2 * PowerPC MMU, TLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
23 #include "exec/helper-proto.h"
24 #include "sysemu/kvm.h"
26 #include "mmu-hash32.h"
31 # define LOG_BATS(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
33 # define LOG_BATS(...) do { } while (0)
36 struct mmu_ctx_hash32 {
37 hwaddr raddr; /* Real address */
38 int prot; /* Protection bits */
39 int key; /* Access key */
42 static int ppc_hash32_pp_prot(int key, int pp, int nx)
51 prot = PAGE_READ | PAGE_WRITE;
73 prot = PAGE_READ | PAGE_WRITE;
87 static int ppc_hash32_pte_prot(PowerPCCPU *cpu,
88 target_ulong sr, ppc_hash_pte32_t pte)
90 CPUPPCState *env = &cpu->env;
93 key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS));
94 pp = pte.pte1 & HPTE32_R_PP;
96 return ppc_hash32_pp_prot(key, pp, !!(sr & SR32_NX));
99 static target_ulong hash32_bat_size(PowerPCCPU *cpu,
100 target_ulong batu, target_ulong batl)
102 CPUPPCState *env = &cpu->env;
104 if ((msr_pr && !(batu & BATU32_VP))
105 || (!msr_pr && !(batu & BATU32_VS))) {
109 return BATU32_BEPI & ~((batu & BATU32_BL) << 15);
112 static int hash32_bat_prot(PowerPCCPU *cpu,
113 target_ulong batu, target_ulong batl)
118 pp = batl & BATL32_PP;
120 prot = PAGE_READ | PAGE_EXEC;
128 static target_ulong hash32_bat_601_size(PowerPCCPU *cpu,
129 target_ulong batu, target_ulong batl)
131 if (!(batl & BATL32_601_V)) {
135 return BATU32_BEPI & ~((batl & BATL32_601_BL) << 17);
138 static int hash32_bat_601_prot(PowerPCCPU *cpu,
139 target_ulong batu, target_ulong batl)
141 CPUPPCState *env = &cpu->env;
144 pp = batu & BATU32_601_PP;
146 key = !!(batu & BATU32_601_KS);
148 key = !!(batu & BATU32_601_KP);
150 return ppc_hash32_pp_prot(key, pp, 0);
153 static hwaddr ppc_hash32_bat_lookup(PowerPCCPU *cpu, target_ulong ea, int rwx,
156 CPUPPCState *env = &cpu->env;
157 target_ulong *BATlt, *BATut;
160 LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__,
161 rwx == 2 ? 'I' : 'D', ea);
163 BATlt = env->IBAT[1];
164 BATut = env->IBAT[0];
166 BATlt = env->DBAT[1];
167 BATut = env->DBAT[0];
169 for (i = 0; i < env->nb_BATs; i++) {
170 target_ulong batu = BATut[i];
171 target_ulong batl = BATlt[i];
174 if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
175 mask = hash32_bat_601_size(cpu, batu, batl);
177 mask = hash32_bat_size(cpu, batu, batl);
179 LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
180 " BATl " TARGET_FMT_lx "\n", __func__,
181 type == ACCESS_CODE ? 'I' : 'D', i, ea, batu, batl);
183 if (mask && ((ea & mask) == (batu & BATU32_BEPI))) {
184 hwaddr raddr = (batl & mask) | (ea & ~mask);
186 if (unlikely(env->mmu_model == POWERPC_MMU_601)) {
187 *prot = hash32_bat_601_prot(cpu, batu, batl);
189 *prot = hash32_bat_prot(cpu, batu, batl);
192 return raddr & TARGET_PAGE_MASK;
197 #if defined(DEBUG_BATS)
198 if (qemu_log_enabled()) {
199 LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", ea);
200 for (i = 0; i < 4; i++) {
203 BEPIu = *BATu & BATU32_BEPIU;
204 BEPIl = *BATu & BATU32_BEPIL;
205 bl = (*BATu & 0x00001FFC) << 15;
206 LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx
207 " BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " "
208 TARGET_FMT_lx " " TARGET_FMT_lx "\n",
209 __func__, type == ACCESS_CODE ? 'I' : 'D', i, ea,
210 *BATu, *BATl, BEPIu, BEPIl, bl);
218 static int ppc_hash32_direct_store(PowerPCCPU *cpu, target_ulong sr,
219 target_ulong eaddr, int rwx,
220 hwaddr *raddr, int *prot)
222 CPUState *cs = CPU(cpu);
223 CPUPPCState *env = &cpu->env;
224 int key = !!(msr_pr ? (sr & SR32_KP) : (sr & SR32_KS));
226 qemu_log_mask(CPU_LOG_MMU, "direct store...\n");
228 if ((sr & 0x1FF00000) >> 20 == 0x07f) {
229 /* Memory-forced I/O controller interface access */
230 /* If T=1 and BUID=x'07F', the 601 performs a memory access
231 * to SR[28-31] LA[4-31], bypassing all protection mechanisms.
233 *raddr = ((sr & 0xF) << 28) | (eaddr & 0x0FFFFFFF);
234 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
239 /* No code fetch is allowed in direct-store areas */
240 cs->exception_index = POWERPC_EXCP_ISI;
241 env->error_code = 0x10000000;
245 switch (env->access_type) {
247 /* Integer load/store : only access allowed */
250 /* Floating point load/store */
251 cs->exception_index = POWERPC_EXCP_ALIGN;
252 env->error_code = POWERPC_EXCP_ALIGN_FP;
253 env->spr[SPR_DAR] = eaddr;
256 /* lwarx, ldarx or srwcx. */
258 env->spr[SPR_DAR] = eaddr;
260 env->spr[SPR_DSISR] = 0x06000000;
262 env->spr[SPR_DSISR] = 0x04000000;
266 /* dcba, dcbt, dcbtst, dcbf, dcbi, dcbst, dcbz, or icbi */
267 /* Should make the instruction do no-op.
268 * As it already do no-op, it's quite easy :-)
274 cs->exception_index = POWERPC_EXCP_DSI;
276 env->spr[SPR_DAR] = eaddr;
278 env->spr[SPR_DSISR] = 0x06100000;
280 env->spr[SPR_DSISR] = 0x04100000;
284 cpu_abort(cs, "ERROR: instruction should not need "
285 "address translation\n");
287 if ((rwx == 1 || key != 1) && (rwx == 0 || key != 0)) {
291 cs->exception_index = POWERPC_EXCP_DSI;
293 env->spr[SPR_DAR] = eaddr;
295 env->spr[SPR_DSISR] = 0x0a000000;
297 env->spr[SPR_DSISR] = 0x08000000;
303 hwaddr get_pteg_offset32(PowerPCCPU *cpu, hwaddr hash)
305 CPUPPCState *env = &cpu->env;
307 return (hash * HASH_PTEG_SIZE_32) & env->htab_mask;
310 static hwaddr ppc_hash32_pteg_search(PowerPCCPU *cpu, hwaddr pteg_off,
311 bool secondary, target_ulong ptem,
312 ppc_hash_pte32_t *pte)
314 hwaddr pte_offset = pteg_off;
315 target_ulong pte0, pte1;
318 for (i = 0; i < HPTES_PER_GROUP; i++) {
319 pte0 = ppc_hash32_load_hpte0(cpu, pte_offset);
320 pte1 = ppc_hash32_load_hpte1(cpu, pte_offset);
322 if ((pte0 & HPTE32_V_VALID)
323 && (secondary == !!(pte0 & HPTE32_V_SECONDARY))
324 && HPTE32_V_COMPARE(pte0, ptem)) {
330 pte_offset += HASH_PTE_SIZE_32;
336 static hwaddr ppc_hash32_htab_lookup(PowerPCCPU *cpu,
337 target_ulong sr, target_ulong eaddr,
338 ppc_hash_pte32_t *pte)
340 CPUPPCState *env = &cpu->env;
341 hwaddr pteg_off, pte_offset;
343 uint32_t vsid, pgidx, ptem;
345 vsid = sr & SR32_VSID;
346 pgidx = (eaddr & ~SEGMENT_MASK_256M) >> TARGET_PAGE_BITS;
348 ptem = (vsid << 7) | (pgidx >> 10);
350 /* Page address translation */
351 qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx
352 " htab_mask " TARGET_FMT_plx
353 " hash " TARGET_FMT_plx "\n",
354 env->htab_base, env->htab_mask, hash);
356 /* Primary PTEG lookup */
357 qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
358 " vsid=%" PRIx32 " ptem=%" PRIx32
359 " hash=" TARGET_FMT_plx "\n",
360 env->htab_base, env->htab_mask, vsid, ptem, hash);
361 pteg_off = get_pteg_offset32(cpu, hash);
362 pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 0, ptem, pte);
363 if (pte_offset == -1) {
364 /* Secondary PTEG lookup */
365 qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
366 " vsid=%" PRIx32 " api=%" PRIx32
367 " hash=" TARGET_FMT_plx "\n", env->htab_base,
368 env->htab_mask, vsid, ptem, ~hash);
369 pteg_off = get_pteg_offset32(cpu, ~hash);
370 pte_offset = ppc_hash32_pteg_search(cpu, pteg_off, 1, ptem, pte);
376 static hwaddr ppc_hash32_pte_raddr(target_ulong sr, ppc_hash_pte32_t pte,
379 hwaddr rpn = pte.pte1 & HPTE32_R_RPN;
380 hwaddr mask = ~TARGET_PAGE_MASK;
382 return (rpn & ~mask) | (eaddr & mask);
385 int ppc_hash32_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr, int rwx,
388 CPUState *cs = CPU(cpu);
389 CPUPPCState *env = &cpu->env;
392 ppc_hash_pte32_t pte;
395 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
398 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
400 /* 1. Handle real mode accesses */
401 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
402 /* Translation is off */
404 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
405 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
410 /* 2. Check Block Address Translation entries (BATs) */
411 if (env->nb_BATs != 0) {
412 raddr = ppc_hash32_bat_lookup(cpu, eaddr, rwx, &prot);
414 if (need_prot[rwx] & ~prot) {
416 cs->exception_index = POWERPC_EXCP_ISI;
417 env->error_code = 0x08000000;
419 cs->exception_index = POWERPC_EXCP_DSI;
421 env->spr[SPR_DAR] = eaddr;
423 env->spr[SPR_DSISR] = 0x0a000000;
425 env->spr[SPR_DSISR] = 0x08000000;
431 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK,
432 raddr & TARGET_PAGE_MASK, prot, mmu_idx,
438 /* 3. Look up the Segment Register */
439 sr = env->sr[eaddr >> 28];
441 /* 4. Handle direct store segments */
443 if (ppc_hash32_direct_store(cpu, sr, eaddr, rwx,
444 &raddr, &prot) == 0) {
445 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK,
446 raddr & TARGET_PAGE_MASK, prot, mmu_idx,
454 /* 5. Check for segment level no-execute violation */
455 if ((rwx == 2) && (sr & SR32_NX)) {
456 cs->exception_index = POWERPC_EXCP_ISI;
457 env->error_code = 0x10000000;
461 /* 6. Locate the PTE in the hash table */
462 pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
463 if (pte_offset == -1) {
465 cs->exception_index = POWERPC_EXCP_ISI;
466 env->error_code = 0x40000000;
468 cs->exception_index = POWERPC_EXCP_DSI;
470 env->spr[SPR_DAR] = eaddr;
472 env->spr[SPR_DSISR] = 0x42000000;
474 env->spr[SPR_DSISR] = 0x40000000;
480 qemu_log_mask(CPU_LOG_MMU,
481 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
483 /* 7. Check access permissions */
485 prot = ppc_hash32_pte_prot(cpu, sr, pte);
487 if (need_prot[rwx] & ~prot) {
488 /* Access right violation */
489 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
491 cs->exception_index = POWERPC_EXCP_ISI;
492 env->error_code = 0x08000000;
494 cs->exception_index = POWERPC_EXCP_DSI;
496 env->spr[SPR_DAR] = eaddr;
498 env->spr[SPR_DSISR] = 0x0a000000;
500 env->spr[SPR_DSISR] = 0x08000000;
506 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
508 /* 8. Update PTE referenced and changed bits if necessary */
510 new_pte1 = pte.pte1 | HPTE32_R_R; /* set referenced bit */
512 new_pte1 |= HPTE32_R_C; /* set changed (dirty) bit */
514 /* Treat the page as read-only for now, so that a later write
515 * will pass through this function again to set the C bit */
519 if (new_pte1 != pte.pte1) {
520 ppc_hash32_store_hpte1(cpu, pte_offset, new_pte1);
523 /* 9. Determine the real address from the PTE */
525 raddr = ppc_hash32_pte_raddr(sr, pte, eaddr);
527 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
528 prot, mmu_idx, TARGET_PAGE_SIZE);
533 hwaddr ppc_hash32_get_phys_page_debug(PowerPCCPU *cpu, target_ulong eaddr)
535 CPUPPCState *env = &cpu->env;
538 ppc_hash_pte32_t pte;
542 /* Translation is off */
546 if (env->nb_BATs != 0) {
547 hwaddr raddr = ppc_hash32_bat_lookup(cpu, eaddr, 0, &prot);
553 sr = env->sr[eaddr >> 28];
556 /* FIXME: Add suitable debug support for Direct Store segments */
560 pte_offset = ppc_hash32_htab_lookup(cpu, sr, eaddr, &pte);
561 if (pte_offset == -1) {
565 return ppc_hash32_pte_raddr(sr, pte, eaddr) & TARGET_PAGE_MASK;