4 * Copyright IBM, Corp. 2008
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size;
72 typedef struct kvm_dirty_log KVMDirtyLog;
76 AccelState parent_obj;
83 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
84 bool coalesced_flush_in_progress;
85 int broken_set_mem_region;
88 int robust_singlestep;
90 #ifdef KVM_CAP_SET_GUEST_DEBUG
91 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
97 /* The man page (and posix) say ioctl numbers are signed int, but
98 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
99 * unsigned, and treating them as signed here can break things */
100 unsigned irq_set_ioctl;
101 unsigned int sigmask_len;
102 #ifdef KVM_CAP_IRQ_ROUTING
103 struct kvm_irq_routing *irq_routes;
104 int nr_allocated_irq_routes;
105 uint32_t *used_gsi_bitmap;
106 unsigned int gsi_count;
107 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
112 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
114 #define KVM_STATE(obj) \
115 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
118 bool kvm_kernel_irqchip;
119 bool kvm_async_interrupts_allowed;
120 bool kvm_halt_in_kernel_allowed;
121 bool kvm_eventfds_allowed;
122 bool kvm_irqfds_allowed;
123 bool kvm_msi_via_irqfd_allowed;
124 bool kvm_gsi_routing_allowed;
125 bool kvm_gsi_direct_mapping;
127 bool kvm_readonly_mem_allowed;
129 static const KVMCapabilityInfo kvm_required_capabilites[] = {
130 KVM_CAP_INFO(USER_MEMORY),
131 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
135 static KVMSlot *kvm_alloc_slot(KVMState *s)
139 for (i = 0; i < s->nr_slots; i++) {
140 if (s->slots[i].memory_size == 0) {
145 fprintf(stderr, "%s: no free slot available\n", __func__);
149 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
155 for (i = 0; i < s->nr_slots; i++) {
156 KVMSlot *mem = &s->slots[i];
158 if (start_addr == mem->start_addr &&
159 end_addr == mem->start_addr + mem->memory_size) {
168 * Find overlapping slot with lowest start address
170 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
174 KVMSlot *found = NULL;
177 for (i = 0; i < s->nr_slots; i++) {
178 KVMSlot *mem = &s->slots[i];
180 if (mem->memory_size == 0 ||
181 (found && found->start_addr < mem->start_addr)) {
185 if (end_addr > mem->start_addr &&
186 start_addr < mem->start_addr + mem->memory_size) {
194 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
199 for (i = 0; i < s->nr_slots; i++) {
200 KVMSlot *mem = &s->slots[i];
202 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
203 *phys_addr = mem->start_addr + (ram - mem->ram);
211 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
213 struct kvm_userspace_memory_region mem;
215 mem.slot = slot->slot;
216 mem.guest_phys_addr = slot->start_addr;
217 mem.userspace_addr = (unsigned long)slot->ram;
218 mem.flags = slot->flags;
219 if (s->migration_log) {
220 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
223 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
224 /* Set the slot size to 0 before setting the slot to the desired
225 * value. This is needed based on KVM commit 75d61fbc. */
227 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
229 mem.memory_size = slot->memory_size;
230 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
233 int kvm_init_vcpu(CPUState *cpu)
235 KVMState *s = kvm_state;
239 DPRINTF("kvm_init_vcpu\n");
241 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
243 DPRINTF("kvm_create_vcpu failed\n");
249 cpu->kvm_vcpu_dirty = true;
251 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
254 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
258 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
260 if (cpu->kvm_run == MAP_FAILED) {
262 DPRINTF("mmap'ing vcpu state failed\n");
266 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
267 s->coalesced_mmio_ring =
268 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
271 ret = kvm_arch_init_vcpu(cpu);
277 * dirty pages logging control
280 static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
283 flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
284 if (readonly && kvm_readonly_mem_allowed) {
285 flags |= KVM_MEM_READONLY;
290 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
292 KVMState *s = kvm_state;
293 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
296 old_flags = mem->flags;
298 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
301 /* If nothing changed effectively, no need to issue ioctl */
302 if (s->migration_log) {
303 flags |= KVM_MEM_LOG_DIRTY_PAGES;
306 if (flags == old_flags) {
310 return kvm_set_user_memory_region(s, mem);
313 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
314 ram_addr_t size, bool log_dirty)
316 KVMState *s = kvm_state;
317 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
320 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
321 TARGET_FMT_plx "\n", __func__, phys_addr,
322 (hwaddr)(phys_addr + size - 1));
325 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
328 static void kvm_log_start(MemoryListener *listener,
329 MemoryRegionSection *section)
333 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
334 int128_get64(section->size), true);
340 static void kvm_log_stop(MemoryListener *listener,
341 MemoryRegionSection *section)
345 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
346 int128_get64(section->size), false);
352 static int kvm_set_migration_log(int enable)
354 KVMState *s = kvm_state;
358 s->migration_log = enable;
360 for (i = 0; i < s->nr_slots; i++) {
363 if (!mem->memory_size) {
366 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
369 err = kvm_set_user_memory_region(s, mem);
377 /* get kvm's dirty pages bitmap and update qemu's */
378 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
379 unsigned long *bitmap)
381 ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
382 ram_addr_t pages = int128_get64(section->size) / getpagesize();
384 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
388 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
391 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
392 * This function updates qemu's dirty bitmap using
393 * memory_region_set_dirty(). This means all bits are set
396 * @start_add: start of logged region.
397 * @end_addr: end of logged region.
399 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
401 KVMState *s = kvm_state;
402 unsigned long size, allocated_size = 0;
406 hwaddr start_addr = section->offset_within_address_space;
407 hwaddr end_addr = start_addr + int128_get64(section->size);
409 d.dirty_bitmap = NULL;
410 while (start_addr < end_addr) {
411 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
416 /* XXX bad kernel interface alert
417 * For dirty bitmap, kernel allocates array of size aligned to
418 * bits-per-long. But for case when the kernel is 64bits and
419 * the userspace is 32bits, userspace can't align to the same
420 * bits-per-long, since sizeof(long) is different between kernel
421 * and user space. This way, userspace will provide buffer which
422 * may be 4 bytes less than the kernel will use, resulting in
423 * userspace memory corruption (which is not detectable by valgrind
424 * too, in most cases).
425 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
426 * a hope that sizeof(long) wont become >8 any time soon.
428 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
429 /*HOST_LONG_BITS*/ 64) / 8;
430 if (!d.dirty_bitmap) {
431 d.dirty_bitmap = g_malloc(size);
432 } else if (size > allocated_size) {
433 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
435 allocated_size = size;
436 memset(d.dirty_bitmap, 0, allocated_size);
440 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
441 DPRINTF("ioctl failed %d\n", errno);
446 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
447 start_addr = mem->start_addr + mem->memory_size;
449 g_free(d.dirty_bitmap);
454 static void kvm_coalesce_mmio_region(MemoryListener *listener,
455 MemoryRegionSection *secion,
456 hwaddr start, hwaddr size)
458 KVMState *s = kvm_state;
460 if (s->coalesced_mmio) {
461 struct kvm_coalesced_mmio_zone zone;
467 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
471 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
472 MemoryRegionSection *secion,
473 hwaddr start, hwaddr size)
475 KVMState *s = kvm_state;
477 if (s->coalesced_mmio) {
478 struct kvm_coalesced_mmio_zone zone;
484 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
488 int kvm_check_extension(KVMState *s, unsigned int extension)
492 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
500 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
504 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
506 /* VM wide version not implemented, use global one instead */
507 ret = kvm_check_extension(s, extension);
513 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
514 bool assign, uint32_t size, bool datamatch)
517 struct kvm_ioeventfd iofd;
519 iofd.datamatch = datamatch ? val : 0;
525 if (!kvm_enabled()) {
530 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
533 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
536 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
545 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
546 bool assign, uint32_t size, bool datamatch)
548 struct kvm_ioeventfd kick = {
549 .datamatch = datamatch ? val : 0,
551 .flags = KVM_IOEVENTFD_FLAG_PIO,
556 if (!kvm_enabled()) {
560 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
563 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
565 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
573 static int kvm_check_many_ioeventfds(void)
575 /* Userspace can use ioeventfd for io notification. This requires a host
576 * that supports eventfd(2) and an I/O thread; since eventfd does not
577 * support SIGIO it cannot interrupt the vcpu.
579 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
580 * can avoid creating too many ioeventfds.
582 #if defined(CONFIG_EVENTFD)
585 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
586 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
587 if (ioeventfds[i] < 0) {
590 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
592 close(ioeventfds[i]);
597 /* Decide whether many devices are supported or not */
598 ret = i == ARRAY_SIZE(ioeventfds);
601 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
602 close(ioeventfds[i]);
610 static const KVMCapabilityInfo *
611 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
614 if (!kvm_check_extension(s, list->value)) {
622 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
624 KVMState *s = kvm_state;
627 MemoryRegion *mr = section->mr;
628 bool log_dirty = memory_region_is_logging(mr);
629 bool writeable = !mr->readonly && !mr->rom_device;
630 bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
631 hwaddr start_addr = section->offset_within_address_space;
632 ram_addr_t size = int128_get64(section->size);
636 /* kvm works in page size chunks, but the function may be called
637 with sub-page size and unaligned start address. */
638 delta = TARGET_PAGE_ALIGN(size) - size;
644 size &= TARGET_PAGE_MASK;
645 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
649 if (!memory_region_is_ram(mr)) {
650 if (writeable || !kvm_readonly_mem_allowed) {
652 } else if (!mr->romd_mode) {
653 /* If the memory device is not in romd_mode, then we actually want
654 * to remove the kvm memory slot so all accesses will trap. */
659 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
662 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
667 if (add && start_addr >= mem->start_addr &&
668 (start_addr + size <= mem->start_addr + mem->memory_size) &&
669 (ram - start_addr == mem->ram - mem->start_addr)) {
670 /* The new slot fits into the existing one and comes with
671 * identical parameters - update flags and done. */
672 kvm_slot_dirty_pages_log_change(mem, log_dirty);
678 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
679 kvm_physical_sync_dirty_bitmap(section);
682 /* unregister the overlapping slot */
683 mem->memory_size = 0;
684 err = kvm_set_user_memory_region(s, mem);
686 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
687 __func__, strerror(-err));
691 /* Workaround for older KVM versions: we can't join slots, even not by
692 * unregistering the previous ones and then registering the larger
693 * slot. We have to maintain the existing fragmentation. Sigh.
695 * This workaround assumes that the new slot starts at the same
696 * address as the first existing one. If not or if some overlapping
697 * slot comes around later, we will fail (not seen in practice so far)
698 * - and actually require a recent KVM version. */
699 if (s->broken_set_mem_region &&
700 old.start_addr == start_addr && old.memory_size < size && add) {
701 mem = kvm_alloc_slot(s);
702 mem->memory_size = old.memory_size;
703 mem->start_addr = old.start_addr;
705 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
707 err = kvm_set_user_memory_region(s, mem);
709 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
714 start_addr += old.memory_size;
715 ram += old.memory_size;
716 size -= old.memory_size;
720 /* register prefix slot */
721 if (old.start_addr < start_addr) {
722 mem = kvm_alloc_slot(s);
723 mem->memory_size = start_addr - old.start_addr;
724 mem->start_addr = old.start_addr;
726 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
728 err = kvm_set_user_memory_region(s, mem);
730 fprintf(stderr, "%s: error registering prefix slot: %s\n",
731 __func__, strerror(-err));
733 fprintf(stderr, "%s: This is probably because your kernel's " \
734 "PAGE_SIZE is too big. Please try to use 4k " \
735 "PAGE_SIZE!\n", __func__);
741 /* register suffix slot */
742 if (old.start_addr + old.memory_size > start_addr + size) {
743 ram_addr_t size_delta;
745 mem = kvm_alloc_slot(s);
746 mem->start_addr = start_addr + size;
747 size_delta = mem->start_addr - old.start_addr;
748 mem->memory_size = old.memory_size - size_delta;
749 mem->ram = old.ram + size_delta;
750 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
752 err = kvm_set_user_memory_region(s, mem);
754 fprintf(stderr, "%s: error registering suffix slot: %s\n",
755 __func__, strerror(-err));
761 /* in case the KVM bug workaround already "consumed" the new slot */
768 mem = kvm_alloc_slot(s);
769 mem->memory_size = size;
770 mem->start_addr = start_addr;
772 mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
774 err = kvm_set_user_memory_region(s, mem);
776 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
782 static void kvm_region_add(MemoryListener *listener,
783 MemoryRegionSection *section)
785 memory_region_ref(section->mr);
786 kvm_set_phys_mem(section, true);
789 static void kvm_region_del(MemoryListener *listener,
790 MemoryRegionSection *section)
792 kvm_set_phys_mem(section, false);
793 memory_region_unref(section->mr);
796 static void kvm_log_sync(MemoryListener *listener,
797 MemoryRegionSection *section)
801 r = kvm_physical_sync_dirty_bitmap(section);
807 static void kvm_log_global_start(struct MemoryListener *listener)
811 r = kvm_set_migration_log(1);
815 static void kvm_log_global_stop(struct MemoryListener *listener)
819 r = kvm_set_migration_log(0);
823 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
824 MemoryRegionSection *section,
825 bool match_data, uint64_t data,
828 int fd = event_notifier_get_fd(e);
831 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
832 data, true, int128_get64(section->size),
835 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
836 __func__, strerror(-r));
841 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
842 MemoryRegionSection *section,
843 bool match_data, uint64_t data,
846 int fd = event_notifier_get_fd(e);
849 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
850 data, false, int128_get64(section->size),
857 static void kvm_io_ioeventfd_add(MemoryListener *listener,
858 MemoryRegionSection *section,
859 bool match_data, uint64_t data,
862 int fd = event_notifier_get_fd(e);
865 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
866 data, true, int128_get64(section->size),
869 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
870 __func__, strerror(-r));
875 static void kvm_io_ioeventfd_del(MemoryListener *listener,
876 MemoryRegionSection *section,
877 bool match_data, uint64_t data,
881 int fd = event_notifier_get_fd(e);
884 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
885 data, false, int128_get64(section->size),
892 static MemoryListener kvm_memory_listener = {
893 .region_add = kvm_region_add,
894 .region_del = kvm_region_del,
895 .log_start = kvm_log_start,
896 .log_stop = kvm_log_stop,
897 .log_sync = kvm_log_sync,
898 .log_global_start = kvm_log_global_start,
899 .log_global_stop = kvm_log_global_stop,
900 .eventfd_add = kvm_mem_ioeventfd_add,
901 .eventfd_del = kvm_mem_ioeventfd_del,
902 .coalesced_mmio_add = kvm_coalesce_mmio_region,
903 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
907 static MemoryListener kvm_io_listener = {
908 .eventfd_add = kvm_io_ioeventfd_add,
909 .eventfd_del = kvm_io_ioeventfd_del,
913 static void kvm_handle_interrupt(CPUState *cpu, int mask)
915 cpu->interrupt_request |= mask;
917 if (!qemu_cpu_is_self(cpu)) {
922 int kvm_set_irq(KVMState *s, int irq, int level)
924 struct kvm_irq_level event;
927 assert(kvm_async_interrupts_enabled());
931 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
933 perror("kvm_set_irq");
937 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
940 #ifdef KVM_CAP_IRQ_ROUTING
941 typedef struct KVMMSIRoute {
942 struct kvm_irq_routing_entry kroute;
943 QTAILQ_ENTRY(KVMMSIRoute) entry;
946 static void set_gsi(KVMState *s, unsigned int gsi)
948 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
951 static void clear_gsi(KVMState *s, unsigned int gsi)
953 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
956 void kvm_init_irq_routing(KVMState *s)
960 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
962 unsigned int gsi_bits, i;
964 /* Round up so we can search ints using ffs */
965 gsi_bits = ALIGN(gsi_count, 32);
966 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
967 s->gsi_count = gsi_count;
969 /* Mark any over-allocated bits as already in use */
970 for (i = gsi_count; i < gsi_bits; i++) {
975 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
976 s->nr_allocated_irq_routes = 0;
978 if (!s->direct_msi) {
979 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
980 QTAILQ_INIT(&s->msi_hashtab[i]);
984 kvm_arch_init_irq_routing(s);
987 void kvm_irqchip_commit_routes(KVMState *s)
991 s->irq_routes->flags = 0;
992 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
996 static void kvm_add_routing_entry(KVMState *s,
997 struct kvm_irq_routing_entry *entry)
999 struct kvm_irq_routing_entry *new;
1002 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1003 n = s->nr_allocated_irq_routes * 2;
1007 size = sizeof(struct kvm_irq_routing);
1008 size += n * sizeof(*new);
1009 s->irq_routes = g_realloc(s->irq_routes, size);
1010 s->nr_allocated_irq_routes = n;
1012 n = s->irq_routes->nr++;
1013 new = &s->irq_routes->entries[n];
1017 set_gsi(s, entry->gsi);
1020 static int kvm_update_routing_entry(KVMState *s,
1021 struct kvm_irq_routing_entry *new_entry)
1023 struct kvm_irq_routing_entry *entry;
1026 for (n = 0; n < s->irq_routes->nr; n++) {
1027 entry = &s->irq_routes->entries[n];
1028 if (entry->gsi != new_entry->gsi) {
1032 if(!memcmp(entry, new_entry, sizeof *entry)) {
1036 *entry = *new_entry;
1038 kvm_irqchip_commit_routes(s);
1046 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1048 struct kvm_irq_routing_entry e = {};
1050 assert(pin < s->gsi_count);
1053 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1055 e.u.irqchip.irqchip = irqchip;
1056 e.u.irqchip.pin = pin;
1057 kvm_add_routing_entry(s, &e);
1060 void kvm_irqchip_release_virq(KVMState *s, int virq)
1062 struct kvm_irq_routing_entry *e;
1065 if (kvm_gsi_direct_mapping()) {
1069 for (i = 0; i < s->irq_routes->nr; i++) {
1070 e = &s->irq_routes->entries[i];
1071 if (e->gsi == virq) {
1072 s->irq_routes->nr--;
1073 *e = s->irq_routes->entries[s->irq_routes->nr];
1079 static unsigned int kvm_hash_msi(uint32_t data)
1081 /* This is optimized for IA32 MSI layout. However, no other arch shall
1082 * repeat the mistake of not providing a direct MSI injection API. */
1086 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1088 KVMMSIRoute *route, *next;
1091 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1092 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1093 kvm_irqchip_release_virq(s, route->kroute.gsi);
1094 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1100 static int kvm_irqchip_get_virq(KVMState *s)
1102 uint32_t *word = s->used_gsi_bitmap;
1103 int max_words = ALIGN(s->gsi_count, 32) / 32;
1108 /* Return the lowest unused GSI in the bitmap */
1109 for (i = 0; i < max_words; i++) {
1110 bit = ffs(~word[i]);
1115 return bit - 1 + i * 32;
1117 if (!s->direct_msi && retry) {
1119 kvm_flush_dynamic_msi_routes(s);
1126 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1128 unsigned int hash = kvm_hash_msi(msg.data);
1131 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1132 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1133 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1134 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1141 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1146 if (s->direct_msi) {
1147 msi.address_lo = (uint32_t)msg.address;
1148 msi.address_hi = msg.address >> 32;
1149 msi.data = le32_to_cpu(msg.data);
1151 memset(msi.pad, 0, sizeof(msi.pad));
1153 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1156 route = kvm_lookup_msi_route(s, msg);
1160 virq = kvm_irqchip_get_virq(s);
1165 route = g_malloc0(sizeof(KVMMSIRoute));
1166 route->kroute.gsi = virq;
1167 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1168 route->kroute.flags = 0;
1169 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1170 route->kroute.u.msi.address_hi = msg.address >> 32;
1171 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1173 kvm_add_routing_entry(s, &route->kroute);
1174 kvm_irqchip_commit_routes(s);
1176 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1180 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1182 return kvm_set_irq(s, route->kroute.gsi, 1);
1185 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1187 struct kvm_irq_routing_entry kroute = {};
1190 if (kvm_gsi_direct_mapping()) {
1191 return msg.data & 0xffff;
1194 if (!kvm_gsi_routing_enabled()) {
1198 virq = kvm_irqchip_get_virq(s);
1204 kroute.type = KVM_IRQ_ROUTING_MSI;
1206 kroute.u.msi.address_lo = (uint32_t)msg.address;
1207 kroute.u.msi.address_hi = msg.address >> 32;
1208 kroute.u.msi.data = le32_to_cpu(msg.data);
1210 kvm_add_routing_entry(s, &kroute);
1211 kvm_irqchip_commit_routes(s);
1216 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1218 struct kvm_irq_routing_entry kroute = {};
1220 if (kvm_gsi_direct_mapping()) {
1224 if (!kvm_irqchip_in_kernel()) {
1229 kroute.type = KVM_IRQ_ROUTING_MSI;
1231 kroute.u.msi.address_lo = (uint32_t)msg.address;
1232 kroute.u.msi.address_hi = msg.address >> 32;
1233 kroute.u.msi.data = le32_to_cpu(msg.data);
1235 return kvm_update_routing_entry(s, &kroute);
1238 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1241 struct kvm_irqfd irqfd = {
1244 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1248 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1249 irqfd.resamplefd = rfd;
1252 if (!kvm_irqfds_enabled()) {
1256 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1259 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1261 struct kvm_irq_routing_entry kroute;
1264 if (!kvm_gsi_routing_enabled()) {
1268 virq = kvm_irqchip_get_virq(s);
1274 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1276 kroute.u.adapter.summary_addr = adapter->summary_addr;
1277 kroute.u.adapter.ind_addr = adapter->ind_addr;
1278 kroute.u.adapter.summary_offset = adapter->summary_offset;
1279 kroute.u.adapter.ind_offset = adapter->ind_offset;
1280 kroute.u.adapter.adapter_id = adapter->adapter_id;
1282 kvm_add_routing_entry(s, &kroute);
1283 kvm_irqchip_commit_routes(s);
1288 #else /* !KVM_CAP_IRQ_ROUTING */
1290 void kvm_init_irq_routing(KVMState *s)
1294 void kvm_irqchip_release_virq(KVMState *s, int virq)
1298 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1303 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1308 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1313 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1318 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1322 #endif /* !KVM_CAP_IRQ_ROUTING */
1324 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1325 EventNotifier *rn, int virq)
1327 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1328 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1331 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1333 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1337 static int kvm_irqchip_create(KVMState *s)
1341 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1342 (!kvm_check_extension(s, KVM_CAP_IRQCHIP) &&
1343 (kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0) < 0))) {
1347 /* First probe and see if there's a arch-specific hook to create the
1348 * in-kernel irqchip for us */
1349 ret = kvm_arch_irqchip_create(s);
1352 } else if (ret == 0) {
1353 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1355 fprintf(stderr, "Create kernel irqchip failed\n");
1360 kvm_kernel_irqchip = true;
1361 /* If we have an in-kernel IRQ chip then we must have asynchronous
1362 * interrupt delivery (though the reverse is not necessarily true)
1364 kvm_async_interrupts_allowed = true;
1365 kvm_halt_in_kernel_allowed = true;
1367 kvm_init_irq_routing(s);
1372 /* Find number of supported CPUs using the recommended
1373 * procedure from the kernel API documentation to cope with
1374 * older kernels that may be missing capabilities.
1376 static int kvm_recommended_vcpus(KVMState *s)
1378 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1379 return (ret) ? ret : 4;
1382 static int kvm_max_vcpus(KVMState *s)
1384 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1385 return (ret) ? ret : kvm_recommended_vcpus(s);
1388 static int kvm_init(MachineState *ms)
1390 MachineClass *mc = MACHINE_GET_CLASS(ms);
1391 static const char upgrade_note[] =
1392 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1393 "(see http://sourceforge.net/projects/kvm).\n";
1398 { "SMP", smp_cpus },
1399 { "hotpluggable", max_cpus },
1402 int soft_vcpus_limit, hard_vcpus_limit;
1404 const KVMCapabilityInfo *missing_cap;
1407 const char *kvm_type;
1409 s = KVM_STATE(ms->accelerator);
1412 * On systems where the kernel can support different base page
1413 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1414 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1415 * page size for the system though.
1417 assert(TARGET_PAGE_SIZE <= getpagesize());
1422 #ifdef KVM_CAP_SET_GUEST_DEBUG
1423 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1426 s->fd = qemu_open("/dev/kvm", O_RDWR);
1428 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1433 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1434 if (ret < KVM_API_VERSION) {
1438 fprintf(stderr, "kvm version too old\n");
1442 if (ret > KVM_API_VERSION) {
1444 fprintf(stderr, "kvm version not supported\n");
1448 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1450 /* If unspecified, use the default value */
1455 s->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1457 for (i = 0; i < s->nr_slots; i++) {
1458 s->slots[i].slot = i;
1461 /* check the vcpu limits */
1462 soft_vcpus_limit = kvm_recommended_vcpus(s);
1463 hard_vcpus_limit = kvm_max_vcpus(s);
1466 if (nc->num > soft_vcpus_limit) {
1468 "Warning: Number of %s cpus requested (%d) exceeds "
1469 "the recommended cpus supported by KVM (%d)\n",
1470 nc->name, nc->num, soft_vcpus_limit);
1472 if (nc->num > hard_vcpus_limit) {
1473 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1474 "the maximum cpus supported by KVM (%d)\n",
1475 nc->name, nc->num, hard_vcpus_limit);
1482 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1484 type = mc->kvm_type(kvm_type);
1485 } else if (kvm_type) {
1487 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1492 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1493 } while (ret == -EINTR);
1496 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1500 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1501 "your host kernel command line\n");
1507 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1510 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1514 fprintf(stderr, "kvm does not support %s\n%s",
1515 missing_cap->name, upgrade_note);
1519 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1521 s->broken_set_mem_region = 1;
1522 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1524 s->broken_set_mem_region = 0;
1527 #ifdef KVM_CAP_VCPU_EVENTS
1528 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1531 s->robust_singlestep =
1532 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1534 #ifdef KVM_CAP_DEBUGREGS
1535 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1538 #ifdef KVM_CAP_XSAVE
1539 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1543 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1546 #ifdef KVM_CAP_PIT_STATE2
1547 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1550 #ifdef KVM_CAP_IRQ_ROUTING
1551 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1554 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1556 s->irq_set_ioctl = KVM_IRQ_LINE;
1557 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1558 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1561 #ifdef KVM_CAP_READONLY_MEM
1562 kvm_readonly_mem_allowed =
1563 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1566 kvm_eventfds_allowed =
1567 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1569 ret = kvm_arch_init(s);
1574 ret = kvm_irqchip_create(s);
1580 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1581 memory_listener_register(&kvm_io_listener, &address_space_io);
1583 s->many_ioeventfds = kvm_check_many_ioeventfds();
1585 cpu_interrupt_handler = kvm_handle_interrupt;
1602 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1604 s->sigmask_len = sigmask_len;
1607 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1611 uint8_t *ptr = data;
1613 for (i = 0; i < count; i++) {
1614 address_space_rw(&address_space_io, port, ptr, size,
1615 direction == KVM_EXIT_IO_OUT);
1620 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1622 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1623 run->internal.suberror);
1625 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1628 for (i = 0; i < run->internal.ndata; ++i) {
1629 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1630 i, (uint64_t)run->internal.data[i]);
1633 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1634 fprintf(stderr, "emulation failure\n");
1635 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1636 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1637 return EXCP_INTERRUPT;
1640 /* FIXME: Should trigger a qmp message to let management know
1641 * something went wrong.
1646 void kvm_flush_coalesced_mmio_buffer(void)
1648 KVMState *s = kvm_state;
1650 if (s->coalesced_flush_in_progress) {
1654 s->coalesced_flush_in_progress = true;
1656 if (s->coalesced_mmio_ring) {
1657 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1658 while (ring->first != ring->last) {
1659 struct kvm_coalesced_mmio *ent;
1661 ent = &ring->coalesced_mmio[ring->first];
1663 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1665 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1669 s->coalesced_flush_in_progress = false;
1672 static void do_kvm_cpu_synchronize_state(void *arg)
1674 CPUState *cpu = arg;
1676 if (!cpu->kvm_vcpu_dirty) {
1677 kvm_arch_get_registers(cpu);
1678 cpu->kvm_vcpu_dirty = true;
1682 void kvm_cpu_synchronize_state(CPUState *cpu)
1684 if (!cpu->kvm_vcpu_dirty) {
1685 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1689 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1691 CPUState *cpu = arg;
1693 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1694 cpu->kvm_vcpu_dirty = false;
1697 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1699 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1702 static void do_kvm_cpu_synchronize_post_init(void *arg)
1704 CPUState *cpu = arg;
1706 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1707 cpu->kvm_vcpu_dirty = false;
1710 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1712 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1715 void kvm_cpu_clean_state(CPUState *cpu)
1717 cpu->kvm_vcpu_dirty = false;
1720 int kvm_cpu_exec(CPUState *cpu)
1722 struct kvm_run *run = cpu->kvm_run;
1725 DPRINTF("kvm_cpu_exec()\n");
1727 if (kvm_arch_process_async_events(cpu)) {
1728 cpu->exit_request = 0;
1733 if (cpu->kvm_vcpu_dirty) {
1734 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1735 cpu->kvm_vcpu_dirty = false;
1738 kvm_arch_pre_run(cpu, run);
1739 if (cpu->exit_request) {
1740 DPRINTF("interrupt exit requested\n");
1742 * KVM requires us to reenter the kernel after IO exits to complete
1743 * instruction emulation. This self-signal will ensure that we
1746 qemu_cpu_kick_self();
1748 qemu_mutex_unlock_iothread();
1750 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1752 qemu_mutex_lock_iothread();
1753 kvm_arch_post_run(cpu, run);
1756 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1757 DPRINTF("io window exit\n");
1758 ret = EXCP_INTERRUPT;
1761 fprintf(stderr, "error: kvm run failed %s\n",
1762 strerror(-run_ret));
1767 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1768 switch (run->exit_reason) {
1770 DPRINTF("handle_io\n");
1771 kvm_handle_io(run->io.port,
1772 (uint8_t *)run + run->io.data_offset,
1779 DPRINTF("handle_mmio\n");
1780 cpu_physical_memory_rw(run->mmio.phys_addr,
1783 run->mmio.is_write);
1786 case KVM_EXIT_IRQ_WINDOW_OPEN:
1787 DPRINTF("irq_window_open\n");
1788 ret = EXCP_INTERRUPT;
1790 case KVM_EXIT_SHUTDOWN:
1791 DPRINTF("shutdown\n");
1792 qemu_system_reset_request();
1793 ret = EXCP_INTERRUPT;
1795 case KVM_EXIT_UNKNOWN:
1796 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1797 (uint64_t)run->hw.hardware_exit_reason);
1800 case KVM_EXIT_INTERNAL_ERROR:
1801 ret = kvm_handle_internal_error(cpu, run);
1803 case KVM_EXIT_SYSTEM_EVENT:
1804 switch (run->system_event.type) {
1805 case KVM_SYSTEM_EVENT_SHUTDOWN:
1806 qemu_system_shutdown_request();
1807 ret = EXCP_INTERRUPT;
1809 case KVM_SYSTEM_EVENT_RESET:
1810 qemu_system_reset_request();
1811 ret = EXCP_INTERRUPT;
1814 DPRINTF("kvm_arch_handle_exit\n");
1815 ret = kvm_arch_handle_exit(cpu, run);
1820 DPRINTF("kvm_arch_handle_exit\n");
1821 ret = kvm_arch_handle_exit(cpu, run);
1827 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1828 vm_stop(RUN_STATE_INTERNAL_ERROR);
1831 cpu->exit_request = 0;
1835 int kvm_ioctl(KVMState *s, int type, ...)
1842 arg = va_arg(ap, void *);
1845 trace_kvm_ioctl(type, arg);
1846 ret = ioctl(s->fd, type, arg);
1853 int kvm_vm_ioctl(KVMState *s, int type, ...)
1860 arg = va_arg(ap, void *);
1863 trace_kvm_vm_ioctl(type, arg);
1864 ret = ioctl(s->vmfd, type, arg);
1871 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1878 arg = va_arg(ap, void *);
1881 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1882 ret = ioctl(cpu->kvm_fd, type, arg);
1889 int kvm_device_ioctl(int fd, int type, ...)
1896 arg = va_arg(ap, void *);
1899 trace_kvm_device_ioctl(fd, type, arg);
1900 ret = ioctl(fd, type, arg);
1907 int kvm_has_sync_mmu(void)
1909 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1912 int kvm_has_vcpu_events(void)
1914 return kvm_state->vcpu_events;
1917 int kvm_has_robust_singlestep(void)
1919 return kvm_state->robust_singlestep;
1922 int kvm_has_debugregs(void)
1924 return kvm_state->debugregs;
1927 int kvm_has_xsave(void)
1929 return kvm_state->xsave;
1932 int kvm_has_xcrs(void)
1934 return kvm_state->xcrs;
1937 int kvm_has_pit_state2(void)
1939 return kvm_state->pit_state2;
1942 int kvm_has_many_ioeventfds(void)
1944 if (!kvm_enabled()) {
1947 return kvm_state->many_ioeventfds;
1950 int kvm_has_gsi_routing(void)
1952 #ifdef KVM_CAP_IRQ_ROUTING
1953 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1959 int kvm_has_intx_set_mask(void)
1961 return kvm_state->intx_set_mask;
1964 void kvm_setup_guest_memory(void *start, size_t size)
1966 if (!kvm_has_sync_mmu()) {
1967 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1970 perror("qemu_madvise");
1972 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1978 #ifdef KVM_CAP_SET_GUEST_DEBUG
1979 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1982 struct kvm_sw_breakpoint *bp;
1984 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1992 int kvm_sw_breakpoints_active(CPUState *cpu)
1994 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1997 struct kvm_set_guest_debug_data {
1998 struct kvm_guest_debug dbg;
2003 static void kvm_invoke_set_guest_debug(void *data)
2005 struct kvm_set_guest_debug_data *dbg_data = data;
2007 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2011 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2013 struct kvm_set_guest_debug_data data;
2015 data.dbg.control = reinject_trap;
2017 if (cpu->singlestep_enabled) {
2018 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2020 kvm_arch_update_guest_debug(cpu, &data.dbg);
2023 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2027 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2028 target_ulong len, int type)
2030 struct kvm_sw_breakpoint *bp;
2033 if (type == GDB_BREAKPOINT_SW) {
2034 bp = kvm_find_sw_breakpoint(cpu, addr);
2040 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2047 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2053 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2055 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2062 err = kvm_update_guest_debug(cpu, 0);
2070 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2071 target_ulong len, int type)
2073 struct kvm_sw_breakpoint *bp;
2076 if (type == GDB_BREAKPOINT_SW) {
2077 bp = kvm_find_sw_breakpoint(cpu, addr);
2082 if (bp->use_count > 1) {
2087 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2092 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2095 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2102 err = kvm_update_guest_debug(cpu, 0);
2110 void kvm_remove_all_breakpoints(CPUState *cpu)
2112 struct kvm_sw_breakpoint *bp, *next;
2113 KVMState *s = cpu->kvm_state;
2116 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2117 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2118 /* Try harder to find a CPU that currently sees the breakpoint. */
2119 CPU_FOREACH(tmpcpu) {
2120 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2125 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2128 kvm_arch_remove_all_hw_breakpoints();
2131 kvm_update_guest_debug(cpu, 0);
2135 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2137 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2142 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2143 target_ulong len, int type)
2148 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2149 target_ulong len, int type)
2154 void kvm_remove_all_breakpoints(CPUState *cpu)
2157 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2159 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2161 KVMState *s = kvm_state;
2162 struct kvm_signal_mask *sigmask;
2166 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2169 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2171 sigmask->len = s->sigmask_len;
2172 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2173 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2178 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2180 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2183 int kvm_on_sigbus(int code, void *addr)
2185 return kvm_arch_on_sigbus(code, addr);
2188 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2191 struct kvm_create_device create_dev;
2193 create_dev.type = type;
2195 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2197 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2201 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2206 return test ? 0 : create_dev.fd;
2209 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2211 struct kvm_one_reg reg;
2215 reg.addr = (uintptr_t) source;
2216 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
2218 trace_kvm_failed_reg_set(id, strerror(r));
2223 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2225 struct kvm_one_reg reg;
2229 reg.addr = (uintptr_t) target;
2230 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
2232 trace_kvm_failed_reg_get(id, strerror(r));
2237 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2239 AccelClass *ac = ACCEL_CLASS(oc);
2241 ac->init_machine = kvm_init;
2242 ac->allowed = &kvm_allowed;
2245 static const TypeInfo kvm_accel_type = {
2246 .name = TYPE_KVM_ACCEL,
2247 .parent = TYPE_ACCEL,
2248 .class_init = kvm_accel_class_init,
2249 .instance_size = sizeof(KVMState),
2252 static void kvm_type_init(void)
2254 type_register_static(&kvm_accel_type);
2257 type_init(kvm_type_init);