2 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
4 * Copyright (c) 2003-2005 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #if defined(DEBUG_NVRAM)
30 #define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
32 #define NVRAM_PRINTF(fmt, args...) do { } while (0)
36 * The M48T08 and M48T59 chips are very similar. The newer '59 has
37 * alarm and a watchdog timer and related control registers. In the
38 * PPC platform there is also a nvram lock function.
41 /* Model parameters */
42 int type; // 8 = m48t08, 59 = m48t59
43 /* Hardware parameters */
52 /* Alarm & watchdog */
54 struct QEMUTimer *alrm_timer;
55 struct QEMUTimer *wd_timer;
62 /* Fake timer functions */
63 /* Generic helpers for BCD */
64 static inline uint8_t toBCD (uint8_t value)
66 return (((value / 10) % 10) << 4) | (value % 10);
69 static inline uint8_t fromBCD (uint8_t BCD)
71 return ((BCD >> 4) * 10) + (BCD & 0x0F);
74 /* RTC management helpers */
75 static void get_time (m48t59_t *NVRAM, struct tm *tm)
79 t = time(NULL) + NVRAM->time_offset;
81 memcpy(tm,localtime(&t),sizeof(*tm));
83 localtime_r (&t, tm) ;
87 static void set_time (m48t59_t *NVRAM, struct tm *tm)
91 new_time = mktime(tm);
93 NVRAM->time_offset = new_time - now;
96 /* Alarm management */
97 static void alarm_cb (void *opaque)
101 m48t59_t *NVRAM = opaque;
103 pic_set_irq(NVRAM->IRQ, 1);
104 if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
105 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
106 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
107 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
108 /* Repeat once a month */
109 get_time(NVRAM, &tm_now);
110 memcpy(&tm, &tm_now, sizeof(struct tm));
112 if (tm.tm_mon == 13) {
116 next_time = mktime(&tm);
117 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
118 (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
119 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
120 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
121 /* Repeat once a day */
122 next_time = 24 * 60 * 60 + mktime(&tm_now);
123 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
124 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
125 (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
126 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
127 /* Repeat once an hour */
128 next_time = 60 * 60 + mktime(&tm_now);
129 } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
130 (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
131 (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
132 (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
133 /* Repeat once a minute */
134 next_time = 60 + mktime(&tm_now);
136 /* Repeat once a second */
137 next_time = 1 + mktime(&tm_now);
139 qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
140 pic_set_irq(NVRAM->IRQ, 0);
144 static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
147 memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
149 localtime_r (&NVRAM->alarm, tm);
153 static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
155 NVRAM->alarm = mktime(tm);
156 if (NVRAM->alrm_timer != NULL) {
157 qemu_del_timer(NVRAM->alrm_timer);
158 NVRAM->alrm_timer = NULL;
160 if (NVRAM->alarm - time(NULL) > 0)
161 qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
164 /* Watchdog management */
165 static void watchdog_cb (void *opaque)
167 m48t59_t *NVRAM = opaque;
169 NVRAM->buffer[0x1FF0] |= 0x80;
170 if (NVRAM->buffer[0x1FF7] & 0x80) {
171 NVRAM->buffer[0x1FF7] = 0x00;
172 NVRAM->buffer[0x1FFC] &= ~0x40;
173 /* May it be a hw CPU Reset instead ? */
174 qemu_system_reset_request();
176 pic_set_irq(NVRAM->IRQ, 1);
177 pic_set_irq(NVRAM->IRQ, 0);
181 static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
183 uint64_t interval; /* in 1/16 seconds */
185 if (NVRAM->wd_timer != NULL) {
186 qemu_del_timer(NVRAM->wd_timer);
187 NVRAM->wd_timer = NULL;
189 NVRAM->buffer[0x1FF0] &= ~0x80;
191 interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
192 qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
193 ((interval * 1000) >> 4));
197 /* Direct access to NVRAM */
198 void m48t59_write (m48t59_t *NVRAM, uint32_t addr, uint32_t val)
203 if (addr > 0x1FF8 && addr < 0x2000)
204 NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
205 if (NVRAM->type == 8 &&
206 (addr >= 0x1ff0 && addr <= 0x1ff7))
210 /* flags register : read-only */
217 tmp = fromBCD(val & 0x7F);
218 if (tmp >= 0 && tmp <= 59) {
219 get_alarm(NVRAM, &tm);
221 NVRAM->buffer[0x1FF2] = val;
222 set_alarm(NVRAM, &tm);
227 tmp = fromBCD(val & 0x7F);
228 if (tmp >= 0 && tmp <= 59) {
229 get_alarm(NVRAM, &tm);
231 NVRAM->buffer[0x1FF3] = val;
232 set_alarm(NVRAM, &tm);
237 tmp = fromBCD(val & 0x3F);
238 if (tmp >= 0 && tmp <= 23) {
239 get_alarm(NVRAM, &tm);
241 NVRAM->buffer[0x1FF4] = val;
242 set_alarm(NVRAM, &tm);
247 tmp = fromBCD(val & 0x1F);
249 get_alarm(NVRAM, &tm);
251 NVRAM->buffer[0x1FF5] = val;
252 set_alarm(NVRAM, &tm);
257 NVRAM->buffer[0x1FF6] = val;
261 NVRAM->buffer[0x1FF7] = val;
262 set_up_watchdog(NVRAM, val);
266 NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
270 tmp = fromBCD(val & 0x7F);
271 if (tmp >= 0 && tmp <= 59) {
272 get_time(NVRAM, &tm);
274 set_time(NVRAM, &tm);
276 if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
278 NVRAM->stop_time = time(NULL);
280 NVRAM->time_offset += NVRAM->stop_time - time(NULL);
281 NVRAM->stop_time = 0;
284 NVRAM->buffer[0x1FF9] = val & 0x80;
288 tmp = fromBCD(val & 0x7F);
289 if (tmp >= 0 && tmp <= 59) {
290 get_time(NVRAM, &tm);
292 set_time(NVRAM, &tm);
297 tmp = fromBCD(val & 0x3F);
298 if (tmp >= 0 && tmp <= 23) {
299 get_time(NVRAM, &tm);
301 set_time(NVRAM, &tm);
305 /* day of the week / century */
306 tmp = fromBCD(val & 0x07);
307 get_time(NVRAM, &tm);
309 set_time(NVRAM, &tm);
310 NVRAM->buffer[0x1FFC] = val & 0x40;
314 tmp = fromBCD(val & 0x1F);
316 get_time(NVRAM, &tm);
318 set_time(NVRAM, &tm);
323 tmp = fromBCD(val & 0x1F);
324 if (tmp >= 1 && tmp <= 12) {
325 get_time(NVRAM, &tm);
327 set_time(NVRAM, &tm);
333 if (tmp >= 0 && tmp <= 99) {
334 get_time(NVRAM, &tm);
335 tm.tm_year = fromBCD(val);
336 set_time(NVRAM, &tm);
340 /* Check lock registers state */
341 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
343 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
346 if (addr < NVRAM->size) {
347 NVRAM->buffer[addr] = val & 0xFF;
353 uint32_t m48t59_read (m48t59_t *NVRAM, uint32_t addr)
356 uint32_t retval = 0xFF;
358 if (NVRAM->type == 8 &&
359 (addr >= 0x1ff0 && addr <= 0x1ff7))
385 /* A read resets the watchdog */
386 set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
393 get_time(NVRAM, &tm);
394 retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
398 get_time(NVRAM, &tm);
399 retval = toBCD(tm.tm_min);
403 get_time(NVRAM, &tm);
404 retval = toBCD(tm.tm_hour);
407 /* day of the week / century */
408 get_time(NVRAM, &tm);
409 retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
413 get_time(NVRAM, &tm);
414 retval = toBCD(tm.tm_mday);
418 get_time(NVRAM, &tm);
419 retval = toBCD(tm.tm_mon + 1);
423 get_time(NVRAM, &tm);
424 retval = toBCD(tm.tm_year);
427 /* Check lock registers state */
428 if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
430 if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
433 if (addr < NVRAM->size) {
434 retval = NVRAM->buffer[addr];
438 if (addr > 0x1FF9 && addr < 0x2000)
439 NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
444 void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr)
449 void m48t59_toggle_lock (m48t59_t *NVRAM, int lock)
451 NVRAM->lock ^= 1 << lock;
454 /* IO access to NVRAM */
455 static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
457 m48t59_t *NVRAM = opaque;
459 addr -= NVRAM->io_base;
460 NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
463 NVRAM->addr &= ~0x00FF;
467 NVRAM->addr &= ~0xFF00;
468 NVRAM->addr |= val << 8;
471 m48t59_write(NVRAM, val, NVRAM->addr);
472 NVRAM->addr = 0x0000;
479 static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
481 m48t59_t *NVRAM = opaque;
484 addr -= NVRAM->io_base;
487 retval = m48t59_read(NVRAM, NVRAM->addr);
493 NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
498 static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
500 m48t59_t *NVRAM = opaque;
502 addr -= NVRAM->mem_base;
503 m48t59_write(NVRAM, addr, value & 0xff);
506 static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
508 m48t59_t *NVRAM = opaque;
510 addr -= NVRAM->mem_base;
511 m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
512 m48t59_write(NVRAM, addr + 1, value & 0xff);
515 static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
517 m48t59_t *NVRAM = opaque;
519 addr -= NVRAM->mem_base;
520 m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
521 m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
522 m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
523 m48t59_write(NVRAM, addr + 3, value & 0xff);
526 static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
528 m48t59_t *NVRAM = opaque;
531 addr -= NVRAM->mem_base;
532 retval = m48t59_read(NVRAM, addr);
536 static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
538 m48t59_t *NVRAM = opaque;
541 addr -= NVRAM->mem_base;
542 retval = m48t59_read(NVRAM, addr) << 8;
543 retval |= m48t59_read(NVRAM, addr + 1);
547 static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
549 m48t59_t *NVRAM = opaque;
552 addr -= NVRAM->mem_base;
553 retval = m48t59_read(NVRAM, addr) << 24;
554 retval |= m48t59_read(NVRAM, addr + 1) << 16;
555 retval |= m48t59_read(NVRAM, addr + 2) << 8;
556 retval |= m48t59_read(NVRAM, addr + 3);
560 static CPUWriteMemoryFunc *nvram_write[] = {
566 static CPUReadMemoryFunc *nvram_read[] = {
572 /* Initialisation routine */
573 m48t59_t *m48t59_init (int IRQ, target_ulong mem_base,
574 uint32_t io_base, uint16_t size,
579 s = qemu_mallocz(sizeof(m48t59_t));
582 s->buffer = qemu_mallocz(size);
589 s->mem_base = mem_base;
590 s->io_base = io_base;
594 register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
595 register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
598 s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
599 cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
602 s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
603 s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);