2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>, \
22 * [pmrdev=<mem_backend_file_id>,] \
23 * num_queues=<N[optional]>
25 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
26 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
28 * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
29 * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
31 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
33 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
34 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
37 #include "qemu/osdep.h"
38 #include "qemu/units.h"
39 #include "hw/block/block.h"
40 #include "hw/pci/msix.h"
41 #include "hw/pci/pci.h"
42 #include "hw/qdev-properties.h"
43 #include "migration/vmstate.h"
44 #include "sysemu/sysemu.h"
45 #include "qapi/error.h"
46 #include "qapi/visitor.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/block-backend.h"
49 #include "exec/memory.h"
51 #include "qemu/module.h"
52 #include "qemu/cutils.h"
56 #define NVME_GUEST_ERR(trace, fmt, ...) \
58 (trace_##trace)(__VA_ARGS__); \
59 qemu_log_mask(LOG_GUEST_ERROR, #trace \
60 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
63 static void nvme_process_sq(void *opaque);
65 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
67 if (n->cmbsz && addr >= n->ctrl_mem.addr &&
68 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
69 memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
71 pci_dma_read(&n->parent_obj, addr, buf, size);
75 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
77 return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
80 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
82 return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
85 static void nvme_inc_cq_tail(NvmeCQueue *cq)
88 if (cq->tail >= cq->size) {
90 cq->phase = !cq->phase;
94 static void nvme_inc_sq_head(NvmeSQueue *sq)
96 sq->head = (sq->head + 1) % sq->size;
99 static uint8_t nvme_cq_full(NvmeCQueue *cq)
101 return (cq->tail + 1) % cq->size == cq->head;
104 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
106 return sq->head == sq->tail;
109 static void nvme_irq_check(NvmeCtrl *n)
111 if (msix_enabled(&(n->parent_obj))) {
114 if (~n->bar.intms & n->irq_status) {
115 pci_irq_assert(&n->parent_obj);
117 pci_irq_deassert(&n->parent_obj);
121 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
123 if (cq->irq_enabled) {
124 if (msix_enabled(&(n->parent_obj))) {
125 trace_nvme_irq_msix(cq->vector);
126 msix_notify(&(n->parent_obj), cq->vector);
128 trace_nvme_irq_pin();
129 assert(cq->cqid < 64);
130 n->irq_status |= 1 << cq->cqid;
134 trace_nvme_irq_masked();
138 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
140 if (cq->irq_enabled) {
141 if (msix_enabled(&(n->parent_obj))) {
144 assert(cq->cqid < 64);
145 n->irq_status &= ~(1 << cq->cqid);
151 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
152 uint64_t prp2, uint32_t len, NvmeCtrl *n)
154 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
155 trans_len = MIN(len, trans_len);
156 int num_prps = (len >> n->page_bits) + 1;
158 if (unlikely(!prp1)) {
159 trace_nvme_err_invalid_prp();
160 return NVME_INVALID_FIELD | NVME_DNR;
161 } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
162 prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
164 qemu_iovec_init(iov, num_prps);
165 qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
167 pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
168 qemu_sglist_add(qsg, prp1, trans_len);
172 if (unlikely(!prp2)) {
173 trace_nvme_err_invalid_prp2_missing();
176 if (len > n->page_size) {
177 uint64_t prp_list[n->max_prp_ents];
178 uint32_t nents, prp_trans;
181 nents = (len + n->page_size - 1) >> n->page_bits;
182 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
183 nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
185 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
187 if (i == n->max_prp_ents - 1 && len > n->page_size) {
188 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
189 trace_nvme_err_invalid_prplist_ent(prp_ent);
194 nents = (len + n->page_size - 1) >> n->page_bits;
195 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
196 nvme_addr_read(n, prp_ent, (void *)prp_list,
198 prp_ent = le64_to_cpu(prp_list[i]);
201 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
202 trace_nvme_err_invalid_prplist_ent(prp_ent);
206 trans_len = MIN(len, n->page_size);
208 qemu_sglist_add(qsg, prp_ent, trans_len);
210 qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
216 if (unlikely(prp2 & (n->page_size - 1))) {
217 trace_nvme_err_invalid_prp2_align(prp2);
221 qemu_sglist_add(qsg, prp2, len);
223 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
230 qemu_sglist_destroy(qsg);
231 return NVME_INVALID_FIELD | NVME_DNR;
234 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
235 uint64_t prp1, uint64_t prp2)
239 uint16_t status = NVME_SUCCESS;
241 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
242 return NVME_INVALID_FIELD | NVME_DNR;
245 if (dma_buf_write(ptr, len, &qsg)) {
246 status = NVME_INVALID_FIELD | NVME_DNR;
248 qemu_sglist_destroy(&qsg);
250 if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
251 status = NVME_INVALID_FIELD | NVME_DNR;
253 qemu_iovec_destroy(&iov);
258 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
259 uint64_t prp1, uint64_t prp2)
263 uint16_t status = NVME_SUCCESS;
265 trace_nvme_dma_read(prp1, prp2);
267 if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
268 return NVME_INVALID_FIELD | NVME_DNR;
271 if (unlikely(dma_buf_read(ptr, len, &qsg))) {
272 trace_nvme_err_invalid_dma();
273 status = NVME_INVALID_FIELD | NVME_DNR;
275 qemu_sglist_destroy(&qsg);
277 if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
278 trace_nvme_err_invalid_dma();
279 status = NVME_INVALID_FIELD | NVME_DNR;
281 qemu_iovec_destroy(&iov);
286 static void nvme_post_cqes(void *opaque)
288 NvmeCQueue *cq = opaque;
289 NvmeCtrl *n = cq->ctrl;
290 NvmeRequest *req, *next;
292 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
296 if (nvme_cq_full(cq)) {
300 QTAILQ_REMOVE(&cq->req_list, req, entry);
302 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
303 req->cqe.sq_id = cpu_to_le16(sq->sqid);
304 req->cqe.sq_head = cpu_to_le16(sq->head);
305 addr = cq->dma_addr + cq->tail * n->cqe_size;
306 nvme_inc_cq_tail(cq);
307 pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
309 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
311 if (cq->tail != cq->head) {
312 nvme_irq_assert(n, cq);
316 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
318 assert(cq->cqid == req->sq->cqid);
319 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
320 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
321 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
324 static void nvme_rw_cb(void *opaque, int ret)
326 NvmeRequest *req = opaque;
327 NvmeSQueue *sq = req->sq;
328 NvmeCtrl *n = sq->ctrl;
329 NvmeCQueue *cq = n->cq[sq->cqid];
332 block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
333 req->status = NVME_SUCCESS;
335 block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
336 req->status = NVME_INTERNAL_DEV_ERROR;
339 qemu_sglist_destroy(&req->qsg);
341 nvme_enqueue_req_completion(cq, req);
344 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
348 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
350 req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
352 return NVME_NO_COMPLETE;
355 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
358 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
359 const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
360 const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
361 uint64_t slba = le64_to_cpu(rw->slba);
362 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
363 uint64_t offset = slba << data_shift;
364 uint32_t count = nlb << data_shift;
366 if (unlikely(slba + nlb > ns->id_ns.nsze)) {
367 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
368 return NVME_LBA_RANGE | NVME_DNR;
372 block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
374 req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
375 BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
376 return NVME_NO_COMPLETE;
379 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
382 NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
383 uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
384 uint64_t slba = le64_to_cpu(rw->slba);
385 uint64_t prp1 = le64_to_cpu(rw->prp1);
386 uint64_t prp2 = le64_to_cpu(rw->prp2);
388 uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
389 uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
390 uint64_t data_size = (uint64_t)nlb << data_shift;
391 uint64_t data_offset = slba << data_shift;
392 int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
393 enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
395 trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
397 if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
398 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
399 trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
400 return NVME_LBA_RANGE | NVME_DNR;
403 if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
404 block_acct_invalid(blk_get_stats(n->conf.blk), acct);
405 return NVME_INVALID_FIELD | NVME_DNR;
408 dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
409 if (req->qsg.nsg > 0) {
411 req->aiocb = is_write ?
412 dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
414 dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
418 req->aiocb = is_write ?
419 blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
421 blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
425 return NVME_NO_COMPLETE;
428 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
431 uint32_t nsid = le32_to_cpu(cmd->nsid);
433 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
434 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
435 return NVME_INVALID_NSID | NVME_DNR;
438 ns = &n->namespaces[nsid - 1];
439 switch (cmd->opcode) {
441 return nvme_flush(n, ns, cmd, req);
442 case NVME_CMD_WRITE_ZEROS:
443 return nvme_write_zeros(n, ns, cmd, req);
446 return nvme_rw(n, ns, cmd, req);
448 trace_nvme_err_invalid_opc(cmd->opcode);
449 return NVME_INVALID_OPCODE | NVME_DNR;
453 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
455 n->sq[sq->sqid] = NULL;
456 timer_del(sq->timer);
457 timer_free(sq->timer);
464 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
466 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
467 NvmeRequest *req, *next;
470 uint16_t qid = le16_to_cpu(c->qid);
472 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
473 trace_nvme_err_invalid_del_sq(qid);
474 return NVME_INVALID_QID | NVME_DNR;
477 trace_nvme_del_sq(qid);
480 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
481 req = QTAILQ_FIRST(&sq->out_req_list);
483 blk_aio_cancel(req->aiocb);
485 if (!nvme_check_cqid(n, sq->cqid)) {
486 cq = n->cq[sq->cqid];
487 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
490 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
492 QTAILQ_REMOVE(&cq->req_list, req, entry);
493 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
502 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
503 uint16_t sqid, uint16_t cqid, uint16_t size)
509 sq->dma_addr = dma_addr;
513 sq->head = sq->tail = 0;
514 sq->io_req = g_new(NvmeRequest, sq->size);
516 QTAILQ_INIT(&sq->req_list);
517 QTAILQ_INIT(&sq->out_req_list);
518 for (i = 0; i < sq->size; i++) {
519 sq->io_req[i].sq = sq;
520 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
522 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
526 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
530 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
533 NvmeCreateSq *c = (NvmeCreateSq *)cmd;
535 uint16_t cqid = le16_to_cpu(c->cqid);
536 uint16_t sqid = le16_to_cpu(c->sqid);
537 uint16_t qsize = le16_to_cpu(c->qsize);
538 uint16_t qflags = le16_to_cpu(c->sq_flags);
539 uint64_t prp1 = le64_to_cpu(c->prp1);
541 trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
543 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
544 trace_nvme_err_invalid_create_sq_cqid(cqid);
545 return NVME_INVALID_CQID | NVME_DNR;
547 if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
548 trace_nvme_err_invalid_create_sq_sqid(sqid);
549 return NVME_INVALID_QID | NVME_DNR;
551 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
552 trace_nvme_err_invalid_create_sq_size(qsize);
553 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
555 if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
556 trace_nvme_err_invalid_create_sq_addr(prp1);
557 return NVME_INVALID_FIELD | NVME_DNR;
559 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
560 trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
561 return NVME_INVALID_FIELD | NVME_DNR;
563 sq = g_malloc0(sizeof(*sq));
564 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
568 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
570 n->cq[cq->cqid] = NULL;
571 timer_del(cq->timer);
572 timer_free(cq->timer);
573 msix_vector_unuse(&n->parent_obj, cq->vector);
579 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
581 NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
583 uint16_t qid = le16_to_cpu(c->qid);
585 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
586 trace_nvme_err_invalid_del_cq_cqid(qid);
587 return NVME_INVALID_CQID | NVME_DNR;
591 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
592 trace_nvme_err_invalid_del_cq_notempty(qid);
593 return NVME_INVALID_QUEUE_DEL;
595 nvme_irq_deassert(n, cq);
596 trace_nvme_del_cq(qid);
601 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
602 uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
607 cq->dma_addr = dma_addr;
609 cq->irq_enabled = irq_enabled;
611 cq->head = cq->tail = 0;
612 QTAILQ_INIT(&cq->req_list);
613 QTAILQ_INIT(&cq->sq_list);
614 msix_vector_use(&n->parent_obj, cq->vector);
616 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
619 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
622 NvmeCreateCq *c = (NvmeCreateCq *)cmd;
623 uint16_t cqid = le16_to_cpu(c->cqid);
624 uint16_t vector = le16_to_cpu(c->irq_vector);
625 uint16_t qsize = le16_to_cpu(c->qsize);
626 uint16_t qflags = le16_to_cpu(c->cq_flags);
627 uint64_t prp1 = le64_to_cpu(c->prp1);
629 trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
630 NVME_CQ_FLAGS_IEN(qflags) != 0);
632 if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
633 trace_nvme_err_invalid_create_cq_cqid(cqid);
634 return NVME_INVALID_CQID | NVME_DNR;
636 if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
637 trace_nvme_err_invalid_create_cq_size(qsize);
638 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
640 if (unlikely(!prp1)) {
641 trace_nvme_err_invalid_create_cq_addr(prp1);
642 return NVME_INVALID_FIELD | NVME_DNR;
644 if (unlikely(vector > n->num_queues)) {
645 trace_nvme_err_invalid_create_cq_vector(vector);
646 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
648 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
649 trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
650 return NVME_INVALID_FIELD | NVME_DNR;
653 cq = g_malloc0(sizeof(*cq));
654 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
655 NVME_CQ_FLAGS_IEN(qflags));
659 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
661 uint64_t prp1 = le64_to_cpu(c->prp1);
662 uint64_t prp2 = le64_to_cpu(c->prp2);
664 trace_nvme_identify_ctrl();
666 return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
670 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
673 uint32_t nsid = le32_to_cpu(c->nsid);
674 uint64_t prp1 = le64_to_cpu(c->prp1);
675 uint64_t prp2 = le64_to_cpu(c->prp2);
677 trace_nvme_identify_ns(nsid);
679 if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
680 trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
681 return NVME_INVALID_NSID | NVME_DNR;
684 ns = &n->namespaces[nsid - 1];
686 return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
690 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
692 static const int data_len = 4 * KiB;
693 uint32_t min_nsid = le32_to_cpu(c->nsid);
694 uint64_t prp1 = le64_to_cpu(c->prp1);
695 uint64_t prp2 = le64_to_cpu(c->prp2);
700 trace_nvme_identify_nslist(min_nsid);
702 list = g_malloc0(data_len);
703 for (i = 0; i < n->num_namespaces; i++) {
707 list[j++] = cpu_to_le32(i + 1);
708 if (j == data_len / sizeof(uint32_t)) {
712 ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
717 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
719 NvmeIdentify *c = (NvmeIdentify *)cmd;
721 switch (le32_to_cpu(c->cns)) {
723 return nvme_identify_ns(n, c);
725 return nvme_identify_ctrl(n, c);
727 return nvme_identify_nslist(n, c);
729 trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
730 return NVME_INVALID_FIELD | NVME_DNR;
734 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
736 trace_nvme_setfeat_timestamp(ts);
738 n->host_timestamp = le64_to_cpu(ts);
739 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
742 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
744 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
745 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
747 union nvme_timestamp {
749 uint64_t timestamp:48;
757 union nvme_timestamp ts;
761 * If the sum of the Timestamp value set by the host and the elapsed
762 * time exceeds 2^48, the value returned should be reduced modulo 2^48.
764 ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
766 /* If the host timestamp is non-zero, set the timestamp origin */
767 ts.origin = n->host_timestamp ? 0x01 : 0x00;
769 trace_nvme_getfeat_timestamp(ts.all);
771 return cpu_to_le64(ts.all);
774 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
776 uint64_t prp1 = le64_to_cpu(cmd->prp1);
777 uint64_t prp2 = le64_to_cpu(cmd->prp2);
779 uint64_t timestamp = nvme_get_timestamp(n);
781 return nvme_dma_read_prp(n, (uint8_t *)×tamp,
782 sizeof(timestamp), prp1, prp2);
785 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
787 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
791 case NVME_VOLATILE_WRITE_CACHE:
792 result = blk_enable_write_cache(n->conf.blk);
793 trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
795 case NVME_NUMBER_OF_QUEUES:
796 result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
797 trace_nvme_getfeat_numq(result);
800 return nvme_get_feature_timestamp(n, cmd);
803 trace_nvme_err_invalid_getfeat(dw10);
804 return NVME_INVALID_FIELD | NVME_DNR;
807 req->cqe.result = result;
811 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
815 uint64_t prp1 = le64_to_cpu(cmd->prp1);
816 uint64_t prp2 = le64_to_cpu(cmd->prp2);
818 ret = nvme_dma_write_prp(n, (uint8_t *)×tamp,
819 sizeof(timestamp), prp1, prp2);
820 if (ret != NVME_SUCCESS) {
824 nvme_set_timestamp(n, timestamp);
829 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
831 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
832 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
835 case NVME_VOLATILE_WRITE_CACHE:
836 blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
838 case NVME_NUMBER_OF_QUEUES:
839 trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
840 ((dw11 >> 16) & 0xFFFF) + 1,
841 n->num_queues - 1, n->num_queues - 1);
843 cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
847 return nvme_set_feature_timestamp(n, cmd);
851 trace_nvme_err_invalid_setfeat(dw10);
852 return NVME_INVALID_FIELD | NVME_DNR;
857 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
859 switch (cmd->opcode) {
860 case NVME_ADM_CMD_DELETE_SQ:
861 return nvme_del_sq(n, cmd);
862 case NVME_ADM_CMD_CREATE_SQ:
863 return nvme_create_sq(n, cmd);
864 case NVME_ADM_CMD_DELETE_CQ:
865 return nvme_del_cq(n, cmd);
866 case NVME_ADM_CMD_CREATE_CQ:
867 return nvme_create_cq(n, cmd);
868 case NVME_ADM_CMD_IDENTIFY:
869 return nvme_identify(n, cmd);
870 case NVME_ADM_CMD_SET_FEATURES:
871 return nvme_set_feature(n, cmd, req);
872 case NVME_ADM_CMD_GET_FEATURES:
873 return nvme_get_feature(n, cmd, req);
875 trace_nvme_err_invalid_admin_opc(cmd->opcode);
876 return NVME_INVALID_OPCODE | NVME_DNR;
880 static void nvme_process_sq(void *opaque)
882 NvmeSQueue *sq = opaque;
883 NvmeCtrl *n = sq->ctrl;
884 NvmeCQueue *cq = n->cq[sq->cqid];
891 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
892 addr = sq->dma_addr + sq->head * n->sqe_size;
893 nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
894 nvme_inc_sq_head(sq);
896 req = QTAILQ_FIRST(&sq->req_list);
897 QTAILQ_REMOVE(&sq->req_list, req, entry);
898 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
899 memset(&req->cqe, 0, sizeof(req->cqe));
900 req->cqe.cid = cmd.cid;
902 status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
903 nvme_admin_cmd(n, &cmd, req);
904 if (status != NVME_NO_COMPLETE) {
905 req->status = status;
906 nvme_enqueue_req_completion(cq, req);
911 static void nvme_clear_ctrl(NvmeCtrl *n)
915 blk_drain(n->conf.blk);
917 for (i = 0; i < n->num_queues; i++) {
918 if (n->sq[i] != NULL) {
919 nvme_free_sq(n->sq[i], n);
922 for (i = 0; i < n->num_queues; i++) {
923 if (n->cq[i] != NULL) {
924 nvme_free_cq(n->cq[i], n);
928 blk_flush(n->conf.blk);
932 static int nvme_start_ctrl(NvmeCtrl *n)
934 uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
935 uint32_t page_size = 1 << page_bits;
937 if (unlikely(n->cq[0])) {
938 trace_nvme_err_startfail_cq();
941 if (unlikely(n->sq[0])) {
942 trace_nvme_err_startfail_sq();
945 if (unlikely(!n->bar.asq)) {
946 trace_nvme_err_startfail_nbarasq();
949 if (unlikely(!n->bar.acq)) {
950 trace_nvme_err_startfail_nbaracq();
953 if (unlikely(n->bar.asq & (page_size - 1))) {
954 trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
957 if (unlikely(n->bar.acq & (page_size - 1))) {
958 trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
961 if (unlikely(NVME_CC_MPS(n->bar.cc) <
962 NVME_CAP_MPSMIN(n->bar.cap))) {
963 trace_nvme_err_startfail_page_too_small(
964 NVME_CC_MPS(n->bar.cc),
965 NVME_CAP_MPSMIN(n->bar.cap));
968 if (unlikely(NVME_CC_MPS(n->bar.cc) >
969 NVME_CAP_MPSMAX(n->bar.cap))) {
970 trace_nvme_err_startfail_page_too_large(
971 NVME_CC_MPS(n->bar.cc),
972 NVME_CAP_MPSMAX(n->bar.cap));
975 if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
976 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
977 trace_nvme_err_startfail_cqent_too_small(
978 NVME_CC_IOCQES(n->bar.cc),
979 NVME_CTRL_CQES_MIN(n->bar.cap));
982 if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
983 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
984 trace_nvme_err_startfail_cqent_too_large(
985 NVME_CC_IOCQES(n->bar.cc),
986 NVME_CTRL_CQES_MAX(n->bar.cap));
989 if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
990 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
991 trace_nvme_err_startfail_sqent_too_small(
992 NVME_CC_IOSQES(n->bar.cc),
993 NVME_CTRL_SQES_MIN(n->bar.cap));
996 if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
997 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
998 trace_nvme_err_startfail_sqent_too_large(
999 NVME_CC_IOSQES(n->bar.cc),
1000 NVME_CTRL_SQES_MAX(n->bar.cap));
1003 if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1004 trace_nvme_err_startfail_asqent_sz_zero();
1007 if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1008 trace_nvme_err_startfail_acqent_sz_zero();
1012 n->page_bits = page_bits;
1013 n->page_size = page_size;
1014 n->max_prp_ents = n->page_size / sizeof(uint64_t);
1015 n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1016 n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1017 nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1018 NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1019 nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1020 NVME_AQA_ASQS(n->bar.aqa) + 1);
1022 nvme_set_timestamp(n, 0ULL);
1027 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1030 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1031 NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
1032 "MMIO write not 32-bit aligned,"
1033 " offset=0x%"PRIx64"", offset);
1034 /* should be ignored, fall through for now */
1037 if (unlikely(size < sizeof(uint32_t))) {
1038 NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
1039 "MMIO write smaller than 32-bits,"
1040 " offset=0x%"PRIx64", size=%u",
1042 /* should be ignored, fall through for now */
1046 case 0xc: /* INTMS */
1047 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1048 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1049 "undefined access to interrupt mask set"
1050 " when MSI-X is enabled");
1051 /* should be ignored, fall through for now */
1053 n->bar.intms |= data & 0xffffffff;
1054 n->bar.intmc = n->bar.intms;
1055 trace_nvme_mmio_intm_set(data & 0xffffffff,
1059 case 0x10: /* INTMC */
1060 if (unlikely(msix_enabled(&(n->parent_obj)))) {
1061 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1062 "undefined access to interrupt mask clr"
1063 " when MSI-X is enabled");
1064 /* should be ignored, fall through for now */
1066 n->bar.intms &= ~(data & 0xffffffff);
1067 n->bar.intmc = n->bar.intms;
1068 trace_nvme_mmio_intm_clr(data & 0xffffffff,
1073 trace_nvme_mmio_cfg(data & 0xffffffff);
1074 /* Windows first sends data, then sends enable bit */
1075 if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1076 !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1081 if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1083 if (unlikely(nvme_start_ctrl(n))) {
1084 trace_nvme_err_startfail();
1085 n->bar.csts = NVME_CSTS_FAILED;
1087 trace_nvme_mmio_start_success();
1088 n->bar.csts = NVME_CSTS_READY;
1090 } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1091 trace_nvme_mmio_stopped();
1093 n->bar.csts &= ~NVME_CSTS_READY;
1095 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1096 trace_nvme_mmio_shutdown_set();
1099 n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1100 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1101 trace_nvme_mmio_shutdown_cleared();
1102 n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1106 case 0x1C: /* CSTS */
1107 if (data & (1 << 4)) {
1108 NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
1109 "attempted to W1C CSTS.NSSRO"
1110 " but CAP.NSSRS is zero (not supported)");
1111 } else if (data != 0) {
1112 NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
1113 "attempted to set a read only bit"
1114 " of controller status");
1117 case 0x20: /* NSSR */
1118 if (data == 0x4E564D65) {
1119 trace_nvme_ub_mmiowr_ssreset_unsupported();
1121 /* The spec says that writes of other values have no effect */
1125 case 0x24: /* AQA */
1126 n->bar.aqa = data & 0xffffffff;
1127 trace_nvme_mmio_aqattr(data & 0xffffffff);
1129 case 0x28: /* ASQ */
1131 trace_nvme_mmio_asqaddr(data);
1133 case 0x2c: /* ASQ hi */
1134 n->bar.asq |= data << 32;
1135 trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1137 case 0x30: /* ACQ */
1138 trace_nvme_mmio_acqaddr(data);
1141 case 0x34: /* ACQ hi */
1142 n->bar.acq |= data << 32;
1143 trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1145 case 0x38: /* CMBLOC */
1146 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1147 "invalid write to reserved CMBLOC"
1148 " when CMBSZ is zero, ignored");
1150 case 0x3C: /* CMBSZ */
1151 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1152 "invalid write to read only CMBSZ, ignored");
1154 case 0xE00: /* PMRCAP */
1155 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrcap_readonly,
1156 "invalid write to PMRCAP register, ignored");
1158 case 0xE04: /* TODO PMRCTL */
1160 case 0xE08: /* PMRSTS */
1161 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrsts_readonly,
1162 "invalid write to PMRSTS register, ignored");
1164 case 0xE0C: /* PMREBS */
1165 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrebs_readonly,
1166 "invalid write to PMREBS register, ignored");
1168 case 0xE10: /* PMRSWTP */
1169 NVME_GUEST_ERR(nvme_ub_mmiowr_pmrswtp_readonly,
1170 "invalid write to PMRSWTP register, ignored");
1172 case 0xE14: /* TODO PMRMSC */
1175 NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1176 "invalid MMIO write,"
1177 " offset=0x%"PRIx64", data=%"PRIx64"",
1183 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1185 NvmeCtrl *n = (NvmeCtrl *)opaque;
1186 uint8_t *ptr = (uint8_t *)&n->bar;
1189 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1190 NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1191 "MMIO read not 32-bit aligned,"
1192 " offset=0x%"PRIx64"", addr);
1193 /* should RAZ, fall through for now */
1194 } else if (unlikely(size < sizeof(uint32_t))) {
1195 NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1196 "MMIO read smaller than 32-bits,"
1197 " offset=0x%"PRIx64"", addr);
1198 /* should RAZ, fall through for now */
1201 if (addr < sizeof(n->bar)) {
1203 * When PMRWBM bit 1 is set then read from
1204 * from PMRSTS should ensure prior writes
1205 * made it to persistent media
1207 if (addr == 0xE08 &&
1208 (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1209 memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
1211 memcpy(&val, ptr + addr, size);
1213 NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1214 "MMIO read beyond last register,"
1215 " offset=0x%"PRIx64", returning 0", addr);
1221 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1225 if (unlikely(addr & ((1 << 2) - 1))) {
1226 NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1227 "doorbell write not 32-bit aligned,"
1228 " offset=0x%"PRIx64", ignoring", addr);
1232 if (((addr - 0x1000) >> 2) & 1) {
1233 /* Completion queue doorbell write */
1235 uint16_t new_head = val & 0xffff;
1239 qid = (addr - (0x1000 + (1 << 2))) >> 3;
1240 if (unlikely(nvme_check_cqid(n, qid))) {
1241 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1242 "completion queue doorbell write"
1243 " for nonexistent queue,"
1244 " sqid=%"PRIu32", ignoring", qid);
1249 if (unlikely(new_head >= cq->size)) {
1250 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1251 "completion queue doorbell write value"
1252 " beyond queue size, sqid=%"PRIu32","
1253 " new_head=%"PRIu16", ignoring",
1258 start_sqs = nvme_cq_full(cq) ? 1 : 0;
1259 cq->head = new_head;
1262 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1263 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1265 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1268 if (cq->tail == cq->head) {
1269 nvme_irq_deassert(n, cq);
1272 /* Submission queue doorbell write */
1274 uint16_t new_tail = val & 0xffff;
1277 qid = (addr - 0x1000) >> 3;
1278 if (unlikely(nvme_check_sqid(n, qid))) {
1279 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1280 "submission queue doorbell write"
1281 " for nonexistent queue,"
1282 " sqid=%"PRIu32", ignoring", qid);
1287 if (unlikely(new_tail >= sq->size)) {
1288 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1289 "submission queue doorbell write value"
1290 " beyond queue size, sqid=%"PRIu32","
1291 " new_tail=%"PRIu16", ignoring",
1296 sq->tail = new_tail;
1297 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1301 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1304 NvmeCtrl *n = (NvmeCtrl *)opaque;
1305 if (addr < sizeof(n->bar)) {
1306 nvme_write_bar(n, addr, data, size);
1307 } else if (addr >= 0x1000) {
1308 nvme_process_db(n, addr, data);
1312 static const MemoryRegionOps nvme_mmio_ops = {
1313 .read = nvme_mmio_read,
1314 .write = nvme_mmio_write,
1315 .endianness = DEVICE_LITTLE_ENDIAN,
1317 .min_access_size = 2,
1318 .max_access_size = 8,
1322 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1325 NvmeCtrl *n = (NvmeCtrl *)opaque;
1326 stn_le_p(&n->cmbuf[addr], size, data);
1329 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1331 NvmeCtrl *n = (NvmeCtrl *)opaque;
1332 return ldn_le_p(&n->cmbuf[addr], size);
1335 static const MemoryRegionOps nvme_cmb_ops = {
1336 .read = nvme_cmb_read,
1337 .write = nvme_cmb_write,
1338 .endianness = DEVICE_LITTLE_ENDIAN,
1340 .min_access_size = 1,
1341 .max_access_size = 8,
1345 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1347 NvmeCtrl *n = NVME(pci_dev);
1348 NvmeIdCtrl *id = &n->id_ctrl;
1354 if (!n->num_queues) {
1355 error_setg(errp, "num_queues can't be zero");
1360 error_setg(errp, "drive property not set");
1364 bs_size = blk_getlength(n->conf.blk);
1366 error_setg(errp, "could not get backing file size");
1371 error_setg(errp, "serial property not set");
1375 if (!n->cmb_size_mb && n->pmrdev) {
1376 if (host_memory_backend_is_mapped(n->pmrdev)) {
1377 char *path = object_get_canonical_path_component(OBJECT(n->pmrdev));
1378 error_setg(errp, "can't use already busy memdev: %s", path);
1383 if (!is_power_of_2(n->pmrdev->size)) {
1384 error_setg(errp, "pmr backend size needs to be power of 2 in size");
1388 host_memory_backend_set_mapped(n->pmrdev, true);
1391 blkconf_blocksizes(&n->conf);
1392 if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1397 pci_conf = pci_dev->config;
1398 pci_conf[PCI_INTERRUPT_PIN] = 1;
1399 pci_config_set_prog_interface(pci_dev->config, 0x2);
1400 pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1401 pcie_endpoint_cap_init(pci_dev, 0x80);
1403 n->num_namespaces = 1;
1404 n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1405 n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1407 n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1408 n->sq = g_new0(NvmeSQueue *, n->num_queues);
1409 n->cq = g_new0(NvmeCQueue *, n->num_queues);
1411 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1412 "nvme", n->reg_size);
1413 pci_register_bar(pci_dev, 0,
1414 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1416 msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL);
1418 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1419 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1420 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1421 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1422 strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1427 id->oacs = cpu_to_le16(0);
1430 id->sqes = (0x6 << 4) | 0x6;
1431 id->cqes = (0x4 << 4) | 0x4;
1432 id->nn = cpu_to_le32(n->num_namespaces);
1433 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1434 id->psd[0].mp = cpu_to_le16(0x9c4);
1435 id->psd[0].enlat = cpu_to_le32(0x10);
1436 id->psd[0].exlat = cpu_to_le32(0x4);
1437 if (blk_enable_write_cache(n->conf.blk)) {
1442 NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1443 NVME_CAP_SET_CQR(n->bar.cap, 1);
1444 NVME_CAP_SET_TO(n->bar.cap, 0xf);
1445 NVME_CAP_SET_CSS(n->bar.cap, 1);
1446 NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1448 n->bar.vs = 0x00010200;
1449 n->bar.intmc = n->bar.intms = 0;
1451 if (n->cmb_size_mb) {
1453 NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1454 NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1456 NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1457 NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1458 NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1459 NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1460 NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1461 NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1462 NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1464 n->cmbloc = n->bar.cmbloc;
1465 n->cmbsz = n->bar.cmbsz;
1467 n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1468 memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1469 "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1470 pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1471 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1472 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1474 } else if (n->pmrdev) {
1475 /* Controller Capabilities register */
1476 NVME_CAP_SET_PMRS(n->bar.cap, 1);
1478 /* PMR Capabities register */
1480 NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
1481 NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
1482 NVME_PMRCAP_SET_BIR(n->bar.pmrcap, 2);
1483 NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
1484 /* Turn on bit 1 support */
1485 NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
1486 NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
1487 NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
1489 /* PMR Control register */
1491 NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
1493 /* PMR Status register */
1495 NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
1496 NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
1497 NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
1498 NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
1500 /* PMR Elasticity Buffer Size register */
1502 NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
1503 NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
1504 NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
1506 /* PMR Sustained Write Throughput register */
1508 NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
1509 NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
1511 /* PMR Memory Space Control register */
1513 NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
1514 NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
1516 pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
1517 PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1518 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
1521 for (i = 0; i < n->num_namespaces; i++) {
1522 NvmeNamespace *ns = &n->namespaces[i];
1523 NvmeIdNs *id_ns = &ns->id_ns;
1530 id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1531 id_ns->ncap = id_ns->nuse = id_ns->nsze =
1532 cpu_to_le64(n->ns_size >>
1533 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1537 static void nvme_exit(PCIDevice *pci_dev)
1539 NvmeCtrl *n = NVME(pci_dev);
1542 g_free(n->namespaces);
1546 if (n->cmb_size_mb) {
1551 host_memory_backend_set_mapped(n->pmrdev, false);
1553 msix_uninit_exclusive_bar(pci_dev);
1556 static Property nvme_props[] = {
1557 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1558 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
1559 HostMemoryBackend *),
1560 DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1561 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1562 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1563 DEFINE_PROP_END_OF_LIST(),
1566 static const VMStateDescription nvme_vmstate = {
1571 static void nvme_class_init(ObjectClass *oc, void *data)
1573 DeviceClass *dc = DEVICE_CLASS(oc);
1574 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1576 pc->realize = nvme_realize;
1577 pc->exit = nvme_exit;
1578 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1579 pc->vendor_id = PCI_VENDOR_ID_INTEL;
1580 pc->device_id = 0x5845;
1583 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1584 dc->desc = "Non-Volatile Memory Express";
1585 device_class_set_props(dc, nvme_props);
1586 dc->vmsd = &nvme_vmstate;
1589 static void nvme_instance_init(Object *obj)
1591 NvmeCtrl *s = NVME(obj);
1593 device_add_bootindex_property(obj, &s->conf.bootindex,
1594 "bootindex", "/namespace@1,0",
1598 static const TypeInfo nvme_info = {
1600 .parent = TYPE_PCI_DEVICE,
1601 .instance_size = sizeof(NvmeCtrl),
1602 .class_init = nvme_class_init,
1603 .instance_init = nvme_instance_init,
1604 .interfaces = (InterfaceInfo[]) {
1605 { INTERFACE_PCIE_DEVICE },
1610 static void nvme_register_types(void)
1612 type_register_static(&nvme_info);
1615 type_init(nvme_register_types)