]> Git Repo - qemu.git/blob - hw/ppc/pnv.c
ppc/pnv: Add a "pnor" const link property to the BMC internal simulator
[qemu.git] / hw / ppc / pnv.c
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53
54 #include <libfdt.h>
55
56 #define FDT_MAX_SIZE            (1 * MiB)
57
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
284     int i;
285
286     pnv_dt_xscom(chip, fdt, 0,
287                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
288                  cpu_to_be64(PNV_XSCOM_SIZE),
289                  compat, sizeof(compat));
290
291     for (i = 0; i < chip->nr_cores; i++) {
292         PnvCore *pnv_core = chip->cores[i];
293
294         pnv_dt_core(chip, pnv_core, fdt);
295
296         /* Interrupt Control Presenters (ICP). One per core. */
297         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
298     }
299
300     if (chip->ram_size) {
301         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
302     }
303 }
304
305 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
306 {
307     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
308     int i;
309
310     pnv_dt_xscom(chip, fdt, 0,
311                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
312                  cpu_to_be64(PNV9_XSCOM_SIZE),
313                  compat, sizeof(compat));
314
315     for (i = 0; i < chip->nr_cores; i++) {
316         PnvCore *pnv_core = chip->cores[i];
317
318         pnv_dt_core(chip, pnv_core, fdt);
319     }
320
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324
325     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
326 }
327
328 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
329 {
330     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
331     int i;
332
333     pnv_dt_xscom(chip, fdt, 0,
334                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
335                  cpu_to_be64(PNV10_XSCOM_SIZE),
336                  compat, sizeof(compat));
337
338     for (i = 0; i < chip->nr_cores; i++) {
339         PnvCore *pnv_core = chip->cores[i];
340
341         pnv_dt_core(chip, pnv_core, fdt);
342     }
343
344     if (chip->ram_size) {
345         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
346     }
347
348     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
349 }
350
351 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
352 {
353     uint32_t io_base = d->ioport_id;
354     uint32_t io_regs[] = {
355         cpu_to_be32(1),
356         cpu_to_be32(io_base),
357         cpu_to_be32(2)
358     };
359     char *name;
360     int node;
361
362     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
363     node = fdt_add_subnode(fdt, lpc_off, name);
364     _FDT(node);
365     g_free(name);
366
367     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
368     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
369 }
370
371 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
372 {
373     const char compatible[] = "ns16550\0pnpPNP,501";
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(8)
379     };
380     char *name;
381     int node;
382
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
390                       sizeof(compatible))));
391
392     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
393     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
394     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
396                            fdt_get_phandle(fdt, lpc_off))));
397
398     /* This is needed by Linux */
399     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
400 }
401
402 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
403 {
404     const char compatible[] = "bt\0ipmi-bt";
405     uint32_t io_base;
406     uint32_t io_regs[] = {
407         cpu_to_be32(1),
408         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
409         cpu_to_be32(3)
410     };
411     uint32_t irq;
412     char *name;
413     int node;
414
415     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
416     io_regs[1] = cpu_to_be32(io_base);
417
418     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
419
420     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
421     node = fdt_add_subnode(fdt, lpc_off, name);
422     _FDT(node);
423     g_free(name);
424
425     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
426     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
427                       sizeof(compatible))));
428
429     /* Mark it as reserved to avoid Linux trying to claim it */
430     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
431     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
433                            fdt_get_phandle(fdt, lpc_off))));
434 }
435
436 typedef struct ForeachPopulateArgs {
437     void *fdt;
438     int offset;
439 } ForeachPopulateArgs;
440
441 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
442 {
443     ForeachPopulateArgs *args = opaque;
444     ISADevice *d = ISA_DEVICE(dev);
445
446     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
447         pnv_dt_rtc(d, args->fdt, args->offset);
448     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
449         pnv_dt_serial(d, args->fdt, args->offset);
450     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
451         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
452     } else {
453         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
454                      d->ioport_id);
455     }
456
457     return 0;
458 }
459
460 /*
461  * The default LPC bus of a multichip system is on chip 0. It's
462  * recognized by the firmware (skiboot) using a "primary" property.
463  */
464 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
465 {
466     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
467     ForeachPopulateArgs args = {
468         .fdt = fdt,
469         .offset = isa_offset,
470     };
471     uint32_t phandle;
472
473     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
474
475     phandle = qemu_fdt_alloc_phandle(fdt);
476     assert(phandle > 0);
477     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
478
479     /*
480      * ISA devices are not necessarily parented to the ISA bus so we
481      * can not use object_child_foreach()
482      */
483     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
484                        &args);
485 }
486
487 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
488 {
489     int off;
490
491     off = fdt_add_subnode(fdt, 0, "ibm,opal");
492     off = fdt_add_subnode(fdt, off, "power-mgt");
493
494     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
495 }
496
497 static void *pnv_dt_create(MachineState *machine)
498 {
499     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
500     PnvMachineState *pnv = PNV_MACHINE(machine);
501     void *fdt;
502     char *buf;
503     int off;
504     int i;
505
506     fdt = g_malloc0(FDT_MAX_SIZE);
507     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
508
509     /* /qemu node */
510     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
511
512     /* Root node */
513     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
514     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
515     _FDT((fdt_setprop_string(fdt, 0, "model",
516                              "IBM PowerNV (emulated by qemu)")));
517     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
518
519     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
520     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
521     if (qemu_uuid_set) {
522         _FDT((fdt_property_string(fdt, "system-id", buf)));
523     }
524     g_free(buf);
525
526     off = fdt_add_subnode(fdt, 0, "chosen");
527     if (machine->kernel_cmdline) {
528         _FDT((fdt_setprop_string(fdt, off, "bootargs",
529                                  machine->kernel_cmdline)));
530     }
531
532     if (pnv->initrd_size) {
533         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
534         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
535
536         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
537                                &start_prop, sizeof(start_prop))));
538         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
539                                &end_prop, sizeof(end_prop))));
540     }
541
542     /* Populate device tree for each chip */
543     for (i = 0; i < pnv->num_chips; i++) {
544         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
545     }
546
547     /* Populate ISA devices on chip 0 */
548     pnv_dt_isa(pnv, fdt);
549
550     if (pnv->bmc) {
551         pnv_dt_bmc_sensors(pnv->bmc, fdt);
552     }
553
554     /* Create an extra node for power management on machines that support it */
555     if (pmc->dt_power_mgt) {
556         pmc->dt_power_mgt(pnv, fdt);
557     }
558
559     return fdt;
560 }
561
562 static void pnv_powerdown_notify(Notifier *n, void *opaque)
563 {
564     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
565
566     if (pnv->bmc) {
567         pnv_bmc_powerdown(pnv->bmc);
568     }
569 }
570
571 static void pnv_reset(MachineState *machine)
572 {
573     void *fdt;
574
575     qemu_devices_reset();
576
577     fdt = pnv_dt_create(machine);
578
579     /* Pack resulting tree */
580     _FDT((fdt_pack(fdt)));
581
582     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
583     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
584 }
585
586 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
590 }
591
592 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
593 {
594     Pnv8Chip *chip8 = PNV8_CHIP(chip);
595     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
596 }
597
598 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
599 {
600     Pnv9Chip *chip9 = PNV9_CHIP(chip);
601     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
602 }
603
604 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
605 {
606     Pnv10Chip *chip10 = PNV10_CHIP(chip);
607     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
608 }
609
610 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
611 {
612     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
613 }
614
615 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618
619     ics_pic_print_info(&chip8->psi.ics, mon);
620 }
621
622 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625
626     pnv_xive_pic_print_info(&chip9->xive, mon);
627     pnv_psi_pic_print_info(&chip9->psi, mon);
628 }
629
630 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
631                                                 uint32_t core_id)
632 {
633     return PNV_XSCOM_EX_BASE(core_id);
634 }
635
636 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
637                                                 uint32_t core_id)
638 {
639     return PNV9_XSCOM_EC_BASE(core_id);
640 }
641
642 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
643                                                  uint32_t core_id)
644 {
645     return PNV10_XSCOM_EC_BASE(core_id);
646 }
647
648 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
649 {
650     PowerPCCPUClass *ppc_default =
651         POWERPC_CPU_CLASS(object_class_by_name(default_type));
652     PowerPCCPUClass *ppc =
653         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
654
655     return ppc_default->pvr_match(ppc_default, ppc->pvr);
656 }
657
658 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
659 {
660     Object *obj;
661
662     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
663     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
664     object_property_set_int(obj, irq, "irq", &error_fatal);
665     object_property_set_bool(obj, true, "realized", &error_fatal);
666 }
667
668 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
669 {
670     Pnv10Chip *chip10 = PNV10_CHIP(chip);
671
672     pnv_psi_pic_print_info(&chip10->psi, mon);
673 }
674
675 static void pnv_init(MachineState *machine)
676 {
677     PnvMachineState *pnv = PNV_MACHINE(machine);
678     MachineClass *mc = MACHINE_GET_CLASS(machine);
679     MemoryRegion *ram;
680     char *fw_filename;
681     long fw_size;
682     int i;
683     char *chip_typename;
684     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
685     DeviceState *dev;
686
687     /* allocate RAM */
688     if (machine->ram_size < (1 * GiB)) {
689         warn_report("skiboot may not work with < 1GB of RAM");
690     }
691
692     ram = g_new(MemoryRegion, 1);
693     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
694                                          machine->ram_size);
695     memory_region_add_subregion(get_system_memory(), 0, ram);
696
697     /*
698      * Create our simple PNOR device
699      */
700     dev = qdev_create(NULL, TYPE_PNV_PNOR);
701     if (pnor) {
702         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
703                             &error_abort);
704     }
705     qdev_init_nofail(dev);
706     pnv->pnor = PNV_PNOR(dev);
707
708     /* load skiboot firmware  */
709     if (bios_name == NULL) {
710         bios_name = FW_FILE_NAME;
711     }
712
713     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
714     if (!fw_filename) {
715         error_report("Could not find OPAL firmware '%s'", bios_name);
716         exit(1);
717     }
718
719     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
720     if (fw_size < 0) {
721         error_report("Could not load OPAL firmware '%s'", fw_filename);
722         exit(1);
723     }
724     g_free(fw_filename);
725
726     /* load kernel */
727     if (machine->kernel_filename) {
728         long kernel_size;
729
730         kernel_size = load_image_targphys(machine->kernel_filename,
731                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
732         if (kernel_size < 0) {
733             error_report("Could not load kernel '%s'",
734                          machine->kernel_filename);
735             exit(1);
736         }
737     }
738
739     /* load initrd */
740     if (machine->initrd_filename) {
741         pnv->initrd_base = INITRD_LOAD_ADDR;
742         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
743                                   pnv->initrd_base, INITRD_MAX_SIZE);
744         if (pnv->initrd_size < 0) {
745             error_report("Could not load initial ram disk '%s'",
746                          machine->initrd_filename);
747             exit(1);
748         }
749     }
750
751     /*
752      * Check compatibility of the specified CPU with the machine
753      * default.
754      */
755     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
756         error_report("invalid CPU model '%s' for %s machine",
757                      machine->cpu_type, mc->name);
758         exit(1);
759     }
760
761     /* Create the processor chips */
762     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
763     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
764                                     i, machine->cpu_type);
765     if (!object_class_by_name(chip_typename)) {
766         error_report("invalid chip model '%.*s' for %s machine",
767                      i, machine->cpu_type, mc->name);
768         exit(1);
769     }
770
771     pnv->num_chips =
772         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
773     /*
774      * TODO: should we decide on how many chips we can create based
775      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
776      */
777     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
778         error_report("invalid number of chips: '%d'", pnv->num_chips);
779         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
780         exit(1);
781     }
782
783     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
784     for (i = 0; i < pnv->num_chips; i++) {
785         char chip_name[32];
786         Object *chip = object_new(chip_typename);
787
788         pnv->chips[i] = PNV_CHIP(chip);
789
790         /*
791          * TODO: put all the memory in one node on chip 0 until we find a
792          * way to specify different ranges for each chip
793          */
794         if (i == 0) {
795             object_property_set_int(chip, machine->ram_size, "ram-size",
796                                     &error_fatal);
797         }
798
799         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
800         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
801         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
802                                 &error_fatal);
803         object_property_set_int(chip, machine->smp.cores,
804                                 "nr-cores", &error_fatal);
805         object_property_set_int(chip, machine->smp.threads,
806                                 "nr-threads", &error_fatal);
807         /*
808          * The POWER8 machine use the XICS interrupt interface.
809          * Propagate the XICS fabric to the chip and its controllers.
810          */
811         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
812             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
813         }
814         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
815             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
816                                      &error_abort);
817         }
818         object_property_set_bool(chip, true, "realized", &error_fatal);
819     }
820     g_free(chip_typename);
821
822     /* Create the machine BMC simulator */
823     pnv->bmc = pnv_bmc_create(pnv->pnor);
824
825     /* Instantiate ISA bus on chip 0 */
826     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
827
828     /* Create serial port */
829     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
830
831     /* Create an RTC ISA device too */
832     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
833
834     /* Create the IPMI BT device for communication with the BMC */
835     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
836
837     /*
838      * OpenPOWER systems use a IPMI SEL Event message to notify the
839      * host to powerdown
840      */
841     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
842     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
843 }
844
845 /*
846  *    0:21  Reserved - Read as zeros
847  *   22:24  Chip ID
848  *   25:28  Core number
849  *   29:31  Thread ID
850  */
851 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
852 {
853     return (chip->chip_id << 7) | (core_id << 3);
854 }
855
856 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
857                                         Error **errp)
858 {
859     Pnv8Chip *chip8 = PNV8_CHIP(chip);
860     Error *local_err = NULL;
861     Object *obj;
862     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
863
864     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
865     if (local_err) {
866         error_propagate(errp, local_err);
867         return;
868     }
869
870     pnv_cpu->intc = obj;
871 }
872
873
874 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
875 {
876     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
877
878     icp_reset(ICP(pnv_cpu->intc));
879 }
880
881 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
882 {
883     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
884
885     icp_destroy(ICP(pnv_cpu->intc));
886     pnv_cpu->intc = NULL;
887 }
888
889 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
890                                             Monitor *mon)
891 {
892     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
893 }
894
895 /*
896  *    0:48  Reserved - Read as zeroes
897  *   49:52  Node ID
898  *   53:55  Chip ID
899  *   56     Reserved - Read as zero
900  *   57:61  Core number
901  *   62:63  Thread ID
902  *
903  * We only care about the lower bits. uint32_t is fine for the moment.
904  */
905 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
906 {
907     return (chip->chip_id << 8) | (core_id << 2);
908 }
909
910 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
911 {
912     return (chip->chip_id << 8) | (core_id << 2);
913 }
914
915 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
916                                         Error **errp)
917 {
918     Pnv9Chip *chip9 = PNV9_CHIP(chip);
919     Error *local_err = NULL;
920     Object *obj;
921     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
922
923     /*
924      * The core creates its interrupt presenter but the XIVE interrupt
925      * controller object is initialized afterwards. Hopefully, it's
926      * only used at runtime.
927      */
928     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
929     if (local_err) {
930         error_propagate(errp, local_err);
931         return;
932     }
933
934     pnv_cpu->intc = obj;
935 }
936
937 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
938 {
939     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
940
941     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
942 }
943
944 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
945 {
946     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
947
948     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
949     pnv_cpu->intc = NULL;
950 }
951
952 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
953                                             Monitor *mon)
954 {
955     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
956 }
957
958 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
959                                         Error **errp)
960 {
961     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
962
963     /* Will be defined when the interrupt controller is */
964     pnv_cpu->intc = NULL;
965 }
966
967 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
968 {
969     ;
970 }
971
972 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
973 {
974     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
975
976     pnv_cpu->intc = NULL;
977 }
978
979 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
980                                              Monitor *mon)
981 {
982 }
983
984 /*
985  * Allowed core identifiers on a POWER8 Processor Chip :
986  *
987  * <EX0 reserved>
988  *  EX1  - Venice only
989  *  EX2  - Venice only
990  *  EX3  - Venice only
991  *  EX4
992  *  EX5
993  *  EX6
994  * <EX7,8 reserved> <reserved>
995  *  EX9  - Venice only
996  *  EX10 - Venice only
997  *  EX11 - Venice only
998  *  EX12
999  *  EX13
1000  *  EX14
1001  * <EX15 reserved>
1002  */
1003 #define POWER8E_CORE_MASK  (0x7070ull)
1004 #define POWER8_CORE_MASK   (0x7e7eull)
1005
1006 /*
1007  * POWER9 has 24 cores, ids starting at 0x0
1008  */
1009 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1010
1011
1012 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1013
1014 static void pnv_chip_power8_instance_init(Object *obj)
1015 {
1016     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1017
1018     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1019                              (Object **)&chip8->xics,
1020                              object_property_allow_set_link,
1021                              OBJ_PROP_LINK_STRONG,
1022                              &error_abort);
1023
1024     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1025                             TYPE_PNV8_PSI, &error_abort, NULL);
1026
1027     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1028                             TYPE_PNV8_LPC, &error_abort, NULL);
1029
1030     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1031                             TYPE_PNV8_OCC, &error_abort, NULL);
1032
1033     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1034                             TYPE_PNV8_HOMER, &error_abort, NULL);
1035 }
1036
1037 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1038  {
1039     PnvChip *chip = PNV_CHIP(chip8);
1040     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1041     int i, j;
1042     char *name;
1043
1044     name = g_strdup_printf("icp-%x", chip->chip_id);
1045     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1046     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1047     g_free(name);
1048
1049     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1050
1051     /* Map the ICP registers for each thread */
1052     for (i = 0; i < chip->nr_cores; i++) {
1053         PnvCore *pnv_core = chip->cores[i];
1054         int core_hwid = CPU_CORE(pnv_core)->core_id;
1055
1056         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1057             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1058             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1059
1060             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1061                                         &icp->mmio);
1062         }
1063     }
1064 }
1065
1066 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1067 {
1068     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1069     PnvChip *chip = PNV_CHIP(dev);
1070     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1071     Pnv8Psi *psi8 = &chip8->psi;
1072     Error *local_err = NULL;
1073
1074     assert(chip8->xics);
1075
1076     /* XSCOM bridge is first */
1077     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1078     if (local_err) {
1079         error_propagate(errp, local_err);
1080         return;
1081     }
1082     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1083
1084     pcc->parent_realize(dev, &local_err);
1085     if (local_err) {
1086         error_propagate(errp, local_err);
1087         return;
1088     }
1089
1090     /* Processor Service Interface (PSI) Host Bridge */
1091     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1092                             "bar", &error_fatal);
1093     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1094                              ICS_PROP_XICS, &error_abort);
1095     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1096     if (local_err) {
1097         error_propagate(errp, local_err);
1098         return;
1099     }
1100     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1101                             &PNV_PSI(psi8)->xscom_regs);
1102
1103     /* Create LPC controller */
1104     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1105                              &error_abort);
1106     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1107                              &error_fatal);
1108     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1109
1110     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1111                                             (uint64_t) PNV_XSCOM_BASE(chip),
1112                                             PNV_XSCOM_LPC_BASE);
1113
1114     /*
1115      * Interrupt Management Area. This is the memory region holding
1116      * all the Interrupt Control Presenter (ICP) registers
1117      */
1118     pnv_chip_icp_realize(chip8, &local_err);
1119     if (local_err) {
1120         error_propagate(errp, local_err);
1121         return;
1122     }
1123
1124     /* Create the simplified OCC model */
1125     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1126                              &error_abort);
1127     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1128     if (local_err) {
1129         error_propagate(errp, local_err);
1130         return;
1131     }
1132     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1133
1134     /* OCC SRAM model */
1135     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1136                                 &chip8->occ.sram_regs);
1137
1138     /* HOMER */
1139     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1140                              &error_abort);
1141     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1142                              &local_err);
1143     if (local_err) {
1144         error_propagate(errp, local_err);
1145         return;
1146     }
1147     /* Homer Xscom region */
1148     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1149
1150     /* Homer mmio region */
1151     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1152                                 &chip8->homer.regs);
1153 }
1154
1155 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1156 {
1157     addr &= (PNV_XSCOM_SIZE - 1);
1158     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1159 }
1160
1161 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1162 {
1163     DeviceClass *dc = DEVICE_CLASS(klass);
1164     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1165
1166     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1167     k->cores_mask = POWER8E_CORE_MASK;
1168     k->core_pir = pnv_chip_core_pir_p8;
1169     k->intc_create = pnv_chip_power8_intc_create;
1170     k->intc_reset = pnv_chip_power8_intc_reset;
1171     k->intc_destroy = pnv_chip_power8_intc_destroy;
1172     k->intc_print_info = pnv_chip_power8_intc_print_info;
1173     k->isa_create = pnv_chip_power8_isa_create;
1174     k->dt_populate = pnv_chip_power8_dt_populate;
1175     k->pic_print_info = pnv_chip_power8_pic_print_info;
1176     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1177     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1178     dc->desc = "PowerNV Chip POWER8E";
1179
1180     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1181                                     &k->parent_realize);
1182 }
1183
1184 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1185 {
1186     DeviceClass *dc = DEVICE_CLASS(klass);
1187     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1188
1189     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1190     k->cores_mask = POWER8_CORE_MASK;
1191     k->core_pir = pnv_chip_core_pir_p8;
1192     k->intc_create = pnv_chip_power8_intc_create;
1193     k->intc_reset = pnv_chip_power8_intc_reset;
1194     k->intc_destroy = pnv_chip_power8_intc_destroy;
1195     k->intc_print_info = pnv_chip_power8_intc_print_info;
1196     k->isa_create = pnv_chip_power8_isa_create;
1197     k->dt_populate = pnv_chip_power8_dt_populate;
1198     k->pic_print_info = pnv_chip_power8_pic_print_info;
1199     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1200     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1201     dc->desc = "PowerNV Chip POWER8";
1202
1203     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1204                                     &k->parent_realize);
1205 }
1206
1207 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1208 {
1209     DeviceClass *dc = DEVICE_CLASS(klass);
1210     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1211
1212     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1213     k->cores_mask = POWER8_CORE_MASK;
1214     k->core_pir = pnv_chip_core_pir_p8;
1215     k->intc_create = pnv_chip_power8_intc_create;
1216     k->intc_reset = pnv_chip_power8_intc_reset;
1217     k->intc_destroy = pnv_chip_power8_intc_destroy;
1218     k->intc_print_info = pnv_chip_power8_intc_print_info;
1219     k->isa_create = pnv_chip_power8nvl_isa_create;
1220     k->dt_populate = pnv_chip_power8_dt_populate;
1221     k->pic_print_info = pnv_chip_power8_pic_print_info;
1222     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1223     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1224     dc->desc = "PowerNV Chip POWER8NVL";
1225
1226     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1227                                     &k->parent_realize);
1228 }
1229
1230 static void pnv_chip_power9_instance_init(Object *obj)
1231 {
1232     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1233
1234     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1235                             TYPE_PNV_XIVE, &error_abort, NULL);
1236     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1237                               "xive-fabric", &error_abort);
1238
1239     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1240                             TYPE_PNV9_PSI, &error_abort, NULL);
1241
1242     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1243                             TYPE_PNV9_LPC, &error_abort, NULL);
1244
1245     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1246                             TYPE_PNV9_OCC, &error_abort, NULL);
1247
1248     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1249                             TYPE_PNV9_HOMER, &error_abort, NULL);
1250 }
1251
1252 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1253 {
1254     PnvChip *chip = PNV_CHIP(chip9);
1255     int i;
1256
1257     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1258     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1259
1260     for (i = 0; i < chip9->nr_quads; i++) {
1261         char eq_name[32];
1262         PnvQuad *eq = &chip9->quads[i];
1263         PnvCore *pnv_core = chip->cores[i * 4];
1264         int core_id = CPU_CORE(pnv_core)->core_id;
1265
1266         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1267         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1268                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1269
1270         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1271         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1272
1273         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1274                                 &eq->xscom_regs);
1275     }
1276 }
1277
1278 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1279 {
1280     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1281     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1282     PnvChip *chip = PNV_CHIP(dev);
1283     Pnv9Psi *psi9 = &chip9->psi;
1284     Error *local_err = NULL;
1285
1286     /* XSCOM bridge is first */
1287     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1288     if (local_err) {
1289         error_propagate(errp, local_err);
1290         return;
1291     }
1292     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1293
1294     pcc->parent_realize(dev, &local_err);
1295     if (local_err) {
1296         error_propagate(errp, local_err);
1297         return;
1298     }
1299
1300     pnv_chip_quad_realize(chip9, &local_err);
1301     if (local_err) {
1302         error_propagate(errp, local_err);
1303         return;
1304     }
1305
1306     /* XIVE interrupt controller (POWER9) */
1307     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1308                             "ic-bar", &error_fatal);
1309     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1310                             "vc-bar", &error_fatal);
1311     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1312                             "pc-bar", &error_fatal);
1313     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1314                             "tm-bar", &error_fatal);
1315     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1316                              &error_abort);
1317     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1318                              &local_err);
1319     if (local_err) {
1320         error_propagate(errp, local_err);
1321         return;
1322     }
1323     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1324                             &chip9->xive.xscom_regs);
1325
1326     /* Processor Service Interface (PSI) Host Bridge */
1327     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1328                             "bar", &error_fatal);
1329     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1330     if (local_err) {
1331         error_propagate(errp, local_err);
1332         return;
1333     }
1334     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1335                             &PNV_PSI(psi9)->xscom_regs);
1336
1337     /* LPC */
1338     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1339                              &error_abort);
1340     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1341     if (local_err) {
1342         error_propagate(errp, local_err);
1343         return;
1344     }
1345     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1346                                 &chip9->lpc.xscom_regs);
1347
1348     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1349                                             (uint64_t) PNV9_LPCM_BASE(chip));
1350
1351     /* Create the simplified OCC model */
1352     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1353                              &error_abort);
1354     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1355     if (local_err) {
1356         error_propagate(errp, local_err);
1357         return;
1358     }
1359     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1360
1361     /* OCC SRAM model */
1362     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1363                                 &chip9->occ.sram_regs);
1364
1365     /* HOMER */
1366     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1367                              &error_abort);
1368     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1369                              &local_err);
1370     if (local_err) {
1371         error_propagate(errp, local_err);
1372         return;
1373     }
1374     /* Homer Xscom region */
1375     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1376
1377     /* Homer mmio region */
1378     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1379                                 &chip9->homer.regs);
1380 }
1381
1382 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1383 {
1384     addr &= (PNV9_XSCOM_SIZE - 1);
1385     return addr >> 3;
1386 }
1387
1388 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1389 {
1390     DeviceClass *dc = DEVICE_CLASS(klass);
1391     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1392
1393     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1394     k->cores_mask = POWER9_CORE_MASK;
1395     k->core_pir = pnv_chip_core_pir_p9;
1396     k->intc_create = pnv_chip_power9_intc_create;
1397     k->intc_reset = pnv_chip_power9_intc_reset;
1398     k->intc_destroy = pnv_chip_power9_intc_destroy;
1399     k->intc_print_info = pnv_chip_power9_intc_print_info;
1400     k->isa_create = pnv_chip_power9_isa_create;
1401     k->dt_populate = pnv_chip_power9_dt_populate;
1402     k->pic_print_info = pnv_chip_power9_pic_print_info;
1403     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1404     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1405     dc->desc = "PowerNV Chip POWER9";
1406
1407     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1408                                     &k->parent_realize);
1409 }
1410
1411 static void pnv_chip_power10_instance_init(Object *obj)
1412 {
1413     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1414
1415     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1416                             TYPE_PNV10_PSI, &error_abort, NULL);
1417     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1418                             TYPE_PNV10_LPC, &error_abort, NULL);
1419 }
1420
1421 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1422 {
1423     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1424     PnvChip *chip = PNV_CHIP(dev);
1425     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1426     Error *local_err = NULL;
1427
1428     /* XSCOM bridge is first */
1429     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1430     if (local_err) {
1431         error_propagate(errp, local_err);
1432         return;
1433     }
1434     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1435
1436     pcc->parent_realize(dev, &local_err);
1437     if (local_err) {
1438         error_propagate(errp, local_err);
1439         return;
1440     }
1441
1442     /* Processor Service Interface (PSI) Host Bridge */
1443     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1444                             "bar", &error_fatal);
1445     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1446                              &local_err);
1447     if (local_err) {
1448         error_propagate(errp, local_err);
1449         return;
1450     }
1451     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1452                             &PNV_PSI(&chip10->psi)->xscom_regs);
1453
1454     /* LPC */
1455     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1456                              &error_abort);
1457     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1458                              &local_err);
1459     if (local_err) {
1460         error_propagate(errp, local_err);
1461         return;
1462     }
1463     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1464                                 &chip10->lpc.xscom_regs);
1465
1466     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1467                                             (uint64_t) PNV10_LPCM_BASE(chip));
1468 }
1469
1470 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1471 {
1472     addr &= (PNV10_XSCOM_SIZE - 1);
1473     return addr >> 3;
1474 }
1475
1476 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1477 {
1478     DeviceClass *dc = DEVICE_CLASS(klass);
1479     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1480
1481     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1482     k->cores_mask = POWER10_CORE_MASK;
1483     k->core_pir = pnv_chip_core_pir_p10;
1484     k->intc_create = pnv_chip_power10_intc_create;
1485     k->intc_reset = pnv_chip_power10_intc_reset;
1486     k->intc_destroy = pnv_chip_power10_intc_destroy;
1487     k->intc_print_info = pnv_chip_power10_intc_print_info;
1488     k->isa_create = pnv_chip_power10_isa_create;
1489     k->dt_populate = pnv_chip_power10_dt_populate;
1490     k->pic_print_info = pnv_chip_power10_pic_print_info;
1491     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1492     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1493     dc->desc = "PowerNV Chip POWER10";
1494
1495     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1496                                     &k->parent_realize);
1497 }
1498
1499 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1500 {
1501     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1502     int cores_max;
1503
1504     /*
1505      * No custom mask for this chip, let's use the default one from *
1506      * the chip class
1507      */
1508     if (!chip->cores_mask) {
1509         chip->cores_mask = pcc->cores_mask;
1510     }
1511
1512     /* filter alien core ids ! some are reserved */
1513     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1514         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1515                    chip->cores_mask);
1516         return;
1517     }
1518     chip->cores_mask &= pcc->cores_mask;
1519
1520     /* now that we have a sane layout, let check the number of cores */
1521     cores_max = ctpop64(chip->cores_mask);
1522     if (chip->nr_cores > cores_max) {
1523         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1524                    cores_max);
1525         return;
1526     }
1527 }
1528
1529 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1530 {
1531     Error *error = NULL;
1532     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1533     const char *typename = pnv_chip_core_typename(chip);
1534     int i, core_hwid;
1535
1536     if (!object_class_by_name(typename)) {
1537         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1538         return;
1539     }
1540
1541     /* Cores */
1542     pnv_chip_core_sanitize(chip, &error);
1543     if (error) {
1544         error_propagate(errp, error);
1545         return;
1546     }
1547
1548     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1549
1550     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1551              && (i < chip->nr_cores); core_hwid++) {
1552         char core_name[32];
1553         PnvCore *pnv_core;
1554         uint64_t xscom_core_base;
1555
1556         if (!(chip->cores_mask & (1ull << core_hwid))) {
1557             continue;
1558         }
1559
1560         pnv_core = PNV_CORE(object_new(typename));
1561
1562         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1563         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1564                                   &error_abort);
1565         chip->cores[i] = pnv_core;
1566         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1567                                 "nr-threads", &error_fatal);
1568         object_property_set_int(OBJECT(pnv_core), core_hwid,
1569                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1570         object_property_set_int(OBJECT(pnv_core),
1571                                 pcc->core_pir(chip, core_hwid),
1572                                 "pir", &error_fatal);
1573         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1574                                  &error_abort);
1575         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1576                                  &error_fatal);
1577
1578         /* Each core has an XSCOM MMIO region */
1579         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1580
1581         pnv_xscom_add_subregion(chip, xscom_core_base,
1582                                 &pnv_core->xscom_regs);
1583         i++;
1584     }
1585 }
1586
1587 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1588 {
1589     PnvChip *chip = PNV_CHIP(dev);
1590     Error *error = NULL;
1591
1592     /* Cores */
1593     pnv_chip_core_realize(chip, &error);
1594     if (error) {
1595         error_propagate(errp, error);
1596         return;
1597     }
1598 }
1599
1600 static Property pnv_chip_properties[] = {
1601     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1602     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1603     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1604     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1605     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1606     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1607     DEFINE_PROP_END_OF_LIST(),
1608 };
1609
1610 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1611 {
1612     DeviceClass *dc = DEVICE_CLASS(klass);
1613
1614     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1615     dc->realize = pnv_chip_realize;
1616     dc->props = pnv_chip_properties;
1617     dc->desc = "PowerNV Chip";
1618 }
1619
1620 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1621 {
1622     int i, j;
1623
1624     for (i = 0; i < chip->nr_cores; i++) {
1625         PnvCore *pc = chip->cores[i];
1626         CPUCore *cc = CPU_CORE(pc);
1627
1628         for (j = 0; j < cc->nr_threads; j++) {
1629             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1630                 return pc->threads[j];
1631             }
1632         }
1633     }
1634     return NULL;
1635 }
1636
1637 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1638 {
1639     PnvMachineState *pnv = PNV_MACHINE(xi);
1640     int i;
1641
1642     for (i = 0; i < pnv->num_chips; i++) {
1643         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1644
1645         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1646             return &chip8->psi.ics;
1647         }
1648     }
1649     return NULL;
1650 }
1651
1652 static void pnv_ics_resend(XICSFabric *xi)
1653 {
1654     PnvMachineState *pnv = PNV_MACHINE(xi);
1655     int i;
1656
1657     for (i = 0; i < pnv->num_chips; i++) {
1658         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1659         ics_resend(&chip8->psi.ics);
1660     }
1661 }
1662
1663 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1664 {
1665     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1666
1667     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1668 }
1669
1670 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1671                                Monitor *mon)
1672 {
1673     PnvMachineState *pnv = PNV_MACHINE(obj);
1674     int i;
1675     CPUState *cs;
1676
1677     CPU_FOREACH(cs) {
1678         PowerPCCPU *cpu = POWERPC_CPU(cs);
1679
1680         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1681         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1682                                                            mon);
1683     }
1684
1685     for (i = 0; i < pnv->num_chips; i++) {
1686         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1687     }
1688 }
1689
1690 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1691                          uint8_t nvt_blk, uint32_t nvt_idx,
1692                          bool cam_ignore, uint8_t priority,
1693                          uint32_t logic_serv,
1694                          XiveTCTXMatch *match)
1695 {
1696     PnvMachineState *pnv = PNV_MACHINE(xfb);
1697     int total_count = 0;
1698     int i;
1699
1700     for (i = 0; i < pnv->num_chips; i++) {
1701         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1702         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1703         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1704         int count;
1705
1706         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1707                                priority, logic_serv, match);
1708
1709         if (count < 0) {
1710             return count;
1711         }
1712
1713         total_count += count;
1714     }
1715
1716     return total_count;
1717 }
1718
1719 PnvChip *pnv_get_chip(uint32_t chip_id)
1720 {
1721     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1722     int i;
1723
1724     for (i = 0; i < pnv->num_chips; i++) {
1725         PnvChip *chip = pnv->chips[i];
1726         if (chip->chip_id == chip_id) {
1727             return chip;
1728         }
1729     }
1730     return NULL;
1731 }
1732
1733 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1734 {
1735     MachineClass *mc = MACHINE_CLASS(oc);
1736     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1737     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1738     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1739
1740     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1741     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1742
1743     xic->icp_get = pnv_icp_get;
1744     xic->ics_get = pnv_ics_get;
1745     xic->ics_resend = pnv_ics_resend;
1746
1747     pmc->compat = compat;
1748     pmc->compat_size = sizeof(compat);
1749 }
1750
1751 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1752 {
1753     MachineClass *mc = MACHINE_CLASS(oc);
1754     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1755     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1756     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1757
1758     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1759     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1760     xfc->match_nvt = pnv_match_nvt;
1761
1762     mc->alias = "powernv";
1763
1764     pmc->compat = compat;
1765     pmc->compat_size = sizeof(compat);
1766     pmc->dt_power_mgt = pnv_dt_power_mgt;
1767 }
1768
1769 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1770 {
1771     MachineClass *mc = MACHINE_CLASS(oc);
1772     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1773     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1774
1775     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1776     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1777
1778     pmc->compat = compat;
1779     pmc->compat_size = sizeof(compat);
1780     pmc->dt_power_mgt = pnv_dt_power_mgt;
1781 }
1782
1783 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1784 {
1785     MachineClass *mc = MACHINE_CLASS(oc);
1786     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1787
1788     mc->desc = "IBM PowerNV (Non-Virtualized)";
1789     mc->init = pnv_init;
1790     mc->reset = pnv_reset;
1791     mc->max_cpus = MAX_CPUS;
1792     /* Pnv provides a AHCI device for storage */
1793     mc->block_default_type = IF_IDE;
1794     mc->no_parallel = 1;
1795     mc->default_boot_order = NULL;
1796     /*
1797      * RAM defaults to less than 2048 for 32-bit hosts, and large
1798      * enough to fit the maximum initrd size at it's load address
1799      */
1800     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1801     ispc->print_info = pnv_pic_print_info;
1802 }
1803
1804 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1805     {                                             \
1806         .name          = type,                    \
1807         .class_init    = class_initfn,            \
1808         .parent        = TYPE_PNV8_CHIP,          \
1809     }
1810
1811 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1812     {                                             \
1813         .name          = type,                    \
1814         .class_init    = class_initfn,            \
1815         .parent        = TYPE_PNV9_CHIP,          \
1816     }
1817
1818 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1819     {                                              \
1820         .name          = type,                     \
1821         .class_init    = class_initfn,             \
1822         .parent        = TYPE_PNV10_CHIP,          \
1823     }
1824
1825 static const TypeInfo types[] = {
1826     {
1827         .name          = MACHINE_TYPE_NAME("powernv10"),
1828         .parent        = TYPE_PNV_MACHINE,
1829         .class_init    = pnv_machine_power10_class_init,
1830     },
1831     {
1832         .name          = MACHINE_TYPE_NAME("powernv9"),
1833         .parent        = TYPE_PNV_MACHINE,
1834         .class_init    = pnv_machine_power9_class_init,
1835         .interfaces = (InterfaceInfo[]) {
1836             { TYPE_XIVE_FABRIC },
1837             { },
1838         },
1839     },
1840     {
1841         .name          = MACHINE_TYPE_NAME("powernv8"),
1842         .parent        = TYPE_PNV_MACHINE,
1843         .class_init    = pnv_machine_power8_class_init,
1844         .interfaces = (InterfaceInfo[]) {
1845             { TYPE_XICS_FABRIC },
1846             { },
1847         },
1848     },
1849     {
1850         .name          = TYPE_PNV_MACHINE,
1851         .parent        = TYPE_MACHINE,
1852         .abstract       = true,
1853         .instance_size = sizeof(PnvMachineState),
1854         .class_init    = pnv_machine_class_init,
1855         .class_size    = sizeof(PnvMachineClass),
1856         .interfaces = (InterfaceInfo[]) {
1857             { TYPE_INTERRUPT_STATS_PROVIDER },
1858             { },
1859         },
1860     },
1861     {
1862         .name          = TYPE_PNV_CHIP,
1863         .parent        = TYPE_SYS_BUS_DEVICE,
1864         .class_init    = pnv_chip_class_init,
1865         .instance_size = sizeof(PnvChip),
1866         .class_size    = sizeof(PnvChipClass),
1867         .abstract      = true,
1868     },
1869
1870     /*
1871      * P10 chip and variants
1872      */
1873     {
1874         .name          = TYPE_PNV10_CHIP,
1875         .parent        = TYPE_PNV_CHIP,
1876         .instance_init = pnv_chip_power10_instance_init,
1877         .instance_size = sizeof(Pnv10Chip),
1878     },
1879     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
1880
1881     /*
1882      * P9 chip and variants
1883      */
1884     {
1885         .name          = TYPE_PNV9_CHIP,
1886         .parent        = TYPE_PNV_CHIP,
1887         .instance_init = pnv_chip_power9_instance_init,
1888         .instance_size = sizeof(Pnv9Chip),
1889     },
1890     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1891
1892     /*
1893      * P8 chip and variants
1894      */
1895     {
1896         .name          = TYPE_PNV8_CHIP,
1897         .parent        = TYPE_PNV_CHIP,
1898         .instance_init = pnv_chip_power8_instance_init,
1899         .instance_size = sizeof(Pnv8Chip),
1900     },
1901     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1902     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1903     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1904                           pnv_chip_power8nvl_class_init),
1905 };
1906
1907 DEFINE_TYPES(types)
This page took 0.124912 seconds and 4 git commands to generate.