]> Git Repo - qemu.git/blob - block.c
Merge branch 'arm-devs.for-upstream' of git://git.linaro.org/people/pmaydell/qemu-arm
[qemu.git] / block.c
1 /*
2  * QEMU System Emulator block driver
3  *
4  * Copyright (c) 2003 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "config-host.h"
25 #include "qemu-common.h"
26 #include "trace.h"
27 #include "monitor.h"
28 #include "block_int.h"
29 #include "module.h"
30 #include "qjson.h"
31 #include "qemu-coroutine.h"
32 #include "qmp-commands.h"
33 #include "qemu-timer.h"
34
35 #ifdef CONFIG_BSD
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <sys/ioctl.h>
39 #include <sys/queue.h>
40 #ifndef __DragonFly__
41 #include <sys/disk.h>
42 #endif
43 #endif
44
45 #ifdef _WIN32
46 #include <windows.h>
47 #endif
48
49 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
50
51 typedef enum {
52     BDRV_REQ_COPY_ON_READ = 0x1,
53     BDRV_REQ_ZERO_WRITE   = 0x2,
54 } BdrvRequestFlags;
55
56 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load);
57 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
58         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
59         BlockDriverCompletionFunc *cb, void *opaque);
60 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
61         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
62         BlockDriverCompletionFunc *cb, void *opaque);
63 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
64                                          int64_t sector_num, int nb_sectors,
65                                          QEMUIOVector *iov);
66 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
67                                          int64_t sector_num, int nb_sectors,
68                                          QEMUIOVector *iov);
69 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
70     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
71     BdrvRequestFlags flags);
72 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
73     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
74     BdrvRequestFlags flags);
75 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
76                                                int64_t sector_num,
77                                                QEMUIOVector *qiov,
78                                                int nb_sectors,
79                                                BlockDriverCompletionFunc *cb,
80                                                void *opaque,
81                                                bool is_write);
82 static void coroutine_fn bdrv_co_do_rw(void *opaque);
83
84 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
85         bool is_write, double elapsed_time, uint64_t *wait);
86 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
87         double elapsed_time, uint64_t *wait);
88 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
89         bool is_write, int64_t *wait);
90
91 static QTAILQ_HEAD(, BlockDriverState) bdrv_states =
92     QTAILQ_HEAD_INITIALIZER(bdrv_states);
93
94 static QLIST_HEAD(, BlockDriver) bdrv_drivers =
95     QLIST_HEAD_INITIALIZER(bdrv_drivers);
96
97 /* The device to use for VM snapshots */
98 static BlockDriverState *bs_snapshots;
99
100 /* If non-zero, use only whitelisted block drivers */
101 static int use_bdrv_whitelist;
102
103 #ifdef _WIN32
104 static int is_windows_drive_prefix(const char *filename)
105 {
106     return (((filename[0] >= 'a' && filename[0] <= 'z') ||
107              (filename[0] >= 'A' && filename[0] <= 'Z')) &&
108             filename[1] == ':');
109 }
110
111 int is_windows_drive(const char *filename)
112 {
113     if (is_windows_drive_prefix(filename) &&
114         filename[2] == '\0')
115         return 1;
116     if (strstart(filename, "\\\\.\\", NULL) ||
117         strstart(filename, "//./", NULL))
118         return 1;
119     return 0;
120 }
121 #endif
122
123 /* throttling disk I/O limits */
124 void bdrv_io_limits_disable(BlockDriverState *bs)
125 {
126     bs->io_limits_enabled = false;
127
128     while (qemu_co_queue_next(&bs->throttled_reqs));
129
130     if (bs->block_timer) {
131         qemu_del_timer(bs->block_timer);
132         qemu_free_timer(bs->block_timer);
133         bs->block_timer = NULL;
134     }
135
136     bs->slice_start = 0;
137     bs->slice_end   = 0;
138     bs->slice_time  = 0;
139     memset(&bs->io_base, 0, sizeof(bs->io_base));
140 }
141
142 static void bdrv_block_timer(void *opaque)
143 {
144     BlockDriverState *bs = opaque;
145
146     qemu_co_queue_next(&bs->throttled_reqs);
147 }
148
149 void bdrv_io_limits_enable(BlockDriverState *bs)
150 {
151     qemu_co_queue_init(&bs->throttled_reqs);
152     bs->block_timer = qemu_new_timer_ns(vm_clock, bdrv_block_timer, bs);
153     bs->slice_time  = 5 * BLOCK_IO_SLICE_TIME;
154     bs->slice_start = qemu_get_clock_ns(vm_clock);
155     bs->slice_end   = bs->slice_start + bs->slice_time;
156     memset(&bs->io_base, 0, sizeof(bs->io_base));
157     bs->io_limits_enabled = true;
158 }
159
160 bool bdrv_io_limits_enabled(BlockDriverState *bs)
161 {
162     BlockIOLimit *io_limits = &bs->io_limits;
163     return io_limits->bps[BLOCK_IO_LIMIT_READ]
164          || io_limits->bps[BLOCK_IO_LIMIT_WRITE]
165          || io_limits->bps[BLOCK_IO_LIMIT_TOTAL]
166          || io_limits->iops[BLOCK_IO_LIMIT_READ]
167          || io_limits->iops[BLOCK_IO_LIMIT_WRITE]
168          || io_limits->iops[BLOCK_IO_LIMIT_TOTAL];
169 }
170
171 static void bdrv_io_limits_intercept(BlockDriverState *bs,
172                                      bool is_write, int nb_sectors)
173 {
174     int64_t wait_time = -1;
175
176     if (!qemu_co_queue_empty(&bs->throttled_reqs)) {
177         qemu_co_queue_wait(&bs->throttled_reqs);
178     }
179
180     /* In fact, we hope to keep each request's timing, in FIFO mode. The next
181      * throttled requests will not be dequeued until the current request is
182      * allowed to be serviced. So if the current request still exceeds the
183      * limits, it will be inserted to the head. All requests followed it will
184      * be still in throttled_reqs queue.
185      */
186
187     while (bdrv_exceed_io_limits(bs, nb_sectors, is_write, &wait_time)) {
188         qemu_mod_timer(bs->block_timer,
189                        wait_time + qemu_get_clock_ns(vm_clock));
190         qemu_co_queue_wait_insert_head(&bs->throttled_reqs);
191     }
192
193     qemu_co_queue_next(&bs->throttled_reqs);
194 }
195
196 /* check if the path starts with "<protocol>:" */
197 static int path_has_protocol(const char *path)
198 {
199 #ifdef _WIN32
200     if (is_windows_drive(path) ||
201         is_windows_drive_prefix(path)) {
202         return 0;
203     }
204 #endif
205
206     return strchr(path, ':') != NULL;
207 }
208
209 int path_is_absolute(const char *path)
210 {
211     const char *p;
212 #ifdef _WIN32
213     /* specific case for names like: "\\.\d:" */
214     if (*path == '/' || *path == '\\')
215         return 1;
216 #endif
217     p = strchr(path, ':');
218     if (p)
219         p++;
220     else
221         p = path;
222 #ifdef _WIN32
223     return (*p == '/' || *p == '\\');
224 #else
225     return (*p == '/');
226 #endif
227 }
228
229 /* if filename is absolute, just copy it to dest. Otherwise, build a
230    path to it by considering it is relative to base_path. URL are
231    supported. */
232 void path_combine(char *dest, int dest_size,
233                   const char *base_path,
234                   const char *filename)
235 {
236     const char *p, *p1;
237     int len;
238
239     if (dest_size <= 0)
240         return;
241     if (path_is_absolute(filename)) {
242         pstrcpy(dest, dest_size, filename);
243     } else {
244         p = strchr(base_path, ':');
245         if (p)
246             p++;
247         else
248             p = base_path;
249         p1 = strrchr(base_path, '/');
250 #ifdef _WIN32
251         {
252             const char *p2;
253             p2 = strrchr(base_path, '\\');
254             if (!p1 || p2 > p1)
255                 p1 = p2;
256         }
257 #endif
258         if (p1)
259             p1++;
260         else
261             p1 = base_path;
262         if (p1 > p)
263             p = p1;
264         len = p - base_path;
265         if (len > dest_size - 1)
266             len = dest_size - 1;
267         memcpy(dest, base_path, len);
268         dest[len] = '\0';
269         pstrcat(dest, dest_size, filename);
270     }
271 }
272
273 void bdrv_register(BlockDriver *bdrv)
274 {
275     /* Block drivers without coroutine functions need emulation */
276     if (!bdrv->bdrv_co_readv) {
277         bdrv->bdrv_co_readv = bdrv_co_readv_em;
278         bdrv->bdrv_co_writev = bdrv_co_writev_em;
279
280         /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
281          * the block driver lacks aio we need to emulate that too.
282          */
283         if (!bdrv->bdrv_aio_readv) {
284             /* add AIO emulation layer */
285             bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
286             bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
287         }
288     }
289
290     QLIST_INSERT_HEAD(&bdrv_drivers, bdrv, list);
291 }
292
293 /* create a new block device (by default it is empty) */
294 BlockDriverState *bdrv_new(const char *device_name)
295 {
296     BlockDriverState *bs;
297
298     bs = g_malloc0(sizeof(BlockDriverState));
299     pstrcpy(bs->device_name, sizeof(bs->device_name), device_name);
300     if (device_name[0] != '\0') {
301         QTAILQ_INSERT_TAIL(&bdrv_states, bs, list);
302     }
303     bdrv_iostatus_disable(bs);
304     return bs;
305 }
306
307 BlockDriver *bdrv_find_format(const char *format_name)
308 {
309     BlockDriver *drv1;
310     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
311         if (!strcmp(drv1->format_name, format_name)) {
312             return drv1;
313         }
314     }
315     return NULL;
316 }
317
318 static int bdrv_is_whitelisted(BlockDriver *drv)
319 {
320     static const char *whitelist[] = {
321         CONFIG_BDRV_WHITELIST
322     };
323     const char **p;
324
325     if (!whitelist[0])
326         return 1;               /* no whitelist, anything goes */
327
328     for (p = whitelist; *p; p++) {
329         if (!strcmp(drv->format_name, *p)) {
330             return 1;
331         }
332     }
333     return 0;
334 }
335
336 BlockDriver *bdrv_find_whitelisted_format(const char *format_name)
337 {
338     BlockDriver *drv = bdrv_find_format(format_name);
339     return drv && bdrv_is_whitelisted(drv) ? drv : NULL;
340 }
341
342 int bdrv_create(BlockDriver *drv, const char* filename,
343     QEMUOptionParameter *options)
344 {
345     if (!drv->bdrv_create)
346         return -ENOTSUP;
347
348     return drv->bdrv_create(filename, options);
349 }
350
351 int bdrv_create_file(const char* filename, QEMUOptionParameter *options)
352 {
353     BlockDriver *drv;
354
355     drv = bdrv_find_protocol(filename);
356     if (drv == NULL) {
357         return -ENOENT;
358     }
359
360     return bdrv_create(drv, filename, options);
361 }
362
363 #ifdef _WIN32
364 void get_tmp_filename(char *filename, int size)
365 {
366     char temp_dir[MAX_PATH];
367
368     GetTempPath(MAX_PATH, temp_dir);
369     GetTempFileName(temp_dir, "qem", 0, filename);
370 }
371 #else
372 void get_tmp_filename(char *filename, int size)
373 {
374     int fd;
375     const char *tmpdir;
376     /* XXX: race condition possible */
377     tmpdir = getenv("TMPDIR");
378     if (!tmpdir)
379         tmpdir = "/tmp";
380     snprintf(filename, size, "%s/vl.XXXXXX", tmpdir);
381     fd = mkstemp(filename);
382     close(fd);
383 }
384 #endif
385
386 /*
387  * Detect host devices. By convention, /dev/cdrom[N] is always
388  * recognized as a host CDROM.
389  */
390 static BlockDriver *find_hdev_driver(const char *filename)
391 {
392     int score_max = 0, score;
393     BlockDriver *drv = NULL, *d;
394
395     QLIST_FOREACH(d, &bdrv_drivers, list) {
396         if (d->bdrv_probe_device) {
397             score = d->bdrv_probe_device(filename);
398             if (score > score_max) {
399                 score_max = score;
400                 drv = d;
401             }
402         }
403     }
404
405     return drv;
406 }
407
408 BlockDriver *bdrv_find_protocol(const char *filename)
409 {
410     BlockDriver *drv1;
411     char protocol[128];
412     int len;
413     const char *p;
414
415     /* TODO Drivers without bdrv_file_open must be specified explicitly */
416
417     /*
418      * XXX(hch): we really should not let host device detection
419      * override an explicit protocol specification, but moving this
420      * later breaks access to device names with colons in them.
421      * Thanks to the brain-dead persistent naming schemes on udev-
422      * based Linux systems those actually are quite common.
423      */
424     drv1 = find_hdev_driver(filename);
425     if (drv1) {
426         return drv1;
427     }
428
429     if (!path_has_protocol(filename)) {
430         return bdrv_find_format("file");
431     }
432     p = strchr(filename, ':');
433     assert(p != NULL);
434     len = p - filename;
435     if (len > sizeof(protocol) - 1)
436         len = sizeof(protocol) - 1;
437     memcpy(protocol, filename, len);
438     protocol[len] = '\0';
439     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
440         if (drv1->protocol_name &&
441             !strcmp(drv1->protocol_name, protocol)) {
442             return drv1;
443         }
444     }
445     return NULL;
446 }
447
448 static int find_image_format(const char *filename, BlockDriver **pdrv)
449 {
450     int ret, score, score_max;
451     BlockDriver *drv1, *drv;
452     uint8_t buf[2048];
453     BlockDriverState *bs;
454
455     ret = bdrv_file_open(&bs, filename, 0);
456     if (ret < 0) {
457         *pdrv = NULL;
458         return ret;
459     }
460
461     /* Return the raw BlockDriver * to scsi-generic devices or empty drives */
462     if (bs->sg || !bdrv_is_inserted(bs)) {
463         bdrv_delete(bs);
464         drv = bdrv_find_format("raw");
465         if (!drv) {
466             ret = -ENOENT;
467         }
468         *pdrv = drv;
469         return ret;
470     }
471
472     ret = bdrv_pread(bs, 0, buf, sizeof(buf));
473     bdrv_delete(bs);
474     if (ret < 0) {
475         *pdrv = NULL;
476         return ret;
477     }
478
479     score_max = 0;
480     drv = NULL;
481     QLIST_FOREACH(drv1, &bdrv_drivers, list) {
482         if (drv1->bdrv_probe) {
483             score = drv1->bdrv_probe(buf, ret, filename);
484             if (score > score_max) {
485                 score_max = score;
486                 drv = drv1;
487             }
488         }
489     }
490     if (!drv) {
491         ret = -ENOENT;
492     }
493     *pdrv = drv;
494     return ret;
495 }
496
497 /**
498  * Set the current 'total_sectors' value
499  */
500 static int refresh_total_sectors(BlockDriverState *bs, int64_t hint)
501 {
502     BlockDriver *drv = bs->drv;
503
504     /* Do not attempt drv->bdrv_getlength() on scsi-generic devices */
505     if (bs->sg)
506         return 0;
507
508     /* query actual device if possible, otherwise just trust the hint */
509     if (drv->bdrv_getlength) {
510         int64_t length = drv->bdrv_getlength(bs);
511         if (length < 0) {
512             return length;
513         }
514         hint = length >> BDRV_SECTOR_BITS;
515     }
516
517     bs->total_sectors = hint;
518     return 0;
519 }
520
521 /**
522  * Set open flags for a given cache mode
523  *
524  * Return 0 on success, -1 if the cache mode was invalid.
525  */
526 int bdrv_parse_cache_flags(const char *mode, int *flags)
527 {
528     *flags &= ~BDRV_O_CACHE_MASK;
529
530     if (!strcmp(mode, "off") || !strcmp(mode, "none")) {
531         *flags |= BDRV_O_NOCACHE | BDRV_O_CACHE_WB;
532     } else if (!strcmp(mode, "directsync")) {
533         *flags |= BDRV_O_NOCACHE;
534     } else if (!strcmp(mode, "writeback")) {
535         *flags |= BDRV_O_CACHE_WB;
536     } else if (!strcmp(mode, "unsafe")) {
537         *flags |= BDRV_O_CACHE_WB;
538         *flags |= BDRV_O_NO_FLUSH;
539     } else if (!strcmp(mode, "writethrough")) {
540         /* this is the default */
541     } else {
542         return -1;
543     }
544
545     return 0;
546 }
547
548 /**
549  * The copy-on-read flag is actually a reference count so multiple users may
550  * use the feature without worrying about clobbering its previous state.
551  * Copy-on-read stays enabled until all users have called to disable it.
552  */
553 void bdrv_enable_copy_on_read(BlockDriverState *bs)
554 {
555     bs->copy_on_read++;
556 }
557
558 void bdrv_disable_copy_on_read(BlockDriverState *bs)
559 {
560     assert(bs->copy_on_read > 0);
561     bs->copy_on_read--;
562 }
563
564 /*
565  * Common part for opening disk images and files
566  */
567 static int bdrv_open_common(BlockDriverState *bs, const char *filename,
568     int flags, BlockDriver *drv)
569 {
570     int ret, open_flags;
571
572     assert(drv != NULL);
573
574     trace_bdrv_open_common(bs, filename, flags, drv->format_name);
575
576     bs->file = NULL;
577     bs->total_sectors = 0;
578     bs->encrypted = 0;
579     bs->valid_key = 0;
580     bs->sg = 0;
581     bs->open_flags = flags;
582     bs->growable = 0;
583     bs->buffer_alignment = 512;
584
585     assert(bs->copy_on_read == 0); /* bdrv_new() and bdrv_close() make it so */
586     if ((flags & BDRV_O_RDWR) && (flags & BDRV_O_COPY_ON_READ)) {
587         bdrv_enable_copy_on_read(bs);
588     }
589
590     pstrcpy(bs->filename, sizeof(bs->filename), filename);
591     bs->backing_file[0] = '\0';
592
593     if (use_bdrv_whitelist && !bdrv_is_whitelisted(drv)) {
594         return -ENOTSUP;
595     }
596
597     bs->drv = drv;
598     bs->opaque = g_malloc0(drv->instance_size);
599
600     bs->enable_write_cache = !!(flags & BDRV_O_CACHE_WB);
601
602     /*
603      * Clear flags that are internal to the block layer before opening the
604      * image.
605      */
606     open_flags = flags & ~(BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
607
608     /*
609      * Snapshots should be writable.
610      */
611     if (bs->is_temporary) {
612         open_flags |= BDRV_O_RDWR;
613     }
614
615     bs->keep_read_only = bs->read_only = !(open_flags & BDRV_O_RDWR);
616
617     /* Open the image, either directly or using a protocol */
618     if (drv->bdrv_file_open) {
619         ret = drv->bdrv_file_open(bs, filename, open_flags);
620     } else {
621         ret = bdrv_file_open(&bs->file, filename, open_flags);
622         if (ret >= 0) {
623             ret = drv->bdrv_open(bs, open_flags);
624         }
625     }
626
627     if (ret < 0) {
628         goto free_and_fail;
629     }
630
631     ret = refresh_total_sectors(bs, bs->total_sectors);
632     if (ret < 0) {
633         goto free_and_fail;
634     }
635
636 #ifndef _WIN32
637     if (bs->is_temporary) {
638         unlink(filename);
639     }
640 #endif
641     return 0;
642
643 free_and_fail:
644     if (bs->file) {
645         bdrv_delete(bs->file);
646         bs->file = NULL;
647     }
648     g_free(bs->opaque);
649     bs->opaque = NULL;
650     bs->drv = NULL;
651     return ret;
652 }
653
654 /*
655  * Opens a file using a protocol (file, host_device, nbd, ...)
656  */
657 int bdrv_file_open(BlockDriverState **pbs, const char *filename, int flags)
658 {
659     BlockDriverState *bs;
660     BlockDriver *drv;
661     int ret;
662
663     drv = bdrv_find_protocol(filename);
664     if (!drv) {
665         return -ENOENT;
666     }
667
668     bs = bdrv_new("");
669     ret = bdrv_open_common(bs, filename, flags, drv);
670     if (ret < 0) {
671         bdrv_delete(bs);
672         return ret;
673     }
674     bs->growable = 1;
675     *pbs = bs;
676     return 0;
677 }
678
679 /*
680  * Opens a disk image (raw, qcow2, vmdk, ...)
681  */
682 int bdrv_open(BlockDriverState *bs, const char *filename, int flags,
683               BlockDriver *drv)
684 {
685     int ret;
686     char tmp_filename[PATH_MAX];
687
688     if (flags & BDRV_O_SNAPSHOT) {
689         BlockDriverState *bs1;
690         int64_t total_size;
691         int is_protocol = 0;
692         BlockDriver *bdrv_qcow2;
693         QEMUOptionParameter *options;
694         char backing_filename[PATH_MAX];
695
696         /* if snapshot, we create a temporary backing file and open it
697            instead of opening 'filename' directly */
698
699         /* if there is a backing file, use it */
700         bs1 = bdrv_new("");
701         ret = bdrv_open(bs1, filename, 0, drv);
702         if (ret < 0) {
703             bdrv_delete(bs1);
704             return ret;
705         }
706         total_size = bdrv_getlength(bs1) & BDRV_SECTOR_MASK;
707
708         if (bs1->drv && bs1->drv->protocol_name)
709             is_protocol = 1;
710
711         bdrv_delete(bs1);
712
713         get_tmp_filename(tmp_filename, sizeof(tmp_filename));
714
715         /* Real path is meaningless for protocols */
716         if (is_protocol)
717             snprintf(backing_filename, sizeof(backing_filename),
718                      "%s", filename);
719         else if (!realpath(filename, backing_filename))
720             return -errno;
721
722         bdrv_qcow2 = bdrv_find_format("qcow2");
723         options = parse_option_parameters("", bdrv_qcow2->create_options, NULL);
724
725         set_option_parameter_int(options, BLOCK_OPT_SIZE, total_size);
726         set_option_parameter(options, BLOCK_OPT_BACKING_FILE, backing_filename);
727         if (drv) {
728             set_option_parameter(options, BLOCK_OPT_BACKING_FMT,
729                 drv->format_name);
730         }
731
732         ret = bdrv_create(bdrv_qcow2, tmp_filename, options);
733         free_option_parameters(options);
734         if (ret < 0) {
735             return ret;
736         }
737
738         filename = tmp_filename;
739         drv = bdrv_qcow2;
740         bs->is_temporary = 1;
741     }
742
743     /* Find the right image format driver */
744     if (!drv) {
745         ret = find_image_format(filename, &drv);
746     }
747
748     if (!drv) {
749         goto unlink_and_fail;
750     }
751
752     /* Open the image */
753     ret = bdrv_open_common(bs, filename, flags, drv);
754     if (ret < 0) {
755         goto unlink_and_fail;
756     }
757
758     /* If there is a backing file, use it */
759     if ((flags & BDRV_O_NO_BACKING) == 0 && bs->backing_file[0] != '\0') {
760         char backing_filename[PATH_MAX];
761         int back_flags;
762         BlockDriver *back_drv = NULL;
763
764         bs->backing_hd = bdrv_new("");
765
766         if (path_has_protocol(bs->backing_file)) {
767             pstrcpy(backing_filename, sizeof(backing_filename),
768                     bs->backing_file);
769         } else {
770             path_combine(backing_filename, sizeof(backing_filename),
771                          filename, bs->backing_file);
772         }
773
774         if (bs->backing_format[0] != '\0') {
775             back_drv = bdrv_find_format(bs->backing_format);
776         }
777
778         /* backing files always opened read-only */
779         back_flags =
780             flags & ~(BDRV_O_RDWR | BDRV_O_SNAPSHOT | BDRV_O_NO_BACKING);
781
782         ret = bdrv_open(bs->backing_hd, backing_filename, back_flags, back_drv);
783         if (ret < 0) {
784             bdrv_close(bs);
785             return ret;
786         }
787         if (bs->is_temporary) {
788             bs->backing_hd->keep_read_only = !(flags & BDRV_O_RDWR);
789         } else {
790             /* base image inherits from "parent" */
791             bs->backing_hd->keep_read_only = bs->keep_read_only;
792         }
793     }
794
795     if (!bdrv_key_required(bs)) {
796         bdrv_dev_change_media_cb(bs, true);
797     }
798
799     /* throttling disk I/O limits */
800     if (bs->io_limits_enabled) {
801         bdrv_io_limits_enable(bs);
802     }
803
804     return 0;
805
806 unlink_and_fail:
807     if (bs->is_temporary) {
808         unlink(filename);
809     }
810     return ret;
811 }
812
813 void bdrv_close(BlockDriverState *bs)
814 {
815     if (bs->drv) {
816         if (bs == bs_snapshots) {
817             bs_snapshots = NULL;
818         }
819         if (bs->backing_hd) {
820             bdrv_delete(bs->backing_hd);
821             bs->backing_hd = NULL;
822         }
823         bs->drv->bdrv_close(bs);
824         g_free(bs->opaque);
825 #ifdef _WIN32
826         if (bs->is_temporary) {
827             unlink(bs->filename);
828         }
829 #endif
830         bs->opaque = NULL;
831         bs->drv = NULL;
832         bs->copy_on_read = 0;
833
834         if (bs->file != NULL) {
835             bdrv_close(bs->file);
836         }
837
838         bdrv_dev_change_media_cb(bs, false);
839     }
840
841     /*throttling disk I/O limits*/
842     if (bs->io_limits_enabled) {
843         bdrv_io_limits_disable(bs);
844     }
845 }
846
847 void bdrv_close_all(void)
848 {
849     BlockDriverState *bs;
850
851     QTAILQ_FOREACH(bs, &bdrv_states, list) {
852         bdrv_close(bs);
853     }
854 }
855
856 /*
857  * Wait for pending requests to complete across all BlockDriverStates
858  *
859  * This function does not flush data to disk, use bdrv_flush_all() for that
860  * after calling this function.
861  */
862 void bdrv_drain_all(void)
863 {
864     BlockDriverState *bs;
865
866     qemu_aio_flush();
867
868     /* If requests are still pending there is a bug somewhere */
869     QTAILQ_FOREACH(bs, &bdrv_states, list) {
870         assert(QLIST_EMPTY(&bs->tracked_requests));
871         assert(qemu_co_queue_empty(&bs->throttled_reqs));
872     }
873 }
874
875 /* make a BlockDriverState anonymous by removing from bdrv_state list.
876    Also, NULL terminate the device_name to prevent double remove */
877 void bdrv_make_anon(BlockDriverState *bs)
878 {
879     if (bs->device_name[0] != '\0') {
880         QTAILQ_REMOVE(&bdrv_states, bs, list);
881     }
882     bs->device_name[0] = '\0';
883 }
884
885 /*
886  * Add new bs contents at the top of an image chain while the chain is
887  * live, while keeping required fields on the top layer.
888  *
889  * This will modify the BlockDriverState fields, and swap contents
890  * between bs_new and bs_top. Both bs_new and bs_top are modified.
891  *
892  * This function does not create any image files.
893  */
894 void bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top)
895 {
896     BlockDriverState tmp;
897
898     /* the new bs must not be in bdrv_states */
899     bdrv_make_anon(bs_new);
900
901     tmp = *bs_new;
902
903     /* there are some fields that need to stay on the top layer: */
904
905     /* dev info */
906     tmp.dev_ops           = bs_top->dev_ops;
907     tmp.dev_opaque        = bs_top->dev_opaque;
908     tmp.dev               = bs_top->dev;
909     tmp.buffer_alignment  = bs_top->buffer_alignment;
910     tmp.copy_on_read      = bs_top->copy_on_read;
911
912     /* i/o timing parameters */
913     tmp.slice_time        = bs_top->slice_time;
914     tmp.slice_start       = bs_top->slice_start;
915     tmp.slice_end         = bs_top->slice_end;
916     tmp.io_limits         = bs_top->io_limits;
917     tmp.io_base           = bs_top->io_base;
918     tmp.throttled_reqs    = bs_top->throttled_reqs;
919     tmp.block_timer       = bs_top->block_timer;
920     tmp.io_limits_enabled = bs_top->io_limits_enabled;
921
922     /* geometry */
923     tmp.cyls              = bs_top->cyls;
924     tmp.heads             = bs_top->heads;
925     tmp.secs              = bs_top->secs;
926     tmp.translation       = bs_top->translation;
927
928     /* r/w error */
929     tmp.on_read_error     = bs_top->on_read_error;
930     tmp.on_write_error    = bs_top->on_write_error;
931
932     /* i/o status */
933     tmp.iostatus_enabled  = bs_top->iostatus_enabled;
934     tmp.iostatus          = bs_top->iostatus;
935
936     /* keep the same entry in bdrv_states */
937     pstrcpy(tmp.device_name, sizeof(tmp.device_name), bs_top->device_name);
938     tmp.list = bs_top->list;
939
940     /* The contents of 'tmp' will become bs_top, as we are
941      * swapping bs_new and bs_top contents. */
942     tmp.backing_hd = bs_new;
943     pstrcpy(tmp.backing_file, sizeof(tmp.backing_file), bs_top->filename);
944
945     /* swap contents of the fixed new bs and the current top */
946     *bs_new = *bs_top;
947     *bs_top = tmp;
948
949     /* clear the copied fields in the new backing file */
950     bdrv_detach_dev(bs_new, bs_new->dev);
951
952     qemu_co_queue_init(&bs_new->throttled_reqs);
953     memset(&bs_new->io_base,   0, sizeof(bs_new->io_base));
954     memset(&bs_new->io_limits, 0, sizeof(bs_new->io_limits));
955     bdrv_iostatus_disable(bs_new);
956
957     /* we don't use bdrv_io_limits_disable() for this, because we don't want
958      * to affect or delete the block_timer, as it has been moved to bs_top */
959     bs_new->io_limits_enabled = false;
960     bs_new->block_timer       = NULL;
961     bs_new->slice_time        = 0;
962     bs_new->slice_start       = 0;
963     bs_new->slice_end         = 0;
964 }
965
966 void bdrv_delete(BlockDriverState *bs)
967 {
968     assert(!bs->dev);
969
970     /* remove from list, if necessary */
971     bdrv_make_anon(bs);
972
973     bdrv_close(bs);
974     if (bs->file != NULL) {
975         bdrv_delete(bs->file);
976     }
977
978     assert(bs != bs_snapshots);
979     g_free(bs);
980 }
981
982 int bdrv_attach_dev(BlockDriverState *bs, void *dev)
983 /* TODO change to DeviceState *dev when all users are qdevified */
984 {
985     if (bs->dev) {
986         return -EBUSY;
987     }
988     bs->dev = dev;
989     bdrv_iostatus_reset(bs);
990     return 0;
991 }
992
993 /* TODO qdevified devices don't use this, remove when devices are qdevified */
994 void bdrv_attach_dev_nofail(BlockDriverState *bs, void *dev)
995 {
996     if (bdrv_attach_dev(bs, dev) < 0) {
997         abort();
998     }
999 }
1000
1001 void bdrv_detach_dev(BlockDriverState *bs, void *dev)
1002 /* TODO change to DeviceState *dev when all users are qdevified */
1003 {
1004     assert(bs->dev == dev);
1005     bs->dev = NULL;
1006     bs->dev_ops = NULL;
1007     bs->dev_opaque = NULL;
1008     bs->buffer_alignment = 512;
1009 }
1010
1011 /* TODO change to return DeviceState * when all users are qdevified */
1012 void *bdrv_get_attached_dev(BlockDriverState *bs)
1013 {
1014     return bs->dev;
1015 }
1016
1017 void bdrv_set_dev_ops(BlockDriverState *bs, const BlockDevOps *ops,
1018                       void *opaque)
1019 {
1020     bs->dev_ops = ops;
1021     bs->dev_opaque = opaque;
1022     if (bdrv_dev_has_removable_media(bs) && bs == bs_snapshots) {
1023         bs_snapshots = NULL;
1024     }
1025 }
1026
1027 void bdrv_emit_qmp_error_event(const BlockDriverState *bdrv,
1028                                BlockQMPEventAction action, int is_read)
1029 {
1030     QObject *data;
1031     const char *action_str;
1032
1033     switch (action) {
1034     case BDRV_ACTION_REPORT:
1035         action_str = "report";
1036         break;
1037     case BDRV_ACTION_IGNORE:
1038         action_str = "ignore";
1039         break;
1040     case BDRV_ACTION_STOP:
1041         action_str = "stop";
1042         break;
1043     default:
1044         abort();
1045     }
1046
1047     data = qobject_from_jsonf("{ 'device': %s, 'action': %s, 'operation': %s }",
1048                               bdrv->device_name,
1049                               action_str,
1050                               is_read ? "read" : "write");
1051     monitor_protocol_event(QEVENT_BLOCK_IO_ERROR, data);
1052
1053     qobject_decref(data);
1054 }
1055
1056 static void bdrv_emit_qmp_eject_event(BlockDriverState *bs, bool ejected)
1057 {
1058     QObject *data;
1059
1060     data = qobject_from_jsonf("{ 'device': %s, 'tray-open': %i }",
1061                               bdrv_get_device_name(bs), ejected);
1062     monitor_protocol_event(QEVENT_DEVICE_TRAY_MOVED, data);
1063
1064     qobject_decref(data);
1065 }
1066
1067 static void bdrv_dev_change_media_cb(BlockDriverState *bs, bool load)
1068 {
1069     if (bs->dev_ops && bs->dev_ops->change_media_cb) {
1070         bool tray_was_closed = !bdrv_dev_is_tray_open(bs);
1071         bs->dev_ops->change_media_cb(bs->dev_opaque, load);
1072         if (tray_was_closed) {
1073             /* tray open */
1074             bdrv_emit_qmp_eject_event(bs, true);
1075         }
1076         if (load) {
1077             /* tray close */
1078             bdrv_emit_qmp_eject_event(bs, false);
1079         }
1080     }
1081 }
1082
1083 bool bdrv_dev_has_removable_media(BlockDriverState *bs)
1084 {
1085     return !bs->dev || (bs->dev_ops && bs->dev_ops->change_media_cb);
1086 }
1087
1088 void bdrv_dev_eject_request(BlockDriverState *bs, bool force)
1089 {
1090     if (bs->dev_ops && bs->dev_ops->eject_request_cb) {
1091         bs->dev_ops->eject_request_cb(bs->dev_opaque, force);
1092     }
1093 }
1094
1095 bool bdrv_dev_is_tray_open(BlockDriverState *bs)
1096 {
1097     if (bs->dev_ops && bs->dev_ops->is_tray_open) {
1098         return bs->dev_ops->is_tray_open(bs->dev_opaque);
1099     }
1100     return false;
1101 }
1102
1103 static void bdrv_dev_resize_cb(BlockDriverState *bs)
1104 {
1105     if (bs->dev_ops && bs->dev_ops->resize_cb) {
1106         bs->dev_ops->resize_cb(bs->dev_opaque);
1107     }
1108 }
1109
1110 bool bdrv_dev_is_medium_locked(BlockDriverState *bs)
1111 {
1112     if (bs->dev_ops && bs->dev_ops->is_medium_locked) {
1113         return bs->dev_ops->is_medium_locked(bs->dev_opaque);
1114     }
1115     return false;
1116 }
1117
1118 /*
1119  * Run consistency checks on an image
1120  *
1121  * Returns 0 if the check could be completed (it doesn't mean that the image is
1122  * free of errors) or -errno when an internal error occurred. The results of the
1123  * check are stored in res.
1124  */
1125 int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res)
1126 {
1127     if (bs->drv->bdrv_check == NULL) {
1128         return -ENOTSUP;
1129     }
1130
1131     memset(res, 0, sizeof(*res));
1132     return bs->drv->bdrv_check(bs, res);
1133 }
1134
1135 #define COMMIT_BUF_SECTORS 2048
1136
1137 /* commit COW file into the raw image */
1138 int bdrv_commit(BlockDriverState *bs)
1139 {
1140     BlockDriver *drv = bs->drv;
1141     BlockDriver *backing_drv;
1142     int64_t sector, total_sectors;
1143     int n, ro, open_flags;
1144     int ret = 0, rw_ret = 0;
1145     uint8_t *buf;
1146     char filename[1024];
1147     BlockDriverState *bs_rw, *bs_ro;
1148
1149     if (!drv)
1150         return -ENOMEDIUM;
1151     
1152     if (!bs->backing_hd) {
1153         return -ENOTSUP;
1154     }
1155
1156     if (bs->backing_hd->keep_read_only) {
1157         return -EACCES;
1158     }
1159
1160     if (bdrv_in_use(bs) || bdrv_in_use(bs->backing_hd)) {
1161         return -EBUSY;
1162     }
1163
1164     backing_drv = bs->backing_hd->drv;
1165     ro = bs->backing_hd->read_only;
1166     strncpy(filename, bs->backing_hd->filename, sizeof(filename));
1167     open_flags =  bs->backing_hd->open_flags;
1168
1169     if (ro) {
1170         /* re-open as RW */
1171         bdrv_delete(bs->backing_hd);
1172         bs->backing_hd = NULL;
1173         bs_rw = bdrv_new("");
1174         rw_ret = bdrv_open(bs_rw, filename, open_flags | BDRV_O_RDWR,
1175             backing_drv);
1176         if (rw_ret < 0) {
1177             bdrv_delete(bs_rw);
1178             /* try to re-open read-only */
1179             bs_ro = bdrv_new("");
1180             ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1181                 backing_drv);
1182             if (ret < 0) {
1183                 bdrv_delete(bs_ro);
1184                 /* drive not functional anymore */
1185                 bs->drv = NULL;
1186                 return ret;
1187             }
1188             bs->backing_hd = bs_ro;
1189             return rw_ret;
1190         }
1191         bs->backing_hd = bs_rw;
1192     }
1193
1194     total_sectors = bdrv_getlength(bs) >> BDRV_SECTOR_BITS;
1195     buf = g_malloc(COMMIT_BUF_SECTORS * BDRV_SECTOR_SIZE);
1196
1197     for (sector = 0; sector < total_sectors; sector += n) {
1198         if (bdrv_is_allocated(bs, sector, COMMIT_BUF_SECTORS, &n)) {
1199
1200             if (bdrv_read(bs, sector, buf, n) != 0) {
1201                 ret = -EIO;
1202                 goto ro_cleanup;
1203             }
1204
1205             if (bdrv_write(bs->backing_hd, sector, buf, n) != 0) {
1206                 ret = -EIO;
1207                 goto ro_cleanup;
1208             }
1209         }
1210     }
1211
1212     if (drv->bdrv_make_empty) {
1213         ret = drv->bdrv_make_empty(bs);
1214         bdrv_flush(bs);
1215     }
1216
1217     /*
1218      * Make sure all data we wrote to the backing device is actually
1219      * stable on disk.
1220      */
1221     if (bs->backing_hd)
1222         bdrv_flush(bs->backing_hd);
1223
1224 ro_cleanup:
1225     g_free(buf);
1226
1227     if (ro) {
1228         /* re-open as RO */
1229         bdrv_delete(bs->backing_hd);
1230         bs->backing_hd = NULL;
1231         bs_ro = bdrv_new("");
1232         ret = bdrv_open(bs_ro, filename, open_flags & ~BDRV_O_RDWR,
1233             backing_drv);
1234         if (ret < 0) {
1235             bdrv_delete(bs_ro);
1236             /* drive not functional anymore */
1237             bs->drv = NULL;
1238             return ret;
1239         }
1240         bs->backing_hd = bs_ro;
1241         bs->backing_hd->keep_read_only = 0;
1242     }
1243
1244     return ret;
1245 }
1246
1247 void bdrv_commit_all(void)
1248 {
1249     BlockDriverState *bs;
1250
1251     QTAILQ_FOREACH(bs, &bdrv_states, list) {
1252         bdrv_commit(bs);
1253     }
1254 }
1255
1256 struct BdrvTrackedRequest {
1257     BlockDriverState *bs;
1258     int64_t sector_num;
1259     int nb_sectors;
1260     bool is_write;
1261     QLIST_ENTRY(BdrvTrackedRequest) list;
1262     Coroutine *co; /* owner, used for deadlock detection */
1263     CoQueue wait_queue; /* coroutines blocked on this request */
1264 };
1265
1266 /**
1267  * Remove an active request from the tracked requests list
1268  *
1269  * This function should be called when a tracked request is completing.
1270  */
1271 static void tracked_request_end(BdrvTrackedRequest *req)
1272 {
1273     QLIST_REMOVE(req, list);
1274     qemu_co_queue_restart_all(&req->wait_queue);
1275 }
1276
1277 /**
1278  * Add an active request to the tracked requests list
1279  */
1280 static void tracked_request_begin(BdrvTrackedRequest *req,
1281                                   BlockDriverState *bs,
1282                                   int64_t sector_num,
1283                                   int nb_sectors, bool is_write)
1284 {
1285     *req = (BdrvTrackedRequest){
1286         .bs = bs,
1287         .sector_num = sector_num,
1288         .nb_sectors = nb_sectors,
1289         .is_write = is_write,
1290         .co = qemu_coroutine_self(),
1291     };
1292
1293     qemu_co_queue_init(&req->wait_queue);
1294
1295     QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
1296 }
1297
1298 /**
1299  * Round a region to cluster boundaries
1300  */
1301 static void round_to_clusters(BlockDriverState *bs,
1302                               int64_t sector_num, int nb_sectors,
1303                               int64_t *cluster_sector_num,
1304                               int *cluster_nb_sectors)
1305 {
1306     BlockDriverInfo bdi;
1307
1308     if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
1309         *cluster_sector_num = sector_num;
1310         *cluster_nb_sectors = nb_sectors;
1311     } else {
1312         int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
1313         *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
1314         *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
1315                                             nb_sectors, c);
1316     }
1317 }
1318
1319 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
1320                                      int64_t sector_num, int nb_sectors) {
1321     /*        aaaa   bbbb */
1322     if (sector_num >= req->sector_num + req->nb_sectors) {
1323         return false;
1324     }
1325     /* bbbb   aaaa        */
1326     if (req->sector_num >= sector_num + nb_sectors) {
1327         return false;
1328     }
1329     return true;
1330 }
1331
1332 static void coroutine_fn wait_for_overlapping_requests(BlockDriverState *bs,
1333         int64_t sector_num, int nb_sectors)
1334 {
1335     BdrvTrackedRequest *req;
1336     int64_t cluster_sector_num;
1337     int cluster_nb_sectors;
1338     bool retry;
1339
1340     /* If we touch the same cluster it counts as an overlap.  This guarantees
1341      * that allocating writes will be serialized and not race with each other
1342      * for the same cluster.  For example, in copy-on-read it ensures that the
1343      * CoR read and write operations are atomic and guest writes cannot
1344      * interleave between them.
1345      */
1346     round_to_clusters(bs, sector_num, nb_sectors,
1347                       &cluster_sector_num, &cluster_nb_sectors);
1348
1349     do {
1350         retry = false;
1351         QLIST_FOREACH(req, &bs->tracked_requests, list) {
1352             if (tracked_request_overlaps(req, cluster_sector_num,
1353                                          cluster_nb_sectors)) {
1354                 /* Hitting this means there was a reentrant request, for
1355                  * example, a block driver issuing nested requests.  This must
1356                  * never happen since it means deadlock.
1357                  */
1358                 assert(qemu_coroutine_self() != req->co);
1359
1360                 qemu_co_queue_wait(&req->wait_queue);
1361                 retry = true;
1362                 break;
1363             }
1364         }
1365     } while (retry);
1366 }
1367
1368 /*
1369  * Return values:
1370  * 0        - success
1371  * -EINVAL  - backing format specified, but no file
1372  * -ENOSPC  - can't update the backing file because no space is left in the
1373  *            image file header
1374  * -ENOTSUP - format driver doesn't support changing the backing file
1375  */
1376 int bdrv_change_backing_file(BlockDriverState *bs,
1377     const char *backing_file, const char *backing_fmt)
1378 {
1379     BlockDriver *drv = bs->drv;
1380
1381     if (drv->bdrv_change_backing_file != NULL) {
1382         return drv->bdrv_change_backing_file(bs, backing_file, backing_fmt);
1383     } else {
1384         return -ENOTSUP;
1385     }
1386 }
1387
1388 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
1389                                    size_t size)
1390 {
1391     int64_t len;
1392
1393     if (!bdrv_is_inserted(bs))
1394         return -ENOMEDIUM;
1395
1396     if (bs->growable)
1397         return 0;
1398
1399     len = bdrv_getlength(bs);
1400
1401     if (offset < 0)
1402         return -EIO;
1403
1404     if ((offset > len) || (len - offset < size))
1405         return -EIO;
1406
1407     return 0;
1408 }
1409
1410 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
1411                               int nb_sectors)
1412 {
1413     return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
1414                                    nb_sectors * BDRV_SECTOR_SIZE);
1415 }
1416
1417 typedef struct RwCo {
1418     BlockDriverState *bs;
1419     int64_t sector_num;
1420     int nb_sectors;
1421     QEMUIOVector *qiov;
1422     bool is_write;
1423     int ret;
1424 } RwCo;
1425
1426 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
1427 {
1428     RwCo *rwco = opaque;
1429
1430     if (!rwco->is_write) {
1431         rwco->ret = bdrv_co_do_readv(rwco->bs, rwco->sector_num,
1432                                      rwco->nb_sectors, rwco->qiov, 0);
1433     } else {
1434         rwco->ret = bdrv_co_do_writev(rwco->bs, rwco->sector_num,
1435                                       rwco->nb_sectors, rwco->qiov, 0);
1436     }
1437 }
1438
1439 /*
1440  * Process a synchronous request using coroutines
1441  */
1442 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
1443                       int nb_sectors, bool is_write)
1444 {
1445     QEMUIOVector qiov;
1446     struct iovec iov = {
1447         .iov_base = (void *)buf,
1448         .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
1449     };
1450     Coroutine *co;
1451     RwCo rwco = {
1452         .bs = bs,
1453         .sector_num = sector_num,
1454         .nb_sectors = nb_sectors,
1455         .qiov = &qiov,
1456         .is_write = is_write,
1457         .ret = NOT_DONE,
1458     };
1459
1460     qemu_iovec_init_external(&qiov, &iov, 1);
1461
1462     if (qemu_in_coroutine()) {
1463         /* Fast-path if already in coroutine context */
1464         bdrv_rw_co_entry(&rwco);
1465     } else {
1466         co = qemu_coroutine_create(bdrv_rw_co_entry);
1467         qemu_coroutine_enter(co, &rwco);
1468         while (rwco.ret == NOT_DONE) {
1469             qemu_aio_wait();
1470         }
1471     }
1472     return rwco.ret;
1473 }
1474
1475 /* return < 0 if error. See bdrv_write() for the return codes */
1476 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
1477               uint8_t *buf, int nb_sectors)
1478 {
1479     return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false);
1480 }
1481
1482 static void set_dirty_bitmap(BlockDriverState *bs, int64_t sector_num,
1483                              int nb_sectors, int dirty)
1484 {
1485     int64_t start, end;
1486     unsigned long val, idx, bit;
1487
1488     start = sector_num / BDRV_SECTORS_PER_DIRTY_CHUNK;
1489     end = (sector_num + nb_sectors - 1) / BDRV_SECTORS_PER_DIRTY_CHUNK;
1490
1491     for (; start <= end; start++) {
1492         idx = start / (sizeof(unsigned long) * 8);
1493         bit = start % (sizeof(unsigned long) * 8);
1494         val = bs->dirty_bitmap[idx];
1495         if (dirty) {
1496             if (!(val & (1UL << bit))) {
1497                 bs->dirty_count++;
1498                 val |= 1UL << bit;
1499             }
1500         } else {
1501             if (val & (1UL << bit)) {
1502                 bs->dirty_count--;
1503                 val &= ~(1UL << bit);
1504             }
1505         }
1506         bs->dirty_bitmap[idx] = val;
1507     }
1508 }
1509
1510 /* Return < 0 if error. Important errors are:
1511   -EIO         generic I/O error (may happen for all errors)
1512   -ENOMEDIUM   No media inserted.
1513   -EINVAL      Invalid sector number or nb_sectors
1514   -EACCES      Trying to write a read-only device
1515 */
1516 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
1517                const uint8_t *buf, int nb_sectors)
1518 {
1519     return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true);
1520 }
1521
1522 int bdrv_pread(BlockDriverState *bs, int64_t offset,
1523                void *buf, int count1)
1524 {
1525     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1526     int len, nb_sectors, count;
1527     int64_t sector_num;
1528     int ret;
1529
1530     count = count1;
1531     /* first read to align to sector start */
1532     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1533     if (len > count)
1534         len = count;
1535     sector_num = offset >> BDRV_SECTOR_BITS;
1536     if (len > 0) {
1537         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1538             return ret;
1539         memcpy(buf, tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), len);
1540         count -= len;
1541         if (count == 0)
1542             return count1;
1543         sector_num++;
1544         buf += len;
1545     }
1546
1547     /* read the sectors "in place" */
1548     nb_sectors = count >> BDRV_SECTOR_BITS;
1549     if (nb_sectors > 0) {
1550         if ((ret = bdrv_read(bs, sector_num, buf, nb_sectors)) < 0)
1551             return ret;
1552         sector_num += nb_sectors;
1553         len = nb_sectors << BDRV_SECTOR_BITS;
1554         buf += len;
1555         count -= len;
1556     }
1557
1558     /* add data from the last sector */
1559     if (count > 0) {
1560         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1561             return ret;
1562         memcpy(buf, tmp_buf, count);
1563     }
1564     return count1;
1565 }
1566
1567 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
1568                 const void *buf, int count1)
1569 {
1570     uint8_t tmp_buf[BDRV_SECTOR_SIZE];
1571     int len, nb_sectors, count;
1572     int64_t sector_num;
1573     int ret;
1574
1575     count = count1;
1576     /* first write to align to sector start */
1577     len = (BDRV_SECTOR_SIZE - offset) & (BDRV_SECTOR_SIZE - 1);
1578     if (len > count)
1579         len = count;
1580     sector_num = offset >> BDRV_SECTOR_BITS;
1581     if (len > 0) {
1582         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1583             return ret;
1584         memcpy(tmp_buf + (offset & (BDRV_SECTOR_SIZE - 1)), buf, len);
1585         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1586             return ret;
1587         count -= len;
1588         if (count == 0)
1589             return count1;
1590         sector_num++;
1591         buf += len;
1592     }
1593
1594     /* write the sectors "in place" */
1595     nb_sectors = count >> BDRV_SECTOR_BITS;
1596     if (nb_sectors > 0) {
1597         if ((ret = bdrv_write(bs, sector_num, buf, nb_sectors)) < 0)
1598             return ret;
1599         sector_num += nb_sectors;
1600         len = nb_sectors << BDRV_SECTOR_BITS;
1601         buf += len;
1602         count -= len;
1603     }
1604
1605     /* add data from the last sector */
1606     if (count > 0) {
1607         if ((ret = bdrv_read(bs, sector_num, tmp_buf, 1)) < 0)
1608             return ret;
1609         memcpy(tmp_buf, buf, count);
1610         if ((ret = bdrv_write(bs, sector_num, tmp_buf, 1)) < 0)
1611             return ret;
1612     }
1613     return count1;
1614 }
1615
1616 /*
1617  * Writes to the file and ensures that no writes are reordered across this
1618  * request (acts as a barrier)
1619  *
1620  * Returns 0 on success, -errno in error cases.
1621  */
1622 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
1623     const void *buf, int count)
1624 {
1625     int ret;
1626
1627     ret = bdrv_pwrite(bs, offset, buf, count);
1628     if (ret < 0) {
1629         return ret;
1630     }
1631
1632     /* No flush needed for cache modes that use O_DSYNC */
1633     if ((bs->open_flags & BDRV_O_CACHE_WB) != 0) {
1634         bdrv_flush(bs);
1635     }
1636
1637     return 0;
1638 }
1639
1640 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
1641         int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1642 {
1643     /* Perform I/O through a temporary buffer so that users who scribble over
1644      * their read buffer while the operation is in progress do not end up
1645      * modifying the image file.  This is critical for zero-copy guest I/O
1646      * where anything might happen inside guest memory.
1647      */
1648     void *bounce_buffer;
1649
1650     BlockDriver *drv = bs->drv;
1651     struct iovec iov;
1652     QEMUIOVector bounce_qiov;
1653     int64_t cluster_sector_num;
1654     int cluster_nb_sectors;
1655     size_t skip_bytes;
1656     int ret;
1657
1658     /* Cover entire cluster so no additional backing file I/O is required when
1659      * allocating cluster in the image file.
1660      */
1661     round_to_clusters(bs, sector_num, nb_sectors,
1662                       &cluster_sector_num, &cluster_nb_sectors);
1663
1664     trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
1665                                    cluster_sector_num, cluster_nb_sectors);
1666
1667     iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
1668     iov.iov_base = bounce_buffer = qemu_blockalign(bs, iov.iov_len);
1669     qemu_iovec_init_external(&bounce_qiov, &iov, 1);
1670
1671     ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
1672                              &bounce_qiov);
1673     if (ret < 0) {
1674         goto err;
1675     }
1676
1677     if (drv->bdrv_co_write_zeroes &&
1678         buffer_is_zero(bounce_buffer, iov.iov_len)) {
1679         ret = drv->bdrv_co_write_zeroes(bs, cluster_sector_num,
1680                                         cluster_nb_sectors);
1681     } else {
1682         ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
1683                                   &bounce_qiov);
1684     }
1685
1686     if (ret < 0) {
1687         /* It might be okay to ignore write errors for guest requests.  If this
1688          * is a deliberate copy-on-read then we don't want to ignore the error.
1689          * Simply report it in all cases.
1690          */
1691         goto err;
1692     }
1693
1694     skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
1695     qemu_iovec_from_buffer(qiov, bounce_buffer + skip_bytes,
1696                            nb_sectors * BDRV_SECTOR_SIZE);
1697
1698 err:
1699     qemu_vfree(bounce_buffer);
1700     return ret;
1701 }
1702
1703 /*
1704  * Handle a read request in coroutine context
1705  */
1706 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1707     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1708     BdrvRequestFlags flags)
1709 {
1710     BlockDriver *drv = bs->drv;
1711     BdrvTrackedRequest req;
1712     int ret;
1713
1714     if (!drv) {
1715         return -ENOMEDIUM;
1716     }
1717     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1718         return -EIO;
1719     }
1720
1721     /* throttling disk read I/O */
1722     if (bs->io_limits_enabled) {
1723         bdrv_io_limits_intercept(bs, false, nb_sectors);
1724     }
1725
1726     if (bs->copy_on_read) {
1727         flags |= BDRV_REQ_COPY_ON_READ;
1728     }
1729     if (flags & BDRV_REQ_COPY_ON_READ) {
1730         bs->copy_on_read_in_flight++;
1731     }
1732
1733     if (bs->copy_on_read_in_flight) {
1734         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1735     }
1736
1737     tracked_request_begin(&req, bs, sector_num, nb_sectors, false);
1738
1739     if (flags & BDRV_REQ_COPY_ON_READ) {
1740         int pnum;
1741
1742         ret = bdrv_co_is_allocated(bs, sector_num, nb_sectors, &pnum);
1743         if (ret < 0) {
1744             goto out;
1745         }
1746
1747         if (!ret || pnum != nb_sectors) {
1748             ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
1749             goto out;
1750         }
1751     }
1752
1753     ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1754
1755 out:
1756     tracked_request_end(&req);
1757
1758     if (flags & BDRV_REQ_COPY_ON_READ) {
1759         bs->copy_on_read_in_flight--;
1760     }
1761
1762     return ret;
1763 }
1764
1765 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1766     int nb_sectors, QEMUIOVector *qiov)
1767 {
1768     trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1769
1770     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1771 }
1772
1773 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1774     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1775 {
1776     trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1777
1778     return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1779                             BDRV_REQ_COPY_ON_READ);
1780 }
1781
1782 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1783     int64_t sector_num, int nb_sectors)
1784 {
1785     BlockDriver *drv = bs->drv;
1786     QEMUIOVector qiov;
1787     struct iovec iov;
1788     int ret;
1789
1790     /* First try the efficient write zeroes operation */
1791     if (drv->bdrv_co_write_zeroes) {
1792         return drv->bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1793     }
1794
1795     /* Fall back to bounce buffer if write zeroes is unsupported */
1796     iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE;
1797     iov.iov_base = qemu_blockalign(bs, iov.iov_len);
1798     memset(iov.iov_base, 0, iov.iov_len);
1799     qemu_iovec_init_external(&qiov, &iov, 1);
1800
1801     ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, &qiov);
1802
1803     qemu_vfree(iov.iov_base);
1804     return ret;
1805 }
1806
1807 /*
1808  * Handle a write request in coroutine context
1809  */
1810 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1811     int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1812     BdrvRequestFlags flags)
1813 {
1814     BlockDriver *drv = bs->drv;
1815     BdrvTrackedRequest req;
1816     int ret;
1817
1818     if (!bs->drv) {
1819         return -ENOMEDIUM;
1820     }
1821     if (bs->read_only) {
1822         return -EACCES;
1823     }
1824     if (bdrv_check_request(bs, sector_num, nb_sectors)) {
1825         return -EIO;
1826     }
1827
1828     /* throttling disk write I/O */
1829     if (bs->io_limits_enabled) {
1830         bdrv_io_limits_intercept(bs, true, nb_sectors);
1831     }
1832
1833     if (bs->copy_on_read_in_flight) {
1834         wait_for_overlapping_requests(bs, sector_num, nb_sectors);
1835     }
1836
1837     tracked_request_begin(&req, bs, sector_num, nb_sectors, true);
1838
1839     if (flags & BDRV_REQ_ZERO_WRITE) {
1840         ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors);
1841     } else {
1842         ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1843     }
1844
1845     if (bs->dirty_bitmap) {
1846         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
1847     }
1848
1849     if (bs->wr_highest_sector < sector_num + nb_sectors - 1) {
1850         bs->wr_highest_sector = sector_num + nb_sectors - 1;
1851     }
1852
1853     tracked_request_end(&req);
1854
1855     return ret;
1856 }
1857
1858 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1859     int nb_sectors, QEMUIOVector *qiov)
1860 {
1861     trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1862
1863     return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1864 }
1865
1866 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1867                                       int64_t sector_num, int nb_sectors)
1868 {
1869     trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors);
1870
1871     return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1872                              BDRV_REQ_ZERO_WRITE);
1873 }
1874
1875 /**
1876  * Truncate file to 'offset' bytes (needed only for file protocols)
1877  */
1878 int bdrv_truncate(BlockDriverState *bs, int64_t offset)
1879 {
1880     BlockDriver *drv = bs->drv;
1881     int ret;
1882     if (!drv)
1883         return -ENOMEDIUM;
1884     if (!drv->bdrv_truncate)
1885         return -ENOTSUP;
1886     if (bs->read_only)
1887         return -EACCES;
1888     if (bdrv_in_use(bs))
1889         return -EBUSY;
1890     ret = drv->bdrv_truncate(bs, offset);
1891     if (ret == 0) {
1892         ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
1893         bdrv_dev_resize_cb(bs);
1894     }
1895     return ret;
1896 }
1897
1898 /**
1899  * Length of a allocated file in bytes. Sparse files are counted by actual
1900  * allocated space. Return < 0 if error or unknown.
1901  */
1902 int64_t bdrv_get_allocated_file_size(BlockDriverState *bs)
1903 {
1904     BlockDriver *drv = bs->drv;
1905     if (!drv) {
1906         return -ENOMEDIUM;
1907     }
1908     if (drv->bdrv_get_allocated_file_size) {
1909         return drv->bdrv_get_allocated_file_size(bs);
1910     }
1911     if (bs->file) {
1912         return bdrv_get_allocated_file_size(bs->file);
1913     }
1914     return -ENOTSUP;
1915 }
1916
1917 /**
1918  * Length of a file in bytes. Return < 0 if error or unknown.
1919  */
1920 int64_t bdrv_getlength(BlockDriverState *bs)
1921 {
1922     BlockDriver *drv = bs->drv;
1923     if (!drv)
1924         return -ENOMEDIUM;
1925
1926     if (bs->growable || bdrv_dev_has_removable_media(bs)) {
1927         if (drv->bdrv_getlength) {
1928             return drv->bdrv_getlength(bs);
1929         }
1930     }
1931     return bs->total_sectors * BDRV_SECTOR_SIZE;
1932 }
1933
1934 /* return 0 as number of sectors if no device present or error */
1935 void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr)
1936 {
1937     int64_t length;
1938     length = bdrv_getlength(bs);
1939     if (length < 0)
1940         length = 0;
1941     else
1942         length = length >> BDRV_SECTOR_BITS;
1943     *nb_sectors_ptr = length;
1944 }
1945
1946 struct partition {
1947         uint8_t boot_ind;           /* 0x80 - active */
1948         uint8_t head;               /* starting head */
1949         uint8_t sector;             /* starting sector */
1950         uint8_t cyl;                /* starting cylinder */
1951         uint8_t sys_ind;            /* What partition type */
1952         uint8_t end_head;           /* end head */
1953         uint8_t end_sector;         /* end sector */
1954         uint8_t end_cyl;            /* end cylinder */
1955         uint32_t start_sect;        /* starting sector counting from 0 */
1956         uint32_t nr_sects;          /* nr of sectors in partition */
1957 } QEMU_PACKED;
1958
1959 /* try to guess the disk logical geometry from the MSDOS partition table. Return 0 if OK, -1 if could not guess */
1960 static int guess_disk_lchs(BlockDriverState *bs,
1961                            int *pcylinders, int *pheads, int *psectors)
1962 {
1963     uint8_t buf[BDRV_SECTOR_SIZE];
1964     int ret, i, heads, sectors, cylinders;
1965     struct partition *p;
1966     uint32_t nr_sects;
1967     uint64_t nb_sectors;
1968
1969     bdrv_get_geometry(bs, &nb_sectors);
1970
1971     ret = bdrv_read(bs, 0, buf, 1);
1972     if (ret < 0)
1973         return -1;
1974     /* test msdos magic */
1975     if (buf[510] != 0x55 || buf[511] != 0xaa)
1976         return -1;
1977     for(i = 0; i < 4; i++) {
1978         p = ((struct partition *)(buf + 0x1be)) + i;
1979         nr_sects = le32_to_cpu(p->nr_sects);
1980         if (nr_sects && p->end_head) {
1981             /* We make the assumption that the partition terminates on
1982                a cylinder boundary */
1983             heads = p->end_head + 1;
1984             sectors = p->end_sector & 63;
1985             if (sectors == 0)
1986                 continue;
1987             cylinders = nb_sectors / (heads * sectors);
1988             if (cylinders < 1 || cylinders > 16383)
1989                 continue;
1990             *pheads = heads;
1991             *psectors = sectors;
1992             *pcylinders = cylinders;
1993 #if 0
1994             printf("guessed geometry: LCHS=%d %d %d\n",
1995                    cylinders, heads, sectors);
1996 #endif
1997             return 0;
1998         }
1999     }
2000     return -1;
2001 }
2002
2003 void bdrv_guess_geometry(BlockDriverState *bs, int *pcyls, int *pheads, int *psecs)
2004 {
2005     int translation, lba_detected = 0;
2006     int cylinders, heads, secs;
2007     uint64_t nb_sectors;
2008
2009     /* if a geometry hint is available, use it */
2010     bdrv_get_geometry(bs, &nb_sectors);
2011     bdrv_get_geometry_hint(bs, &cylinders, &heads, &secs);
2012     translation = bdrv_get_translation_hint(bs);
2013     if (cylinders != 0) {
2014         *pcyls = cylinders;
2015         *pheads = heads;
2016         *psecs = secs;
2017     } else {
2018         if (guess_disk_lchs(bs, &cylinders, &heads, &secs) == 0) {
2019             if (heads > 16) {
2020                 /* if heads > 16, it means that a BIOS LBA
2021                    translation was active, so the default
2022                    hardware geometry is OK */
2023                 lba_detected = 1;
2024                 goto default_geometry;
2025             } else {
2026                 *pcyls = cylinders;
2027                 *pheads = heads;
2028                 *psecs = secs;
2029                 /* disable any translation to be in sync with
2030                    the logical geometry */
2031                 if (translation == BIOS_ATA_TRANSLATION_AUTO) {
2032                     bdrv_set_translation_hint(bs,
2033                                               BIOS_ATA_TRANSLATION_NONE);
2034                 }
2035             }
2036         } else {
2037         default_geometry:
2038             /* if no geometry, use a standard physical disk geometry */
2039             cylinders = nb_sectors / (16 * 63);
2040
2041             if (cylinders > 16383)
2042                 cylinders = 16383;
2043             else if (cylinders < 2)
2044                 cylinders = 2;
2045             *pcyls = cylinders;
2046             *pheads = 16;
2047             *psecs = 63;
2048             if ((lba_detected == 1) && (translation == BIOS_ATA_TRANSLATION_AUTO)) {
2049                 if ((*pcyls * *pheads) <= 131072) {
2050                     bdrv_set_translation_hint(bs,
2051                                               BIOS_ATA_TRANSLATION_LARGE);
2052                 } else {
2053                     bdrv_set_translation_hint(bs,
2054                                               BIOS_ATA_TRANSLATION_LBA);
2055                 }
2056             }
2057         }
2058         bdrv_set_geometry_hint(bs, *pcyls, *pheads, *psecs);
2059     }
2060 }
2061
2062 void bdrv_set_geometry_hint(BlockDriverState *bs,
2063                             int cyls, int heads, int secs)
2064 {
2065     bs->cyls = cyls;
2066     bs->heads = heads;
2067     bs->secs = secs;
2068 }
2069
2070 void bdrv_set_translation_hint(BlockDriverState *bs, int translation)
2071 {
2072     bs->translation = translation;
2073 }
2074
2075 void bdrv_get_geometry_hint(BlockDriverState *bs,
2076                             int *pcyls, int *pheads, int *psecs)
2077 {
2078     *pcyls = bs->cyls;
2079     *pheads = bs->heads;
2080     *psecs = bs->secs;
2081 }
2082
2083 /* throttling disk io limits */
2084 void bdrv_set_io_limits(BlockDriverState *bs,
2085                         BlockIOLimit *io_limits)
2086 {
2087     bs->io_limits = *io_limits;
2088     bs->io_limits_enabled = bdrv_io_limits_enabled(bs);
2089 }
2090
2091 /* Recognize floppy formats */
2092 typedef struct FDFormat {
2093     FDriveType drive;
2094     uint8_t last_sect;
2095     uint8_t max_track;
2096     uint8_t max_head;
2097     FDriveRate rate;
2098 } FDFormat;
2099
2100 static const FDFormat fd_formats[] = {
2101     /* First entry is default format */
2102     /* 1.44 MB 3"1/2 floppy disks */
2103     { FDRIVE_DRV_144, 18, 80, 1, FDRIVE_RATE_500K, },
2104     { FDRIVE_DRV_144, 20, 80, 1, FDRIVE_RATE_500K, },
2105     { FDRIVE_DRV_144, 21, 80, 1, FDRIVE_RATE_500K, },
2106     { FDRIVE_DRV_144, 21, 82, 1, FDRIVE_RATE_500K, },
2107     { FDRIVE_DRV_144, 21, 83, 1, FDRIVE_RATE_500K, },
2108     { FDRIVE_DRV_144, 22, 80, 1, FDRIVE_RATE_500K, },
2109     { FDRIVE_DRV_144, 23, 80, 1, FDRIVE_RATE_500K, },
2110     { FDRIVE_DRV_144, 24, 80, 1, FDRIVE_RATE_500K, },
2111     /* 2.88 MB 3"1/2 floppy disks */
2112     { FDRIVE_DRV_288, 36, 80, 1, FDRIVE_RATE_1M, },
2113     { FDRIVE_DRV_288, 39, 80, 1, FDRIVE_RATE_1M, },
2114     { FDRIVE_DRV_288, 40, 80, 1, FDRIVE_RATE_1M, },
2115     { FDRIVE_DRV_288, 44, 80, 1, FDRIVE_RATE_1M, },
2116     { FDRIVE_DRV_288, 48, 80, 1, FDRIVE_RATE_1M, },
2117     /* 720 kB 3"1/2 floppy disks */
2118     { FDRIVE_DRV_144,  9, 80, 1, FDRIVE_RATE_250K, },
2119     { FDRIVE_DRV_144, 10, 80, 1, FDRIVE_RATE_250K, },
2120     { FDRIVE_DRV_144, 10, 82, 1, FDRIVE_RATE_250K, },
2121     { FDRIVE_DRV_144, 10, 83, 1, FDRIVE_RATE_250K, },
2122     { FDRIVE_DRV_144, 13, 80, 1, FDRIVE_RATE_250K, },
2123     { FDRIVE_DRV_144, 14, 80, 1, FDRIVE_RATE_250K, },
2124     /* 1.2 MB 5"1/4 floppy disks */
2125     { FDRIVE_DRV_120, 15, 80, 1, FDRIVE_RATE_500K, },
2126     { FDRIVE_DRV_120, 18, 80, 1, FDRIVE_RATE_500K, },
2127     { FDRIVE_DRV_120, 18, 82, 1, FDRIVE_RATE_500K, },
2128     { FDRIVE_DRV_120, 18, 83, 1, FDRIVE_RATE_500K, },
2129     { FDRIVE_DRV_120, 20, 80, 1, FDRIVE_RATE_500K, },
2130     /* 720 kB 5"1/4 floppy disks */
2131     { FDRIVE_DRV_120,  9, 80, 1, FDRIVE_RATE_250K, },
2132     { FDRIVE_DRV_120, 11, 80, 1, FDRIVE_RATE_250K, },
2133     /* 360 kB 5"1/4 floppy disks */
2134     { FDRIVE_DRV_120,  9, 40, 1, FDRIVE_RATE_300K, },
2135     { FDRIVE_DRV_120,  9, 40, 0, FDRIVE_RATE_300K, },
2136     { FDRIVE_DRV_120, 10, 41, 1, FDRIVE_RATE_300K, },
2137     { FDRIVE_DRV_120, 10, 42, 1, FDRIVE_RATE_300K, },
2138     /* 320 kB 5"1/4 floppy disks */
2139     { FDRIVE_DRV_120,  8, 40, 1, FDRIVE_RATE_250K, },
2140     { FDRIVE_DRV_120,  8, 40, 0, FDRIVE_RATE_250K, },
2141     /* 360 kB must match 5"1/4 better than 3"1/2... */
2142     { FDRIVE_DRV_144,  9, 80, 0, FDRIVE_RATE_250K, },
2143     /* end */
2144     { FDRIVE_DRV_NONE, -1, -1, 0, 0, },
2145 };
2146
2147 void bdrv_get_floppy_geometry_hint(BlockDriverState *bs, int *nb_heads,
2148                                    int *max_track, int *last_sect,
2149                                    FDriveType drive_in, FDriveType *drive,
2150                                    FDriveRate *rate)
2151 {
2152     const FDFormat *parse;
2153     uint64_t nb_sectors, size;
2154     int i, first_match, match;
2155
2156     bdrv_get_geometry_hint(bs, nb_heads, max_track, last_sect);
2157     if (*nb_heads != 0 && *max_track != 0 && *last_sect != 0) {
2158         /* User defined disk */
2159         *rate = FDRIVE_RATE_500K;
2160     } else {
2161         bdrv_get_geometry(bs, &nb_sectors);
2162         match = -1;
2163         first_match = -1;
2164         for (i = 0; ; i++) {
2165             parse = &fd_formats[i];
2166             if (parse->drive == FDRIVE_DRV_NONE) {
2167                 break;
2168             }
2169             if (drive_in == parse->drive ||
2170                 drive_in == FDRIVE_DRV_NONE) {
2171                 size = (parse->max_head + 1) * parse->max_track *
2172                     parse->last_sect;
2173                 if (nb_sectors == size) {
2174                     match = i;
2175                     break;
2176                 }
2177                 if (first_match == -1) {
2178                     first_match = i;
2179                 }
2180             }
2181         }
2182         if (match == -1) {
2183             if (first_match == -1) {
2184                 match = 1;
2185             } else {
2186                 match = first_match;
2187             }
2188             parse = &fd_formats[match];
2189         }
2190         *nb_heads = parse->max_head + 1;
2191         *max_track = parse->max_track;
2192         *last_sect = parse->last_sect;
2193         *drive = parse->drive;
2194         *rate = parse->rate;
2195     }
2196 }
2197
2198 int bdrv_get_translation_hint(BlockDriverState *bs)
2199 {
2200     return bs->translation;
2201 }
2202
2203 void bdrv_set_on_error(BlockDriverState *bs, BlockErrorAction on_read_error,
2204                        BlockErrorAction on_write_error)
2205 {
2206     bs->on_read_error = on_read_error;
2207     bs->on_write_error = on_write_error;
2208 }
2209
2210 BlockErrorAction bdrv_get_on_error(BlockDriverState *bs, int is_read)
2211 {
2212     return is_read ? bs->on_read_error : bs->on_write_error;
2213 }
2214
2215 int bdrv_is_read_only(BlockDriverState *bs)
2216 {
2217     return bs->read_only;
2218 }
2219
2220 int bdrv_is_sg(BlockDriverState *bs)
2221 {
2222     return bs->sg;
2223 }
2224
2225 int bdrv_enable_write_cache(BlockDriverState *bs)
2226 {
2227     return bs->enable_write_cache;
2228 }
2229
2230 int bdrv_is_encrypted(BlockDriverState *bs)
2231 {
2232     if (bs->backing_hd && bs->backing_hd->encrypted)
2233         return 1;
2234     return bs->encrypted;
2235 }
2236
2237 int bdrv_key_required(BlockDriverState *bs)
2238 {
2239     BlockDriverState *backing_hd = bs->backing_hd;
2240
2241     if (backing_hd && backing_hd->encrypted && !backing_hd->valid_key)
2242         return 1;
2243     return (bs->encrypted && !bs->valid_key);
2244 }
2245
2246 int bdrv_set_key(BlockDriverState *bs, const char *key)
2247 {
2248     int ret;
2249     if (bs->backing_hd && bs->backing_hd->encrypted) {
2250         ret = bdrv_set_key(bs->backing_hd, key);
2251         if (ret < 0)
2252             return ret;
2253         if (!bs->encrypted)
2254             return 0;
2255     }
2256     if (!bs->encrypted) {
2257         return -EINVAL;
2258     } else if (!bs->drv || !bs->drv->bdrv_set_key) {
2259         return -ENOMEDIUM;
2260     }
2261     ret = bs->drv->bdrv_set_key(bs, key);
2262     if (ret < 0) {
2263         bs->valid_key = 0;
2264     } else if (!bs->valid_key) {
2265         bs->valid_key = 1;
2266         /* call the change callback now, we skipped it on open */
2267         bdrv_dev_change_media_cb(bs, true);
2268     }
2269     return ret;
2270 }
2271
2272 void bdrv_get_format(BlockDriverState *bs, char *buf, int buf_size)
2273 {
2274     if (!bs->drv) {
2275         buf[0] = '\0';
2276     } else {
2277         pstrcpy(buf, buf_size, bs->drv->format_name);
2278     }
2279 }
2280
2281 void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
2282                          void *opaque)
2283 {
2284     BlockDriver *drv;
2285
2286     QLIST_FOREACH(drv, &bdrv_drivers, list) {
2287         it(opaque, drv->format_name);
2288     }
2289 }
2290
2291 BlockDriverState *bdrv_find(const char *name)
2292 {
2293     BlockDriverState *bs;
2294
2295     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2296         if (!strcmp(name, bs->device_name)) {
2297             return bs;
2298         }
2299     }
2300     return NULL;
2301 }
2302
2303 BlockDriverState *bdrv_next(BlockDriverState *bs)
2304 {
2305     if (!bs) {
2306         return QTAILQ_FIRST(&bdrv_states);
2307     }
2308     return QTAILQ_NEXT(bs, list);
2309 }
2310
2311 void bdrv_iterate(void (*it)(void *opaque, BlockDriverState *bs), void *opaque)
2312 {
2313     BlockDriverState *bs;
2314
2315     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2316         it(opaque, bs);
2317     }
2318 }
2319
2320 const char *bdrv_get_device_name(BlockDriverState *bs)
2321 {
2322     return bs->device_name;
2323 }
2324
2325 void bdrv_flush_all(void)
2326 {
2327     BlockDriverState *bs;
2328
2329     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2330         if (!bdrv_is_read_only(bs) && bdrv_is_inserted(bs)) {
2331             bdrv_flush(bs);
2332         }
2333     }
2334 }
2335
2336 int bdrv_has_zero_init(BlockDriverState *bs)
2337 {
2338     assert(bs->drv);
2339
2340     if (bs->drv->bdrv_has_zero_init) {
2341         return bs->drv->bdrv_has_zero_init(bs);
2342     }
2343
2344     return 1;
2345 }
2346
2347 typedef struct BdrvCoIsAllocatedData {
2348     BlockDriverState *bs;
2349     int64_t sector_num;
2350     int nb_sectors;
2351     int *pnum;
2352     int ret;
2353     bool done;
2354 } BdrvCoIsAllocatedData;
2355
2356 /*
2357  * Returns true iff the specified sector is present in the disk image. Drivers
2358  * not implementing the functionality are assumed to not support backing files,
2359  * hence all their sectors are reported as allocated.
2360  *
2361  * If 'sector_num' is beyond the end of the disk image the return value is 0
2362  * and 'pnum' is set to 0.
2363  *
2364  * 'pnum' is set to the number of sectors (including and immediately following
2365  * the specified sector) that are known to be in the same
2366  * allocated/unallocated state.
2367  *
2368  * 'nb_sectors' is the max value 'pnum' should be set to.  If nb_sectors goes
2369  * beyond the end of the disk image it will be clamped.
2370  */
2371 int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t sector_num,
2372                                       int nb_sectors, int *pnum)
2373 {
2374     int64_t n;
2375
2376     if (sector_num >= bs->total_sectors) {
2377         *pnum = 0;
2378         return 0;
2379     }
2380
2381     n = bs->total_sectors - sector_num;
2382     if (n < nb_sectors) {
2383         nb_sectors = n;
2384     }
2385
2386     if (!bs->drv->bdrv_co_is_allocated) {
2387         *pnum = nb_sectors;
2388         return 1;
2389     }
2390
2391     return bs->drv->bdrv_co_is_allocated(bs, sector_num, nb_sectors, pnum);
2392 }
2393
2394 /* Coroutine wrapper for bdrv_is_allocated() */
2395 static void coroutine_fn bdrv_is_allocated_co_entry(void *opaque)
2396 {
2397     BdrvCoIsAllocatedData *data = opaque;
2398     BlockDriverState *bs = data->bs;
2399
2400     data->ret = bdrv_co_is_allocated(bs, data->sector_num, data->nb_sectors,
2401                                      data->pnum);
2402     data->done = true;
2403 }
2404
2405 /*
2406  * Synchronous wrapper around bdrv_co_is_allocated().
2407  *
2408  * See bdrv_co_is_allocated() for details.
2409  */
2410 int bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num, int nb_sectors,
2411                       int *pnum)
2412 {
2413     Coroutine *co;
2414     BdrvCoIsAllocatedData data = {
2415         .bs = bs,
2416         .sector_num = sector_num,
2417         .nb_sectors = nb_sectors,
2418         .pnum = pnum,
2419         .done = false,
2420     };
2421
2422     co = qemu_coroutine_create(bdrv_is_allocated_co_entry);
2423     qemu_coroutine_enter(co, &data);
2424     while (!data.done) {
2425         qemu_aio_wait();
2426     }
2427     return data.ret;
2428 }
2429
2430 BlockInfoList *qmp_query_block(Error **errp)
2431 {
2432     BlockInfoList *head = NULL, *cur_item = NULL;
2433     BlockDriverState *bs;
2434
2435     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2436         BlockInfoList *info = g_malloc0(sizeof(*info));
2437
2438         info->value = g_malloc0(sizeof(*info->value));
2439         info->value->device = g_strdup(bs->device_name);
2440         info->value->type = g_strdup("unknown");
2441         info->value->locked = bdrv_dev_is_medium_locked(bs);
2442         info->value->removable = bdrv_dev_has_removable_media(bs);
2443
2444         if (bdrv_dev_has_removable_media(bs)) {
2445             info->value->has_tray_open = true;
2446             info->value->tray_open = bdrv_dev_is_tray_open(bs);
2447         }
2448
2449         if (bdrv_iostatus_is_enabled(bs)) {
2450             info->value->has_io_status = true;
2451             info->value->io_status = bs->iostatus;
2452         }
2453
2454         if (bs->drv) {
2455             info->value->has_inserted = true;
2456             info->value->inserted = g_malloc0(sizeof(*info->value->inserted));
2457             info->value->inserted->file = g_strdup(bs->filename);
2458             info->value->inserted->ro = bs->read_only;
2459             info->value->inserted->drv = g_strdup(bs->drv->format_name);
2460             info->value->inserted->encrypted = bs->encrypted;
2461             if (bs->backing_file[0]) {
2462                 info->value->inserted->has_backing_file = true;
2463                 info->value->inserted->backing_file = g_strdup(bs->backing_file);
2464             }
2465
2466             if (bs->io_limits_enabled) {
2467                 info->value->inserted->bps =
2468                                bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
2469                 info->value->inserted->bps_rd =
2470                                bs->io_limits.bps[BLOCK_IO_LIMIT_READ];
2471                 info->value->inserted->bps_wr =
2472                                bs->io_limits.bps[BLOCK_IO_LIMIT_WRITE];
2473                 info->value->inserted->iops =
2474                                bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
2475                 info->value->inserted->iops_rd =
2476                                bs->io_limits.iops[BLOCK_IO_LIMIT_READ];
2477                 info->value->inserted->iops_wr =
2478                                bs->io_limits.iops[BLOCK_IO_LIMIT_WRITE];
2479             }
2480         }
2481
2482         /* XXX: waiting for the qapi to support GSList */
2483         if (!cur_item) {
2484             head = cur_item = info;
2485         } else {
2486             cur_item->next = info;
2487             cur_item = info;
2488         }
2489     }
2490
2491     return head;
2492 }
2493
2494 /* Consider exposing this as a full fledged QMP command */
2495 static BlockStats *qmp_query_blockstat(const BlockDriverState *bs, Error **errp)
2496 {
2497     BlockStats *s;
2498
2499     s = g_malloc0(sizeof(*s));
2500
2501     if (bs->device_name[0]) {
2502         s->has_device = true;
2503         s->device = g_strdup(bs->device_name);
2504     }
2505
2506     s->stats = g_malloc0(sizeof(*s->stats));
2507     s->stats->rd_bytes = bs->nr_bytes[BDRV_ACCT_READ];
2508     s->stats->wr_bytes = bs->nr_bytes[BDRV_ACCT_WRITE];
2509     s->stats->rd_operations = bs->nr_ops[BDRV_ACCT_READ];
2510     s->stats->wr_operations = bs->nr_ops[BDRV_ACCT_WRITE];
2511     s->stats->wr_highest_offset = bs->wr_highest_sector * BDRV_SECTOR_SIZE;
2512     s->stats->flush_operations = bs->nr_ops[BDRV_ACCT_FLUSH];
2513     s->stats->wr_total_time_ns = bs->total_time_ns[BDRV_ACCT_WRITE];
2514     s->stats->rd_total_time_ns = bs->total_time_ns[BDRV_ACCT_READ];
2515     s->stats->flush_total_time_ns = bs->total_time_ns[BDRV_ACCT_FLUSH];
2516
2517     if (bs->file) {
2518         s->has_parent = true;
2519         s->parent = qmp_query_blockstat(bs->file, NULL);
2520     }
2521
2522     return s;
2523 }
2524
2525 BlockStatsList *qmp_query_blockstats(Error **errp)
2526 {
2527     BlockStatsList *head = NULL, *cur_item = NULL;
2528     BlockDriverState *bs;
2529
2530     QTAILQ_FOREACH(bs, &bdrv_states, list) {
2531         BlockStatsList *info = g_malloc0(sizeof(*info));
2532         info->value = qmp_query_blockstat(bs, NULL);
2533
2534         /* XXX: waiting for the qapi to support GSList */
2535         if (!cur_item) {
2536             head = cur_item = info;
2537         } else {
2538             cur_item->next = info;
2539             cur_item = info;
2540         }
2541     }
2542
2543     return head;
2544 }
2545
2546 const char *bdrv_get_encrypted_filename(BlockDriverState *bs)
2547 {
2548     if (bs->backing_hd && bs->backing_hd->encrypted)
2549         return bs->backing_file;
2550     else if (bs->encrypted)
2551         return bs->filename;
2552     else
2553         return NULL;
2554 }
2555
2556 void bdrv_get_backing_filename(BlockDriverState *bs,
2557                                char *filename, int filename_size)
2558 {
2559     pstrcpy(filename, filename_size, bs->backing_file);
2560 }
2561
2562 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
2563                           const uint8_t *buf, int nb_sectors)
2564 {
2565     BlockDriver *drv = bs->drv;
2566     if (!drv)
2567         return -ENOMEDIUM;
2568     if (!drv->bdrv_write_compressed)
2569         return -ENOTSUP;
2570     if (bdrv_check_request(bs, sector_num, nb_sectors))
2571         return -EIO;
2572
2573     if (bs->dirty_bitmap) {
2574         set_dirty_bitmap(bs, sector_num, nb_sectors, 1);
2575     }
2576
2577     return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
2578 }
2579
2580 int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
2581 {
2582     BlockDriver *drv = bs->drv;
2583     if (!drv)
2584         return -ENOMEDIUM;
2585     if (!drv->bdrv_get_info)
2586         return -ENOTSUP;
2587     memset(bdi, 0, sizeof(*bdi));
2588     return drv->bdrv_get_info(bs, bdi);
2589 }
2590
2591 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2592                       int64_t pos, int size)
2593 {
2594     BlockDriver *drv = bs->drv;
2595     if (!drv)
2596         return -ENOMEDIUM;
2597     if (drv->bdrv_save_vmstate)
2598         return drv->bdrv_save_vmstate(bs, buf, pos, size);
2599     if (bs->file)
2600         return bdrv_save_vmstate(bs->file, buf, pos, size);
2601     return -ENOTSUP;
2602 }
2603
2604 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2605                       int64_t pos, int size)
2606 {
2607     BlockDriver *drv = bs->drv;
2608     if (!drv)
2609         return -ENOMEDIUM;
2610     if (drv->bdrv_load_vmstate)
2611         return drv->bdrv_load_vmstate(bs, buf, pos, size);
2612     if (bs->file)
2613         return bdrv_load_vmstate(bs->file, buf, pos, size);
2614     return -ENOTSUP;
2615 }
2616
2617 void bdrv_debug_event(BlockDriverState *bs, BlkDebugEvent event)
2618 {
2619     BlockDriver *drv = bs->drv;
2620
2621     if (!drv || !drv->bdrv_debug_event) {
2622         return;
2623     }
2624
2625     return drv->bdrv_debug_event(bs, event);
2626
2627 }
2628
2629 /**************************************************************/
2630 /* handling of snapshots */
2631
2632 int bdrv_can_snapshot(BlockDriverState *bs)
2633 {
2634     BlockDriver *drv = bs->drv;
2635     if (!drv || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs)) {
2636         return 0;
2637     }
2638
2639     if (!drv->bdrv_snapshot_create) {
2640         if (bs->file != NULL) {
2641             return bdrv_can_snapshot(bs->file);
2642         }
2643         return 0;
2644     }
2645
2646     return 1;
2647 }
2648
2649 int bdrv_is_snapshot(BlockDriverState *bs)
2650 {
2651     return !!(bs->open_flags & BDRV_O_SNAPSHOT);
2652 }
2653
2654 BlockDriverState *bdrv_snapshots(void)
2655 {
2656     BlockDriverState *bs;
2657
2658     if (bs_snapshots) {
2659         return bs_snapshots;
2660     }
2661
2662     bs = NULL;
2663     while ((bs = bdrv_next(bs))) {
2664         if (bdrv_can_snapshot(bs)) {
2665             bs_snapshots = bs;
2666             return bs;
2667         }
2668     }
2669     return NULL;
2670 }
2671
2672 int bdrv_snapshot_create(BlockDriverState *bs,
2673                          QEMUSnapshotInfo *sn_info)
2674 {
2675     BlockDriver *drv = bs->drv;
2676     if (!drv)
2677         return -ENOMEDIUM;
2678     if (drv->bdrv_snapshot_create)
2679         return drv->bdrv_snapshot_create(bs, sn_info);
2680     if (bs->file)
2681         return bdrv_snapshot_create(bs->file, sn_info);
2682     return -ENOTSUP;
2683 }
2684
2685 int bdrv_snapshot_goto(BlockDriverState *bs,
2686                        const char *snapshot_id)
2687 {
2688     BlockDriver *drv = bs->drv;
2689     int ret, open_ret;
2690
2691     if (!drv)
2692         return -ENOMEDIUM;
2693     if (drv->bdrv_snapshot_goto)
2694         return drv->bdrv_snapshot_goto(bs, snapshot_id);
2695
2696     if (bs->file) {
2697         drv->bdrv_close(bs);
2698         ret = bdrv_snapshot_goto(bs->file, snapshot_id);
2699         open_ret = drv->bdrv_open(bs, bs->open_flags);
2700         if (open_ret < 0) {
2701             bdrv_delete(bs->file);
2702             bs->drv = NULL;
2703             return open_ret;
2704         }
2705         return ret;
2706     }
2707
2708     return -ENOTSUP;
2709 }
2710
2711 int bdrv_snapshot_delete(BlockDriverState *bs, const char *snapshot_id)
2712 {
2713     BlockDriver *drv = bs->drv;
2714     if (!drv)
2715         return -ENOMEDIUM;
2716     if (drv->bdrv_snapshot_delete)
2717         return drv->bdrv_snapshot_delete(bs, snapshot_id);
2718     if (bs->file)
2719         return bdrv_snapshot_delete(bs->file, snapshot_id);
2720     return -ENOTSUP;
2721 }
2722
2723 int bdrv_snapshot_list(BlockDriverState *bs,
2724                        QEMUSnapshotInfo **psn_info)
2725 {
2726     BlockDriver *drv = bs->drv;
2727     if (!drv)
2728         return -ENOMEDIUM;
2729     if (drv->bdrv_snapshot_list)
2730         return drv->bdrv_snapshot_list(bs, psn_info);
2731     if (bs->file)
2732         return bdrv_snapshot_list(bs->file, psn_info);
2733     return -ENOTSUP;
2734 }
2735
2736 int bdrv_snapshot_load_tmp(BlockDriverState *bs,
2737         const char *snapshot_name)
2738 {
2739     BlockDriver *drv = bs->drv;
2740     if (!drv) {
2741         return -ENOMEDIUM;
2742     }
2743     if (!bs->read_only) {
2744         return -EINVAL;
2745     }
2746     if (drv->bdrv_snapshot_load_tmp) {
2747         return drv->bdrv_snapshot_load_tmp(bs, snapshot_name);
2748     }
2749     return -ENOTSUP;
2750 }
2751
2752 BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
2753         const char *backing_file)
2754 {
2755     if (!bs->drv) {
2756         return NULL;
2757     }
2758
2759     if (bs->backing_hd) {
2760         if (strcmp(bs->backing_file, backing_file) == 0) {
2761             return bs->backing_hd;
2762         } else {
2763             return bdrv_find_backing_image(bs->backing_hd, backing_file);
2764         }
2765     }
2766
2767     return NULL;
2768 }
2769
2770 #define NB_SUFFIXES 4
2771
2772 char *get_human_readable_size(char *buf, int buf_size, int64_t size)
2773 {
2774     static const char suffixes[NB_SUFFIXES] = "KMGT";
2775     int64_t base;
2776     int i;
2777
2778     if (size <= 999) {
2779         snprintf(buf, buf_size, "%" PRId64, size);
2780     } else {
2781         base = 1024;
2782         for(i = 0; i < NB_SUFFIXES; i++) {
2783             if (size < (10 * base)) {
2784                 snprintf(buf, buf_size, "%0.1f%c",
2785                          (double)size / base,
2786                          suffixes[i]);
2787                 break;
2788             } else if (size < (1000 * base) || i == (NB_SUFFIXES - 1)) {
2789                 snprintf(buf, buf_size, "%" PRId64 "%c",
2790                          ((size + (base >> 1)) / base),
2791                          suffixes[i]);
2792                 break;
2793             }
2794             base = base * 1024;
2795         }
2796     }
2797     return buf;
2798 }
2799
2800 char *bdrv_snapshot_dump(char *buf, int buf_size, QEMUSnapshotInfo *sn)
2801 {
2802     char buf1[128], date_buf[128], clock_buf[128];
2803 #ifdef _WIN32
2804     struct tm *ptm;
2805 #else
2806     struct tm tm;
2807 #endif
2808     time_t ti;
2809     int64_t secs;
2810
2811     if (!sn) {
2812         snprintf(buf, buf_size,
2813                  "%-10s%-20s%7s%20s%15s",
2814                  "ID", "TAG", "VM SIZE", "DATE", "VM CLOCK");
2815     } else {
2816         ti = sn->date_sec;
2817 #ifdef _WIN32
2818         ptm = localtime(&ti);
2819         strftime(date_buf, sizeof(date_buf),
2820                  "%Y-%m-%d %H:%M:%S", ptm);
2821 #else
2822         localtime_r(&ti, &tm);
2823         strftime(date_buf, sizeof(date_buf),
2824                  "%Y-%m-%d %H:%M:%S", &tm);
2825 #endif
2826         secs = sn->vm_clock_nsec / 1000000000;
2827         snprintf(clock_buf, sizeof(clock_buf),
2828                  "%02d:%02d:%02d.%03d",
2829                  (int)(secs / 3600),
2830                  (int)((secs / 60) % 60),
2831                  (int)(secs % 60),
2832                  (int)((sn->vm_clock_nsec / 1000000) % 1000));
2833         snprintf(buf, buf_size,
2834                  "%-10s%-20s%7s%20s%15s",
2835                  sn->id_str, sn->name,
2836                  get_human_readable_size(buf1, sizeof(buf1), sn->vm_state_size),
2837                  date_buf,
2838                  clock_buf);
2839     }
2840     return buf;
2841 }
2842
2843 /**************************************************************/
2844 /* async I/Os */
2845
2846 BlockDriverAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
2847                                  QEMUIOVector *qiov, int nb_sectors,
2848                                  BlockDriverCompletionFunc *cb, void *opaque)
2849 {
2850     trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
2851
2852     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2853                                  cb, opaque, false);
2854 }
2855
2856 BlockDriverAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
2857                                   QEMUIOVector *qiov, int nb_sectors,
2858                                   BlockDriverCompletionFunc *cb, void *opaque)
2859 {
2860     trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
2861
2862     return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors,
2863                                  cb, opaque, true);
2864 }
2865
2866
2867 typedef struct MultiwriteCB {
2868     int error;
2869     int num_requests;
2870     int num_callbacks;
2871     struct {
2872         BlockDriverCompletionFunc *cb;
2873         void *opaque;
2874         QEMUIOVector *free_qiov;
2875     } callbacks[];
2876 } MultiwriteCB;
2877
2878 static void multiwrite_user_cb(MultiwriteCB *mcb)
2879 {
2880     int i;
2881
2882     for (i = 0; i < mcb->num_callbacks; i++) {
2883         mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
2884         if (mcb->callbacks[i].free_qiov) {
2885             qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
2886         }
2887         g_free(mcb->callbacks[i].free_qiov);
2888     }
2889 }
2890
2891 static void multiwrite_cb(void *opaque, int ret)
2892 {
2893     MultiwriteCB *mcb = opaque;
2894
2895     trace_multiwrite_cb(mcb, ret);
2896
2897     if (ret < 0 && !mcb->error) {
2898         mcb->error = ret;
2899     }
2900
2901     mcb->num_requests--;
2902     if (mcb->num_requests == 0) {
2903         multiwrite_user_cb(mcb);
2904         g_free(mcb);
2905     }
2906 }
2907
2908 static int multiwrite_req_compare(const void *a, const void *b)
2909 {
2910     const BlockRequest *req1 = a, *req2 = b;
2911
2912     /*
2913      * Note that we can't simply subtract req2->sector from req1->sector
2914      * here as that could overflow the return value.
2915      */
2916     if (req1->sector > req2->sector) {
2917         return 1;
2918     } else if (req1->sector < req2->sector) {
2919         return -1;
2920     } else {
2921         return 0;
2922     }
2923 }
2924
2925 /*
2926  * Takes a bunch of requests and tries to merge them. Returns the number of
2927  * requests that remain after merging.
2928  */
2929 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
2930     int num_reqs, MultiwriteCB *mcb)
2931 {
2932     int i, outidx;
2933
2934     // Sort requests by start sector
2935     qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
2936
2937     // Check if adjacent requests touch the same clusters. If so, combine them,
2938     // filling up gaps with zero sectors.
2939     outidx = 0;
2940     for (i = 1; i < num_reqs; i++) {
2941         int merge = 0;
2942         int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
2943
2944         // Handle exactly sequential writes and overlapping writes.
2945         if (reqs[i].sector <= oldreq_last) {
2946             merge = 1;
2947         }
2948
2949         if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 > IOV_MAX) {
2950             merge = 0;
2951         }
2952
2953         if (merge) {
2954             size_t size;
2955             QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
2956             qemu_iovec_init(qiov,
2957                 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
2958
2959             // Add the first request to the merged one. If the requests are
2960             // overlapping, drop the last sectors of the first request.
2961             size = (reqs[i].sector - reqs[outidx].sector) << 9;
2962             qemu_iovec_concat(qiov, reqs[outidx].qiov, size);
2963
2964             // We should need to add any zeros between the two requests
2965             assert (reqs[i].sector <= oldreq_last);
2966
2967             // Add the second request
2968             qemu_iovec_concat(qiov, reqs[i].qiov, reqs[i].qiov->size);
2969
2970             reqs[outidx].nb_sectors = qiov->size >> 9;
2971             reqs[outidx].qiov = qiov;
2972
2973             mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
2974         } else {
2975             outidx++;
2976             reqs[outidx].sector     = reqs[i].sector;
2977             reqs[outidx].nb_sectors = reqs[i].nb_sectors;
2978             reqs[outidx].qiov       = reqs[i].qiov;
2979         }
2980     }
2981
2982     return outidx + 1;
2983 }
2984
2985 /*
2986  * Submit multiple AIO write requests at once.
2987  *
2988  * On success, the function returns 0 and all requests in the reqs array have
2989  * been submitted. In error case this function returns -1, and any of the
2990  * requests may or may not be submitted yet. In particular, this means that the
2991  * callback will be called for some of the requests, for others it won't. The
2992  * caller must check the error field of the BlockRequest to wait for the right
2993  * callbacks (if error != 0, no callback will be called).
2994  *
2995  * The implementation may modify the contents of the reqs array, e.g. to merge
2996  * requests. However, the fields opaque and error are left unmodified as they
2997  * are used to signal failure for a single request to the caller.
2998  */
2999 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
3000 {
3001     MultiwriteCB *mcb;
3002     int i;
3003
3004     /* don't submit writes if we don't have a medium */
3005     if (bs->drv == NULL) {
3006         for (i = 0; i < num_reqs; i++) {
3007             reqs[i].error = -ENOMEDIUM;
3008         }
3009         return -1;
3010     }
3011
3012     if (num_reqs == 0) {
3013         return 0;
3014     }
3015
3016     // Create MultiwriteCB structure
3017     mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
3018     mcb->num_requests = 0;
3019     mcb->num_callbacks = num_reqs;
3020
3021     for (i = 0; i < num_reqs; i++) {
3022         mcb->callbacks[i].cb = reqs[i].cb;
3023         mcb->callbacks[i].opaque = reqs[i].opaque;
3024     }
3025
3026     // Check for mergable requests
3027     num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
3028
3029     trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
3030
3031     /* Run the aio requests. */
3032     mcb->num_requests = num_reqs;
3033     for (i = 0; i < num_reqs; i++) {
3034         bdrv_aio_writev(bs, reqs[i].sector, reqs[i].qiov,
3035             reqs[i].nb_sectors, multiwrite_cb, mcb);
3036     }
3037
3038     return 0;
3039 }
3040
3041 void bdrv_aio_cancel(BlockDriverAIOCB *acb)
3042 {
3043     acb->pool->cancel(acb);
3044 }
3045
3046 /* block I/O throttling */
3047 static bool bdrv_exceed_bps_limits(BlockDriverState *bs, int nb_sectors,
3048                  bool is_write, double elapsed_time, uint64_t *wait)
3049 {
3050     uint64_t bps_limit = 0;
3051     double   bytes_limit, bytes_base, bytes_res;
3052     double   slice_time, wait_time;
3053
3054     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3055         bps_limit = bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL];
3056     } else if (bs->io_limits.bps[is_write]) {
3057         bps_limit = bs->io_limits.bps[is_write];
3058     } else {
3059         if (wait) {
3060             *wait = 0;
3061         }
3062
3063         return false;
3064     }
3065
3066     slice_time = bs->slice_end - bs->slice_start;
3067     slice_time /= (NANOSECONDS_PER_SECOND);
3068     bytes_limit = bps_limit * slice_time;
3069     bytes_base  = bs->nr_bytes[is_write] - bs->io_base.bytes[is_write];
3070     if (bs->io_limits.bps[BLOCK_IO_LIMIT_TOTAL]) {
3071         bytes_base += bs->nr_bytes[!is_write] - bs->io_base.bytes[!is_write];
3072     }
3073
3074     /* bytes_base: the bytes of data which have been read/written; and
3075      *             it is obtained from the history statistic info.
3076      * bytes_res: the remaining bytes of data which need to be read/written.
3077      * (bytes_base + bytes_res) / bps_limit: used to calcuate
3078      *             the total time for completing reading/writting all data.
3079      */
3080     bytes_res   = (unsigned) nb_sectors * BDRV_SECTOR_SIZE;
3081
3082     if (bytes_base + bytes_res <= bytes_limit) {
3083         if (wait) {
3084             *wait = 0;
3085         }
3086
3087         return false;
3088     }
3089
3090     /* Calc approx time to dispatch */
3091     wait_time = (bytes_base + bytes_res) / bps_limit - elapsed_time;
3092
3093     /* When the I/O rate at runtime exceeds the limits,
3094      * bs->slice_end need to be extended in order that the current statistic
3095      * info can be kept until the timer fire, so it is increased and tuned
3096      * based on the result of experiment.
3097      */
3098     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3099     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3100     if (wait) {
3101         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3102     }
3103
3104     return true;
3105 }
3106
3107 static bool bdrv_exceed_iops_limits(BlockDriverState *bs, bool is_write,
3108                              double elapsed_time, uint64_t *wait)
3109 {
3110     uint64_t iops_limit = 0;
3111     double   ios_limit, ios_base;
3112     double   slice_time, wait_time;
3113
3114     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3115         iops_limit = bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL];
3116     } else if (bs->io_limits.iops[is_write]) {
3117         iops_limit = bs->io_limits.iops[is_write];
3118     } else {
3119         if (wait) {
3120             *wait = 0;
3121         }
3122
3123         return false;
3124     }
3125
3126     slice_time = bs->slice_end - bs->slice_start;
3127     slice_time /= (NANOSECONDS_PER_SECOND);
3128     ios_limit  = iops_limit * slice_time;
3129     ios_base   = bs->nr_ops[is_write] - bs->io_base.ios[is_write];
3130     if (bs->io_limits.iops[BLOCK_IO_LIMIT_TOTAL]) {
3131         ios_base += bs->nr_ops[!is_write] - bs->io_base.ios[!is_write];
3132     }
3133
3134     if (ios_base + 1 <= ios_limit) {
3135         if (wait) {
3136             *wait = 0;
3137         }
3138
3139         return false;
3140     }
3141
3142     /* Calc approx time to dispatch */
3143     wait_time = (ios_base + 1) / iops_limit;
3144     if (wait_time > elapsed_time) {
3145         wait_time = wait_time - elapsed_time;
3146     } else {
3147         wait_time = 0;
3148     }
3149
3150     bs->slice_time = wait_time * BLOCK_IO_SLICE_TIME * 10;
3151     bs->slice_end += bs->slice_time - 3 * BLOCK_IO_SLICE_TIME;
3152     if (wait) {
3153         *wait = wait_time * BLOCK_IO_SLICE_TIME * 10;
3154     }
3155
3156     return true;
3157 }
3158
3159 static bool bdrv_exceed_io_limits(BlockDriverState *bs, int nb_sectors,
3160                            bool is_write, int64_t *wait)
3161 {
3162     int64_t  now, max_wait;
3163     uint64_t bps_wait = 0, iops_wait = 0;
3164     double   elapsed_time;
3165     int      bps_ret, iops_ret;
3166
3167     now = qemu_get_clock_ns(vm_clock);
3168     if ((bs->slice_start < now)
3169         && (bs->slice_end > now)) {
3170         bs->slice_end = now + bs->slice_time;
3171     } else {
3172         bs->slice_time  =  5 * BLOCK_IO_SLICE_TIME;
3173         bs->slice_start = now;
3174         bs->slice_end   = now + bs->slice_time;
3175
3176         bs->io_base.bytes[is_write]  = bs->nr_bytes[is_write];
3177         bs->io_base.bytes[!is_write] = bs->nr_bytes[!is_write];
3178
3179         bs->io_base.ios[is_write]    = bs->nr_ops[is_write];
3180         bs->io_base.ios[!is_write]   = bs->nr_ops[!is_write];
3181     }
3182
3183     elapsed_time  = now - bs->slice_start;
3184     elapsed_time  /= (NANOSECONDS_PER_SECOND);
3185
3186     bps_ret  = bdrv_exceed_bps_limits(bs, nb_sectors,
3187                                       is_write, elapsed_time, &bps_wait);
3188     iops_ret = bdrv_exceed_iops_limits(bs, is_write,
3189                                       elapsed_time, &iops_wait);
3190     if (bps_ret || iops_ret) {
3191         max_wait = bps_wait > iops_wait ? bps_wait : iops_wait;
3192         if (wait) {
3193             *wait = max_wait;
3194         }
3195
3196         now = qemu_get_clock_ns(vm_clock);
3197         if (bs->slice_end < now + max_wait) {
3198             bs->slice_end = now + max_wait;
3199         }
3200
3201         return true;
3202     }
3203
3204     if (wait) {
3205         *wait = 0;
3206     }
3207
3208     return false;
3209 }
3210
3211 /**************************************************************/
3212 /* async block device emulation */
3213
3214 typedef struct BlockDriverAIOCBSync {
3215     BlockDriverAIOCB common;
3216     QEMUBH *bh;
3217     int ret;
3218     /* vector translation state */
3219     QEMUIOVector *qiov;
3220     uint8_t *bounce;
3221     int is_write;
3222 } BlockDriverAIOCBSync;
3223
3224 static void bdrv_aio_cancel_em(BlockDriverAIOCB *blockacb)
3225 {
3226     BlockDriverAIOCBSync *acb =
3227         container_of(blockacb, BlockDriverAIOCBSync, common);
3228     qemu_bh_delete(acb->bh);
3229     acb->bh = NULL;
3230     qemu_aio_release(acb);
3231 }
3232
3233 static AIOPool bdrv_em_aio_pool = {
3234     .aiocb_size         = sizeof(BlockDriverAIOCBSync),
3235     .cancel             = bdrv_aio_cancel_em,
3236 };
3237
3238 static void bdrv_aio_bh_cb(void *opaque)
3239 {
3240     BlockDriverAIOCBSync *acb = opaque;
3241
3242     if (!acb->is_write)
3243         qemu_iovec_from_buffer(acb->qiov, acb->bounce, acb->qiov->size);
3244     qemu_vfree(acb->bounce);
3245     acb->common.cb(acb->common.opaque, acb->ret);
3246     qemu_bh_delete(acb->bh);
3247     acb->bh = NULL;
3248     qemu_aio_release(acb);
3249 }
3250
3251 static BlockDriverAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
3252                                             int64_t sector_num,
3253                                             QEMUIOVector *qiov,
3254                                             int nb_sectors,
3255                                             BlockDriverCompletionFunc *cb,
3256                                             void *opaque,
3257                                             int is_write)
3258
3259 {
3260     BlockDriverAIOCBSync *acb;
3261
3262     acb = qemu_aio_get(&bdrv_em_aio_pool, bs, cb, opaque);
3263     acb->is_write = is_write;
3264     acb->qiov = qiov;
3265     acb->bounce = qemu_blockalign(bs, qiov->size);
3266     acb->bh = qemu_bh_new(bdrv_aio_bh_cb, acb);
3267
3268     if (is_write) {
3269         qemu_iovec_to_buffer(acb->qiov, acb->bounce);
3270         acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
3271     } else {
3272         acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
3273     }
3274
3275     qemu_bh_schedule(acb->bh);
3276
3277     return &acb->common;
3278 }
3279
3280 static BlockDriverAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
3281         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3282         BlockDriverCompletionFunc *cb, void *opaque)
3283 {
3284     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
3285 }
3286
3287 static BlockDriverAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
3288         int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
3289         BlockDriverCompletionFunc *cb, void *opaque)
3290 {
3291     return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
3292 }
3293
3294
3295 typedef struct BlockDriverAIOCBCoroutine {
3296     BlockDriverAIOCB common;
3297     BlockRequest req;
3298     bool is_write;
3299     QEMUBH* bh;
3300 } BlockDriverAIOCBCoroutine;
3301
3302 static void bdrv_aio_co_cancel_em(BlockDriverAIOCB *blockacb)
3303 {
3304     qemu_aio_flush();
3305 }
3306
3307 static AIOPool bdrv_em_co_aio_pool = {
3308     .aiocb_size         = sizeof(BlockDriverAIOCBCoroutine),
3309     .cancel             = bdrv_aio_co_cancel_em,
3310 };
3311
3312 static void bdrv_co_em_bh(void *opaque)
3313 {
3314     BlockDriverAIOCBCoroutine *acb = opaque;
3315
3316     acb->common.cb(acb->common.opaque, acb->req.error);
3317     qemu_bh_delete(acb->bh);
3318     qemu_aio_release(acb);
3319 }
3320
3321 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
3322 static void coroutine_fn bdrv_co_do_rw(void *opaque)
3323 {
3324     BlockDriverAIOCBCoroutine *acb = opaque;
3325     BlockDriverState *bs = acb->common.bs;
3326
3327     if (!acb->is_write) {
3328         acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
3329             acb->req.nb_sectors, acb->req.qiov, 0);
3330     } else {
3331         acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
3332             acb->req.nb_sectors, acb->req.qiov, 0);
3333     }
3334
3335     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3336     qemu_bh_schedule(acb->bh);
3337 }
3338
3339 static BlockDriverAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
3340                                                int64_t sector_num,
3341                                                QEMUIOVector *qiov,
3342                                                int nb_sectors,
3343                                                BlockDriverCompletionFunc *cb,
3344                                                void *opaque,
3345                                                bool is_write)
3346 {
3347     Coroutine *co;
3348     BlockDriverAIOCBCoroutine *acb;
3349
3350     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3351     acb->req.sector = sector_num;
3352     acb->req.nb_sectors = nb_sectors;
3353     acb->req.qiov = qiov;
3354     acb->is_write = is_write;
3355
3356     co = qemu_coroutine_create(bdrv_co_do_rw);
3357     qemu_coroutine_enter(co, acb);
3358
3359     return &acb->common;
3360 }
3361
3362 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
3363 {
3364     BlockDriverAIOCBCoroutine *acb = opaque;
3365     BlockDriverState *bs = acb->common.bs;
3366
3367     acb->req.error = bdrv_co_flush(bs);
3368     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3369     qemu_bh_schedule(acb->bh);
3370 }
3371
3372 BlockDriverAIOCB *bdrv_aio_flush(BlockDriverState *bs,
3373         BlockDriverCompletionFunc *cb, void *opaque)
3374 {
3375     trace_bdrv_aio_flush(bs, opaque);
3376
3377     Coroutine *co;
3378     BlockDriverAIOCBCoroutine *acb;
3379
3380     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3381     co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
3382     qemu_coroutine_enter(co, acb);
3383
3384     return &acb->common;
3385 }
3386
3387 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
3388 {
3389     BlockDriverAIOCBCoroutine *acb = opaque;
3390     BlockDriverState *bs = acb->common.bs;
3391
3392     acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
3393     acb->bh = qemu_bh_new(bdrv_co_em_bh, acb);
3394     qemu_bh_schedule(acb->bh);
3395 }
3396
3397 BlockDriverAIOCB *bdrv_aio_discard(BlockDriverState *bs,
3398         int64_t sector_num, int nb_sectors,
3399         BlockDriverCompletionFunc *cb, void *opaque)
3400 {
3401     Coroutine *co;
3402     BlockDriverAIOCBCoroutine *acb;
3403
3404     trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
3405
3406     acb = qemu_aio_get(&bdrv_em_co_aio_pool, bs, cb, opaque);
3407     acb->req.sector = sector_num;
3408     acb->req.nb_sectors = nb_sectors;
3409     co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
3410     qemu_coroutine_enter(co, acb);
3411
3412     return &acb->common;
3413 }
3414
3415 void bdrv_init(void)
3416 {
3417     module_call_init(MODULE_INIT_BLOCK);
3418 }
3419
3420 void bdrv_init_with_whitelist(void)
3421 {
3422     use_bdrv_whitelist = 1;
3423     bdrv_init();
3424 }
3425
3426 void *qemu_aio_get(AIOPool *pool, BlockDriverState *bs,
3427                    BlockDriverCompletionFunc *cb, void *opaque)
3428 {
3429     BlockDriverAIOCB *acb;
3430
3431     if (pool->free_aiocb) {
3432         acb = pool->free_aiocb;
3433         pool->free_aiocb = acb->next;
3434     } else {
3435         acb = g_malloc0(pool->aiocb_size);
3436         acb->pool = pool;
3437     }
3438     acb->bs = bs;
3439     acb->cb = cb;
3440     acb->opaque = opaque;
3441     return acb;
3442 }
3443
3444 void qemu_aio_release(void *p)
3445 {
3446     BlockDriverAIOCB *acb = (BlockDriverAIOCB *)p;
3447     AIOPool *pool = acb->pool;
3448     acb->next = pool->free_aiocb;
3449     pool->free_aiocb = acb;
3450 }
3451
3452 /**************************************************************/
3453 /* Coroutine block device emulation */
3454
3455 typedef struct CoroutineIOCompletion {
3456     Coroutine *coroutine;
3457     int ret;
3458 } CoroutineIOCompletion;
3459
3460 static void bdrv_co_io_em_complete(void *opaque, int ret)
3461 {
3462     CoroutineIOCompletion *co = opaque;
3463
3464     co->ret = ret;
3465     qemu_coroutine_enter(co->coroutine, NULL);
3466 }
3467
3468 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
3469                                       int nb_sectors, QEMUIOVector *iov,
3470                                       bool is_write)
3471 {
3472     CoroutineIOCompletion co = {
3473         .coroutine = qemu_coroutine_self(),
3474     };
3475     BlockDriverAIOCB *acb;
3476
3477     if (is_write) {
3478         acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
3479                                        bdrv_co_io_em_complete, &co);
3480     } else {
3481         acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
3482                                       bdrv_co_io_em_complete, &co);
3483     }
3484
3485     trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
3486     if (!acb) {
3487         return -EIO;
3488     }
3489     qemu_coroutine_yield();
3490
3491     return co.ret;
3492 }
3493
3494 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
3495                                          int64_t sector_num, int nb_sectors,
3496                                          QEMUIOVector *iov)
3497 {
3498     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
3499 }
3500
3501 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
3502                                          int64_t sector_num, int nb_sectors,
3503                                          QEMUIOVector *iov)
3504 {
3505     return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
3506 }
3507
3508 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
3509 {
3510     RwCo *rwco = opaque;
3511
3512     rwco->ret = bdrv_co_flush(rwco->bs);
3513 }
3514
3515 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
3516 {
3517     int ret;
3518
3519     if (!bs->drv) {
3520         return 0;
3521     }
3522
3523     /* Write back cached data to the OS even with cache=unsafe */
3524     if (bs->drv->bdrv_co_flush_to_os) {
3525         ret = bs->drv->bdrv_co_flush_to_os(bs);
3526         if (ret < 0) {
3527             return ret;
3528         }
3529     }
3530
3531     /* But don't actually force it to the disk with cache=unsafe */
3532     if (bs->open_flags & BDRV_O_NO_FLUSH) {
3533         return 0;
3534     }
3535
3536     if (bs->drv->bdrv_co_flush_to_disk) {
3537         return bs->drv->bdrv_co_flush_to_disk(bs);
3538     } else if (bs->drv->bdrv_aio_flush) {
3539         BlockDriverAIOCB *acb;
3540         CoroutineIOCompletion co = {
3541             .coroutine = qemu_coroutine_self(),
3542         };
3543
3544         acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
3545         if (acb == NULL) {
3546             return -EIO;
3547         } else {
3548             qemu_coroutine_yield();
3549             return co.ret;
3550         }
3551     } else {
3552         /*
3553          * Some block drivers always operate in either writethrough or unsafe
3554          * mode and don't support bdrv_flush therefore. Usually qemu doesn't
3555          * know how the server works (because the behaviour is hardcoded or
3556          * depends on server-side configuration), so we can't ensure that
3557          * everything is safe on disk. Returning an error doesn't work because
3558          * that would break guests even if the server operates in writethrough
3559          * mode.
3560          *
3561          * Let's hope the user knows what he's doing.
3562          */
3563         return 0;
3564     }
3565 }
3566
3567 void bdrv_invalidate_cache(BlockDriverState *bs)
3568 {
3569     if (bs->drv && bs->drv->bdrv_invalidate_cache) {
3570         bs->drv->bdrv_invalidate_cache(bs);
3571     }
3572 }
3573
3574 void bdrv_invalidate_cache_all(void)
3575 {
3576     BlockDriverState *bs;
3577
3578     QTAILQ_FOREACH(bs, &bdrv_states, list) {
3579         bdrv_invalidate_cache(bs);
3580     }
3581 }
3582
3583 int bdrv_flush(BlockDriverState *bs)
3584 {
3585     Coroutine *co;
3586     RwCo rwco = {
3587         .bs = bs,
3588         .ret = NOT_DONE,
3589     };
3590
3591     if (qemu_in_coroutine()) {
3592         /* Fast-path if already in coroutine context */
3593         bdrv_flush_co_entry(&rwco);
3594     } else {
3595         co = qemu_coroutine_create(bdrv_flush_co_entry);
3596         qemu_coroutine_enter(co, &rwco);
3597         while (rwco.ret == NOT_DONE) {
3598             qemu_aio_wait();
3599         }
3600     }
3601
3602     return rwco.ret;
3603 }
3604
3605 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
3606 {
3607     RwCo *rwco = opaque;
3608
3609     rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
3610 }
3611
3612 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
3613                                  int nb_sectors)
3614 {
3615     if (!bs->drv) {
3616         return -ENOMEDIUM;
3617     } else if (bdrv_check_request(bs, sector_num, nb_sectors)) {
3618         return -EIO;
3619     } else if (bs->read_only) {
3620         return -EROFS;
3621     } else if (bs->drv->bdrv_co_discard) {
3622         return bs->drv->bdrv_co_discard(bs, sector_num, nb_sectors);
3623     } else if (bs->drv->bdrv_aio_discard) {
3624         BlockDriverAIOCB *acb;
3625         CoroutineIOCompletion co = {
3626             .coroutine = qemu_coroutine_self(),
3627         };
3628
3629         acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
3630                                         bdrv_co_io_em_complete, &co);
3631         if (acb == NULL) {
3632             return -EIO;
3633         } else {
3634             qemu_coroutine_yield();
3635             return co.ret;
3636         }
3637     } else {
3638         return 0;
3639     }
3640 }
3641
3642 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
3643 {
3644     Coroutine *co;
3645     RwCo rwco = {
3646         .bs = bs,
3647         .sector_num = sector_num,
3648         .nb_sectors = nb_sectors,
3649         .ret = NOT_DONE,
3650     };
3651
3652     if (qemu_in_coroutine()) {
3653         /* Fast-path if already in coroutine context */
3654         bdrv_discard_co_entry(&rwco);
3655     } else {
3656         co = qemu_coroutine_create(bdrv_discard_co_entry);
3657         qemu_coroutine_enter(co, &rwco);
3658         while (rwco.ret == NOT_DONE) {
3659             qemu_aio_wait();
3660         }
3661     }
3662
3663     return rwco.ret;
3664 }
3665
3666 /**************************************************************/
3667 /* removable device support */
3668
3669 /**
3670  * Return TRUE if the media is present
3671  */
3672 int bdrv_is_inserted(BlockDriverState *bs)
3673 {
3674     BlockDriver *drv = bs->drv;
3675
3676     if (!drv)
3677         return 0;
3678     if (!drv->bdrv_is_inserted)
3679         return 1;
3680     return drv->bdrv_is_inserted(bs);
3681 }
3682
3683 /**
3684  * Return whether the media changed since the last call to this
3685  * function, or -ENOTSUP if we don't know.  Most drivers don't know.
3686  */
3687 int bdrv_media_changed(BlockDriverState *bs)
3688 {
3689     BlockDriver *drv = bs->drv;
3690
3691     if (drv && drv->bdrv_media_changed) {
3692         return drv->bdrv_media_changed(bs);
3693     }
3694     return -ENOTSUP;
3695 }
3696
3697 /**
3698  * If eject_flag is TRUE, eject the media. Otherwise, close the tray
3699  */
3700 void bdrv_eject(BlockDriverState *bs, bool eject_flag)
3701 {
3702     BlockDriver *drv = bs->drv;
3703
3704     if (drv && drv->bdrv_eject) {
3705         drv->bdrv_eject(bs, eject_flag);
3706     }
3707
3708     if (bs->device_name[0] != '\0') {
3709         bdrv_emit_qmp_eject_event(bs, eject_flag);
3710     }
3711 }
3712
3713 /**
3714  * Lock or unlock the media (if it is locked, the user won't be able
3715  * to eject it manually).
3716  */
3717 void bdrv_lock_medium(BlockDriverState *bs, bool locked)
3718 {
3719     BlockDriver *drv = bs->drv;
3720
3721     trace_bdrv_lock_medium(bs, locked);
3722
3723     if (drv && drv->bdrv_lock_medium) {
3724         drv->bdrv_lock_medium(bs, locked);
3725     }
3726 }
3727
3728 /* needed for generic scsi interface */
3729
3730 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
3731 {
3732     BlockDriver *drv = bs->drv;
3733
3734     if (drv && drv->bdrv_ioctl)
3735         return drv->bdrv_ioctl(bs, req, buf);
3736     return -ENOTSUP;
3737 }
3738
3739 BlockDriverAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
3740         unsigned long int req, void *buf,
3741         BlockDriverCompletionFunc *cb, void *opaque)
3742 {
3743     BlockDriver *drv = bs->drv;
3744
3745     if (drv && drv->bdrv_aio_ioctl)
3746         return drv->bdrv_aio_ioctl(bs, req, buf, cb, opaque);
3747     return NULL;
3748 }
3749
3750 void bdrv_set_buffer_alignment(BlockDriverState *bs, int align)
3751 {
3752     bs->buffer_alignment = align;
3753 }
3754
3755 void *qemu_blockalign(BlockDriverState *bs, size_t size)
3756 {
3757     return qemu_memalign((bs && bs->buffer_alignment) ? bs->buffer_alignment : 512, size);
3758 }
3759
3760 void bdrv_set_dirty_tracking(BlockDriverState *bs, int enable)
3761 {
3762     int64_t bitmap_size;
3763
3764     bs->dirty_count = 0;
3765     if (enable) {
3766         if (!bs->dirty_bitmap) {
3767             bitmap_size = (bdrv_getlength(bs) >> BDRV_SECTOR_BITS) +
3768                     BDRV_SECTORS_PER_DIRTY_CHUNK * 8 - 1;
3769             bitmap_size /= BDRV_SECTORS_PER_DIRTY_CHUNK * 8;
3770
3771             bs->dirty_bitmap = g_malloc0(bitmap_size);
3772         }
3773     } else {
3774         if (bs->dirty_bitmap) {
3775             g_free(bs->dirty_bitmap);
3776             bs->dirty_bitmap = NULL;
3777         }
3778     }
3779 }
3780
3781 int bdrv_get_dirty(BlockDriverState *bs, int64_t sector)
3782 {
3783     int64_t chunk = sector / (int64_t)BDRV_SECTORS_PER_DIRTY_CHUNK;
3784
3785     if (bs->dirty_bitmap &&
3786         (sector << BDRV_SECTOR_BITS) < bdrv_getlength(bs)) {
3787         return !!(bs->dirty_bitmap[chunk / (sizeof(unsigned long) * 8)] &
3788             (1UL << (chunk % (sizeof(unsigned long) * 8))));
3789     } else {
3790         return 0;
3791     }
3792 }
3793
3794 void bdrv_reset_dirty(BlockDriverState *bs, int64_t cur_sector,
3795                       int nr_sectors)
3796 {
3797     set_dirty_bitmap(bs, cur_sector, nr_sectors, 0);
3798 }
3799
3800 int64_t bdrv_get_dirty_count(BlockDriverState *bs)
3801 {
3802     return bs->dirty_count;
3803 }
3804
3805 void bdrv_set_in_use(BlockDriverState *bs, int in_use)
3806 {
3807     assert(bs->in_use != in_use);
3808     bs->in_use = in_use;
3809 }
3810
3811 int bdrv_in_use(BlockDriverState *bs)
3812 {
3813     return bs->in_use;
3814 }
3815
3816 void bdrv_iostatus_enable(BlockDriverState *bs)
3817 {
3818     bs->iostatus_enabled = true;
3819     bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3820 }
3821
3822 /* The I/O status is only enabled if the drive explicitly
3823  * enables it _and_ the VM is configured to stop on errors */
3824 bool bdrv_iostatus_is_enabled(const BlockDriverState *bs)
3825 {
3826     return (bs->iostatus_enabled &&
3827            (bs->on_write_error == BLOCK_ERR_STOP_ENOSPC ||
3828             bs->on_write_error == BLOCK_ERR_STOP_ANY    ||
3829             bs->on_read_error == BLOCK_ERR_STOP_ANY));
3830 }
3831
3832 void bdrv_iostatus_disable(BlockDriverState *bs)
3833 {
3834     bs->iostatus_enabled = false;
3835 }
3836
3837 void bdrv_iostatus_reset(BlockDriverState *bs)
3838 {
3839     if (bdrv_iostatus_is_enabled(bs)) {
3840         bs->iostatus = BLOCK_DEVICE_IO_STATUS_OK;
3841     }
3842 }
3843
3844 /* XXX: Today this is set by device models because it makes the implementation
3845    quite simple. However, the block layer knows about the error, so it's
3846    possible to implement this without device models being involved */
3847 void bdrv_iostatus_set_err(BlockDriverState *bs, int error)
3848 {
3849     if (bdrv_iostatus_is_enabled(bs) &&
3850         bs->iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
3851         assert(error >= 0);
3852         bs->iostatus = error == ENOSPC ? BLOCK_DEVICE_IO_STATUS_NOSPACE :
3853                                          BLOCK_DEVICE_IO_STATUS_FAILED;
3854     }
3855 }
3856
3857 void
3858 bdrv_acct_start(BlockDriverState *bs, BlockAcctCookie *cookie, int64_t bytes,
3859         enum BlockAcctType type)
3860 {
3861     assert(type < BDRV_MAX_IOTYPE);
3862
3863     cookie->bytes = bytes;
3864     cookie->start_time_ns = get_clock();
3865     cookie->type = type;
3866 }
3867
3868 void
3869 bdrv_acct_done(BlockDriverState *bs, BlockAcctCookie *cookie)
3870 {
3871     assert(cookie->type < BDRV_MAX_IOTYPE);
3872
3873     bs->nr_bytes[cookie->type] += cookie->bytes;
3874     bs->nr_ops[cookie->type]++;
3875     bs->total_time_ns[cookie->type] += get_clock() - cookie->start_time_ns;
3876 }
3877
3878 int bdrv_img_create(const char *filename, const char *fmt,
3879                     const char *base_filename, const char *base_fmt,
3880                     char *options, uint64_t img_size, int flags)
3881 {
3882     QEMUOptionParameter *param = NULL, *create_options = NULL;
3883     QEMUOptionParameter *backing_fmt, *backing_file, *size;
3884     BlockDriverState *bs = NULL;
3885     BlockDriver *drv, *proto_drv;
3886     BlockDriver *backing_drv = NULL;
3887     int ret = 0;
3888
3889     /* Find driver and parse its options */
3890     drv = bdrv_find_format(fmt);
3891     if (!drv) {
3892         error_report("Unknown file format '%s'", fmt);
3893         ret = -EINVAL;
3894         goto out;
3895     }
3896
3897     proto_drv = bdrv_find_protocol(filename);
3898     if (!proto_drv) {
3899         error_report("Unknown protocol '%s'", filename);
3900         ret = -EINVAL;
3901         goto out;
3902     }
3903
3904     create_options = append_option_parameters(create_options,
3905                                               drv->create_options);
3906     create_options = append_option_parameters(create_options,
3907                                               proto_drv->create_options);
3908
3909     /* Create parameter list with default values */
3910     param = parse_option_parameters("", create_options, param);
3911
3912     set_option_parameter_int(param, BLOCK_OPT_SIZE, img_size);
3913
3914     /* Parse -o options */
3915     if (options) {
3916         param = parse_option_parameters(options, create_options, param);
3917         if (param == NULL) {
3918             error_report("Invalid options for file format '%s'.", fmt);
3919             ret = -EINVAL;
3920             goto out;
3921         }
3922     }
3923
3924     if (base_filename) {
3925         if (set_option_parameter(param, BLOCK_OPT_BACKING_FILE,
3926                                  base_filename)) {
3927             error_report("Backing file not supported for file format '%s'",
3928                          fmt);
3929             ret = -EINVAL;
3930             goto out;
3931         }
3932     }
3933
3934     if (base_fmt) {
3935         if (set_option_parameter(param, BLOCK_OPT_BACKING_FMT, base_fmt)) {
3936             error_report("Backing file format not supported for file "
3937                          "format '%s'", fmt);
3938             ret = -EINVAL;
3939             goto out;
3940         }
3941     }
3942
3943     backing_file = get_option_parameter(param, BLOCK_OPT_BACKING_FILE);
3944     if (backing_file && backing_file->value.s) {
3945         if (!strcmp(filename, backing_file->value.s)) {
3946             error_report("Error: Trying to create an image with the "
3947                          "same filename as the backing file");
3948             ret = -EINVAL;
3949             goto out;
3950         }
3951     }
3952
3953     backing_fmt = get_option_parameter(param, BLOCK_OPT_BACKING_FMT);
3954     if (backing_fmt && backing_fmt->value.s) {
3955         backing_drv = bdrv_find_format(backing_fmt->value.s);
3956         if (!backing_drv) {
3957             error_report("Unknown backing file format '%s'",
3958                          backing_fmt->value.s);
3959             ret = -EINVAL;
3960             goto out;
3961         }
3962     }
3963
3964     // The size for the image must always be specified, with one exception:
3965     // If we are using a backing file, we can obtain the size from there
3966     size = get_option_parameter(param, BLOCK_OPT_SIZE);
3967     if (size && size->value.n == -1) {
3968         if (backing_file && backing_file->value.s) {
3969             uint64_t size;
3970             char buf[32];
3971
3972             bs = bdrv_new("");
3973
3974             ret = bdrv_open(bs, backing_file->value.s, flags, backing_drv);
3975             if (ret < 0) {
3976                 error_report("Could not open '%s'", backing_file->value.s);
3977                 goto out;
3978             }
3979             bdrv_get_geometry(bs, &size);
3980             size *= 512;
3981
3982             snprintf(buf, sizeof(buf), "%" PRId64, size);
3983             set_option_parameter(param, BLOCK_OPT_SIZE, buf);
3984         } else {
3985             error_report("Image creation needs a size parameter");
3986             ret = -EINVAL;
3987             goto out;
3988         }
3989     }
3990
3991     printf("Formatting '%s', fmt=%s ", filename, fmt);
3992     print_option_parameters(param);
3993     puts("");
3994
3995     ret = bdrv_create(drv, filename, param);
3996
3997     if (ret < 0) {
3998         if (ret == -ENOTSUP) {
3999             error_report("Formatting or formatting option not supported for "
4000                          "file format '%s'", fmt);
4001         } else if (ret == -EFBIG) {
4002             error_report("The image size is too large for file format '%s'",
4003                          fmt);
4004         } else {
4005             error_report("%s: error while creating %s: %s", filename, fmt,
4006                          strerror(-ret));
4007         }
4008     }
4009
4010 out:
4011     free_option_parameters(create_options);
4012     free_option_parameters(param);
4013
4014     if (bs) {
4015         bdrv_delete(bs);
4016     }
4017
4018     return ret;
4019 }
4020
4021 void *block_job_create(const BlockJobType *job_type, BlockDriverState *bs,
4022                        BlockDriverCompletionFunc *cb, void *opaque)
4023 {
4024     BlockJob *job;
4025
4026     if (bs->job || bdrv_in_use(bs)) {
4027         return NULL;
4028     }
4029     bdrv_set_in_use(bs, 1);
4030
4031     job = g_malloc0(job_type->instance_size);
4032     job->job_type      = job_type;
4033     job->bs            = bs;
4034     job->cb            = cb;
4035     job->opaque        = opaque;
4036     bs->job = job;
4037     return job;
4038 }
4039
4040 void block_job_complete(BlockJob *job, int ret)
4041 {
4042     BlockDriverState *bs = job->bs;
4043
4044     assert(bs->job == job);
4045     job->cb(job->opaque, ret);
4046     bs->job = NULL;
4047     g_free(job);
4048     bdrv_set_in_use(bs, 0);
4049 }
4050
4051 int block_job_set_speed(BlockJob *job, int64_t value)
4052 {
4053     if (!job->job_type->set_speed) {
4054         return -ENOTSUP;
4055     }
4056     return job->job_type->set_speed(job, value);
4057 }
4058
4059 void block_job_cancel(BlockJob *job)
4060 {
4061     job->cancelled = true;
4062 }
4063
4064 bool block_job_is_cancelled(BlockJob *job)
4065 {
4066     return job->cancelled;
4067 }
This page took 0.243303 seconds and 4 git commands to generate.