3347 &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3348 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3349 VTD_INTERRUPT_ADDR_FIRST,
3350 &vtd_dev_as->iommu_ir, 1);
3353 * Hook both the containers under the root container, we
3354 * switch between DMAR & noDMAR by enable/disable
3355 * corresponding sub-containers
3357 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3358 MEMORY_REGION(&vtd_dev_as->iommu),
3360 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3361 &vtd_dev_as->nodmar, 0);
3363 vtd_switch_address_space(vtd_dev_as);
3368 static uint64_t get_naturally_aligned_size(uint64_t start,
3369 uint64_t size, int gaw)
3371 uint64_t max_mask = 1ULL << gaw;
3372 uint64_t alignment = start ? start & -start : max_mask;
3374 alignment = MIN(alignment, max_mask);
3375 size = MIN(size, max_mask);
3377 if (alignment <= size) {
3378 /* Increase the alignment of start */
3381 /* Find the largest page mask from size */
3382 return 1ULL << (63 - clz64(size));
3386 /* Unmap the whole range in the notifier's scope. */
3387 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3389 hwaddr size, remain;
3390 hwaddr start = n->start;
3391 hwaddr end = n->end;
3392 IntelIOMMUState *s = as->iommu_state;
3396 * Note: all the codes in this function has a assumption that IOVA
3397 * bits are no more than VTD_MGAW bits (which is restricted by
3398 * VT-d spec), otherwise we need to consider overflow of 64 bits.
3401 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3403 * Don't need to unmap regions that is bigger than the whole
3404 * VT-d supported address space size
3406 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3409 assert(start <= end);
3410 size = remain = end - start + 1;
3412 while (remain >= VTD_PAGE_SIZE) {
3413 IOMMUTLBEntry entry;
3414 uint64_t mask = get_naturally_aligned_size(start, remain, s->aw_bits);
3419 entry.addr_mask = mask - 1;
3420 entry.target_as = &address_space_memory;
3421 entry.perm = IOMMU_NONE;
3422 /* This field is meaningless for unmap */
3423 entry.translated_addr = 0;
3425 memory_region_notify_one(n, &entry);
3433 trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3434 VTD_PCI_SLOT(as->devfn),
3435 VTD_PCI_FUNC(as->devfn),
3438 map.iova = n->start;
3440 iova_tree_remove(as->iova_tree, &map);
3443 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3445 VTDAddressSpace *vtd_as;
3448 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3449 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3450 vtd_address_space_unmap(vtd_as, n);
3455 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3457 vtd_address_space_unmap_all(s);
3458 vtd_switch_address_space_all(s);
3461 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
3463 memory_region_notify_one((IOMMUNotifier *)private, entry);
3467 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3469 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3470 IntelIOMMUState *s = vtd_as->iommu_state;
3471 uint8_t bus_n = pci_bus_num(vtd_as->bus);
3475 * The replay can be triggered by either a invalidation or a newly
3476 * created entry. No matter what, we release existing mappings
3477 * (it means flushing caches for UNMAP-only registers).
3479 vtd_address_space_unmap(vtd_as, n);
3481 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3482 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3484 bus_n, PCI_SLOT(vtd_as->devfn),
3485 PCI_FUNC(vtd_as->devfn),
3486 vtd_get_domain_id(s, &ce),
3488 if (vtd_as_has_map_notifier(vtd_as)) {
3489 /* This is required only for MAP typed notifiers */
3490 vtd_page_walk_info info = {
3491 .hook_fn = vtd_replay_hook,
3492 .private = (void *)n,
3493 .notify_unmap = false,
3496 .domain_id = vtd_get_domain_id(s, &ce),
3499 vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3502 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3503 PCI_FUNC(vtd_as->devfn));
3509 /* Do the initialization. It will also be called when reset, so pay
3510 * attention when adding new initialization stuff.
3512 static void vtd_init(IntelIOMMUState *s)
3514 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3516 memset(s->csr, 0, DMAR_REG_SIZE);
3517 memset(s->wmask, 0, DMAR_REG_SIZE);
3518 memset(s->w1cmask, 0, DMAR_REG_SIZE);
3519 memset(s->womask, 0, DMAR_REG_SIZE);
3522 s->root_scalable = false;
3523 s->dmar_enabled = false;
3524 s->intr_enabled = false;
3529 s->qi_enabled = false;
3530 s->iq_last_desc_type = VTD_INV_DESC_NONE;
3532 s->next_frcd_reg = 0;
3533 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3534 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3535 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits);
3537 s->cap |= VTD_CAP_DRAIN;
3539 if (s->aw_bits == VTD_HOST_AW_48BIT) {
3540 s->cap |= VTD_CAP_SAGAW_48bit;
3542 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3545 * Rsvd field masks for spte
3547 vtd_paging_entry_rsvd_field[0] = ~0ULL;
3548 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits);
3549 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3550 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3551 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3552 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits);
3553 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits);
3554 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits);
3555 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits);
3557 if (x86_iommu_ir_supported(x86_iommu)) {
3558 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3559 if (s->intr_eim == ON_OFF_AUTO_ON) {
3560 s->ecap |= VTD_ECAP_EIM;
3562 assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3565 if (x86_iommu->dt_supported) {
3566 s->ecap |= VTD_ECAP_DT;
3569 if (x86_iommu->pt_supported) {
3570 s->ecap |= VTD_ECAP_PT;
3573 if (s->caching_mode) {
3574 s->cap |= VTD_CAP_CM;
3577 /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3578 if (s->scalable_mode) {
3579 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3582 vtd_reset_caches(s);
3584 /* Define registers with default values and bit semantics */
3585 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3586 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3587 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3588 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3589 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3590 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3591 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3592 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3593 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3595 /* Advanced Fault Logging not supported */
3596 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3597 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3598 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3599 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3601 /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3602 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3604 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3606 /* Treated as RO for implementations that PLMR and PHMR fields reported
3607 * as Clear in the CAP_REG.
3608 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3610 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3612 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3613 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3614 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3615 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3616 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3617 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3618 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3619 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3620 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3622 /* IOTLB registers */
3623 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3624 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3625 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3627 /* Fault Recording Registers, 128-bit */
3628 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3629 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3632 * Interrupt remapping registers.
3634 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3637 /* Should not reset address_spaces when reset because devices will still use
3638 * the address space they got at first (won't ask the bus again).
3640 static void vtd_reset(DeviceState *dev)
3642 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3645 vtd_address_space_refresh_all(s);
3648 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3650 IntelIOMMUState *s = opaque;
3651 VTDAddressSpace *vtd_as;
3653 assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3655 vtd_as = vtd_find_add_as(s, bus, devfn);
3659 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3661 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3663 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3664 error_setg(errp, "eim=on cannot be selected without intremap=on");
3668 if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3669 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3670 && x86_iommu_ir_supported(x86_iommu) ?
3671 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3673 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3674 if (!kvm_irqchip_in_kernel()) {
3675 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3678 if (!kvm_enable_x2apic()) {
3679 error_setg(errp, "eim=on requires support on the KVM side"
3680 "(X2APIC_API, first shipped in v4.7)");
3685 /* Currently only address widths supported are 39 and 48 bits */
3686 if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3687 (s->aw_bits != VTD_HOST_AW_48BIT)) {
3688 error_setg(errp, "Supported values for x-aw-bits are: %d, %d",
3689 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3693 if (s->scalable_mode && !s->dma_drain) {
3694 error_setg(errp, "Need to set dma_drain for scalable mode");
3701 static void vtd_realize(DeviceState *dev, Error **errp)
3703 MachineState *ms = MACHINE(qdev_get_machine());
3704 PCMachineState *pcms = PC_MACHINE(ms);
3705 PCIBus *bus = pcms->bus;
3706 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3707 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3709 x86_iommu->type = TYPE_INTEL;
3711 if (!vtd_decide_config(s, errp)) {
3715 QLIST_INIT(&s->vtd_as_with_notifiers);
3716 qemu_mutex_init(&s->iommu_lock);
3717 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3718 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3719 "intel_iommu", DMAR_REG_SIZE);
3721 /* Create the shared memory regions by all devices */
3722 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3724 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3725 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3726 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3727 "vtd-sys-alias", get_system_memory(), 0,
3728 memory_region_size(get_system_memory()));
3729 memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3730 &s->mr_sys_alias, 0);
3731 memory_region_add_subregion_overlap(&s->mr_nodmar,
3732 VTD_INTERRUPT_ADDR_FIRST,
3735 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3736 /* No corresponding destroy */
3737 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3739 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3742 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3743 pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3744 /* Pseudo address space under root PCI bus. */
3745 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3748 static void vtd_class_init(ObjectClass *klass, void *data)
3750 DeviceClass *dc = DEVICE_CLASS(klass);
3751 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3753 dc->reset = vtd_reset;
3754 dc->vmsd = &vtd_vmstate;
3755 dc->props = vtd_properties;
3756 dc->hotpluggable = false;
3757 x86_class->realize = vtd_realize;
3758 x86_class->int_remap = vtd_int_remap;
3759 /* Supported by the pc-q35-* machine types */
3760 dc->user_creatable = true;
3761 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3762 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3765 static const TypeInfo vtd_info = {
3766 .name = TYPE_INTEL_IOMMU_DEVICE,
3767 .parent = TYPE_X86_IOMMU_DEVICE,
3768 .instance_size = sizeof(IntelIOMMUState),
3769 .class_init = vtd_class_init,
3772 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3775 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3777 imrc->translate = vtd_iommu_translate;
3778 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3779 imrc->replay = vtd_iommu_replay;
3782 static const TypeInfo vtd_iommu_memory_region_info = {
3783 .parent = TYPE_IOMMU_MEMORY_REGION,
3784 .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3785 .class_init = vtd_iommu_memory_region_class_init,
3788 static void vtd_register_types(void)
3790 type_register_static(&vtd_info);
3791 type_register_static(&vtd_iommu_memory_region_info);
3794 type_init(vtd_register_types)