]> Git Repo - qemu.git/blob - hw/arm/pxa2xx.c
i2c: Allow I2C devices to NAK start events
[qemu.git] / hw / arm / pxa2xx.c
1 /*
2  * Intel XScale PXA255/270 processor support.
3  *
4  * Copyright (c) 2006 Openedhand Ltd.
5  * Written by Andrzej Zaborowski <[email protected]>
6  *
7  * This code is licensed under the GPL.
8  */
9
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "qemu-common.h"
13 #include "cpu.h"
14 #include "hw/sysbus.h"
15 #include "hw/arm/pxa.h"
16 #include "sysemu/sysemu.h"
17 #include "hw/char/serial.h"
18 #include "hw/i2c/i2c.h"
19 #include "hw/ssi/ssi.h"
20 #include "sysemu/char.h"
21 #include "sysemu/block-backend.h"
22 #include "sysemu/blockdev.h"
23 #include "qemu/cutils.h"
24
25 static struct {
26     hwaddr io_base;
27     int irqn;
28 } pxa255_serial[] = {
29     { 0x40100000, PXA2XX_PIC_FFUART },
30     { 0x40200000, PXA2XX_PIC_BTUART },
31     { 0x40700000, PXA2XX_PIC_STUART },
32     { 0x41600000, PXA25X_PIC_HWUART },
33     { 0, 0 }
34 }, pxa270_serial[] = {
35     { 0x40100000, PXA2XX_PIC_FFUART },
36     { 0x40200000, PXA2XX_PIC_BTUART },
37     { 0x40700000, PXA2XX_PIC_STUART },
38     { 0, 0 }
39 };
40
41 typedef struct PXASSPDef {
42     hwaddr io_base;
43     int irqn;
44 } PXASSPDef;
45
46 #if 0
47 static PXASSPDef pxa250_ssp[] = {
48     { 0x41000000, PXA2XX_PIC_SSP },
49     { 0, 0 }
50 };
51 #endif
52
53 static PXASSPDef pxa255_ssp[] = {
54     { 0x41000000, PXA2XX_PIC_SSP },
55     { 0x41400000, PXA25X_PIC_NSSP },
56     { 0, 0 }
57 };
58
59 #if 0
60 static PXASSPDef pxa26x_ssp[] = {
61     { 0x41000000, PXA2XX_PIC_SSP },
62     { 0x41400000, PXA25X_PIC_NSSP },
63     { 0x41500000, PXA26X_PIC_ASSP },
64     { 0, 0 }
65 };
66 #endif
67
68 static PXASSPDef pxa27x_ssp[] = {
69     { 0x41000000, PXA2XX_PIC_SSP },
70     { 0x41700000, PXA27X_PIC_SSP2 },
71     { 0x41900000, PXA2XX_PIC_SSP3 },
72     { 0, 0 }
73 };
74
75 #define PMCR    0x00    /* Power Manager Control register */
76 #define PSSR    0x04    /* Power Manager Sleep Status register */
77 #define PSPR    0x08    /* Power Manager Scratch-Pad register */
78 #define PWER    0x0c    /* Power Manager Wake-Up Enable register */
79 #define PRER    0x10    /* Power Manager Rising-Edge Detect Enable register */
80 #define PFER    0x14    /* Power Manager Falling-Edge Detect Enable register */
81 #define PEDR    0x18    /* Power Manager Edge-Detect Status register */
82 #define PCFR    0x1c    /* Power Manager General Configuration register */
83 #define PGSR0   0x20    /* Power Manager GPIO Sleep-State register 0 */
84 #define PGSR1   0x24    /* Power Manager GPIO Sleep-State register 1 */
85 #define PGSR2   0x28    /* Power Manager GPIO Sleep-State register 2 */
86 #define PGSR3   0x2c    /* Power Manager GPIO Sleep-State register 3 */
87 #define RCSR    0x30    /* Reset Controller Status register */
88 #define PSLR    0x34    /* Power Manager Sleep Configuration register */
89 #define PTSR    0x38    /* Power Manager Standby Configuration register */
90 #define PVCR    0x40    /* Power Manager Voltage Change Control register */
91 #define PUCR    0x4c    /* Power Manager USIM Card Control/Status register */
92 #define PKWR    0x50    /* Power Manager Keyboard Wake-Up Enable register */
93 #define PKSR    0x54    /* Power Manager Keyboard Level-Detect Status */
94 #define PCMD0   0x80    /* Power Manager I2C Command register File 0 */
95 #define PCMD31  0xfc    /* Power Manager I2C Command register File 31 */
96
97 static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
98                                unsigned size)
99 {
100     PXA2xxState *s = (PXA2xxState *) opaque;
101
102     switch (addr) {
103     case PMCR ... PCMD31:
104         if (addr & 3)
105             goto fail;
106
107         return s->pm_regs[addr >> 2];
108     default:
109     fail:
110         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
111         break;
112     }
113     return 0;
114 }
115
116 static void pxa2xx_pm_write(void *opaque, hwaddr addr,
117                             uint64_t value, unsigned size)
118 {
119     PXA2xxState *s = (PXA2xxState *) opaque;
120
121     switch (addr) {
122     case PMCR:
123         /* Clear the write-one-to-clear bits... */
124         s->pm_regs[addr >> 2] &= ~(value & 0x2a);
125         /* ...and set the plain r/w bits */
126         s->pm_regs[addr >> 2] &= ~0x15;
127         s->pm_regs[addr >> 2] |= value & 0x15;
128         break;
129
130     case PSSR:  /* Read-clean registers */
131     case RCSR:
132     case PKSR:
133         s->pm_regs[addr >> 2] &= ~value;
134         break;
135
136     default:    /* Read-write registers */
137         if (!(addr & 3)) {
138             s->pm_regs[addr >> 2] = value;
139             break;
140         }
141
142         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
143         break;
144     }
145 }
146
147 static const MemoryRegionOps pxa2xx_pm_ops = {
148     .read = pxa2xx_pm_read,
149     .write = pxa2xx_pm_write,
150     .endianness = DEVICE_NATIVE_ENDIAN,
151 };
152
153 static const VMStateDescription vmstate_pxa2xx_pm = {
154     .name = "pxa2xx_pm",
155     .version_id = 0,
156     .minimum_version_id = 0,
157     .fields = (VMStateField[]) {
158         VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
159         VMSTATE_END_OF_LIST()
160     }
161 };
162
163 #define CCCR    0x00    /* Core Clock Configuration register */
164 #define CKEN    0x04    /* Clock Enable register */
165 #define OSCC    0x08    /* Oscillator Configuration register */
166 #define CCSR    0x0c    /* Core Clock Status register */
167
168 static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
169                                unsigned size)
170 {
171     PXA2xxState *s = (PXA2xxState *) opaque;
172
173     switch (addr) {
174     case CCCR:
175     case CKEN:
176     case OSCC:
177         return s->cm_regs[addr >> 2];
178
179     case CCSR:
180         return s->cm_regs[CCCR >> 2] | (3 << 28);
181
182     default:
183         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
184         break;
185     }
186     return 0;
187 }
188
189 static void pxa2xx_cm_write(void *opaque, hwaddr addr,
190                             uint64_t value, unsigned size)
191 {
192     PXA2xxState *s = (PXA2xxState *) opaque;
193
194     switch (addr) {
195     case CCCR:
196     case CKEN:
197         s->cm_regs[addr >> 2] = value;
198         break;
199
200     case OSCC:
201         s->cm_regs[addr >> 2] &= ~0x6c;
202         s->cm_regs[addr >> 2] |= value & 0x6e;
203         if ((value >> 1) & 1)                   /* OON */
204             s->cm_regs[addr >> 2] |= 1 << 0;    /* Oscillator is now stable */
205         break;
206
207     default:
208         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
209         break;
210     }
211 }
212
213 static const MemoryRegionOps pxa2xx_cm_ops = {
214     .read = pxa2xx_cm_read,
215     .write = pxa2xx_cm_write,
216     .endianness = DEVICE_NATIVE_ENDIAN,
217 };
218
219 static const VMStateDescription vmstate_pxa2xx_cm = {
220     .name = "pxa2xx_cm",
221     .version_id = 0,
222     .minimum_version_id = 0,
223     .fields = (VMStateField[]) {
224         VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
225         VMSTATE_UINT32(clkcfg, PXA2xxState),
226         VMSTATE_UINT32(pmnc, PXA2xxState),
227         VMSTATE_END_OF_LIST()
228     }
229 };
230
231 static uint64_t pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri)
232 {
233     PXA2xxState *s = (PXA2xxState *)ri->opaque;
234     return s->clkcfg;
235 }
236
237 static void pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
238                                 uint64_t value)
239 {
240     PXA2xxState *s = (PXA2xxState *)ri->opaque;
241     s->clkcfg = value & 0xf;
242     if (value & 2) {
243         printf("%s: CPU frequency change attempt\n", __func__);
244     }
245 }
246
247 static void pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
248                                  uint64_t value)
249 {
250     PXA2xxState *s = (PXA2xxState *)ri->opaque;
251     static const char *pwrmode[8] = {
252         "Normal", "Idle", "Deep-idle", "Standby",
253         "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
254     };
255
256     if (value & 8) {
257         printf("%s: CPU voltage change attempt\n", __func__);
258     }
259     switch (value & 7) {
260     case 0:
261         /* Do nothing */
262         break;
263
264     case 1:
265         /* Idle */
266         if (!(s->cm_regs[CCCR >> 2] & (1U << 31))) { /* CPDIS */
267             cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
268             break;
269         }
270         /* Fall through.  */
271
272     case 2:
273         /* Deep-Idle */
274         cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
275         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
276         goto message;
277
278     case 3:
279         s->cpu->env.uncached_cpsr = ARM_CPU_MODE_SVC;
280         s->cpu->env.daif = PSTATE_A | PSTATE_F | PSTATE_I;
281         s->cpu->env.cp15.sctlr_ns = 0;
282         s->cpu->env.cp15.cpacr_el1 = 0;
283         s->cpu->env.cp15.ttbr0_el[1] = 0;
284         s->cpu->env.cp15.dacr_ns = 0;
285         s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
286         s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
287
288         /*
289          * The scratch-pad register is almost universally used
290          * for storing the return address on suspend.  For the
291          * lack of a resuming bootloader, perform a jump
292          * directly to that address.
293          */
294         memset(s->cpu->env.regs, 0, 4 * 15);
295         s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
296
297 #if 0
298         buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
299         cpu_physical_memory_write(0, &buffer, 4);
300         buffer = s->pm_regs[PSPR >> 2];
301         cpu_physical_memory_write(8, &buffer, 4);
302 #endif
303
304         /* Suspend */
305         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
306
307         goto message;
308
309     default:
310     message:
311         printf("%s: machine entered %s mode\n", __func__,
312                pwrmode[value & 7]);
313     }
314 }
315
316 static uint64_t pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri)
317 {
318     PXA2xxState *s = (PXA2xxState *)ri->opaque;
319     return s->pmnc;
320 }
321
322 static void pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
323                                 uint64_t value)
324 {
325     PXA2xxState *s = (PXA2xxState *)ri->opaque;
326     s->pmnc = value;
327 }
328
329 static uint64_t pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
330 {
331     PXA2xxState *s = (PXA2xxState *)ri->opaque;
332     if (s->pmnc & 1) {
333         return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
334     } else {
335         return 0;
336     }
337 }
338
339 static const ARMCPRegInfo pxa_cp_reginfo[] = {
340     /* cp14 crm==1: perf registers */
341     { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
342       .access = PL1_RW, .type = ARM_CP_IO,
343       .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
344     { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
345       .access = PL1_RW, .type = ARM_CP_IO,
346       .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
347     { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
348       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
349     { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
350       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
351     { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
352       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
353     /* cp14 crm==2: performance count registers */
354     { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
355       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
356     { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
357       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
358     { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
359       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
360     { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
361       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
362     /* cp14 crn==6: CLKCFG */
363     { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
364       .access = PL1_RW, .type = ARM_CP_IO,
365       .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
366     /* cp14 crn==7: PWRMODE */
367     { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
368       .access = PL1_RW, .type = ARM_CP_IO,
369       .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
370     REGINFO_SENTINEL
371 };
372
373 static void pxa2xx_setup_cp14(PXA2xxState *s)
374 {
375     define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
376 }
377
378 #define MDCNFG          0x00    /* SDRAM Configuration register */
379 #define MDREFR          0x04    /* SDRAM Refresh Control register */
380 #define MSC0            0x08    /* Static Memory Control register 0 */
381 #define MSC1            0x0c    /* Static Memory Control register 1 */
382 #define MSC2            0x10    /* Static Memory Control register 2 */
383 #define MECR            0x14    /* Expansion Memory Bus Config register */
384 #define SXCNFG          0x1c    /* Synchronous Static Memory Config register */
385 #define MCMEM0          0x28    /* PC Card Memory Socket 0 Timing register */
386 #define MCMEM1          0x2c    /* PC Card Memory Socket 1 Timing register */
387 #define MCATT0          0x30    /* PC Card Attribute Socket 0 register */
388 #define MCATT1          0x34    /* PC Card Attribute Socket 1 register */
389 #define MCIO0           0x38    /* PC Card I/O Socket 0 Timing register */
390 #define MCIO1           0x3c    /* PC Card I/O Socket 1 Timing register */
391 #define MDMRS           0x40    /* SDRAM Mode Register Set Config register */
392 #define BOOT_DEF        0x44    /* Boot-time Default Configuration register */
393 #define ARB_CNTL        0x48    /* Arbiter Control register */
394 #define BSCNTR0         0x4c    /* Memory Buffer Strength Control register 0 */
395 #define BSCNTR1         0x50    /* Memory Buffer Strength Control register 1 */
396 #define LCDBSCNTR       0x54    /* LCD Buffer Strength Control register */
397 #define MDMRSLP         0x58    /* Low Power SDRAM Mode Set Config register */
398 #define BSCNTR2         0x5c    /* Memory Buffer Strength Control register 2 */
399 #define BSCNTR3         0x60    /* Memory Buffer Strength Control register 3 */
400 #define SA1110          0x64    /* SA-1110 Memory Compatibility register */
401
402 static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
403                                unsigned size)
404 {
405     PXA2xxState *s = (PXA2xxState *) opaque;
406
407     switch (addr) {
408     case MDCNFG ... SA1110:
409         if ((addr & 3) == 0)
410             return s->mm_regs[addr >> 2];
411
412     default:
413         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
414         break;
415     }
416     return 0;
417 }
418
419 static void pxa2xx_mm_write(void *opaque, hwaddr addr,
420                             uint64_t value, unsigned size)
421 {
422     PXA2xxState *s = (PXA2xxState *) opaque;
423
424     switch (addr) {
425     case MDCNFG ... SA1110:
426         if ((addr & 3) == 0) {
427             s->mm_regs[addr >> 2] = value;
428             break;
429         }
430
431     default:
432         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
433         break;
434     }
435 }
436
437 static const MemoryRegionOps pxa2xx_mm_ops = {
438     .read = pxa2xx_mm_read,
439     .write = pxa2xx_mm_write,
440     .endianness = DEVICE_NATIVE_ENDIAN,
441 };
442
443 static const VMStateDescription vmstate_pxa2xx_mm = {
444     .name = "pxa2xx_mm",
445     .version_id = 0,
446     .minimum_version_id = 0,
447     .fields = (VMStateField[]) {
448         VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
449         VMSTATE_END_OF_LIST()
450     }
451 };
452
453 #define TYPE_PXA2XX_SSP "pxa2xx-ssp"
454 #define PXA2XX_SSP(obj) \
455     OBJECT_CHECK(PXA2xxSSPState, (obj), TYPE_PXA2XX_SSP)
456
457 /* Synchronous Serial Ports */
458 typedef struct {
459     /*< private >*/
460     SysBusDevice parent_obj;
461     /*< public >*/
462
463     MemoryRegion iomem;
464     qemu_irq irq;
465     uint32_t enable;
466     SSIBus *bus;
467
468     uint32_t sscr[2];
469     uint32_t sspsp;
470     uint32_t ssto;
471     uint32_t ssitr;
472     uint32_t sssr;
473     uint8_t sstsa;
474     uint8_t ssrsa;
475     uint8_t ssacd;
476
477     uint32_t rx_fifo[16];
478     uint32_t rx_level;
479     uint32_t rx_start;
480 } PXA2xxSSPState;
481
482 static bool pxa2xx_ssp_vmstate_validate(void *opaque, int version_id)
483 {
484     PXA2xxSSPState *s = opaque;
485
486     return s->rx_start < sizeof(s->rx_fifo);
487 }
488
489 static const VMStateDescription vmstate_pxa2xx_ssp = {
490     .name = "pxa2xx-ssp",
491     .version_id = 1,
492     .minimum_version_id = 1,
493     .fields = (VMStateField[]) {
494         VMSTATE_UINT32(enable, PXA2xxSSPState),
495         VMSTATE_UINT32_ARRAY(sscr, PXA2xxSSPState, 2),
496         VMSTATE_UINT32(sspsp, PXA2xxSSPState),
497         VMSTATE_UINT32(ssto, PXA2xxSSPState),
498         VMSTATE_UINT32(ssitr, PXA2xxSSPState),
499         VMSTATE_UINT32(sssr, PXA2xxSSPState),
500         VMSTATE_UINT8(sstsa, PXA2xxSSPState),
501         VMSTATE_UINT8(ssrsa, PXA2xxSSPState),
502         VMSTATE_UINT8(ssacd, PXA2xxSSPState),
503         VMSTATE_UINT32(rx_level, PXA2xxSSPState),
504         VMSTATE_UINT32(rx_start, PXA2xxSSPState),
505         VMSTATE_VALIDATE("fifo is 16 bytes", pxa2xx_ssp_vmstate_validate),
506         VMSTATE_UINT32_ARRAY(rx_fifo, PXA2xxSSPState, 16),
507         VMSTATE_END_OF_LIST()
508     }
509 };
510
511 #define SSCR0   0x00    /* SSP Control register 0 */
512 #define SSCR1   0x04    /* SSP Control register 1 */
513 #define SSSR    0x08    /* SSP Status register */
514 #define SSITR   0x0c    /* SSP Interrupt Test register */
515 #define SSDR    0x10    /* SSP Data register */
516 #define SSTO    0x28    /* SSP Time-Out register */
517 #define SSPSP   0x2c    /* SSP Programmable Serial Protocol register */
518 #define SSTSA   0x30    /* SSP TX Time Slot Active register */
519 #define SSRSA   0x34    /* SSP RX Time Slot Active register */
520 #define SSTSS   0x38    /* SSP Time Slot Status register */
521 #define SSACD   0x3c    /* SSP Audio Clock Divider register */
522
523 /* Bitfields for above registers */
524 #define SSCR0_SPI(x)    (((x) & 0x30) == 0x00)
525 #define SSCR0_SSP(x)    (((x) & 0x30) == 0x10)
526 #define SSCR0_UWIRE(x)  (((x) & 0x30) == 0x20)
527 #define SSCR0_PSP(x)    (((x) & 0x30) == 0x30)
528 #define SSCR0_SSE       (1 << 7)
529 #define SSCR0_RIM       (1 << 22)
530 #define SSCR0_TIM       (1 << 23)
531 #define SSCR0_MOD       (1U << 31)
532 #define SSCR0_DSS(x)    (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
533 #define SSCR1_RIE       (1 << 0)
534 #define SSCR1_TIE       (1 << 1)
535 #define SSCR1_LBM       (1 << 2)
536 #define SSCR1_MWDS      (1 << 5)
537 #define SSCR1_TFT(x)    ((((x) >> 6) & 0xf) + 1)
538 #define SSCR1_RFT(x)    ((((x) >> 10) & 0xf) + 1)
539 #define SSCR1_EFWR      (1 << 14)
540 #define SSCR1_PINTE     (1 << 18)
541 #define SSCR1_TINTE     (1 << 19)
542 #define SSCR1_RSRE      (1 << 20)
543 #define SSCR1_TSRE      (1 << 21)
544 #define SSCR1_EBCEI     (1 << 29)
545 #define SSITR_INT       (7 << 5)
546 #define SSSR_TNF        (1 << 2)
547 #define SSSR_RNE        (1 << 3)
548 #define SSSR_TFS        (1 << 5)
549 #define SSSR_RFS        (1 << 6)
550 #define SSSR_ROR        (1 << 7)
551 #define SSSR_PINT       (1 << 18)
552 #define SSSR_TINT       (1 << 19)
553 #define SSSR_EOC        (1 << 20)
554 #define SSSR_TUR        (1 << 21)
555 #define SSSR_BCE        (1 << 23)
556 #define SSSR_RW         0x00bc0080
557
558 static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
559 {
560     int level = 0;
561
562     level |= s->ssitr & SSITR_INT;
563     level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
564     level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
565     level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
566     level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
567     level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
568     level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
569     level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
570     level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
571     qemu_set_irq(s->irq, !!level);
572 }
573
574 static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
575 {
576     s->sssr &= ~(0xf << 12);    /* Clear RFL */
577     s->sssr &= ~(0xf << 8);     /* Clear TFL */
578     s->sssr &= ~SSSR_TFS;
579     s->sssr &= ~SSSR_TNF;
580     if (s->enable) {
581         s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
582         if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
583             s->sssr |= SSSR_RFS;
584         else
585             s->sssr &= ~SSSR_RFS;
586         if (s->rx_level)
587             s->sssr |= SSSR_RNE;
588         else
589             s->sssr &= ~SSSR_RNE;
590         /* TX FIFO is never filled, so it is always in underrun
591            condition if SSP is enabled */
592         s->sssr |= SSSR_TFS;
593         s->sssr |= SSSR_TNF;
594     }
595
596     pxa2xx_ssp_int_update(s);
597 }
598
599 static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
600                                 unsigned size)
601 {
602     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
603     uint32_t retval;
604
605     switch (addr) {
606     case SSCR0:
607         return s->sscr[0];
608     case SSCR1:
609         return s->sscr[1];
610     case SSPSP:
611         return s->sspsp;
612     case SSTO:
613         return s->ssto;
614     case SSITR:
615         return s->ssitr;
616     case SSSR:
617         return s->sssr | s->ssitr;
618     case SSDR:
619         if (!s->enable)
620             return 0xffffffff;
621         if (s->rx_level < 1) {
622             printf("%s: SSP Rx Underrun\n", __FUNCTION__);
623             return 0xffffffff;
624         }
625         s->rx_level --;
626         retval = s->rx_fifo[s->rx_start ++];
627         s->rx_start &= 0xf;
628         pxa2xx_ssp_fifo_update(s);
629         return retval;
630     case SSTSA:
631         return s->sstsa;
632     case SSRSA:
633         return s->ssrsa;
634     case SSTSS:
635         return 0;
636     case SSACD:
637         return s->ssacd;
638     default:
639         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
640         break;
641     }
642     return 0;
643 }
644
645 static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
646                              uint64_t value64, unsigned size)
647 {
648     PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
649     uint32_t value = value64;
650
651     switch (addr) {
652     case SSCR0:
653         s->sscr[0] = value & 0xc7ffffff;
654         s->enable = value & SSCR0_SSE;
655         if (value & SSCR0_MOD)
656             printf("%s: Attempt to use network mode\n", __FUNCTION__);
657         if (s->enable && SSCR0_DSS(value) < 4)
658             printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
659                             SSCR0_DSS(value));
660         if (!(value & SSCR0_SSE)) {
661             s->sssr = 0;
662             s->ssitr = 0;
663             s->rx_level = 0;
664         }
665         pxa2xx_ssp_fifo_update(s);
666         break;
667
668     case SSCR1:
669         s->sscr[1] = value;
670         if (value & (SSCR1_LBM | SSCR1_EFWR))
671             printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
672         pxa2xx_ssp_fifo_update(s);
673         break;
674
675     case SSPSP:
676         s->sspsp = value;
677         break;
678
679     case SSTO:
680         s->ssto = value;
681         break;
682
683     case SSITR:
684         s->ssitr = value & SSITR_INT;
685         pxa2xx_ssp_int_update(s);
686         break;
687
688     case SSSR:
689         s->sssr &= ~(value & SSSR_RW);
690         pxa2xx_ssp_int_update(s);
691         break;
692
693     case SSDR:
694         if (SSCR0_UWIRE(s->sscr[0])) {
695             if (s->sscr[1] & SSCR1_MWDS)
696                 value &= 0xffff;
697             else
698                 value &= 0xff;
699         } else
700             /* Note how 32bits overflow does no harm here */
701             value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
702
703         /* Data goes from here to the Tx FIFO and is shifted out from
704          * there directly to the slave, no need to buffer it.
705          */
706         if (s->enable) {
707             uint32_t readval;
708             readval = ssi_transfer(s->bus, value);
709             if (s->rx_level < 0x10) {
710                 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
711             } else {
712                 s->sssr |= SSSR_ROR;
713             }
714         }
715         pxa2xx_ssp_fifo_update(s);
716         break;
717
718     case SSTSA:
719         s->sstsa = value;
720         break;
721
722     case SSRSA:
723         s->ssrsa = value;
724         break;
725
726     case SSACD:
727         s->ssacd = value;
728         break;
729
730     default:
731         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
732         break;
733     }
734 }
735
736 static const MemoryRegionOps pxa2xx_ssp_ops = {
737     .read = pxa2xx_ssp_read,
738     .write = pxa2xx_ssp_write,
739     .endianness = DEVICE_NATIVE_ENDIAN,
740 };
741
742 static void pxa2xx_ssp_reset(DeviceState *d)
743 {
744     PXA2xxSSPState *s = PXA2XX_SSP(d);
745
746     s->enable = 0;
747     s->sscr[0] = s->sscr[1] = 0;
748     s->sspsp = 0;
749     s->ssto = 0;
750     s->ssitr = 0;
751     s->sssr = 0;
752     s->sstsa = 0;
753     s->ssrsa = 0;
754     s->ssacd = 0;
755     s->rx_start = s->rx_level = 0;
756 }
757
758 static int pxa2xx_ssp_init(SysBusDevice *sbd)
759 {
760     DeviceState *dev = DEVICE(sbd);
761     PXA2xxSSPState *s = PXA2XX_SSP(dev);
762
763     sysbus_init_irq(sbd, &s->irq);
764
765     memory_region_init_io(&s->iomem, OBJECT(s), &pxa2xx_ssp_ops, s,
766                           "pxa2xx-ssp", 0x1000);
767     sysbus_init_mmio(sbd, &s->iomem);
768
769     s->bus = ssi_create_bus(dev, "ssi");
770     return 0;
771 }
772
773 /* Real-Time Clock */
774 #define RCNR            0x00    /* RTC Counter register */
775 #define RTAR            0x04    /* RTC Alarm register */
776 #define RTSR            0x08    /* RTC Status register */
777 #define RTTR            0x0c    /* RTC Timer Trim register */
778 #define RDCR            0x10    /* RTC Day Counter register */
779 #define RYCR            0x14    /* RTC Year Counter register */
780 #define RDAR1           0x18    /* RTC Wristwatch Day Alarm register 1 */
781 #define RYAR1           0x1c    /* RTC Wristwatch Year Alarm register 1 */
782 #define RDAR2           0x20    /* RTC Wristwatch Day Alarm register 2 */
783 #define RYAR2           0x24    /* RTC Wristwatch Year Alarm register 2 */
784 #define SWCR            0x28    /* RTC Stopwatch Counter register */
785 #define SWAR1           0x2c    /* RTC Stopwatch Alarm register 1 */
786 #define SWAR2           0x30    /* RTC Stopwatch Alarm register 2 */
787 #define RTCPICR         0x34    /* RTC Periodic Interrupt Counter register */
788 #define PIAR            0x38    /* RTC Periodic Interrupt Alarm register */
789
790 #define TYPE_PXA2XX_RTC "pxa2xx_rtc"
791 #define PXA2XX_RTC(obj) \
792     OBJECT_CHECK(PXA2xxRTCState, (obj), TYPE_PXA2XX_RTC)
793
794 typedef struct {
795     /*< private >*/
796     SysBusDevice parent_obj;
797     /*< public >*/
798
799     MemoryRegion iomem;
800     uint32_t rttr;
801     uint32_t rtsr;
802     uint32_t rtar;
803     uint32_t rdar1;
804     uint32_t rdar2;
805     uint32_t ryar1;
806     uint32_t ryar2;
807     uint32_t swar1;
808     uint32_t swar2;
809     uint32_t piar;
810     uint32_t last_rcnr;
811     uint32_t last_rdcr;
812     uint32_t last_rycr;
813     uint32_t last_swcr;
814     uint32_t last_rtcpicr;
815     int64_t last_hz;
816     int64_t last_sw;
817     int64_t last_pi;
818     QEMUTimer *rtc_hz;
819     QEMUTimer *rtc_rdal1;
820     QEMUTimer *rtc_rdal2;
821     QEMUTimer *rtc_swal1;
822     QEMUTimer *rtc_swal2;
823     QEMUTimer *rtc_pi;
824     qemu_irq rtc_irq;
825 } PXA2xxRTCState;
826
827 static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
828 {
829     qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
830 }
831
832 static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
833 {
834     int64_t rt = qemu_clock_get_ms(rtc_clock);
835     s->last_rcnr += ((rt - s->last_hz) << 15) /
836             (1000 * ((s->rttr & 0xffff) + 1));
837     s->last_rdcr += ((rt - s->last_hz) << 15) /
838             (1000 * ((s->rttr & 0xffff) + 1));
839     s->last_hz = rt;
840 }
841
842 static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
843 {
844     int64_t rt = qemu_clock_get_ms(rtc_clock);
845     if (s->rtsr & (1 << 12))
846         s->last_swcr += (rt - s->last_sw) / 10;
847     s->last_sw = rt;
848 }
849
850 static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
851 {
852     int64_t rt = qemu_clock_get_ms(rtc_clock);
853     if (s->rtsr & (1 << 15))
854         s->last_swcr += rt - s->last_pi;
855     s->last_pi = rt;
856 }
857
858 static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
859                 uint32_t rtsr)
860 {
861     if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
862         timer_mod(s->rtc_hz, s->last_hz +
863                 (((s->rtar - s->last_rcnr) * 1000 *
864                   ((s->rttr & 0xffff) + 1)) >> 15));
865     else
866         timer_del(s->rtc_hz);
867
868     if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
869         timer_mod(s->rtc_rdal1, s->last_hz +
870                 (((s->rdar1 - s->last_rdcr) * 1000 *
871                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
872     else
873         timer_del(s->rtc_rdal1);
874
875     if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
876         timer_mod(s->rtc_rdal2, s->last_hz +
877                 (((s->rdar2 - s->last_rdcr) * 1000 *
878                   ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
879     else
880         timer_del(s->rtc_rdal2);
881
882     if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
883         timer_mod(s->rtc_swal1, s->last_sw +
884                         (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
885     else
886         timer_del(s->rtc_swal1);
887
888     if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
889         timer_mod(s->rtc_swal2, s->last_sw +
890                         (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
891     else
892         timer_del(s->rtc_swal2);
893
894     if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
895         timer_mod(s->rtc_pi, s->last_pi +
896                         (s->piar & 0xffff) - s->last_rtcpicr);
897     else
898         timer_del(s->rtc_pi);
899 }
900
901 static inline void pxa2xx_rtc_hz_tick(void *opaque)
902 {
903     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
904     s->rtsr |= (1 << 0);
905     pxa2xx_rtc_alarm_update(s, s->rtsr);
906     pxa2xx_rtc_int_update(s);
907 }
908
909 static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
910 {
911     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
912     s->rtsr |= (1 << 4);
913     pxa2xx_rtc_alarm_update(s, s->rtsr);
914     pxa2xx_rtc_int_update(s);
915 }
916
917 static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
918 {
919     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
920     s->rtsr |= (1 << 6);
921     pxa2xx_rtc_alarm_update(s, s->rtsr);
922     pxa2xx_rtc_int_update(s);
923 }
924
925 static inline void pxa2xx_rtc_swal1_tick(void *opaque)
926 {
927     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
928     s->rtsr |= (1 << 8);
929     pxa2xx_rtc_alarm_update(s, s->rtsr);
930     pxa2xx_rtc_int_update(s);
931 }
932
933 static inline void pxa2xx_rtc_swal2_tick(void *opaque)
934 {
935     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
936     s->rtsr |= (1 << 10);
937     pxa2xx_rtc_alarm_update(s, s->rtsr);
938     pxa2xx_rtc_int_update(s);
939 }
940
941 static inline void pxa2xx_rtc_pi_tick(void *opaque)
942 {
943     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
944     s->rtsr |= (1 << 13);
945     pxa2xx_rtc_piupdate(s);
946     s->last_rtcpicr = 0;
947     pxa2xx_rtc_alarm_update(s, s->rtsr);
948     pxa2xx_rtc_int_update(s);
949 }
950
951 static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
952                                 unsigned size)
953 {
954     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
955
956     switch (addr) {
957     case RTTR:
958         return s->rttr;
959     case RTSR:
960         return s->rtsr;
961     case RTAR:
962         return s->rtar;
963     case RDAR1:
964         return s->rdar1;
965     case RDAR2:
966         return s->rdar2;
967     case RYAR1:
968         return s->ryar1;
969     case RYAR2:
970         return s->ryar2;
971     case SWAR1:
972         return s->swar1;
973     case SWAR2:
974         return s->swar2;
975     case PIAR:
976         return s->piar;
977     case RCNR:
978         return s->last_rcnr +
979             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
980             (1000 * ((s->rttr & 0xffff) + 1));
981     case RDCR:
982         return s->last_rdcr +
983             ((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
984             (1000 * ((s->rttr & 0xffff) + 1));
985     case RYCR:
986         return s->last_rycr;
987     case SWCR:
988         if (s->rtsr & (1 << 12))
989             return s->last_swcr +
990                 (qemu_clock_get_ms(rtc_clock) - s->last_sw) / 10;
991         else
992             return s->last_swcr;
993     default:
994         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
995         break;
996     }
997     return 0;
998 }
999
1000 static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
1001                              uint64_t value64, unsigned size)
1002 {
1003     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1004     uint32_t value = value64;
1005
1006     switch (addr) {
1007     case RTTR:
1008         if (!(s->rttr & (1U << 31))) {
1009             pxa2xx_rtc_hzupdate(s);
1010             s->rttr = value;
1011             pxa2xx_rtc_alarm_update(s, s->rtsr);
1012         }
1013         break;
1014
1015     case RTSR:
1016         if ((s->rtsr ^ value) & (1 << 15))
1017             pxa2xx_rtc_piupdate(s);
1018
1019         if ((s->rtsr ^ value) & (1 << 12))
1020             pxa2xx_rtc_swupdate(s);
1021
1022         if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1023             pxa2xx_rtc_alarm_update(s, value);
1024
1025         s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1026         pxa2xx_rtc_int_update(s);
1027         break;
1028
1029     case RTAR:
1030         s->rtar = value;
1031         pxa2xx_rtc_alarm_update(s, s->rtsr);
1032         break;
1033
1034     case RDAR1:
1035         s->rdar1 = value;
1036         pxa2xx_rtc_alarm_update(s, s->rtsr);
1037         break;
1038
1039     case RDAR2:
1040         s->rdar2 = value;
1041         pxa2xx_rtc_alarm_update(s, s->rtsr);
1042         break;
1043
1044     case RYAR1:
1045         s->ryar1 = value;
1046         pxa2xx_rtc_alarm_update(s, s->rtsr);
1047         break;
1048
1049     case RYAR2:
1050         s->ryar2 = value;
1051         pxa2xx_rtc_alarm_update(s, s->rtsr);
1052         break;
1053
1054     case SWAR1:
1055         pxa2xx_rtc_swupdate(s);
1056         s->swar1 = value;
1057         s->last_swcr = 0;
1058         pxa2xx_rtc_alarm_update(s, s->rtsr);
1059         break;
1060
1061     case SWAR2:
1062         s->swar2 = value;
1063         pxa2xx_rtc_alarm_update(s, s->rtsr);
1064         break;
1065
1066     case PIAR:
1067         s->piar = value;
1068         pxa2xx_rtc_alarm_update(s, s->rtsr);
1069         break;
1070
1071     case RCNR:
1072         pxa2xx_rtc_hzupdate(s);
1073         s->last_rcnr = value;
1074         pxa2xx_rtc_alarm_update(s, s->rtsr);
1075         break;
1076
1077     case RDCR:
1078         pxa2xx_rtc_hzupdate(s);
1079         s->last_rdcr = value;
1080         pxa2xx_rtc_alarm_update(s, s->rtsr);
1081         break;
1082
1083     case RYCR:
1084         s->last_rycr = value;
1085         break;
1086
1087     case SWCR:
1088         pxa2xx_rtc_swupdate(s);
1089         s->last_swcr = value;
1090         pxa2xx_rtc_alarm_update(s, s->rtsr);
1091         break;
1092
1093     case RTCPICR:
1094         pxa2xx_rtc_piupdate(s);
1095         s->last_rtcpicr = value & 0xffff;
1096         pxa2xx_rtc_alarm_update(s, s->rtsr);
1097         break;
1098
1099     default:
1100         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1101     }
1102 }
1103
1104 static const MemoryRegionOps pxa2xx_rtc_ops = {
1105     .read = pxa2xx_rtc_read,
1106     .write = pxa2xx_rtc_write,
1107     .endianness = DEVICE_NATIVE_ENDIAN,
1108 };
1109
1110 static void pxa2xx_rtc_init(Object *obj)
1111 {
1112     PXA2xxRTCState *s = PXA2XX_RTC(obj);
1113     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
1114     struct tm tm;
1115     int wom;
1116
1117     s->rttr = 0x7fff;
1118     s->rtsr = 0;
1119
1120     qemu_get_timedate(&tm, 0);
1121     wom = ((tm.tm_mday - 1) / 7) + 1;
1122
1123     s->last_rcnr = (uint32_t) mktimegm(&tm);
1124     s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1125             (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1126     s->last_rycr = ((tm.tm_year + 1900) << 9) |
1127             ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1128     s->last_swcr = (tm.tm_hour << 19) |
1129             (tm.tm_min << 13) | (tm.tm_sec << 7);
1130     s->last_rtcpicr = 0;
1131     s->last_hz = s->last_sw = s->last_pi = qemu_clock_get_ms(rtc_clock);
1132
1133     s->rtc_hz    = timer_new_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1134     s->rtc_rdal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1135     s->rtc_rdal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1136     s->rtc_swal1 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1137     s->rtc_swal2 = timer_new_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1138     s->rtc_pi    = timer_new_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1139
1140     sysbus_init_irq(dev, &s->rtc_irq);
1141
1142     memory_region_init_io(&s->iomem, obj, &pxa2xx_rtc_ops, s,
1143                           "pxa2xx-rtc", 0x10000);
1144     sysbus_init_mmio(dev, &s->iomem);
1145 }
1146
1147 static void pxa2xx_rtc_pre_save(void *opaque)
1148 {
1149     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1150
1151     pxa2xx_rtc_hzupdate(s);
1152     pxa2xx_rtc_piupdate(s);
1153     pxa2xx_rtc_swupdate(s);
1154 }
1155
1156 static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1157 {
1158     PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1159
1160     pxa2xx_rtc_alarm_update(s, s->rtsr);
1161
1162     return 0;
1163 }
1164
1165 static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1166     .name = "pxa2xx_rtc",
1167     .version_id = 0,
1168     .minimum_version_id = 0,
1169     .pre_save = pxa2xx_rtc_pre_save,
1170     .post_load = pxa2xx_rtc_post_load,
1171     .fields = (VMStateField[]) {
1172         VMSTATE_UINT32(rttr, PXA2xxRTCState),
1173         VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1174         VMSTATE_UINT32(rtar, PXA2xxRTCState),
1175         VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1176         VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1177         VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1178         VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1179         VMSTATE_UINT32(swar1, PXA2xxRTCState),
1180         VMSTATE_UINT32(swar2, PXA2xxRTCState),
1181         VMSTATE_UINT32(piar, PXA2xxRTCState),
1182         VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1183         VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1184         VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1185         VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1186         VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1187         VMSTATE_INT64(last_hz, PXA2xxRTCState),
1188         VMSTATE_INT64(last_sw, PXA2xxRTCState),
1189         VMSTATE_INT64(last_pi, PXA2xxRTCState),
1190         VMSTATE_END_OF_LIST(),
1191     },
1192 };
1193
1194 static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1195 {
1196     DeviceClass *dc = DEVICE_CLASS(klass);
1197
1198     dc->desc = "PXA2xx RTC Controller";
1199     dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1200 }
1201
1202 static const TypeInfo pxa2xx_rtc_sysbus_info = {
1203     .name          = TYPE_PXA2XX_RTC,
1204     .parent        = TYPE_SYS_BUS_DEVICE,
1205     .instance_size = sizeof(PXA2xxRTCState),
1206     .instance_init = pxa2xx_rtc_init,
1207     .class_init    = pxa2xx_rtc_sysbus_class_init,
1208 };
1209
1210 /* I2C Interface */
1211
1212 #define TYPE_PXA2XX_I2C_SLAVE "pxa2xx-i2c-slave"
1213 #define PXA2XX_I2C_SLAVE(obj) \
1214     OBJECT_CHECK(PXA2xxI2CSlaveState, (obj), TYPE_PXA2XX_I2C_SLAVE)
1215
1216 typedef struct PXA2xxI2CSlaveState {
1217     I2CSlave parent_obj;
1218
1219     PXA2xxI2CState *host;
1220 } PXA2xxI2CSlaveState;
1221
1222 #define TYPE_PXA2XX_I2C "pxa2xx_i2c"
1223 #define PXA2XX_I2C(obj) \
1224     OBJECT_CHECK(PXA2xxI2CState, (obj), TYPE_PXA2XX_I2C)
1225
1226 struct PXA2xxI2CState {
1227     /*< private >*/
1228     SysBusDevice parent_obj;
1229     /*< public >*/
1230
1231     MemoryRegion iomem;
1232     PXA2xxI2CSlaveState *slave;
1233     I2CBus *bus;
1234     qemu_irq irq;
1235     uint32_t offset;
1236     uint32_t region_size;
1237
1238     uint16_t control;
1239     uint16_t status;
1240     uint8_t ibmr;
1241     uint8_t data;
1242 };
1243
1244 #define IBMR    0x80    /* I2C Bus Monitor register */
1245 #define IDBR    0x88    /* I2C Data Buffer register */
1246 #define ICR     0x90    /* I2C Control register */
1247 #define ISR     0x98    /* I2C Status register */
1248 #define ISAR    0xa0    /* I2C Slave Address register */
1249
1250 static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1251 {
1252     uint16_t level = 0;
1253     level |= s->status & s->control & (1 << 10);                /* BED */
1254     level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1255     level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1256     level |= s->status & (1 << 9);                              /* SAD */
1257     qemu_set_irq(s->irq, !!level);
1258 }
1259
1260 /* These are only stubs now.  */
1261 static int pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1262 {
1263     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1264     PXA2xxI2CState *s = slave->host;
1265
1266     switch (event) {
1267     case I2C_START_SEND:
1268         s->status |= (1 << 9);                          /* set SAD */
1269         s->status &= ~(1 << 0);                         /* clear RWM */
1270         break;
1271     case I2C_START_RECV:
1272         s->status |= (1 << 9);                          /* set SAD */
1273         s->status |= 1 << 0;                            /* set RWM */
1274         break;
1275     case I2C_FINISH:
1276         s->status |= (1 << 4);                          /* set SSD */
1277         break;
1278     case I2C_NACK:
1279         s->status |= 1 << 1;                            /* set ACKNAK */
1280         break;
1281     }
1282     pxa2xx_i2c_update(s);
1283
1284     return 0;
1285 }
1286
1287 static int pxa2xx_i2c_rx(I2CSlave *i2c)
1288 {
1289     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1290     PXA2xxI2CState *s = slave->host;
1291
1292     if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) {
1293         return 0;
1294     }
1295
1296     if (s->status & (1 << 0)) {                 /* RWM */
1297         s->status |= 1 << 6;                    /* set ITE */
1298     }
1299     pxa2xx_i2c_update(s);
1300
1301     return s->data;
1302 }
1303
1304 static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1305 {
1306     PXA2xxI2CSlaveState *slave = PXA2XX_I2C_SLAVE(i2c);
1307     PXA2xxI2CState *s = slave->host;
1308
1309     if ((s->control & (1 << 14)) || !(s->control & (1 << 6))) {
1310         return 1;
1311     }
1312
1313     if (!(s->status & (1 << 0))) {              /* RWM */
1314         s->status |= 1 << 7;                    /* set IRF */
1315         s->data = data;
1316     }
1317     pxa2xx_i2c_update(s);
1318
1319     return 1;
1320 }
1321
1322 static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1323                                 unsigned size)
1324 {
1325     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1326     I2CSlave *slave;
1327
1328     addr -= s->offset;
1329     switch (addr) {
1330     case ICR:
1331         return s->control;
1332     case ISR:
1333         return s->status | (i2c_bus_busy(s->bus) << 2);
1334     case ISAR:
1335         slave = I2C_SLAVE(s->slave);
1336         return slave->address;
1337     case IDBR:
1338         return s->data;
1339     case IBMR:
1340         if (s->status & (1 << 2))
1341             s->ibmr ^= 3;       /* Fake SCL and SDA pin changes */
1342         else
1343             s->ibmr = 0;
1344         return s->ibmr;
1345     default:
1346         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1347         break;
1348     }
1349     return 0;
1350 }
1351
1352 static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1353                              uint64_t value64, unsigned size)
1354 {
1355     PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1356     uint32_t value = value64;
1357     int ack;
1358
1359     addr -= s->offset;
1360     switch (addr) {
1361     case ICR:
1362         s->control = value & 0xfff7;
1363         if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1364             /* TODO: slave mode */
1365             if (value & (1 << 0)) {                     /* START condition */
1366                 if (s->data & 1)
1367                     s->status |= 1 << 0;                /* set RWM */
1368                 else
1369                     s->status &= ~(1 << 0);             /* clear RWM */
1370                 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1371             } else {
1372                 if (s->status & (1 << 0)) {             /* RWM */
1373                     s->data = i2c_recv(s->bus);
1374                     if (value & (1 << 2))               /* ACKNAK */
1375                         i2c_nack(s->bus);
1376                     ack = 1;
1377                 } else
1378                     ack = !i2c_send(s->bus, s->data);
1379             }
1380
1381             if (value & (1 << 1))                       /* STOP condition */
1382                 i2c_end_transfer(s->bus);
1383
1384             if (ack) {
1385                 if (value & (1 << 0))                   /* START condition */
1386                     s->status |= 1 << 6;                /* set ITE */
1387                 else
1388                     if (s->status & (1 << 0))           /* RWM */
1389                         s->status |= 1 << 7;            /* set IRF */
1390                     else
1391                         s->status |= 1 << 6;            /* set ITE */
1392                 s->status &= ~(1 << 1);                 /* clear ACKNAK */
1393             } else {
1394                 s->status |= 1 << 6;                    /* set ITE */
1395                 s->status |= 1 << 10;                   /* set BED */
1396                 s->status |= 1 << 1;                    /* set ACKNAK */
1397             }
1398         }
1399         if (!(value & (1 << 3)) && (value & (1 << 6)))  /* !TB and IUE */
1400             if (value & (1 << 4))                       /* MA */
1401                 i2c_end_transfer(s->bus);
1402         pxa2xx_i2c_update(s);
1403         break;
1404
1405     case ISR:
1406         s->status &= ~(value & 0x07f0);
1407         pxa2xx_i2c_update(s);
1408         break;
1409
1410     case ISAR:
1411         i2c_set_slave_address(I2C_SLAVE(s->slave), value & 0x7f);
1412         break;
1413
1414     case IDBR:
1415         s->data = value & 0xff;
1416         break;
1417
1418     default:
1419         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1420     }
1421 }
1422
1423 static const MemoryRegionOps pxa2xx_i2c_ops = {
1424     .read = pxa2xx_i2c_read,
1425     .write = pxa2xx_i2c_write,
1426     .endianness = DEVICE_NATIVE_ENDIAN,
1427 };
1428
1429 static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1430     .name = "pxa2xx_i2c_slave",
1431     .version_id = 1,
1432     .minimum_version_id = 1,
1433     .fields = (VMStateField[]) {
1434         VMSTATE_I2C_SLAVE(parent_obj, PXA2xxI2CSlaveState),
1435         VMSTATE_END_OF_LIST()
1436     }
1437 };
1438
1439 static const VMStateDescription vmstate_pxa2xx_i2c = {
1440     .name = "pxa2xx_i2c",
1441     .version_id = 1,
1442     .minimum_version_id = 1,
1443     .fields = (VMStateField[]) {
1444         VMSTATE_UINT16(control, PXA2xxI2CState),
1445         VMSTATE_UINT16(status, PXA2xxI2CState),
1446         VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1447         VMSTATE_UINT8(data, PXA2xxI2CState),
1448         VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1449                                vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState),
1450         VMSTATE_END_OF_LIST()
1451     }
1452 };
1453
1454 static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1455 {
1456     I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1457
1458     k->event = pxa2xx_i2c_event;
1459     k->recv = pxa2xx_i2c_rx;
1460     k->send = pxa2xx_i2c_tx;
1461 }
1462
1463 static const TypeInfo pxa2xx_i2c_slave_info = {
1464     .name          = TYPE_PXA2XX_I2C_SLAVE,
1465     .parent        = TYPE_I2C_SLAVE,
1466     .instance_size = sizeof(PXA2xxI2CSlaveState),
1467     .class_init    = pxa2xx_i2c_slave_class_init,
1468 };
1469
1470 PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1471                 qemu_irq irq, uint32_t region_size)
1472 {
1473     DeviceState *dev;
1474     SysBusDevice *i2c_dev;
1475     PXA2xxI2CState *s;
1476     I2CBus *i2cbus;
1477
1478     dev = qdev_create(NULL, TYPE_PXA2XX_I2C);
1479     qdev_prop_set_uint32(dev, "size", region_size + 1);
1480     qdev_prop_set_uint32(dev, "offset", base & region_size);
1481     qdev_init_nofail(dev);
1482
1483     i2c_dev = SYS_BUS_DEVICE(dev);
1484     sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1485     sysbus_connect_irq(i2c_dev, 0, irq);
1486
1487     s = PXA2XX_I2C(i2c_dev);
1488     /* FIXME: Should the slave device really be on a separate bus?  */
1489     i2cbus = i2c_init_bus(dev, "dummy");
1490     dev = i2c_create_slave(i2cbus, TYPE_PXA2XX_I2C_SLAVE, 0);
1491     s->slave = PXA2XX_I2C_SLAVE(dev);
1492     s->slave->host = s;
1493
1494     return s;
1495 }
1496
1497 static void pxa2xx_i2c_initfn(Object *obj)
1498 {
1499     DeviceState *dev = DEVICE(obj);
1500     PXA2xxI2CState *s = PXA2XX_I2C(obj);
1501     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1502
1503     s->bus = i2c_init_bus(dev, NULL);
1504
1505     memory_region_init_io(&s->iomem, obj, &pxa2xx_i2c_ops, s,
1506                           "pxa2xx-i2c", s->region_size);
1507     sysbus_init_mmio(sbd, &s->iomem);
1508     sysbus_init_irq(sbd, &s->irq);
1509 }
1510
1511 I2CBus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1512 {
1513     return s->bus;
1514 }
1515
1516 static Property pxa2xx_i2c_properties[] = {
1517     DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1518     DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1519     DEFINE_PROP_END_OF_LIST(),
1520 };
1521
1522 static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1523 {
1524     DeviceClass *dc = DEVICE_CLASS(klass);
1525
1526     dc->desc = "PXA2xx I2C Bus Controller";
1527     dc->vmsd = &vmstate_pxa2xx_i2c;
1528     dc->props = pxa2xx_i2c_properties;
1529 }
1530
1531 static const TypeInfo pxa2xx_i2c_info = {
1532     .name          = TYPE_PXA2XX_I2C,
1533     .parent        = TYPE_SYS_BUS_DEVICE,
1534     .instance_size = sizeof(PXA2xxI2CState),
1535     .instance_init = pxa2xx_i2c_initfn,
1536     .class_init    = pxa2xx_i2c_class_init,
1537 };
1538
1539 /* PXA Inter-IC Sound Controller */
1540 static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1541 {
1542     i2s->rx_len = 0;
1543     i2s->tx_len = 0;
1544     i2s->fifo_len = 0;
1545     i2s->clk = 0x1a;
1546     i2s->control[0] = 0x00;
1547     i2s->control[1] = 0x00;
1548     i2s->status = 0x00;
1549     i2s->mask = 0x00;
1550 }
1551
1552 #define SACR_TFTH(val)  ((val >> 8) & 0xf)
1553 #define SACR_RFTH(val)  ((val >> 12) & 0xf)
1554 #define SACR_DREC(val)  (val & (1 << 3))
1555 #define SACR_DPRL(val)  (val & (1 << 4))
1556
1557 static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1558 {
1559     int rfs, tfs;
1560     rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1561             !SACR_DREC(i2s->control[1]);
1562     tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1563             i2s->enable && !SACR_DPRL(i2s->control[1]);
1564
1565     qemu_set_irq(i2s->rx_dma, rfs);
1566     qemu_set_irq(i2s->tx_dma, tfs);
1567
1568     i2s->status &= 0xe0;
1569     if (i2s->fifo_len < 16 || !i2s->enable)
1570         i2s->status |= 1 << 0;                  /* TNF */
1571     if (i2s->rx_len)
1572         i2s->status |= 1 << 1;                  /* RNE */
1573     if (i2s->enable)
1574         i2s->status |= 1 << 2;                  /* BSY */
1575     if (tfs)
1576         i2s->status |= 1 << 3;                  /* TFS */
1577     if (rfs)
1578         i2s->status |= 1 << 4;                  /* RFS */
1579     if (!(i2s->tx_len && i2s->enable))
1580         i2s->status |= i2s->fifo_len << 8;      /* TFL */
1581     i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1582
1583     qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1584 }
1585
1586 #define SACR0   0x00    /* Serial Audio Global Control register */
1587 #define SACR1   0x04    /* Serial Audio I2S/MSB-Justified Control register */
1588 #define SASR0   0x0c    /* Serial Audio Interface and FIFO Status register */
1589 #define SAIMR   0x14    /* Serial Audio Interrupt Mask register */
1590 #define SAICR   0x18    /* Serial Audio Interrupt Clear register */
1591 #define SADIV   0x60    /* Serial Audio Clock Divider register */
1592 #define SADR    0x80    /* Serial Audio Data register */
1593
1594 static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1595                                 unsigned size)
1596 {
1597     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1598
1599     switch (addr) {
1600     case SACR0:
1601         return s->control[0];
1602     case SACR1:
1603         return s->control[1];
1604     case SASR0:
1605         return s->status;
1606     case SAIMR:
1607         return s->mask;
1608     case SAICR:
1609         return 0;
1610     case SADIV:
1611         return s->clk;
1612     case SADR:
1613         if (s->rx_len > 0) {
1614             s->rx_len --;
1615             pxa2xx_i2s_update(s);
1616             return s->codec_in(s->opaque);
1617         }
1618         return 0;
1619     default:
1620         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1621         break;
1622     }
1623     return 0;
1624 }
1625
1626 static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1627                              uint64_t value, unsigned size)
1628 {
1629     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1630     uint32_t *sample;
1631
1632     switch (addr) {
1633     case SACR0:
1634         if (value & (1 << 3))                           /* RST */
1635             pxa2xx_i2s_reset(s);
1636         s->control[0] = value & 0xff3d;
1637         if (!s->enable && (value & 1) && s->tx_len) {   /* ENB */
1638             for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1639                 s->codec_out(s->opaque, *sample);
1640             s->status &= ~(1 << 7);                     /* I2SOFF */
1641         }
1642         if (value & (1 << 4))                           /* EFWR */
1643             printf("%s: Attempt to use special function\n", __FUNCTION__);
1644         s->enable = (value & 9) == 1;                   /* ENB && !RST*/
1645         pxa2xx_i2s_update(s);
1646         break;
1647     case SACR1:
1648         s->control[1] = value & 0x0039;
1649         if (value & (1 << 5))                           /* ENLBF */
1650             printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1651         if (value & (1 << 4))                           /* DPRL */
1652             s->fifo_len = 0;
1653         pxa2xx_i2s_update(s);
1654         break;
1655     case SAIMR:
1656         s->mask = value & 0x0078;
1657         pxa2xx_i2s_update(s);
1658         break;
1659     case SAICR:
1660         s->status &= ~(value & (3 << 5));
1661         pxa2xx_i2s_update(s);
1662         break;
1663     case SADIV:
1664         s->clk = value & 0x007f;
1665         break;
1666     case SADR:
1667         if (s->tx_len && s->enable) {
1668             s->tx_len --;
1669             pxa2xx_i2s_update(s);
1670             s->codec_out(s->opaque, value);
1671         } else if (s->fifo_len < 16) {
1672             s->fifo[s->fifo_len ++] = value;
1673             pxa2xx_i2s_update(s);
1674         }
1675         break;
1676     default:
1677         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1678     }
1679 }
1680
1681 static const MemoryRegionOps pxa2xx_i2s_ops = {
1682     .read = pxa2xx_i2s_read,
1683     .write = pxa2xx_i2s_write,
1684     .endianness = DEVICE_NATIVE_ENDIAN,
1685 };
1686
1687 static const VMStateDescription vmstate_pxa2xx_i2s = {
1688     .name = "pxa2xx_i2s",
1689     .version_id = 0,
1690     .minimum_version_id = 0,
1691     .fields = (VMStateField[]) {
1692         VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1693         VMSTATE_UINT32(status, PXA2xxI2SState),
1694         VMSTATE_UINT32(mask, PXA2xxI2SState),
1695         VMSTATE_UINT32(clk, PXA2xxI2SState),
1696         VMSTATE_INT32(enable, PXA2xxI2SState),
1697         VMSTATE_INT32(rx_len, PXA2xxI2SState),
1698         VMSTATE_INT32(tx_len, PXA2xxI2SState),
1699         VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1700         VMSTATE_END_OF_LIST()
1701     }
1702 };
1703
1704 static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1705 {
1706     PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1707     uint32_t *sample;
1708
1709     /* Signal FIFO errors */
1710     if (s->enable && s->tx_len)
1711         s->status |= 1 << 5;            /* TUR */
1712     if (s->enable && s->rx_len)
1713         s->status |= 1 << 6;            /* ROR */
1714
1715     /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1716      * handle the cases where it makes a difference.  */
1717     s->tx_len = tx - s->fifo_len;
1718     s->rx_len = rx;
1719     /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1720     if (s->enable)
1721         for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1722             s->codec_out(s->opaque, *sample);
1723     pxa2xx_i2s_update(s);
1724 }
1725
1726 static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1727                 hwaddr base,
1728                 qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1729 {
1730     PXA2xxI2SState *s = g_new0(PXA2xxI2SState, 1);
1731
1732     s->irq = irq;
1733     s->rx_dma = rx_dma;
1734     s->tx_dma = tx_dma;
1735     s->data_req = pxa2xx_i2s_data_req;
1736
1737     pxa2xx_i2s_reset(s);
1738
1739     memory_region_init_io(&s->iomem, NULL, &pxa2xx_i2s_ops, s,
1740                           "pxa2xx-i2s", 0x100000);
1741     memory_region_add_subregion(sysmem, base, &s->iomem);
1742
1743     vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1744
1745     return s;
1746 }
1747
1748 /* PXA Fast Infra-red Communications Port */
1749 #define TYPE_PXA2XX_FIR "pxa2xx-fir"
1750 #define PXA2XX_FIR(obj) OBJECT_CHECK(PXA2xxFIrState, (obj), TYPE_PXA2XX_FIR)
1751
1752 struct PXA2xxFIrState {
1753     /*< private >*/
1754     SysBusDevice parent_obj;
1755     /*< public >*/
1756
1757     MemoryRegion iomem;
1758     qemu_irq irq;
1759     qemu_irq rx_dma;
1760     qemu_irq tx_dma;
1761     uint32_t enable;
1762     CharBackend chr;
1763
1764     uint8_t control[3];
1765     uint8_t status[2];
1766
1767     uint32_t rx_len;
1768     uint32_t rx_start;
1769     uint8_t rx_fifo[64];
1770 };
1771
1772 static void pxa2xx_fir_reset(DeviceState *d)
1773 {
1774     PXA2xxFIrState *s = PXA2XX_FIR(d);
1775
1776     s->control[0] = 0x00;
1777     s->control[1] = 0x00;
1778     s->control[2] = 0x00;
1779     s->status[0] = 0x00;
1780     s->status[1] = 0x00;
1781     s->enable = 0;
1782 }
1783
1784 static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1785 {
1786     static const int tresh[4] = { 8, 16, 32, 0 };
1787     int intr = 0;
1788     if ((s->control[0] & (1 << 4)) &&                   /* RXE */
1789                     s->rx_len >= tresh[s->control[2] & 3])      /* TRIG */
1790         s->status[0] |= 1 << 4;                         /* RFS */
1791     else
1792         s->status[0] &= ~(1 << 4);                      /* RFS */
1793     if (s->control[0] & (1 << 3))                       /* TXE */
1794         s->status[0] |= 1 << 3;                         /* TFS */
1795     else
1796         s->status[0] &= ~(1 << 3);                      /* TFS */
1797     if (s->rx_len)
1798         s->status[1] |= 1 << 2;                         /* RNE */
1799     else
1800         s->status[1] &= ~(1 << 2);                      /* RNE */
1801     if (s->control[0] & (1 << 4))                       /* RXE */
1802         s->status[1] |= 1 << 0;                         /* RSY */
1803     else
1804         s->status[1] &= ~(1 << 0);                      /* RSY */
1805
1806     intr |= (s->control[0] & (1 << 5)) &&               /* RIE */
1807             (s->status[0] & (1 << 4));                  /* RFS */
1808     intr |= (s->control[0] & (1 << 6)) &&               /* TIE */
1809             (s->status[0] & (1 << 3));                  /* TFS */
1810     intr |= (s->control[2] & (1 << 4)) &&               /* TRAIL */
1811             (s->status[0] & (1 << 6));                  /* EOC */
1812     intr |= (s->control[0] & (1 << 2)) &&               /* TUS */
1813             (s->status[0] & (1 << 1));                  /* TUR */
1814     intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1815
1816     qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1817     qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1818
1819     qemu_set_irq(s->irq, intr && s->enable);
1820 }
1821
1822 #define ICCR0   0x00    /* FICP Control register 0 */
1823 #define ICCR1   0x04    /* FICP Control register 1 */
1824 #define ICCR2   0x08    /* FICP Control register 2 */
1825 #define ICDR    0x0c    /* FICP Data register */
1826 #define ICSR0   0x14    /* FICP Status register 0 */
1827 #define ICSR1   0x18    /* FICP Status register 1 */
1828 #define ICFOR   0x1c    /* FICP FIFO Occupancy Status register */
1829
1830 static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1831                                 unsigned size)
1832 {
1833     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1834     uint8_t ret;
1835
1836     switch (addr) {
1837     case ICCR0:
1838         return s->control[0];
1839     case ICCR1:
1840         return s->control[1];
1841     case ICCR2:
1842         return s->control[2];
1843     case ICDR:
1844         s->status[0] &= ~0x01;
1845         s->status[1] &= ~0x72;
1846         if (s->rx_len) {
1847             s->rx_len --;
1848             ret = s->rx_fifo[s->rx_start ++];
1849             s->rx_start &= 63;
1850             pxa2xx_fir_update(s);
1851             return ret;
1852         }
1853         printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1854         break;
1855     case ICSR0:
1856         return s->status[0];
1857     case ICSR1:
1858         return s->status[1] | (1 << 3);                 /* TNF */
1859     case ICFOR:
1860         return s->rx_len;
1861     default:
1862         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1863         break;
1864     }
1865     return 0;
1866 }
1867
1868 static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1869                              uint64_t value64, unsigned size)
1870 {
1871     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1872     uint32_t value = value64;
1873     uint8_t ch;
1874
1875     switch (addr) {
1876     case ICCR0:
1877         s->control[0] = value;
1878         if (!(value & (1 << 4)))                        /* RXE */
1879             s->rx_len = s->rx_start = 0;
1880         if (!(value & (1 << 3))) {                      /* TXE */
1881             /* Nop */
1882         }
1883         s->enable = value & 1;                          /* ITR */
1884         if (!s->enable)
1885             s->status[0] = 0;
1886         pxa2xx_fir_update(s);
1887         break;
1888     case ICCR1:
1889         s->control[1] = value;
1890         break;
1891     case ICCR2:
1892         s->control[2] = value & 0x3f;
1893         pxa2xx_fir_update(s);
1894         break;
1895     case ICDR:
1896         if (s->control[2] & (1 << 2)) { /* TXP */
1897             ch = value;
1898         } else {
1899             ch = ~value;
1900         }
1901         if (s->enable && (s->control[0] & (1 << 3))) { /* TXE */
1902             /* XXX this blocks entire thread. Rewrite to use
1903              * qemu_chr_fe_write and background I/O callbacks */
1904             qemu_chr_fe_write_all(&s->chr, &ch, 1);
1905         }
1906         break;
1907     case ICSR0:
1908         s->status[0] &= ~(value & 0x66);
1909         pxa2xx_fir_update(s);
1910         break;
1911     case ICFOR:
1912         break;
1913     default:
1914         printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1915     }
1916 }
1917
1918 static const MemoryRegionOps pxa2xx_fir_ops = {
1919     .read = pxa2xx_fir_read,
1920     .write = pxa2xx_fir_write,
1921     .endianness = DEVICE_NATIVE_ENDIAN,
1922 };
1923
1924 static int pxa2xx_fir_is_empty(void *opaque)
1925 {
1926     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1927     return (s->rx_len < 64);
1928 }
1929
1930 static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1931 {
1932     PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1933     if (!(s->control[0] & (1 << 4)))                    /* RXE */
1934         return;
1935
1936     while (size --) {
1937         s->status[1] |= 1 << 4;                         /* EOF */
1938         if (s->rx_len >= 64) {
1939             s->status[1] |= 1 << 6;                     /* ROR */
1940             break;
1941         }
1942
1943         if (s->control[2] & (1 << 3))                   /* RXP */
1944             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1945         else
1946             s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1947     }
1948
1949     pxa2xx_fir_update(s);
1950 }
1951
1952 static void pxa2xx_fir_event(void *opaque, int event)
1953 {
1954 }
1955
1956 static void pxa2xx_fir_instance_init(Object *obj)
1957 {
1958     PXA2xxFIrState *s = PXA2XX_FIR(obj);
1959     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1960
1961     memory_region_init_io(&s->iomem, obj, &pxa2xx_fir_ops, s,
1962                           "pxa2xx-fir", 0x1000);
1963     sysbus_init_mmio(sbd, &s->iomem);
1964     sysbus_init_irq(sbd, &s->irq);
1965     sysbus_init_irq(sbd, &s->rx_dma);
1966     sysbus_init_irq(sbd, &s->tx_dma);
1967 }
1968
1969 static void pxa2xx_fir_realize(DeviceState *dev, Error **errp)
1970 {
1971     PXA2xxFIrState *s = PXA2XX_FIR(dev);
1972
1973     qemu_chr_fe_set_handlers(&s->chr, pxa2xx_fir_is_empty,
1974                              pxa2xx_fir_rx, pxa2xx_fir_event, s, NULL, true);
1975 }
1976
1977 static bool pxa2xx_fir_vmstate_validate(void *opaque, int version_id)
1978 {
1979     PXA2xxFIrState *s = opaque;
1980
1981     return s->rx_start < ARRAY_SIZE(s->rx_fifo);
1982 }
1983
1984 static const VMStateDescription pxa2xx_fir_vmsd = {
1985     .name = "pxa2xx-fir",
1986     .version_id = 1,
1987     .minimum_version_id = 1,
1988     .fields = (VMStateField[]) {
1989         VMSTATE_UINT32(enable, PXA2xxFIrState),
1990         VMSTATE_UINT8_ARRAY(control, PXA2xxFIrState, 3),
1991         VMSTATE_UINT8_ARRAY(status, PXA2xxFIrState, 2),
1992         VMSTATE_UINT32(rx_len, PXA2xxFIrState),
1993         VMSTATE_UINT32(rx_start, PXA2xxFIrState),
1994         VMSTATE_VALIDATE("fifo is 64 bytes", pxa2xx_fir_vmstate_validate),
1995         VMSTATE_UINT8_ARRAY(rx_fifo, PXA2xxFIrState, 64),
1996         VMSTATE_END_OF_LIST()
1997     }
1998 };
1999
2000 static Property pxa2xx_fir_properties[] = {
2001     DEFINE_PROP_CHR("chardev", PXA2xxFIrState, chr),
2002     DEFINE_PROP_END_OF_LIST(),
2003 };
2004
2005 static void pxa2xx_fir_class_init(ObjectClass *klass, void *data)
2006 {
2007     DeviceClass *dc = DEVICE_CLASS(klass);
2008
2009     dc->realize = pxa2xx_fir_realize;
2010     dc->vmsd = &pxa2xx_fir_vmsd;
2011     dc->props = pxa2xx_fir_properties;
2012     dc->reset = pxa2xx_fir_reset;
2013 }
2014
2015 static const TypeInfo pxa2xx_fir_info = {
2016     .name = TYPE_PXA2XX_FIR,
2017     .parent = TYPE_SYS_BUS_DEVICE,
2018     .instance_size = sizeof(PXA2xxFIrState),
2019     .class_init = pxa2xx_fir_class_init,
2020     .instance_init = pxa2xx_fir_instance_init,
2021 };
2022
2023 static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
2024                                        hwaddr base,
2025                                        qemu_irq irq, qemu_irq rx_dma,
2026                                        qemu_irq tx_dma,
2027                                        CharDriverState *chr)
2028 {
2029     DeviceState *dev;
2030     SysBusDevice *sbd;
2031
2032     dev = qdev_create(NULL, TYPE_PXA2XX_FIR);
2033     qdev_prop_set_chr(dev, "chardev", chr);
2034     qdev_init_nofail(dev);
2035     sbd = SYS_BUS_DEVICE(dev);
2036     sysbus_mmio_map(sbd, 0, base);
2037     sysbus_connect_irq(sbd, 0, irq);
2038     sysbus_connect_irq(sbd, 1, rx_dma);
2039     sysbus_connect_irq(sbd, 2, tx_dma);
2040     return PXA2XX_FIR(dev);
2041 }
2042
2043 static void pxa2xx_reset(void *opaque, int line, int level)
2044 {
2045     PXA2xxState *s = (PXA2xxState *) opaque;
2046
2047     if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {      /* GPR_EN */
2048         cpu_reset(CPU(s->cpu));
2049         /* TODO: reset peripherals */
2050     }
2051 }
2052
2053 /* Initialise a PXA270 integrated chip (ARM based core).  */
2054 PXA2xxState *pxa270_init(MemoryRegion *address_space,
2055                          unsigned int sdram_size, const char *revision)
2056 {
2057     PXA2xxState *s;
2058     int i;
2059     DriveInfo *dinfo;
2060     s = g_new0(PXA2xxState, 1);
2061
2062     if (revision && strncmp(revision, "pxa27", 5)) {
2063         fprintf(stderr, "Machine requires a PXA27x processor.\n");
2064         exit(1);
2065     }
2066     if (!revision)
2067         revision = "pxa270";
2068
2069     s->cpu = cpu_arm_init(revision);
2070     if (s->cpu == NULL) {
2071         fprintf(stderr, "Unable to find CPU definition\n");
2072         exit(1);
2073     }
2074     s->reset = qemu_allocate_irq(pxa2xx_reset, s, 0);
2075
2076     /* SDRAM & Internal Memory Storage */
2077     memory_region_init_ram(&s->sdram, NULL, "pxa270.sdram", sdram_size,
2078                            &error_fatal);
2079     vmstate_register_ram_global(&s->sdram);
2080     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2081     memory_region_init_ram(&s->internal, NULL, "pxa270.internal", 0x40000,
2082                            &error_fatal);
2083     vmstate_register_ram_global(&s->internal);
2084     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2085                                 &s->internal);
2086
2087     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2088
2089     s->dma = pxa27x_dma_init(0x40000000,
2090                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2091
2092     sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2093                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2094                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2095                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2096                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2097                     qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2098                     NULL);
2099
2100     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2101
2102     dinfo = drive_get(IF_SD, 0, 0);
2103     if (!dinfo) {
2104         fprintf(stderr, "qemu: missing SecureDigital device\n");
2105         exit(1);
2106     }
2107     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000,
2108                     blk_by_legacy_dinfo(dinfo),
2109                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2110                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2111                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2112
2113     for (i = 0; pxa270_serial[i].io_base; i++) {
2114         if (serial_hds[i]) {
2115             serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2116                            qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2117                            14857000 / 16, serial_hds[i],
2118                            DEVICE_NATIVE_ENDIAN);
2119         } else {
2120             break;
2121         }
2122     }
2123     if (serial_hds[i])
2124         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2125                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2126                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2127                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2128                         serial_hds[i]);
2129
2130     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2131                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2132
2133     s->cm_base = 0x41300000;
2134     s->cm_regs[CCCR >> 2] = 0x02000210; /* 416.0 MHz */
2135     s->clkcfg = 0x00000009;             /* Turbo mode active */
2136     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2137     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2138     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2139
2140     pxa2xx_setup_cp14(s);
2141
2142     s->mm_base = 0x48000000;
2143     s->mm_regs[MDMRS >> 2] = 0x00020002;
2144     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2145     s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2146     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2147     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2148     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2149
2150     s->pm_base = 0x40f00000;
2151     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2152     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2153     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2154
2155     for (i = 0; pxa27x_ssp[i].io_base; i ++);
2156     s->ssp = g_new0(SSIBus *, i);
2157     for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2158         DeviceState *dev;
2159         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa27x_ssp[i].io_base,
2160                         qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2161         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2162     }
2163
2164     sysbus_create_simple("sysbus-ohci", 0x4c000000,
2165                          qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2166
2167     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2168     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2169
2170     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2171                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2172
2173     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2174                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2175     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2176                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2177
2178     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2179                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2180                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2181                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2182
2183     s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2184                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2185
2186     /* GPIO1 resets the processor */
2187     /* The handler can be overridden by board-specific code */
2188     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2189     return s;
2190 }
2191
2192 /* Initialise a PXA255 integrated chip (ARM based core).  */
2193 PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2194 {
2195     PXA2xxState *s;
2196     int i;
2197     DriveInfo *dinfo;
2198
2199     s = g_new0(PXA2xxState, 1);
2200
2201     s->cpu = cpu_arm_init("pxa255");
2202     if (s->cpu == NULL) {
2203         fprintf(stderr, "Unable to find CPU definition\n");
2204         exit(1);
2205     }
2206     s->reset = qemu_allocate_irq(pxa2xx_reset, s, 0);
2207
2208     /* SDRAM & Internal Memory Storage */
2209     memory_region_init_ram(&s->sdram, NULL, "pxa255.sdram", sdram_size,
2210                            &error_fatal);
2211     vmstate_register_ram_global(&s->sdram);
2212     memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2213     memory_region_init_ram(&s->internal, NULL, "pxa255.internal",
2214                            PXA2XX_INTERNAL_SIZE, &error_fatal);
2215     vmstate_register_ram_global(&s->internal);
2216     memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2217                                 &s->internal);
2218
2219     s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2220
2221     s->dma = pxa255_dma_init(0x40000000,
2222                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2223
2224     sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2225                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2226                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2227                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2228                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2229                     NULL);
2230
2231     s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2232
2233     dinfo = drive_get(IF_SD, 0, 0);
2234     if (!dinfo) {
2235         fprintf(stderr, "qemu: missing SecureDigital device\n");
2236         exit(1);
2237     }
2238     s->mmc = pxa2xx_mmci_init(address_space, 0x41100000,
2239                     blk_by_legacy_dinfo(dinfo),
2240                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2241                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2242                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2243
2244     for (i = 0; pxa255_serial[i].io_base; i++) {
2245         if (serial_hds[i]) {
2246             serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2247                            qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2248                            14745600 / 16, serial_hds[i],
2249                            DEVICE_NATIVE_ENDIAN);
2250         } else {
2251             break;
2252         }
2253     }
2254     if (serial_hds[i])
2255         s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2256                         qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2257                         qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2258                         qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2259                         serial_hds[i]);
2260
2261     s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2262                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2263
2264     s->cm_base = 0x41300000;
2265     s->cm_regs[CCCR >> 2] = 0x00000121;         /* from datasheet */
2266     s->cm_regs[CKEN >> 2] = 0x00017def;         /* from datasheet */
2267
2268     s->clkcfg = 0x00000009;             /* Turbo mode active */
2269     memory_region_init_io(&s->cm_iomem, NULL, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2270     memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2271     vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2272
2273     pxa2xx_setup_cp14(s);
2274
2275     s->mm_base = 0x48000000;
2276     s->mm_regs[MDMRS >> 2] = 0x00020002;
2277     s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2278     s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2279     memory_region_init_io(&s->mm_iomem, NULL, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2280     memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2281     vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2282
2283     s->pm_base = 0x40f00000;
2284     memory_region_init_io(&s->pm_iomem, NULL, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2285     memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2286     vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2287
2288     for (i = 0; pxa255_ssp[i].io_base; i ++);
2289     s->ssp = g_new0(SSIBus *, i);
2290     for (i = 0; pxa255_ssp[i].io_base; i ++) {
2291         DeviceState *dev;
2292         dev = sysbus_create_simple(TYPE_PXA2XX_SSP, pxa255_ssp[i].io_base,
2293                         qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2294         s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2295     }
2296
2297     sysbus_create_simple("sysbus-ohci", 0x4c000000,
2298                          qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2299
2300     s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2301     s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2302
2303     sysbus_create_simple(TYPE_PXA2XX_RTC, 0x40900000,
2304                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2305
2306     s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2307                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2308     s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2309                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2310
2311     s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2312                     qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2313                     qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2314                     qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2315
2316     /* GPIO1 resets the processor */
2317     /* The handler can be overridden by board-specific code */
2318     qdev_connect_gpio_out(s->gpio, 1, s->reset);
2319     return s;
2320 }
2321
2322 static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2323 {
2324     SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2325     DeviceClass *dc = DEVICE_CLASS(klass);
2326
2327     sdc->init = pxa2xx_ssp_init;
2328     dc->reset = pxa2xx_ssp_reset;
2329     dc->vmsd = &vmstate_pxa2xx_ssp;
2330 }
2331
2332 static const TypeInfo pxa2xx_ssp_info = {
2333     .name          = TYPE_PXA2XX_SSP,
2334     .parent        = TYPE_SYS_BUS_DEVICE,
2335     .instance_size = sizeof(PXA2xxSSPState),
2336     .class_init    = pxa2xx_ssp_class_init,
2337 };
2338
2339 static void pxa2xx_register_types(void)
2340 {
2341     type_register_static(&pxa2xx_i2c_slave_info);
2342     type_register_static(&pxa2xx_ssp_info);
2343     type_register_static(&pxa2xx_i2c_info);
2344     type_register_static(&pxa2xx_rtc_sysbus_info);
2345     type_register_static(&pxa2xx_fir_info);
2346 }
2347
2348 type_init(pxa2xx_register_types)
This page took 0.155588 seconds and 4 git commands to generate.