4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
34 #include "qemu-char.h"
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
49 GDB_SIGNAL_UNKNOWN = 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table[] = {
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
227 static int gdb_signal_table[] = {
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig)
241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
242 if (gdb_signal_table[i] == sig)
244 return GDB_SIGNAL_UNKNOWN;
248 static int gdb_signal_to_target (int sig)
250 if (sig < ARRAY_SIZE (gdb_signal_table))
251 return gdb_signal_table[sig];
258 typedef struct GDBRegisterState {
264 struct GDBRegisterState *next;
275 typedef struct GDBState {
276 CPUState *c_cpu; /* current CPU for step/continue ops */
277 CPUState *g_cpu; /* current CPU for other ops */
278 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
279 enum RSState state; /* parsing state */
280 char line_buf[MAX_PACKET_LENGTH];
283 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
286 #ifdef CONFIG_USER_ONLY
290 CharDriverState *chr;
291 CharDriverState *mon_chr;
295 /* By default use no IRQs and no timers while single stepping so as to
296 * make single stepping like an ICE HW step.
298 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
300 static GDBState *gdbserver_state;
302 /* This is an ugly hack to cope with both new and old gdb.
303 If gdb sends qXfer:features:read then assume we're talking to a newish
304 gdb that understands target descriptions. */
305 static int gdb_has_xml;
307 #ifdef CONFIG_USER_ONLY
308 /* XXX: This is not thread safe. Do we care? */
309 static int gdbserver_fd = -1;
311 static int get_char(GDBState *s)
317 ret = recv(s->fd, &ch, 1, 0);
319 if (errno == ECONNRESET)
321 if (errno != EINTR && errno != EAGAIN)
323 } else if (ret == 0) {
335 static gdb_syscall_complete_cb gdb_current_syscall_cb;
343 /* If gdb is connected when the first semihosting syscall occurs then use
344 remote gdb syscalls. Otherwise use native file IO. */
345 int use_gdb_syscalls(void)
347 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
348 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
351 return gdb_syscall_mode == GDB_SYS_ENABLED;
354 /* Resume execution. */
355 static inline void gdb_continue(GDBState *s)
357 #ifdef CONFIG_USER_ONLY
358 s->running_state = 1;
364 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
366 #ifdef CONFIG_USER_ONLY
370 ret = send(s->fd, buf, len, 0);
372 if (errno != EINTR && errno != EAGAIN)
380 qemu_chr_write(s->chr, buf, len);
384 static inline int fromhex(int v)
386 if (v >= '0' && v <= '9')
388 else if (v >= 'A' && v <= 'F')
390 else if (v >= 'a' && v <= 'f')
396 static inline int tohex(int v)
404 static void memtohex(char *buf, const uint8_t *mem, int len)
409 for(i = 0; i < len; i++) {
411 *q++ = tohex(c >> 4);
412 *q++ = tohex(c & 0xf);
417 static void hextomem(uint8_t *mem, const char *buf, int len)
421 for(i = 0; i < len; i++) {
422 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
427 /* return -1 if error, 0 if OK */
428 static int put_packet_binary(GDBState *s, const char *buf, int len)
439 for(i = 0; i < len; i++) {
443 *(p++) = tohex((csum >> 4) & 0xf);
444 *(p++) = tohex((csum) & 0xf);
446 s->last_packet_len = p - s->last_packet;
447 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
449 #ifdef CONFIG_USER_ONLY
462 /* return -1 if error, 0 if OK */
463 static int put_packet(GDBState *s, const char *buf)
466 printf("reply='%s'\n", buf);
469 return put_packet_binary(s, buf, strlen(buf));
472 /* The GDB remote protocol transfers values in target byte order. This means
473 we can use the raw memory access routines to access the value buffer.
474 Conveniently, these also handle the case where the buffer is mis-aligned.
476 #define GET_REG8(val) do { \
477 stb_p(mem_buf, val); \
480 #define GET_REG16(val) do { \
481 stw_p(mem_buf, val); \
484 #define GET_REG32(val) do { \
485 stl_p(mem_buf, val); \
488 #define GET_REG64(val) do { \
489 stq_p(mem_buf, val); \
493 #if TARGET_LONG_BITS == 64
494 #define GET_REGL(val) GET_REG64(val)
495 #define ldtul_p(addr) ldq_p(addr)
497 #define GET_REGL(val) GET_REG32(val)
498 #define ldtul_p(addr) ldl_p(addr)
501 #if defined(TARGET_I386)
504 static const int gpr_map[16] = {
505 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
506 8, 9, 10, 11, 12, 13, 14, 15
509 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
512 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
514 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
516 if (n < CPU_NB_REGS) {
517 GET_REGL(env->regs[gpr_map[n]]);
518 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
519 /* FIXME: byteswap float values. */
520 #ifdef USE_X86LDOUBLE
521 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
523 memset(mem_buf, 0, 10);
526 } else if (n >= CPU_NB_REGS + 24) {
527 n -= CPU_NB_REGS + 24;
528 if (n < CPU_NB_REGS) {
529 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
530 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
532 } else if (n == CPU_NB_REGS) {
533 GET_REG32(env->mxcsr);
538 case 0: GET_REGL(env->eip);
539 case 1: GET_REG32(env->eflags);
540 case 2: GET_REG32(env->segs[R_CS].selector);
541 case 3: GET_REG32(env->segs[R_SS].selector);
542 case 4: GET_REG32(env->segs[R_DS].selector);
543 case 5: GET_REG32(env->segs[R_ES].selector);
544 case 6: GET_REG32(env->segs[R_FS].selector);
545 case 7: GET_REG32(env->segs[R_GS].selector);
546 /* 8...15 x87 regs. */
547 case 16: GET_REG32(env->fpuc);
548 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
549 case 18: GET_REG32(0); /* ftag */
550 case 19: GET_REG32(0); /* fiseg */
551 case 20: GET_REG32(0); /* fioff */
552 case 21: GET_REG32(0); /* foseg */
553 case 22: GET_REG32(0); /* fooff */
554 case 23: GET_REG32(0); /* fop */
561 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
565 if (i < CPU_NB_REGS) {
566 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
567 return sizeof(target_ulong);
568 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
569 i -= CPU_NB_REGS + 8;
570 #ifdef USE_X86LDOUBLE
571 memcpy(&env->fpregs[i], mem_buf, 10);
574 } else if (i >= CPU_NB_REGS + 24) {
575 i -= CPU_NB_REGS + 24;
576 if (i < CPU_NB_REGS) {
577 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
578 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
580 } else if (i == CPU_NB_REGS) {
581 env->mxcsr = ldl_p(mem_buf);
587 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
588 case 1: env->eflags = ldl_p(mem_buf); return 4;
589 #if defined(CONFIG_USER_ONLY)
590 #define LOAD_SEG(index, sreg)\
591 tmp = ldl_p(mem_buf);\
592 if (tmp != env->segs[sreg].selector)\
593 cpu_x86_load_seg(env, sreg, tmp);
595 /* FIXME: Honor segment registers. Needs to avoid raising an exception
596 when the selector is invalid. */
597 #define LOAD_SEG(index, sreg) do {} while(0)
599 case 2: LOAD_SEG(10, R_CS); return 4;
600 case 3: LOAD_SEG(11, R_SS); return 4;
601 case 4: LOAD_SEG(12, R_DS); return 4;
602 case 5: LOAD_SEG(13, R_ES); return 4;
603 case 6: LOAD_SEG(14, R_FS); return 4;
604 case 7: LOAD_SEG(15, R_GS); return 4;
605 /* 8...15 x87 regs. */
606 case 16: env->fpuc = ldl_p(mem_buf); return 4;
608 tmp = ldl_p(mem_buf);
609 env->fpstt = (tmp >> 11) & 7;
610 env->fpus = tmp & ~0x3800;
612 case 18: /* ftag */ return 4;
613 case 19: /* fiseg */ return 4;
614 case 20: /* fioff */ return 4;
615 case 21: /* foseg */ return 4;
616 case 22: /* fooff */ return 4;
617 case 23: /* fop */ return 4;
621 /* Unrecognised register. */
625 #elif defined (TARGET_PPC)
627 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
628 expects whatever the target description contains. Due to a
629 historical mishap the FP registers appear in between core integer
630 regs and PC, MSR, CR, and so forth. We hack round this by giving the
631 FP regs zero size when talking to a newer gdb. */
632 #define NUM_CORE_REGS 71
633 #if defined (TARGET_PPC64)
634 #define GDB_CORE_XML "power64-core.xml"
636 #define GDB_CORE_XML "power-core.xml"
639 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
643 GET_REGL(env->gpr[n]);
648 stfq_p(mem_buf, env->fpr[n-32]);
652 case 64: GET_REGL(env->nip);
653 case 65: GET_REGL(env->msr);
658 for (i = 0; i < 8; i++)
659 cr |= env->crf[i] << (32 - ((i + 1) * 4));
662 case 67: GET_REGL(env->lr);
663 case 68: GET_REGL(env->ctr);
664 case 69: GET_REGL(env->xer);
669 GET_REG32(0); /* fpscr */
676 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
680 env->gpr[n] = ldtul_p(mem_buf);
681 return sizeof(target_ulong);
686 env->fpr[n-32] = ldfq_p(mem_buf);
691 env->nip = ldtul_p(mem_buf);
692 return sizeof(target_ulong);
694 ppc_store_msr(env, ldtul_p(mem_buf));
695 return sizeof(target_ulong);
698 uint32_t cr = ldl_p(mem_buf);
700 for (i = 0; i < 8; i++)
701 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
705 env->lr = ldtul_p(mem_buf);
706 return sizeof(target_ulong);
708 env->ctr = ldtul_p(mem_buf);
709 return sizeof(target_ulong);
711 env->xer = ldtul_p(mem_buf);
712 return sizeof(target_ulong);
723 #elif defined (TARGET_SPARC)
725 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
726 #define NUM_CORE_REGS 86
728 #define NUM_CORE_REGS 72
732 #define GET_REGA(val) GET_REG32(val)
734 #define GET_REGA(val) GET_REGL(val)
737 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
741 GET_REGA(env->gregs[n]);
744 /* register window */
745 GET_REGA(env->regwptr[n - 8]);
747 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
750 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
752 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
754 case 64: GET_REGA(env->y);
755 case 65: GET_REGA(GET_PSR(env));
756 case 66: GET_REGA(env->wim);
757 case 67: GET_REGA(env->tbr);
758 case 68: GET_REGA(env->pc);
759 case 69: GET_REGA(env->npc);
760 case 70: GET_REGA(env->fsr);
761 case 71: GET_REGA(0); /* csr */
762 default: GET_REGA(0);
767 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
770 /* f32-f62 (double width, even numbers only) */
773 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
774 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
778 case 80: GET_REGL(env->pc);
779 case 81: GET_REGL(env->npc);
780 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
781 ((env->asi & 0xff) << 24) |
782 ((env->pstate & 0xfff) << 8) |
784 case 83: GET_REGL(env->fsr);
785 case 84: GET_REGL(env->fprs);
786 case 85: GET_REGL(env->y);
792 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
794 #if defined(TARGET_ABI32)
797 tmp = ldl_p(mem_buf);
801 tmp = ldtul_p(mem_buf);
808 /* register window */
809 env->regwptr[n - 8] = tmp;
811 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
814 *((uint32_t *)&env->fpr[n - 32]) = tmp;
816 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
818 case 64: env->y = tmp; break;
819 case 65: PUT_PSR(env, tmp); break;
820 case 66: env->wim = tmp; break;
821 case 67: env->tbr = tmp; break;
822 case 68: env->pc = tmp; break;
823 case 69: env->npc = tmp; break;
824 case 70: env->fsr = tmp; break;
832 env->fpr[n] = ldfl_p(mem_buf);
835 /* f32-f62 (double width, even numbers only) */
836 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
837 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
840 case 80: env->pc = tmp; break;
841 case 81: env->npc = tmp; break;
843 PUT_CCR(env, tmp >> 32);
844 env->asi = (tmp >> 24) & 0xff;
845 env->pstate = (tmp >> 8) & 0xfff;
846 PUT_CWP64(env, tmp & 0xff);
848 case 83: env->fsr = tmp; break;
849 case 84: env->fprs = tmp; break;
850 case 85: env->y = tmp; break;
857 #elif defined (TARGET_ARM)
859 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
860 whatever the target description contains. Due to a historical mishap
861 the FPA registers appear in between core integer regs and the CPSR.
862 We hack round this by giving the FPA regs zero size when talking to a
864 #define NUM_CORE_REGS 26
865 #define GDB_CORE_XML "arm-core.xml"
867 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
870 /* Core integer register. */
871 GET_REG32(env->regs[n]);
877 memset(mem_buf, 0, 12);
882 /* FPA status register. */
888 GET_REG32(cpsr_read(env));
890 /* Unknown register. */
894 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
898 tmp = ldl_p(mem_buf);
900 /* Mask out low bit of PC to workaround gdb bugs. This will probably
901 cause problems if we ever implement the Jazelle DBX extensions. */
906 /* Core integer register. */
910 if (n < 24) { /* 16-23 */
911 /* FPA registers (ignored). */
918 /* FPA status register (ignored). */
924 cpsr_write (env, tmp, 0xffffffff);
927 /* Unknown register. */
931 #elif defined (TARGET_M68K)
933 #define NUM_CORE_REGS 18
935 #define GDB_CORE_XML "cf-core.xml"
937 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
941 GET_REG32(env->dregs[n]);
944 GET_REG32(env->aregs[n - 8]);
947 case 16: GET_REG32(env->sr);
948 case 17: GET_REG32(env->pc);
951 /* FP registers not included here because they vary between
952 ColdFire and m68k. Use XML bits for these. */
956 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
960 tmp = ldl_p(mem_buf);
967 env->aregs[n - 8] = tmp;
970 case 16: env->sr = tmp; break;
971 case 17: env->pc = tmp; break;
977 #elif defined (TARGET_MIPS)
979 #define NUM_CORE_REGS 73
981 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
984 GET_REGL(env->active_tc.gpr[n]);
986 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
987 if (n >= 38 && n < 70) {
988 if (env->CP0_Status & (1 << CP0St_FR))
989 GET_REGL(env->active_fpu.fpr[n - 38].d);
991 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
994 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
995 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
999 case 32: GET_REGL((int32_t)env->CP0_Status);
1000 case 33: GET_REGL(env->active_tc.LO[0]);
1001 case 34: GET_REGL(env->active_tc.HI[0]);
1002 case 35: GET_REGL(env->CP0_BadVAddr);
1003 case 36: GET_REGL((int32_t)env->CP0_Cause);
1004 case 37: GET_REGL(env->active_tc.PC);
1005 case 72: GET_REGL(0); /* fp */
1006 case 89: GET_REGL((int32_t)env->CP0_PRid);
1008 if (n >= 73 && n <= 88) {
1009 /* 16 embedded regs. */
1016 /* convert MIPS rounding mode in FCR31 to IEEE library */
1017 static unsigned int ieee_rm[] =
1019 float_round_nearest_even,
1020 float_round_to_zero,
1024 #define RESTORE_ROUNDING_MODE \
1025 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1027 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1031 tmp = ldtul_p(mem_buf);
1034 env->active_tc.gpr[n] = tmp;
1035 return sizeof(target_ulong);
1037 if (env->CP0_Config1 & (1 << CP0C1_FP)
1038 && n >= 38 && n < 73) {
1040 if (env->CP0_Status & (1 << CP0St_FR))
1041 env->active_fpu.fpr[n - 38].d = tmp;
1043 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1047 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1048 /* set rounding mode */
1049 RESTORE_ROUNDING_MODE;
1050 #ifndef CONFIG_SOFTFLOAT
1051 /* no floating point exception for native float */
1052 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1055 case 71: env->active_fpu.fcr0 = tmp; break;
1057 return sizeof(target_ulong);
1060 case 32: env->CP0_Status = tmp; break;
1061 case 33: env->active_tc.LO[0] = tmp; break;
1062 case 34: env->active_tc.HI[0] = tmp; break;
1063 case 35: env->CP0_BadVAddr = tmp; break;
1064 case 36: env->CP0_Cause = tmp; break;
1065 case 37: env->active_tc.PC = tmp; break;
1066 case 72: /* fp, ignored */ break;
1070 /* Other registers are readonly. Ignore writes. */
1074 return sizeof(target_ulong);
1076 #elif defined (TARGET_SH4)
1078 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1079 /* FIXME: We should use XML for this. */
1081 #define NUM_CORE_REGS 59
1083 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1086 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1087 GET_REGL(env->gregs[n + 16]);
1089 GET_REGL(env->gregs[n]);
1091 } else if (n < 16) {
1092 GET_REGL(env->gregs[n - 8]);
1093 } else if (n >= 25 && n < 41) {
1094 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1095 } else if (n >= 43 && n < 51) {
1096 GET_REGL(env->gregs[n - 43]);
1097 } else if (n >= 51 && n < 59) {
1098 GET_REGL(env->gregs[n - (51 - 16)]);
1101 case 16: GET_REGL(env->pc);
1102 case 17: GET_REGL(env->pr);
1103 case 18: GET_REGL(env->gbr);
1104 case 19: GET_REGL(env->vbr);
1105 case 20: GET_REGL(env->mach);
1106 case 21: GET_REGL(env->macl);
1107 case 22: GET_REGL(env->sr);
1108 case 23: GET_REGL(env->fpul);
1109 case 24: GET_REGL(env->fpscr);
1110 case 41: GET_REGL(env->ssr);
1111 case 42: GET_REGL(env->spc);
1117 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1121 tmp = ldl_p(mem_buf);
1124 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1125 env->gregs[n + 16] = tmp;
1127 env->gregs[n] = tmp;
1130 } else if (n < 16) {
1131 env->gregs[n - 8] = tmp;
1133 } else if (n >= 25 && n < 41) {
1134 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1135 } else if (n >= 43 && n < 51) {
1136 env->gregs[n - 43] = tmp;
1138 } else if (n >= 51 && n < 59) {
1139 env->gregs[n - (51 - 16)] = tmp;
1143 case 16: env->pc = tmp;
1144 case 17: env->pr = tmp;
1145 case 18: env->gbr = tmp;
1146 case 19: env->vbr = tmp;
1147 case 20: env->mach = tmp;
1148 case 21: env->macl = tmp;
1149 case 22: env->sr = tmp;
1150 case 23: env->fpul = tmp;
1151 case 24: env->fpscr = tmp;
1152 case 41: env->ssr = tmp;
1153 case 42: env->spc = tmp;
1159 #elif defined (TARGET_MICROBLAZE)
1161 #define NUM_CORE_REGS (32 + 5)
1163 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1166 GET_REG32(env->regs[n]);
1168 GET_REG32(env->sregs[n - 32]);
1173 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1177 if (n > NUM_CORE_REGS)
1180 tmp = ldl_p(mem_buf);
1185 env->sregs[n - 32] = tmp;
1189 #elif defined (TARGET_CRIS)
1191 #define NUM_CORE_REGS 49
1193 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1197 srs = env->pregs[PR_SRS];
1199 GET_REG32(env->regs[n]);
1202 if (n >= 21 && n < 32) {
1203 GET_REG32(env->pregs[n - 16]);
1205 if (n >= 33 && n < 49) {
1206 GET_REG32(env->sregs[srs][n - 33]);
1209 case 16: GET_REG8(env->pregs[0]);
1210 case 17: GET_REG8(env->pregs[1]);
1211 case 18: GET_REG32(env->pregs[2]);
1212 case 19: GET_REG8(srs);
1213 case 20: GET_REG16(env->pregs[4]);
1214 case 32: GET_REG32(env->pc);
1220 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1227 tmp = ldl_p(mem_buf);
1233 if (n >= 21 && n < 32) {
1234 env->pregs[n - 16] = tmp;
1237 /* FIXME: Should support function regs be writable? */
1241 case 18: env->pregs[PR_PID] = tmp; break;
1244 case 32: env->pc = tmp; break;
1249 #elif defined (TARGET_ALPHA)
1251 #define NUM_CORE_REGS 65
1253 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1256 GET_REGL(env->ir[n]);
1264 val=*((uint64_t *)&env->fir[n-32]);
1268 GET_REGL(env->fpcr);
1280 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1283 tmp = ldtul_p(mem_buf);
1289 if (n > 31 && n < 63) {
1290 env->fir[n - 32] = ldfl_p(mem_buf);
1301 #define NUM_CORE_REGS 0
1303 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1308 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1315 static int num_g_regs = NUM_CORE_REGS;
1318 /* Encode data using the encoding for 'x' packets. */
1319 static int memtox(char *buf, const char *mem, int len)
1327 case '#': case '$': case '*': case '}':
1339 static const char *get_feature_xml(const char *p, const char **newp)
1341 extern const char *const xml_builtin[][2];
1345 static char target_xml[1024];
1348 while (p[len] && p[len] != ':')
1353 if (strncmp(p, "target.xml", len) == 0) {
1354 /* Generate the XML description for this CPU. */
1355 if (!target_xml[0]) {
1356 GDBRegisterState *r;
1358 snprintf(target_xml, sizeof(target_xml),
1359 "<?xml version=\"1.0\"?>"
1360 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1362 "<xi:include href=\"%s\"/>",
1365 for (r = first_cpu->gdb_regs; r; r = r->next) {
1366 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1367 pstrcat(target_xml, sizeof(target_xml), r->xml);
1368 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1370 pstrcat(target_xml, sizeof(target_xml), "</target>");
1374 for (i = 0; ; i++) {
1375 name = xml_builtin[i][0];
1376 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1379 return name ? xml_builtin[i][1] : NULL;
1383 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1385 GDBRegisterState *r;
1387 if (reg < NUM_CORE_REGS)
1388 return cpu_gdb_read_register(env, mem_buf, reg);
1390 for (r = env->gdb_regs; r; r = r->next) {
1391 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1392 return r->get_reg(env, mem_buf, reg - r->base_reg);
1398 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1400 GDBRegisterState *r;
1402 if (reg < NUM_CORE_REGS)
1403 return cpu_gdb_write_register(env, mem_buf, reg);
1405 for (r = env->gdb_regs; r; r = r->next) {
1406 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1407 return r->set_reg(env, mem_buf, reg - r->base_reg);
1413 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1414 specifies the first register number and these registers are included in
1415 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1416 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1419 void gdb_register_coprocessor(CPUState * env,
1420 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1421 int num_regs, const char *xml, int g_pos)
1423 GDBRegisterState *s;
1424 GDBRegisterState **p;
1425 static int last_reg = NUM_CORE_REGS;
1427 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1428 s->base_reg = last_reg;
1429 s->num_regs = num_regs;
1430 s->get_reg = get_reg;
1431 s->set_reg = set_reg;
1435 /* Check for duplicates. */
1436 if (strcmp((*p)->xml, xml) == 0)
1440 /* Add to end of list. */
1441 last_reg += num_regs;
1444 if (g_pos != s->base_reg) {
1445 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1446 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1448 num_g_regs = last_reg;
1453 #ifndef CONFIG_USER_ONLY
1454 static const int xlat_gdb_type[] = {
1455 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1456 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1457 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1461 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1467 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1470 case GDB_BREAKPOINT_SW:
1471 case GDB_BREAKPOINT_HW:
1472 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1473 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1478 #ifndef CONFIG_USER_ONLY
1479 case GDB_WATCHPOINT_WRITE:
1480 case GDB_WATCHPOINT_READ:
1481 case GDB_WATCHPOINT_ACCESS:
1482 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1483 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1495 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1501 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1504 case GDB_BREAKPOINT_SW:
1505 case GDB_BREAKPOINT_HW:
1506 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1507 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1512 #ifndef CONFIG_USER_ONLY
1513 case GDB_WATCHPOINT_WRITE:
1514 case GDB_WATCHPOINT_READ:
1515 case GDB_WATCHPOINT_ACCESS:
1516 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1517 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1528 static void gdb_breakpoint_remove_all(void)
1532 if (kvm_enabled()) {
1533 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1537 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1538 cpu_breakpoint_remove_all(env, BP_GDB);
1539 #ifndef CONFIG_USER_ONLY
1540 cpu_watchpoint_remove_all(env, BP_GDB);
1545 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1547 #if defined(TARGET_I386)
1549 cpu_synchronize_state(s->c_cpu, 1);
1550 #elif defined (TARGET_PPC)
1552 #elif defined (TARGET_SPARC)
1554 s->c_cpu->npc = pc + 4;
1555 #elif defined (TARGET_ARM)
1556 s->c_cpu->regs[15] = pc;
1557 #elif defined (TARGET_SH4)
1559 #elif defined (TARGET_MIPS)
1560 s->c_cpu->active_tc.PC = pc;
1561 #elif defined (TARGET_MICROBLAZE)
1562 s->c_cpu->sregs[SR_PC] = pc;
1563 #elif defined (TARGET_CRIS)
1565 #elif defined (TARGET_ALPHA)
1570 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1574 int ch, reg_size, type, res, thread;
1575 char buf[MAX_PACKET_LENGTH];
1576 uint8_t mem_buf[MAX_PACKET_LENGTH];
1578 target_ulong addr, len;
1581 printf("command='%s'\n", line_buf);
1587 /* TODO: Make this return the correct value for user-mode. */
1588 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1589 s->c_cpu->cpu_index+1);
1591 /* Remove all the breakpoints when this query is issued,
1592 * because gdb is doing and initial connect and the state
1593 * should be cleaned up.
1595 gdb_breakpoint_remove_all();
1599 addr = strtoull(p, (char **)&p, 16);
1600 gdb_set_cpu_pc(s, addr);
1606 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1607 if (s->signal == -1)
1612 /* Kill the target */
1613 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1617 gdb_breakpoint_remove_all();
1619 put_packet(s, "OK");
1623 addr = strtoull(p, (char **)&p, 16);
1624 gdb_set_cpu_pc(s, addr);
1626 cpu_single_step(s->c_cpu, sstep_flags);
1634 ret = strtoull(p, (char **)&p, 16);
1637 err = strtoull(p, (char **)&p, 16);
1644 if (gdb_current_syscall_cb)
1645 gdb_current_syscall_cb(s->c_cpu, ret, err);
1647 put_packet(s, "T02");
1654 cpu_synchronize_state(s->g_cpu, 0);
1656 for (addr = 0; addr < num_g_regs; addr++) {
1657 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1660 memtohex(buf, mem_buf, len);
1664 registers = mem_buf;
1665 len = strlen(p) / 2;
1666 hextomem((uint8_t *)registers, p, len);
1667 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1668 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1670 registers += reg_size;
1672 cpu_synchronize_state(s->g_cpu, 1);
1673 put_packet(s, "OK");
1676 addr = strtoull(p, (char **)&p, 16);
1679 len = strtoull(p, NULL, 16);
1680 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1681 put_packet (s, "E14");
1683 memtohex(buf, mem_buf, len);
1688 addr = strtoull(p, (char **)&p, 16);
1691 len = strtoull(p, (char **)&p, 16);
1694 hextomem(mem_buf, p, len);
1695 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1696 put_packet(s, "E14");
1698 put_packet(s, "OK");
1701 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1702 This works, but can be very slow. Anything new enough to
1703 understand XML also knows how to use this properly. */
1705 goto unknown_command;
1706 addr = strtoull(p, (char **)&p, 16);
1707 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1709 memtohex(buf, mem_buf, reg_size);
1712 put_packet(s, "E14");
1717 goto unknown_command;
1718 addr = strtoull(p, (char **)&p, 16);
1721 reg_size = strlen(p) / 2;
1722 hextomem(mem_buf, p, reg_size);
1723 gdb_write_register(s->g_cpu, mem_buf, addr);
1724 put_packet(s, "OK");
1728 type = strtoul(p, (char **)&p, 16);
1731 addr = strtoull(p, (char **)&p, 16);
1734 len = strtoull(p, (char **)&p, 16);
1736 res = gdb_breakpoint_insert(addr, len, type);
1738 res = gdb_breakpoint_remove(addr, len, type);
1740 put_packet(s, "OK");
1741 else if (res == -ENOSYS)
1744 put_packet(s, "E22");
1748 thread = strtoull(p, (char **)&p, 16);
1749 if (thread == -1 || thread == 0) {
1750 put_packet(s, "OK");
1753 for (env = first_cpu; env != NULL; env = env->next_cpu)
1754 if (env->cpu_index + 1 == thread)
1757 put_packet(s, "E22");
1763 put_packet(s, "OK");
1767 put_packet(s, "OK");
1770 put_packet(s, "E22");
1775 thread = strtoull(p, (char **)&p, 16);
1776 #ifndef CONFIG_USER_ONLY
1777 if (thread > 0 && thread < smp_cpus + 1)
1781 put_packet(s, "OK");
1783 put_packet(s, "E22");
1787 /* parse any 'q' packets here */
1788 if (!strcmp(p,"qemu.sstepbits")) {
1789 /* Query Breakpoint bit definitions */
1790 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1796 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1797 /* Display or change the sstep_flags */
1800 /* Display current setting */
1801 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1806 type = strtoul(p, (char **)&p, 16);
1808 put_packet(s, "OK");
1810 } else if (strcmp(p,"C") == 0) {
1811 /* "Current thread" remains vague in the spec, so always return
1812 * the first CPU (gdb returns the first thread). */
1813 put_packet(s, "QC1");
1815 } else if (strcmp(p,"fThreadInfo") == 0) {
1816 s->query_cpu = first_cpu;
1817 goto report_cpuinfo;
1818 } else if (strcmp(p,"sThreadInfo") == 0) {
1821 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1823 s->query_cpu = s->query_cpu->next_cpu;
1827 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1828 thread = strtoull(p+16, (char **)&p, 16);
1829 for (env = first_cpu; env != NULL; env = env->next_cpu)
1830 if (env->cpu_index + 1 == thread) {
1831 cpu_synchronize_state(env, 0);
1832 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1833 "CPU#%d [%s]", env->cpu_index,
1834 env->halted ? "halted " : "running");
1835 memtohex(buf, mem_buf, len);
1841 #ifdef CONFIG_USER_ONLY
1842 else if (strncmp(p, "Offsets", 7) == 0) {
1843 TaskState *ts = s->c_cpu->opaque;
1845 snprintf(buf, sizeof(buf),
1846 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1847 ";Bss=" TARGET_ABI_FMT_lx,
1848 ts->info->code_offset,
1849 ts->info->data_offset,
1850 ts->info->data_offset);
1854 #else /* !CONFIG_USER_ONLY */
1855 else if (strncmp(p, "Rcmd,", 5) == 0) {
1856 int len = strlen(p + 5);
1858 if ((len % 2) != 0) {
1859 put_packet(s, "E01");
1862 hextomem(mem_buf, p + 5, len);
1865 qemu_chr_read(s->mon_chr, mem_buf, len);
1866 put_packet(s, "OK");
1869 #endif /* !CONFIG_USER_ONLY */
1870 if (strncmp(p, "Supported", 9) == 0) {
1871 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1873 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1879 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1881 target_ulong total_len;
1885 xml = get_feature_xml(p, &p);
1887 snprintf(buf, sizeof(buf), "E00");
1894 addr = strtoul(p, (char **)&p, 16);
1897 len = strtoul(p, (char **)&p, 16);
1899 total_len = strlen(xml);
1900 if (addr > total_len) {
1901 snprintf(buf, sizeof(buf), "E00");
1905 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1906 len = (MAX_PACKET_LENGTH - 5) / 2;
1907 if (len < total_len - addr) {
1909 len = memtox(buf + 1, xml + addr, len);
1912 len = memtox(buf + 1, xml + addr, total_len - addr);
1914 put_packet_binary(s, buf, len + 1);
1918 /* Unrecognised 'q' command. */
1919 goto unknown_command;
1923 /* put empty packet */
1931 void gdb_set_stop_cpu(CPUState *env)
1933 gdbserver_state->c_cpu = env;
1934 gdbserver_state->g_cpu = env;
1937 #ifndef CONFIG_USER_ONLY
1938 static void gdb_vm_state_change(void *opaque, int running, int reason)
1940 GDBState *s = gdbserver_state;
1941 CPUState *env = s->c_cpu;
1946 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1947 s->state == RS_INACTIVE || s->state == RS_SYSCALL)
1950 /* disable single step if it was enable */
1951 cpu_single_step(env, 0);
1953 if (reason == EXCP_DEBUG) {
1954 if (env->watchpoint_hit) {
1955 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1966 snprintf(buf, sizeof(buf),
1967 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1968 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1969 env->watchpoint_hit->vaddr);
1971 env->watchpoint_hit = NULL;
1975 ret = GDB_SIGNAL_TRAP;
1977 ret = GDB_SIGNAL_INT;
1979 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1984 /* Send a gdb syscall request.
1985 This accepts limited printf-style format specifiers, specifically:
1986 %x - target_ulong argument printed in hex.
1987 %lx - 64-bit argument printed in hex.
1988 %s - string pointer (target_ulong) and length (int) pair. */
1989 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1998 s = gdbserver_state;
2001 gdb_current_syscall_cb = cb;
2002 s->state = RS_SYSCALL;
2003 #ifndef CONFIG_USER_ONLY
2004 vm_stop(EXCP_DEBUG);
2015 addr = va_arg(va, target_ulong);
2016 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
2019 if (*(fmt++) != 'x')
2021 i64 = va_arg(va, uint64_t);
2022 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2025 addr = va_arg(va, target_ulong);
2026 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2027 addr, va_arg(va, int));
2031 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2042 #ifdef CONFIG_USER_ONLY
2043 gdb_handlesig(s->c_cpu, 0);
2049 static void gdb_read_byte(GDBState *s, int ch)
2054 #ifndef CONFIG_USER_ONLY
2055 if (s->last_packet_len) {
2056 /* Waiting for a response to the last packet. If we see the start
2057 of a new command then abandon the previous response. */
2060 printf("Got NACK, retransmitting\n");
2062 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2066 printf("Got ACK\n");
2068 printf("Got '%c' when expecting ACK/NACK\n", ch);
2070 if (ch == '+' || ch == '$')
2071 s->last_packet_len = 0;
2076 /* when the CPU is running, we cannot do anything except stop
2077 it when receiving a char */
2078 vm_stop(EXCP_INTERRUPT);
2085 s->line_buf_index = 0;
2086 s->state = RS_GETLINE;
2091 s->state = RS_CHKSUM1;
2092 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2095 s->line_buf[s->line_buf_index++] = ch;
2099 s->line_buf[s->line_buf_index] = '\0';
2100 s->line_csum = fromhex(ch) << 4;
2101 s->state = RS_CHKSUM2;
2104 s->line_csum |= fromhex(ch);
2106 for(i = 0; i < s->line_buf_index; i++) {
2107 csum += s->line_buf[i];
2109 if (s->line_csum != (csum & 0xff)) {
2111 put_buffer(s, &reply, 1);
2115 put_buffer(s, &reply, 1);
2116 s->state = gdb_handle_packet(s, s->line_buf);
2125 #ifdef CONFIG_USER_ONLY
2131 s = gdbserver_state;
2133 if (gdbserver_fd < 0 || s->fd < 0)
2140 gdb_handlesig (CPUState *env, int sig)
2146 s = gdbserver_state;
2147 if (gdbserver_fd < 0 || s->fd < 0)
2150 /* disable single step if it was enabled */
2151 cpu_single_step(env, 0);
2156 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2159 /* put_packet() might have detected that the peer terminated the
2166 s->running_state = 0;
2167 while (s->running_state == 0) {
2168 n = read (s->fd, buf, 256);
2173 for (i = 0; i < n; i++)
2174 gdb_read_byte (s, buf[i]);
2176 else if (n == 0 || errno != EAGAIN)
2178 /* XXX: Connection closed. Should probably wait for annother
2179 connection before continuing. */
2188 /* Tell the remote gdb that the process has exited. */
2189 void gdb_exit(CPUState *env, int code)
2194 s = gdbserver_state;
2195 if (gdbserver_fd < 0 || s->fd < 0)
2198 snprintf(buf, sizeof(buf), "W%02x", code);
2202 /* Tell the remote gdb that the process has exited due to SIG. */
2203 void gdb_signalled(CPUState *env, int sig)
2208 s = gdbserver_state;
2209 if (gdbserver_fd < 0 || s->fd < 0)
2212 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2216 static void gdb_accept(void)
2219 struct sockaddr_in sockaddr;
2224 len = sizeof(sockaddr);
2225 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2226 if (fd < 0 && errno != EINTR) {
2229 } else if (fd >= 0) {
2234 /* set short latency */
2236 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2238 s = qemu_mallocz(sizeof(GDBState));
2239 s->c_cpu = first_cpu;
2240 s->g_cpu = first_cpu;
2244 gdbserver_state = s;
2246 fcntl(fd, F_SETFL, O_NONBLOCK);
2249 static int gdbserver_open(int port)
2251 struct sockaddr_in sockaddr;
2254 fd = socket(PF_INET, SOCK_STREAM, 0);
2260 /* allow fast reuse */
2262 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2264 sockaddr.sin_family = AF_INET;
2265 sockaddr.sin_port = htons(port);
2266 sockaddr.sin_addr.s_addr = 0;
2267 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2272 ret = listen(fd, 0);
2280 int gdbserver_start(int port)
2282 gdbserver_fd = gdbserver_open(port);
2283 if (gdbserver_fd < 0)
2285 /* accept connections */
2290 /* Disable gdb stub for child processes. */
2291 void gdbserver_fork(CPUState *env)
2293 GDBState *s = gdbserver_state;
2294 if (gdbserver_fd < 0 || s->fd < 0)
2298 cpu_breakpoint_remove_all(env, BP_GDB);
2299 cpu_watchpoint_remove_all(env, BP_GDB);
2302 static int gdb_chr_can_receive(void *opaque)
2304 /* We can handle an arbitrarily large amount of data.
2305 Pick the maximum packet size, which is as good as anything. */
2306 return MAX_PACKET_LENGTH;
2309 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2313 for (i = 0; i < size; i++) {
2314 gdb_read_byte(gdbserver_state, buf[i]);
2318 static void gdb_chr_event(void *opaque, int event)
2321 case CHR_EVENT_RESET:
2322 vm_stop(EXCP_INTERRUPT);
2330 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2332 char buf[MAX_PACKET_LENGTH];
2335 if (len > (MAX_PACKET_LENGTH/2) - 1)
2336 len = (MAX_PACKET_LENGTH/2) - 1;
2337 memtohex(buf + 1, (uint8_t *)msg, len);
2341 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2343 const char *p = (const char *)buf;
2346 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2348 if (len <= max_sz) {
2349 gdb_monitor_output(gdbserver_state, p, len);
2352 gdb_monitor_output(gdbserver_state, p, max_sz);
2360 static void gdb_sigterm_handler(int signal)
2363 vm_stop(EXCP_INTERRUPT);
2367 int gdbserver_start(const char *device)
2370 char gdbstub_device_name[128];
2371 CharDriverState *chr = NULL;
2372 CharDriverState *mon_chr;
2376 if (strcmp(device, "none") != 0) {
2377 if (strstart(device, "tcp:", NULL)) {
2378 /* enforce required TCP attributes */
2379 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2380 "%s,nowait,nodelay,server", device);
2381 device = gdbstub_device_name;
2384 else if (strcmp(device, "stdio") == 0) {
2385 struct sigaction act;
2387 memset(&act, 0, sizeof(act));
2388 act.sa_handler = gdb_sigterm_handler;
2389 sigaction(SIGINT, &act, NULL);
2392 chr = qemu_chr_open("gdb", device, NULL);
2396 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2397 gdb_chr_event, NULL);
2400 s = gdbserver_state;
2402 s = qemu_mallocz(sizeof(GDBState));
2403 gdbserver_state = s;
2405 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2407 /* Initialize a monitor terminal for gdb */
2408 mon_chr = qemu_mallocz(sizeof(*mon_chr));
2409 mon_chr->chr_write = gdb_monitor_write;
2410 monitor_init(mon_chr, 0);
2413 qemu_chr_close(s->chr);
2414 mon_chr = s->mon_chr;
2415 memset(s, 0, sizeof(GDBState));
2417 s->c_cpu = first_cpu;
2418 s->g_cpu = first_cpu;
2420 s->state = chr ? RS_IDLE : RS_INACTIVE;
2421 s->mon_chr = mon_chr;