2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "etraxfs_dma.h"
34 * The MDIO extensions in the TDK PHY model were reversed engineered from the
35 * linux driver (PHYID and Diagnostics reg).
36 * TODO: Add friendly names for the register nums.
42 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
43 void (*write)(struct qemu_phy *phy, unsigned int req,
47 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
57 /* Speeds and modes. */
58 r |= (1 << 13) | (1 << 14);
59 r |= (1 << 11) | (1 << 12);
60 r |= (1 << 5); /* Autoneg complete. */
61 r |= (1 << 3); /* Autoneg able. */
62 r |= (1 << 2); /* Link. */
65 /* Link partner ability.
66 We are kind; always agree with whatever best mode
67 the guest advertises. */
68 r = 1 << 14; /* Success. */
69 /* Copy advertised modes. */
70 r |= phy->regs[4] & (15 << 5);
71 /* Autoneg support. */
76 /* Diagnostics reg. */
80 /* Are we advertising 100 half or 100 duplex ? */
81 speed_100 = !!(phy->regs[4] & 0x180);
82 /* Are we advertising 10 duplex or 100 duplex ? */
83 duplex = !!(phy->regs[4] & 0x180);
84 r = (speed_100 << 10) | (duplex << 11);
89 r = phy->regs[regnum];
92 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
97 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
102 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
105 phy->regs[regnum] = data;
111 tdk_init(struct qemu_phy *phy)
113 phy->regs[0] = 0x3100;
115 phy->regs[2] = 0x0300;
116 phy->regs[3] = 0xe400;
117 /* Autonegotiation advertisement reg. */
118 phy->regs[4] = 0x01E1;
120 phy->read = tdk_read;
121 phy->write = tdk_write;
148 struct qemu_phy *devs[32];
152 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
154 bus->devs[addr & 0x1f] = phy;
157 #ifdef USE_THIS_DEAD_CODE
159 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
161 bus->devs[addr & 0x1f] = NULL;
165 static void mdio_read_req(struct qemu_mdio *bus)
167 struct qemu_phy *phy;
169 phy = bus->devs[bus->addr];
170 if (phy && phy->read)
171 bus->data = phy->read(phy, bus->req);
176 static void mdio_write_req(struct qemu_mdio *bus)
178 struct qemu_phy *phy;
180 phy = bus->devs[bus->addr];
181 if (phy && phy->write)
182 phy->write(phy, bus->req, bus->data);
185 static void mdio_cycle(struct qemu_mdio *bus)
189 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
190 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
193 printf("%d", bus->mdio);
199 if (bus->cnt >= (32 * 2) && !bus->mdio) {
209 printf("WARNING: no SOF\n");
210 if (bus->cnt == 1*2) {
220 bus->opc |= bus->mdio & 1;
221 if (bus->cnt == 2*2) {
231 bus->addr |= bus->mdio & 1;
233 if (bus->cnt == 5*2) {
243 bus->req |= bus->mdio & 1;
244 if (bus->cnt == 5*2) {
246 bus->state = TURNAROUND;
251 if (bus->mdc && bus->cnt == 2*2) {
258 bus->mdio = bus->data & 1;
266 bus->mdio = !!(bus->data & (1 << 15));
272 bus->data |= bus->mdio;
274 if (bus->cnt == 16 * 2) {
276 bus->state = PREAMBLE;
288 /* ETRAX-FS Ethernet MAC block starts here. */
290 #define RW_MA0_LO 0x00
291 #define RW_MA0_HI 0x04
292 #define RW_MA1_LO 0x08
293 #define RW_MA1_HI 0x0c
294 #define RW_GA_LO 0x10
295 #define RW_GA_HI 0x14
296 #define RW_GEN_CTRL 0x18
297 #define RW_REC_CTRL 0x1c
298 #define RW_TR_CTRL 0x20
299 #define RW_CLR_ERR 0x24
300 #define RW_MGM_CTRL 0x28
302 #define FS_ETH_MAX_REGS 0x5c
308 target_phys_addr_t base;
312 /* Two addrs in the filter. */
313 uint8_t macaddr[2][6];
314 uint32_t regs[FS_ETH_MAX_REGS];
316 unsigned char rx_fifo[1536];
320 struct etraxfs_dma_client *dma_out;
321 struct etraxfs_dma_client *dma_in;
324 struct qemu_mdio mdio_bus;
329 static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
331 struct fs_eth *eth = opaque;
332 CPUState *env = eth->env;
333 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx
334 " pc=%x.\n", addr, env->pc);
338 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
340 struct fs_eth *eth = opaque;
341 D(CPUState *env = eth->env);
344 /* Make addr relative to this instances base. */
348 /* Attach an MDIO/PHY abstraction. */
349 r = eth->mdio_bus.mdio & 1;
353 D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
360 eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
362 struct fs_eth *eth = opaque;
363 CPUState *env = eth->env;
364 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx
365 " pc=%x.\n", addr, env->pc);
368 static void eth_update_ma(struct fs_eth *eth, int ma)
379 eth->macaddr[ma][i++] = eth->regs[reg];
380 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
381 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
382 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
383 eth->macaddr[ma][i++] = eth->regs[reg + 4];
384 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
386 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
387 eth->macaddr[ma][0], eth->macaddr[ma][1],
388 eth->macaddr[ma][2], eth->macaddr[ma][3],
389 eth->macaddr[ma][4], eth->macaddr[ma][5]));
393 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
395 struct fs_eth *eth = opaque;
397 /* Make addr relative to this instances base. */
402 eth->regs[addr] = value;
403 eth_update_ma(eth, 0);
406 eth->regs[addr] = value;
407 eth_update_ma(eth, 0);
410 eth->regs[addr] = value;
411 eth_update_ma(eth, 1);
414 eth->regs[addr] = value;
415 eth_update_ma(eth, 1);
419 /* Attach an MDIO/PHY abstraction. */
421 eth->mdio_bus.mdio = value & 1;
422 if (eth->mdio_bus.mdc != (value & 4))
423 mdio_cycle(ð->mdio_bus);
424 eth->mdio_bus.mdc = !!(value & 4);
428 eth->regs[addr] = value;
429 D(printf ("%s %x %x\n",
430 __func__, addr, value));
435 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
436 filter dropping group addresses we have not joined. The filter has 64
437 bits (m). The has function is a simple nible xor of the group addr. */
438 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
441 int m_individual = eth->regs[RW_REC_CTRL] & 4;
444 /* First bit on the wire of a MAC address signals multicast or
446 if (!m_individual && !sa[0] & 1)
449 /* Calculate the hash index for the GA registers. */
452 hsh ^= ((*sa) >> 6) & 0x03;
454 hsh ^= ((*sa) << 2) & 0x03c;
455 hsh ^= ((*sa) >> 4) & 0xf;
457 hsh ^= ((*sa) << 4) & 0x30;
458 hsh ^= ((*sa) >> 2) & 0x3f;
461 hsh ^= ((*sa) >> 6) & 0x03;
463 hsh ^= ((*sa) << 2) & 0x03c;
464 hsh ^= ((*sa) >> 4) & 0xf;
466 hsh ^= ((*sa) << 4) & 0x30;
467 hsh ^= ((*sa) >> 2) & 0x3f;
471 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
473 match = eth->regs[RW_GA_LO] & (1 << hsh);
474 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
475 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
479 static int eth_can_receive(void *opaque)
481 struct fs_eth *eth = opaque;
484 r = eth->rx_fifo_len == 0;
486 /* TODO: signal fifo overrun. */
487 printf("PACKET LOSS!\n");
492 static void eth_receive(void *opaque, const uint8_t *buf, int size)
494 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
495 struct fs_eth *eth = opaque;
496 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
497 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
498 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
503 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
504 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
505 use_ma0, use_ma1, r_bcast));
507 /* Does the frame get through the address filters? */
508 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
509 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
510 && (!r_bcast || memcmp(buf, sa_bcast, 6))
511 && !eth_match_groupaddr(eth, buf))
514 if (size > sizeof(eth->rx_fifo)) {
515 /* TODO: signal error. */
516 } else if (eth->rx_fifo_len) {
519 memcpy(eth->rx_fifo, buf, size);
520 /* +4, HW passes the CRC to sw. */
521 eth->rx_fifo_len = size + 4;
522 eth->rx_fifo_pos = 0;
526 static void eth_rx_pull(void *opaque)
528 struct fs_eth *eth = opaque;
530 if (eth->rx_fifo_len) {
531 D(printf("%s %d\n", __func__, eth->rx_fifo_len));
535 for (i = 0; i < 32; i++)
536 printf("%2.2x", eth->rx_fifo[i]);
540 len = etraxfs_dmac_input(eth->dma_in,
541 eth->rx_fifo + eth->rx_fifo_pos,
542 eth->rx_fifo_len, 1);
543 eth->rx_fifo_len -= len;
544 eth->rx_fifo_pos += len;
548 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
550 struct fs_eth *eth = opaque;
552 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
553 qemu_send_packet(eth->vc, buf, len);
557 static CPUReadMemoryFunc *eth_read[] = {
563 static CPUWriteMemoryFunc *eth_write[] = {
569 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
570 qemu_irq *irq, target_phys_addr_t base)
572 struct etraxfs_dma_client *dma = NULL;
573 struct fs_eth *eth = NULL;
575 dma = qemu_mallocz(sizeof *dma * 2);
579 eth = qemu_mallocz(sizeof *eth);
583 dma[0].client.push = eth_tx_push;
584 dma[0].client.opaque = eth;
585 dma[1].client.opaque = eth;
586 dma[1].client.pull = eth_rx_pull;
592 eth->dma_in = dma + 1;
594 /* Connect the phy. */
596 mdio_attach(ð->mdio_bus, ð->phy, 0x1);
598 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
599 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
601 eth->vc = qemu_new_vlan_client(nd->vlan,
602 eth_receive, eth_can_receive, eth);