2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
30 # define TARGET_LONG_BITS 32
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 #define ARMV7M_EXCP_RESET 1
62 #define ARMV7M_EXCP_NMI 2
63 #define ARMV7M_EXCP_HARD 3
64 #define ARMV7M_EXCP_MEM 4
65 #define ARMV7M_EXCP_BUS 5
66 #define ARMV7M_EXCP_USAGE 6
67 #define ARMV7M_EXCP_SECURE 7
68 #define ARMV7M_EXCP_SVC 11
69 #define ARMV7M_EXCP_DEBUG 12
70 #define ARMV7M_EXCP_PENDSV 14
71 #define ARMV7M_EXCP_SYSTICK 15
73 /* For M profile, some registers are banked secure vs non-secure;
74 * these are represented as a 2-element array where the first element
75 * is the non-secure copy and the second is the secure copy.
76 * When the CPU does not have implement the security extension then
77 * only the first element is used.
78 * This means that the copy for the current security state can be
79 * accessed via env->registerfield[env->v7m.secure] (whether the security
80 * extension is implemented or not).
88 /* ARM-specific interrupt pending bits. */
89 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93 /* The usual mapping for an AArch64 system register to its AArch32
94 * counterpart is for the 32 bit world to have access to the lower
95 * half only (with writes leaving the upper half untouched). It's
96 * therefore useful to be able to pass TCG the offset of the least
97 * significant half of a uint64_t struct member.
99 #ifdef HOST_WORDS_BIGENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
113 #define NB_MMU_MODES 8
114 /* ARM-specific extra insn start words:
115 * 1: Conditional execution bits
116 * 2: Partial exception syndrome for data aborts
118 #define TARGET_INSN_START_EXTRA_WORDS 2
120 /* The 2nd extra word holding syndrome info for data aborts does not use
121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122 * help the sleb128 encoder do a better job.
123 * When restoring the CPU state, we shift it back up.
125 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126 #define ARM_INSN_START_WORD2_SHIFT 14
128 /* We currently assume float and double are IEEE single and double
129 precision respectively.
130 Doing runtime conversions is tricky because VFP registers may contain
131 integer values (eg. as the result of a FTOSI instruction).
132 s<2n> maps to the least significant half of d<n>
133 s<2n+1> maps to the most significant half of d<n>
136 /* CPU state for each instance of a generic timer (in cp15 c14) */
137 typedef struct ARMGenericTimer {
138 uint64_t cval; /* Timer CompareValue register */
139 uint64_t ctl; /* Timer Control register */
142 #define GTIMER_PHYS 0
143 #define GTIMER_VIRT 1
146 #define NUM_GTIMERS 4
154 /* Define a maximum sized vector register.
155 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
156 * For 64-bit, this is a 2048-bit SVE register.
158 * Note that the mapping between S, D, and Q views of the register bank
159 * differs between AArch64 and AArch32.
161 * Qn = regs[n].d[1]:regs[n].d[0]
162 * Dn = regs[n / 2].d[n & 1]
163 * Sn = regs[n / 4].d[n % 4 / 2],
164 * bits 31..0 for even n, and bits 63..32 for odd n
165 * (and regs[16] to regs[31] are inaccessible)
168 * Qn = regs[n].d[1]:regs[n].d[0]
170 * Sn = regs[n].d[0] bits 31..0
171 * Hn = regs[n].d[0] bits 15..0
173 * This corresponds to the architecturally defined mapping between
174 * the two execution states, and means we do not need to explicitly
175 * map these registers when changing states.
177 * Align the data for use with TCG host vector operations.
180 #ifdef TARGET_AARCH64
181 # define ARM_MAX_VQ 16
183 # define ARM_MAX_VQ 1
186 typedef struct ARMVectorReg {
187 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
190 /* In AArch32 mode, predicate registers do not exist at all. */
191 #ifdef TARGET_AARCH64
192 typedef struct ARMPredicateReg {
193 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
198 typedef struct CPUARMState {
199 /* Regs for current mode. */
202 /* 32/64 switch only happens when taking and returning from
203 * exceptions so the overlap semantics are taken care of then
204 * instead of having a complicated union.
206 /* Regs for A64 mode. */
209 /* PSTATE isn't an architectural register for ARMv8. However, it is
210 * convenient for us to assemble the underlying state into a 32 bit format
211 * identical to the architectural format used for the SPSR. (This is also
212 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
213 * 'pstate' register are.) Of the PSTATE bits:
214 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
215 * semantics as for AArch32, as described in the comments on each field)
216 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
217 * DAIF (exception masks) are kept in env->daif
218 * all other bits are stored in their correct places in env->pstate
221 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
223 /* Frequently accessed CPSR bits are stored separately for efficiency.
224 This contains all the other bits. Use cpsr_{read,write} to access
226 uint32_t uncached_cpsr;
229 /* Banked registers. */
230 uint64_t banked_spsr[8];
231 uint32_t banked_r13[8];
232 uint32_t banked_r14[8];
234 /* These hold r8-r12. */
235 uint32_t usr_regs[5];
236 uint32_t fiq_regs[5];
238 /* cpsr flag cache for faster execution */
239 uint32_t CF; /* 0 or 1 */
240 uint32_t VF; /* V is the bit 31. All other bits are undefined */
241 uint32_t NF; /* N is bit 31. All other bits are undefined. */
242 uint32_t ZF; /* Z set if zero. */
243 uint32_t QF; /* 0 or 1 */
244 uint32_t GE; /* cpsr[19:16] */
245 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
246 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
247 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
249 uint64_t elr_el[4]; /* AArch64 exception link regs */
250 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
252 /* System control coprocessor (cp15) */
255 union { /* Cache size selection */
257 uint64_t _unused_csselr0;
259 uint64_t _unused_csselr1;
262 uint64_t csselr_el[4];
264 union { /* System control register. */
266 uint64_t _unused_sctlr;
271 uint64_t sctlr_el[4];
273 uint64_t cpacr_el1; /* Architectural feature access control register */
274 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
275 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
276 uint64_t sder; /* Secure debug enable register. */
277 uint32_t nsacr; /* Non-secure access control register. */
278 union { /* MMU translation table base 0. */
280 uint64_t _unused_ttbr0_0;
282 uint64_t _unused_ttbr0_1;
285 uint64_t ttbr0_el[4];
287 union { /* MMU translation table base 1. */
289 uint64_t _unused_ttbr1_0;
291 uint64_t _unused_ttbr1_1;
294 uint64_t ttbr1_el[4];
296 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
297 /* MMU translation table base control. */
299 TCR vtcr_el2; /* Virtualization Translation Control. */
300 uint32_t c2_data; /* MPU data cacheable bits. */
301 uint32_t c2_insn; /* MPU instruction cacheable bits. */
302 union { /* MMU domain access control register
303 * MPU write buffer control.
313 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
314 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
315 uint64_t hcr_el2; /* Hypervisor configuration register */
316 uint64_t scr_el3; /* Secure configuration register. */
317 union { /* Fault status registers. */
328 uint64_t _unused_dfsr;
335 uint32_t c6_region[8]; /* MPU base/size registers. */
336 union { /* Fault address registers. */
338 uint64_t _unused_far0;
339 #ifdef HOST_WORDS_BIGENDIAN
350 uint64_t _unused_far3;
356 union { /* Translation result. */
358 uint64_t _unused_par_0;
360 uint64_t _unused_par_1;
366 uint32_t c9_insn; /* Cache lockdown registers. */
368 uint64_t c9_pmcr; /* performance monitor control register */
369 uint64_t c9_pmcnten; /* perf monitor counter enables */
370 uint32_t c9_pmovsr; /* perf monitor overflow status */
371 uint32_t c9_pmuserenr; /* perf monitor user enable */
372 uint64_t c9_pmselr; /* perf monitor counter selection register */
373 uint64_t c9_pminten; /* perf monitor interrupt enables */
374 union { /* Memory attribute redirection */
376 #ifdef HOST_WORDS_BIGENDIAN
377 uint64_t _unused_mair_0;
380 uint64_t _unused_mair_1;
384 uint64_t _unused_mair_0;
387 uint64_t _unused_mair_1;
394 union { /* vector base address register */
396 uint64_t _unused_vbar;
403 uint32_t mvbar; /* (monitor) vector base address register */
404 struct { /* FCSE PID. */
408 union { /* Context ID. */
410 uint64_t _unused_contextidr_0;
411 uint64_t contextidr_ns;
412 uint64_t _unused_contextidr_1;
413 uint64_t contextidr_s;
415 uint64_t contextidr_el[4];
417 union { /* User RW Thread register. */
419 uint64_t tpidrurw_ns;
420 uint64_t tpidrprw_ns;
424 uint64_t tpidr_el[4];
426 /* The secure banks of these registers don't map anywhere */
431 union { /* User RO Thread register. */
432 uint64_t tpidruro_ns;
433 uint64_t tpidrro_el[1];
435 uint64_t c14_cntfrq; /* Counter Frequency register */
436 uint64_t c14_cntkctl; /* Timer Control register */
437 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
438 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
439 ARMGenericTimer c14_timer[NUM_GTIMERS];
440 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
441 uint32_t c15_ticonfig; /* TI925T configuration byte. */
442 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
443 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
444 uint32_t c15_threadid; /* TI debugger thread-ID. */
445 uint32_t c15_config_base_address; /* SCU base address. */
446 uint32_t c15_diagnostic; /* diagnostic register */
447 uint32_t c15_power_diagnostic;
448 uint32_t c15_power_control; /* power control */
449 uint64_t dbgbvr[16]; /* breakpoint value registers */
450 uint64_t dbgbcr[16]; /* breakpoint control registers */
451 uint64_t dbgwvr[16]; /* watchpoint value registers */
452 uint64_t dbgwcr[16]; /* watchpoint control registers */
454 uint64_t oslsr_el1; /* OS Lock Status */
457 /* If the counter is enabled, this stores the last time the counter
458 * was reset. Otherwise it stores the counter value
461 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
462 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
463 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
467 /* M profile has up to 4 stack pointers:
468 * a Main Stack Pointer and a Process Stack Pointer for each
469 * of the Secure and Non-Secure states. (If the CPU doesn't support
470 * the security extension then it has only two SPs.)
471 * In QEMU we always store the currently active SP in regs[13],
472 * and the non-active SP for the current security state in
473 * v7m.other_sp. The stack pointers for the inactive security state
474 * are stored in other_ss_msp and other_ss_psp.
475 * switch_v7m_security_state() is responsible for rearranging them
476 * when we change security state.
479 uint32_t other_ss_msp;
480 uint32_t other_ss_psp;
481 uint32_t vecbase[M_REG_NUM_BANKS];
482 uint32_t basepri[M_REG_NUM_BANKS];
483 uint32_t control[M_REG_NUM_BANKS];
484 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
485 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
486 uint32_t hfsr; /* HardFault Status */
487 uint32_t dfsr; /* Debug Fault Status Register */
488 uint32_t sfsr; /* Secure Fault Status Register */
489 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
490 uint32_t bfar; /* BusFault Address */
491 uint32_t sfar; /* Secure Fault Address Register */
492 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
494 uint32_t primask[M_REG_NUM_BANKS];
495 uint32_t faultmask[M_REG_NUM_BANKS];
496 uint32_t aircr; /* only holds r/w state if security extn implemented */
497 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
498 uint32_t csselr[M_REG_NUM_BANKS];
499 uint32_t scr[M_REG_NUM_BANKS];
500 uint32_t msplim[M_REG_NUM_BANKS];
501 uint32_t psplim[M_REG_NUM_BANKS];
504 /* Information associated with an exception about to be taken:
505 * code which raises an exception must set cs->exception_index and
506 * the relevant parts of this structure; the cpu_do_interrupt function
507 * will then set the guest-visible registers as part of the exception
511 uint32_t syndrome; /* AArch64 format syndrome register */
512 uint32_t fsr; /* AArch32 format fault status register info */
513 uint64_t vaddress; /* virtual addr associated with exception, if any */
514 uint32_t target_el; /* EL the exception should be targeted for */
515 /* If we implement EL2 we will also need to store information
516 * about the intermediate physical address for stage 2 faults.
520 /* Thumb-2 EE state. */
524 /* VFP coprocessor state. */
526 ARMVectorReg zregs[32];
528 #ifdef TARGET_AARCH64
529 /* Store FFR as pregs[16] to make it easier to treat as any other. */
530 ARMPredicateReg pregs[17];
534 /* We store these fpcsr fields separately for convenience. */
538 /* scratch space when Tn are not sufficient. */
541 /* fp_status is the "normal" fp status. standard_fp_status retains
542 * values corresponding to the ARM "Standard FPSCR Value", ie
543 * default-NaN, flush-to-zero, round-to-nearest and is used by
544 * any operations (generally Neon) which the architecture defines
545 * as controlled by the standard FPSCR value rather than the FPSCR.
547 * To avoid having to transfer exception bits around, we simply
548 * say that the FPSCR cumulative exception flags are the logical
549 * OR of the flags in the two fp statuses. This relies on the
550 * only thing which needs to read the exception flags being
551 * an explicit FPSCR read.
553 float_status fp_status;
554 float_status standard_fp_status;
559 uint64_t exclusive_addr;
560 uint64_t exclusive_val;
561 uint64_t exclusive_high;
563 /* iwMMXt coprocessor state. */
571 #if defined(CONFIG_USER_ONLY)
572 /* For usermode syscall translation. */
576 struct CPUBreakpoint *cpu_breakpoint[16];
577 struct CPUWatchpoint *cpu_watchpoint[16];
579 /* Fields up to this point are cleared by a CPU reset */
580 struct {} end_reset_fields;
584 /* Fields after CPU_COMMON are preserved across CPU reset. */
586 /* Internal CPU feature flags. */
594 uint32_t rnr[M_REG_NUM_BANKS];
599 /* The PMSAv8 implementation also shares some PMSAv7 config
601 * pmsav7.rnr (region number register)
602 * pmsav7_dregion (number of configured regions)
604 uint32_t *rbar[M_REG_NUM_BANKS];
605 uint32_t *rlar[M_REG_NUM_BANKS];
606 uint32_t mair0[M_REG_NUM_BANKS];
607 uint32_t mair1[M_REG_NUM_BANKS];
619 const struct arm_boot_info *boot_info;
620 /* Store GICv3CPUState to access from this struct */
626 * type of a function which can be registered via arm_register_el_change_hook()
627 * to get callbacks when the CPU changes its exception level or mode.
629 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
632 /* These values map onto the return values for
633 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
634 typedef enum ARMPSCIState {
653 /* Coprocessor information */
655 /* For marshalling (mostly coprocessor) register state between the
656 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
657 * we use these arrays.
659 /* List of register indexes managed via these arrays; (full KVM style
660 * 64 bit indexes, not CPRegInfo 32 bit indexes)
662 uint64_t *cpreg_indexes;
663 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
664 uint64_t *cpreg_values;
665 /* Length of the indexes, values, reset_values arrays */
666 int32_t cpreg_array_len;
667 /* These are used only for migration: incoming data arrives in
668 * these fields and is sanity checked in post_load before copying
669 * to the working data structures above.
671 uint64_t *cpreg_vmstate_indexes;
672 uint64_t *cpreg_vmstate_values;
673 int32_t cpreg_vmstate_array_len;
675 /* Timers used by the generic (architected) timer */
676 QEMUTimer *gt_timer[NUM_GTIMERS];
677 /* GPIO outputs for generic timer */
678 qemu_irq gt_timer_outputs[NUM_GTIMERS];
679 /* GPIO output for GICv3 maintenance interrupt signal */
680 qemu_irq gicv3_maintenance_interrupt;
681 /* GPIO output for the PMU interrupt */
682 qemu_irq pmu_interrupt;
684 /* MemoryRegion to use for secure physical accesses */
685 MemoryRegion *secure_memory;
687 /* 'compatible' string for this CPU for Linux device trees */
688 const char *dtb_compatible;
690 /* PSCI version for this CPU
691 * Bits[31:16] = Major Version
692 * Bits[15:0] = Minor Version
694 uint32_t psci_version;
696 /* Should CPU start in PSCI powered-off state? */
697 bool start_powered_off;
699 /* Current power state, access guarded by BQL */
700 ARMPSCIState power_state;
702 /* CPU has virtualization extension */
704 /* CPU has security extension */
706 /* CPU has PMU (Performance Monitor Unit) */
709 /* CPU has memory protection unit */
711 /* PMSAv7 MPU number of supported regions */
712 uint32_t pmsav7_dregion;
713 /* v8M SAU number of supported regions */
714 uint32_t sau_sregion;
716 /* PSCI conduit used to invoke PSCI methods
717 * 0 - disabled, 1 - smc, 2 - hvc
719 uint32_t psci_conduit;
721 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
722 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
726 /* KVM init features for this CPU */
727 uint32_t kvm_init_features[7];
729 /* Uniprocessor system with MP extensions */
732 /* The instance init functions for implementation-specific subclasses
733 * set these fields to specify the implementation-dependent values of
734 * various constant registers and reset values of non-constant
736 * Some of these might become QOM properties eventually.
737 * Field names match the official register names as defined in the
738 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
739 * is used for reset values of non-constant registers; no reset_
740 * prefix means a constant register.
744 uint32_t reset_fpsid;
749 uint32_t reset_sctlr;
767 uint64_t id_aa64pfr0;
768 uint64_t id_aa64pfr1;
769 uint64_t id_aa64dfr0;
770 uint64_t id_aa64dfr1;
771 uint64_t id_aa64afr0;
772 uint64_t id_aa64afr1;
773 uint64_t id_aa64isar0;
774 uint64_t id_aa64isar1;
775 uint64_t id_aa64mmfr0;
776 uint64_t id_aa64mmfr1;
779 uint64_t mp_affinity; /* MP ID without feature bits */
780 /* The elements of this array are the CCSIDR values for each cache,
781 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
785 uint32_t reset_auxcr;
787 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
788 uint32_t dcz_blocksize;
791 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
792 int gic_num_lrs; /* number of list registers */
793 int gic_vpribits; /* number of virtual priority bits */
794 int gic_vprebits; /* number of virtual preemption bits */
796 /* Whether the cfgend input is high (i.e. this CPU should reset into
797 * big-endian mode). This setting isn't used directly: instead it modifies
798 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
799 * architecture version.
803 ARMELChangeHook *el_change_hook;
804 void *el_change_hook_opaque;
806 int32_t node_id; /* NUMA node this CPU belongs to */
808 /* Used to synchronize KVM and QEMU in-kernel device levels */
809 uint8_t device_irq_level;
812 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
814 return container_of(env, ARMCPU, env);
817 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
819 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
821 #define ENV_OFFSET offsetof(ARMCPU, env)
823 #ifndef CONFIG_USER_ONLY
824 extern const struct VMStateDescription vmstate_arm_cpu;
827 void arm_cpu_do_interrupt(CPUState *cpu);
828 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
829 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
831 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
834 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
837 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
838 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
840 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
841 int cpuid, void *opaque);
842 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
843 int cpuid, void *opaque);
845 #ifdef TARGET_AARCH64
846 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
847 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
850 target_ulong do_arm_semihosting(CPUARMState *env);
851 void aarch64_sync_32_to_64(CPUARMState *env);
852 void aarch64_sync_64_to_32(CPUARMState *env);
854 static inline bool is_a64(CPUARMState *env)
859 /* you can call this signal handler from your SIGBUS and SIGSEGV
860 signal handlers to inform the virtual CPU of exceptions. non zero
861 is returned if the signal was handled by the virtual CPU. */
862 int cpu_arm_signal_handler(int host_signum, void *pinfo,
869 * Synchronises the counter in the PMCCNTR. This must always be called twice,
870 * once before any action that might affect the timer and again afterwards.
871 * The function is used to swap the state of the register if required.
872 * This only happens when not in user mode (!CONFIG_USER_ONLY)
874 void pmccntr_sync(CPUARMState *env);
876 /* SCTLR bit meanings. Several bits have been reused in newer
877 * versions of the architecture; in that case we define constants
878 * for both old and new bit meanings. Code which tests against those
879 * bits should probably check or otherwise arrange that the CPU
880 * is the architectural version it expects.
882 #define SCTLR_M (1U << 0)
883 #define SCTLR_A (1U << 1)
884 #define SCTLR_C (1U << 2)
885 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
886 #define SCTLR_SA (1U << 3)
887 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
888 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
889 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
890 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
891 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
892 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
893 #define SCTLR_ITD (1U << 7) /* v8 onward */
894 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
895 #define SCTLR_SED (1U << 8) /* v8 onward */
896 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
897 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
898 #define SCTLR_F (1U << 10) /* up to v6 */
899 #define SCTLR_SW (1U << 10) /* v7 onward */
900 #define SCTLR_Z (1U << 11)
901 #define SCTLR_I (1U << 12)
902 #define SCTLR_V (1U << 13)
903 #define SCTLR_RR (1U << 14) /* up to v7 */
904 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
905 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
906 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
907 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
908 #define SCTLR_nTWI (1U << 16) /* v8 onward */
909 #define SCTLR_HA (1U << 17)
910 #define SCTLR_BR (1U << 17) /* PMSA only */
911 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
912 #define SCTLR_nTWE (1U << 18) /* v8 onward */
913 #define SCTLR_WXN (1U << 19)
914 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
915 #define SCTLR_UWXN (1U << 20) /* v7 onward */
916 #define SCTLR_FI (1U << 21)
917 #define SCTLR_U (1U << 22)
918 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
919 #define SCTLR_VE (1U << 24) /* up to v7 */
920 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
921 #define SCTLR_EE (1U << 25)
922 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
923 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
924 #define SCTLR_NMFI (1U << 27)
925 #define SCTLR_TRE (1U << 28)
926 #define SCTLR_AFE (1U << 29)
927 #define SCTLR_TE (1U << 30)
929 #define CPTR_TCPAC (1U << 31)
930 #define CPTR_TTA (1U << 20)
931 #define CPTR_TFP (1U << 10)
932 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
933 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
935 #define MDCR_EPMAD (1U << 21)
936 #define MDCR_EDAD (1U << 20)
937 #define MDCR_SPME (1U << 17)
938 #define MDCR_SDD (1U << 16)
939 #define MDCR_SPD (3U << 14)
940 #define MDCR_TDRA (1U << 11)
941 #define MDCR_TDOSA (1U << 10)
942 #define MDCR_TDA (1U << 9)
943 #define MDCR_TDE (1U << 8)
944 #define MDCR_HPME (1U << 7)
945 #define MDCR_TPM (1U << 6)
946 #define MDCR_TPMCR (1U << 5)
948 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
949 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
951 #define CPSR_M (0x1fU)
952 #define CPSR_T (1U << 5)
953 #define CPSR_F (1U << 6)
954 #define CPSR_I (1U << 7)
955 #define CPSR_A (1U << 8)
956 #define CPSR_E (1U << 9)
957 #define CPSR_IT_2_7 (0xfc00U)
958 #define CPSR_GE (0xfU << 16)
959 #define CPSR_IL (1U << 20)
960 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
961 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
962 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
963 * where it is live state but not accessible to the AArch32 code.
965 #define CPSR_RESERVED (0x7U << 21)
966 #define CPSR_J (1U << 24)
967 #define CPSR_IT_0_1 (3U << 25)
968 #define CPSR_Q (1U << 27)
969 #define CPSR_V (1U << 28)
970 #define CPSR_C (1U << 29)
971 #define CPSR_Z (1U << 30)
972 #define CPSR_N (1U << 31)
973 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
974 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
976 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
977 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
979 /* Bits writable in user mode. */
980 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
981 /* Execution state bits. MRS read as zero, MSR writes ignored. */
982 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
983 /* Mask of bits which may be set by exception return copying them from SPSR */
984 #define CPSR_ERET_MASK (~CPSR_RESERVED)
986 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
987 #define XPSR_EXCP 0x1ffU
988 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
989 #define XPSR_IT_2_7 CPSR_IT_2_7
990 #define XPSR_GE CPSR_GE
991 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
992 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
993 #define XPSR_IT_0_1 CPSR_IT_0_1
994 #define XPSR_Q CPSR_Q
995 #define XPSR_V CPSR_V
996 #define XPSR_C CPSR_C
997 #define XPSR_Z CPSR_Z
998 #define XPSR_N CPSR_N
999 #define XPSR_NZCV CPSR_NZCV
1000 #define XPSR_IT CPSR_IT
1002 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1003 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1004 #define TTBCR_PD0 (1U << 4)
1005 #define TTBCR_PD1 (1U << 5)
1006 #define TTBCR_EPD0 (1U << 7)
1007 #define TTBCR_IRGN0 (3U << 8)
1008 #define TTBCR_ORGN0 (3U << 10)
1009 #define TTBCR_SH0 (3U << 12)
1010 #define TTBCR_T1SZ (3U << 16)
1011 #define TTBCR_A1 (1U << 22)
1012 #define TTBCR_EPD1 (1U << 23)
1013 #define TTBCR_IRGN1 (3U << 24)
1014 #define TTBCR_ORGN1 (3U << 26)
1015 #define TTBCR_SH1 (1U << 28)
1016 #define TTBCR_EAE (1U << 31)
1018 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1019 * Only these are valid when in AArch64 mode; in
1020 * AArch32 mode SPSRs are basically CPSR-format.
1022 #define PSTATE_SP (1U)
1023 #define PSTATE_M (0xFU)
1024 #define PSTATE_nRW (1U << 4)
1025 #define PSTATE_F (1U << 6)
1026 #define PSTATE_I (1U << 7)
1027 #define PSTATE_A (1U << 8)
1028 #define PSTATE_D (1U << 9)
1029 #define PSTATE_IL (1U << 20)
1030 #define PSTATE_SS (1U << 21)
1031 #define PSTATE_V (1U << 28)
1032 #define PSTATE_C (1U << 29)
1033 #define PSTATE_Z (1U << 30)
1034 #define PSTATE_N (1U << 31)
1035 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1036 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1037 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1038 /* Mode values for AArch64 */
1039 #define PSTATE_MODE_EL3h 13
1040 #define PSTATE_MODE_EL3t 12
1041 #define PSTATE_MODE_EL2h 9
1042 #define PSTATE_MODE_EL2t 8
1043 #define PSTATE_MODE_EL1h 5
1044 #define PSTATE_MODE_EL1t 4
1045 #define PSTATE_MODE_EL0t 0
1047 /* Write a new value to v7m.exception, thus transitioning into or out
1048 * of Handler mode; this may result in a change of active stack pointer.
1050 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1052 /* Map EL and handler into a PSTATE_MODE. */
1053 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1055 return (el << 2) | handler;
1058 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1059 * interprocessing, so we don't attempt to sync with the cpsr state used by
1060 * the 32 bit decoder.
1062 static inline uint32_t pstate_read(CPUARMState *env)
1066 ZF = (env->ZF == 0);
1067 return (env->NF & 0x80000000) | (ZF << 30)
1068 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1069 | env->pstate | env->daif;
1072 static inline void pstate_write(CPUARMState *env, uint32_t val)
1074 env->ZF = (~val) & PSTATE_Z;
1076 env->CF = (val >> 29) & 1;
1077 env->VF = (val << 3) & 0x80000000;
1078 env->daif = val & PSTATE_DAIF;
1079 env->pstate = val & ~CACHED_PSTATE_BITS;
1082 /* Return the current CPSR value. */
1083 uint32_t cpsr_read(CPUARMState *env);
1085 typedef enum CPSRWriteType {
1086 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1087 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1088 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1089 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1092 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1093 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1094 CPSRWriteType write_type);
1096 /* Return the current xPSR value. */
1097 static inline uint32_t xpsr_read(CPUARMState *env)
1100 ZF = (env->ZF == 0);
1101 return (env->NF & 0x80000000) | (ZF << 30)
1102 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1103 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1104 | ((env->condexec_bits & 0xfc) << 8)
1105 | env->v7m.exception;
1108 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1109 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1111 if (mask & XPSR_NZCV) {
1112 env->ZF = (~val) & XPSR_Z;
1114 env->CF = (val >> 29) & 1;
1115 env->VF = (val << 3) & 0x80000000;
1117 if (mask & XPSR_Q) {
1118 env->QF = ((val & XPSR_Q) != 0);
1120 if (mask & XPSR_T) {
1121 env->thumb = ((val & XPSR_T) != 0);
1123 if (mask & XPSR_IT_0_1) {
1124 env->condexec_bits &= ~3;
1125 env->condexec_bits |= (val >> 25) & 3;
1127 if (mask & XPSR_IT_2_7) {
1128 env->condexec_bits &= 3;
1129 env->condexec_bits |= (val >> 8) & 0xfc;
1131 if (mask & XPSR_EXCP) {
1132 /* Note that this only happens on exception exit */
1133 write_v7m_exception(env, val & XPSR_EXCP);
1137 #define HCR_VM (1ULL << 0)
1138 #define HCR_SWIO (1ULL << 1)
1139 #define HCR_PTW (1ULL << 2)
1140 #define HCR_FMO (1ULL << 3)
1141 #define HCR_IMO (1ULL << 4)
1142 #define HCR_AMO (1ULL << 5)
1143 #define HCR_VF (1ULL << 6)
1144 #define HCR_VI (1ULL << 7)
1145 #define HCR_VSE (1ULL << 8)
1146 #define HCR_FB (1ULL << 9)
1147 #define HCR_BSU_MASK (3ULL << 10)
1148 #define HCR_DC (1ULL << 12)
1149 #define HCR_TWI (1ULL << 13)
1150 #define HCR_TWE (1ULL << 14)
1151 #define HCR_TID0 (1ULL << 15)
1152 #define HCR_TID1 (1ULL << 16)
1153 #define HCR_TID2 (1ULL << 17)
1154 #define HCR_TID3 (1ULL << 18)
1155 #define HCR_TSC (1ULL << 19)
1156 #define HCR_TIDCP (1ULL << 20)
1157 #define HCR_TACR (1ULL << 21)
1158 #define HCR_TSW (1ULL << 22)
1159 #define HCR_TPC (1ULL << 23)
1160 #define HCR_TPU (1ULL << 24)
1161 #define HCR_TTLB (1ULL << 25)
1162 #define HCR_TVM (1ULL << 26)
1163 #define HCR_TGE (1ULL << 27)
1164 #define HCR_TDZ (1ULL << 28)
1165 #define HCR_HCD (1ULL << 29)
1166 #define HCR_TRVM (1ULL << 30)
1167 #define HCR_RW (1ULL << 31)
1168 #define HCR_CD (1ULL << 32)
1169 #define HCR_ID (1ULL << 33)
1170 #define HCR_MASK ((1ULL << 34) - 1)
1172 #define SCR_NS (1U << 0)
1173 #define SCR_IRQ (1U << 1)
1174 #define SCR_FIQ (1U << 2)
1175 #define SCR_EA (1U << 3)
1176 #define SCR_FW (1U << 4)
1177 #define SCR_AW (1U << 5)
1178 #define SCR_NET (1U << 6)
1179 #define SCR_SMD (1U << 7)
1180 #define SCR_HCE (1U << 8)
1181 #define SCR_SIF (1U << 9)
1182 #define SCR_RW (1U << 10)
1183 #define SCR_ST (1U << 11)
1184 #define SCR_TWI (1U << 12)
1185 #define SCR_TWE (1U << 13)
1186 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1187 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1189 /* Return the current FPSCR value. */
1190 uint32_t vfp_get_fpscr(CPUARMState *env);
1191 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1193 /* For A64 the FPSCR is split into two logically distinct registers,
1194 * FPCR and FPSR. However since they still use non-overlapping bits
1195 * we store the underlying state in fpscr and just mask on read/write.
1197 #define FPSR_MASK 0xf800009f
1198 #define FPCR_MASK 0x07f79f00
1199 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1201 return vfp_get_fpscr(env) & FPSR_MASK;
1204 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1206 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1207 vfp_set_fpscr(env, new_fpscr);
1210 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1212 return vfp_get_fpscr(env) & FPCR_MASK;
1215 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1217 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1218 vfp_set_fpscr(env, new_fpscr);
1222 ARM_CPU_MODE_USR = 0x10,
1223 ARM_CPU_MODE_FIQ = 0x11,
1224 ARM_CPU_MODE_IRQ = 0x12,
1225 ARM_CPU_MODE_SVC = 0x13,
1226 ARM_CPU_MODE_MON = 0x16,
1227 ARM_CPU_MODE_ABT = 0x17,
1228 ARM_CPU_MODE_HYP = 0x1a,
1229 ARM_CPU_MODE_UND = 0x1b,
1230 ARM_CPU_MODE_SYS = 0x1f
1233 /* VFP system registers. */
1234 #define ARM_VFP_FPSID 0
1235 #define ARM_VFP_FPSCR 1
1236 #define ARM_VFP_MVFR2 5
1237 #define ARM_VFP_MVFR1 6
1238 #define ARM_VFP_MVFR0 7
1239 #define ARM_VFP_FPEXC 8
1240 #define ARM_VFP_FPINST 9
1241 #define ARM_VFP_FPINST2 10
1243 /* iwMMXt coprocessor control registers. */
1244 #define ARM_IWMMXT_wCID 0
1245 #define ARM_IWMMXT_wCon 1
1246 #define ARM_IWMMXT_wCSSF 2
1247 #define ARM_IWMMXT_wCASF 3
1248 #define ARM_IWMMXT_wCGR0 8
1249 #define ARM_IWMMXT_wCGR1 9
1250 #define ARM_IWMMXT_wCGR2 10
1251 #define ARM_IWMMXT_wCGR3 11
1254 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1255 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1256 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1257 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1258 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1259 FIELD(V7M_CCR, STKALIGN, 9, 1)
1260 FIELD(V7M_CCR, DC, 16, 1)
1261 FIELD(V7M_CCR, IC, 17, 1)
1264 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1265 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1266 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1267 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1269 /* V7M AIRCR bits */
1270 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1271 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1272 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1273 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1274 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1275 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1276 FIELD(V7M_AIRCR, PRIS, 14, 1)
1277 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1278 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1280 /* V7M CFSR bits for MMFSR */
1281 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1282 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1283 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1284 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1285 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1286 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1288 /* V7M CFSR bits for BFSR */
1289 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1290 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1291 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1292 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1293 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1294 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1295 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1297 /* V7M CFSR bits for UFSR */
1298 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1299 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1300 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1301 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1302 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1303 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1305 /* V7M CFSR bit masks covering all of the subregister bits */
1306 FIELD(V7M_CFSR, MMFSR, 0, 8)
1307 FIELD(V7M_CFSR, BFSR, 8, 8)
1308 FIELD(V7M_CFSR, UFSR, 16, 16)
1311 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1312 FIELD(V7M_HFSR, FORCED, 30, 1)
1313 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1316 FIELD(V7M_DFSR, HALTED, 0, 1)
1317 FIELD(V7M_DFSR, BKPT, 1, 1)
1318 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1319 FIELD(V7M_DFSR, VCATCH, 3, 1)
1320 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1323 FIELD(V7M_SFSR, INVEP, 0, 1)
1324 FIELD(V7M_SFSR, INVIS, 1, 1)
1325 FIELD(V7M_SFSR, INVER, 2, 1)
1326 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1327 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1328 FIELD(V7M_SFSR, LSPERR, 5, 1)
1329 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1330 FIELD(V7M_SFSR, LSERR, 7, 1)
1332 /* v7M MPU_CTRL bits */
1333 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1334 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1335 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1337 /* v7M CLIDR bits */
1338 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1339 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1340 FIELD(V7M_CLIDR, LOC, 24, 3)
1341 FIELD(V7M_CLIDR, LOUU, 27, 3)
1342 FIELD(V7M_CLIDR, ICB, 30, 2)
1344 FIELD(V7M_CSSELR, IND, 0, 1)
1345 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1346 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1347 * define a mask for this and check that it doesn't permit running off
1348 * the end of the array.
1350 FIELD(V7M_CSSELR, INDEX, 0, 4)
1352 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1354 /* If adding a feature bit which corresponds to a Linux ELF
1355 * HWCAP bit, remember to update the feature-bit-to-hwcap
1356 * mapping in linux-user/elfload.c:get_elf_hwcap().
1360 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1361 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1362 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1367 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1369 ARM_FEATURE_VFP_FP16,
1371 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1372 ARM_FEATURE_M, /* Microcontroller profile. */
1373 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1374 ARM_FEATURE_THUMB2EE,
1375 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1378 ARM_FEATURE_STRONGARM,
1379 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1380 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1381 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1382 ARM_FEATURE_GENERIC_TIMER,
1383 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1384 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1385 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1386 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1387 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1388 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1389 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1390 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1392 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1393 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1394 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1395 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1396 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1397 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1398 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1399 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1400 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1401 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1402 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1403 ARM_FEATURE_PMU, /* has PMU support */
1404 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1405 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1406 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1407 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1408 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1409 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1410 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1411 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1412 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1415 static inline int arm_feature(CPUARMState *env, int feature)
1417 return (env->features & (1ULL << feature)) != 0;
1420 #if !defined(CONFIG_USER_ONLY)
1421 /* Return true if exception levels below EL3 are in secure state,
1422 * or would be following an exception return to that level.
1423 * Unlike arm_is_secure() (which is always a question about the
1424 * _current_ state of the CPU) this doesn't care about the current
1427 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1429 if (arm_feature(env, ARM_FEATURE_EL3)) {
1430 return !(env->cp15.scr_el3 & SCR_NS);
1432 /* If EL3 is not supported then the secure state is implementation
1433 * defined, in which case QEMU defaults to non-secure.
1439 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1440 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1442 if (arm_feature(env, ARM_FEATURE_EL3)) {
1443 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1444 /* CPU currently in AArch64 state and EL3 */
1446 } else if (!is_a64(env) &&
1447 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1448 /* CPU currently in AArch32 state and monitor mode */
1455 /* Return true if the processor is in secure state */
1456 static inline bool arm_is_secure(CPUARMState *env)
1458 if (arm_is_el3_or_mon(env)) {
1461 return arm_is_secure_below_el3(env);
1465 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1470 static inline bool arm_is_secure(CPUARMState *env)
1476 /* Return true if the specified exception level is running in AArch64 state. */
1477 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1479 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1480 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1482 assert(el >= 1 && el <= 3);
1483 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1485 /* The highest exception level is always at the maximum supported
1486 * register width, and then lower levels have a register width controlled
1487 * by bits in the SCR or HCR registers.
1493 if (arm_feature(env, ARM_FEATURE_EL3)) {
1494 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1501 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1502 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1508 /* Function for determing whether guest cp register reads and writes should
1509 * access the secure or non-secure bank of a cp register. When EL3 is
1510 * operating in AArch32 state, the NS-bit determines whether the secure
1511 * instance of a cp register should be used. When EL3 is AArch64 (or if
1512 * it doesn't exist at all) then there is no register banking, and all
1513 * accesses are to the non-secure version.
1515 static inline bool access_secure_reg(CPUARMState *env)
1517 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1518 !arm_el_is_aa64(env, 3) &&
1519 !(env->cp15.scr_el3 & SCR_NS));
1524 /* Macros for accessing a specified CP register bank */
1525 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1526 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1528 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1531 (_env)->cp15._regname##_s = (_val); \
1533 (_env)->cp15._regname##_ns = (_val); \
1537 /* Macros for automatically accessing a specific CP register bank depending on
1538 * the current secure state of the system. These macros are not intended for
1539 * supporting instruction translation reads/writes as these are dependent
1540 * solely on the SCR.NS bit and not the mode.
1542 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1543 A32_BANKED_REG_GET((_env), _regname, \
1544 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1546 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1547 A32_BANKED_REG_SET((_env), _regname, \
1548 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1551 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1552 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1553 uint32_t cur_el, bool secure);
1555 /* Interface between CPU and Interrupt controller. */
1556 #ifndef CONFIG_USER_ONLY
1557 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1559 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1565 * armv7m_nvic_set_pending: mark the specified exception as pending
1567 * @irq: the exception number to mark pending
1568 * @secure: false for non-banked exceptions or for the nonsecure
1569 * version of a banked exception, true for the secure version of a banked
1572 * Marks the specified exception as pending. Note that we will assert()
1573 * if @secure is true and @irq does not specify one of the fixed set
1574 * of architecturally banked exceptions.
1576 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1578 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1580 * @irq: the exception number to mark pending
1581 * @secure: false for non-banked exceptions or for the nonsecure
1582 * version of a banked exception, true for the secure version of a banked
1585 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1586 * exceptions (exceptions generated in the course of trying to take
1587 * a different exception).
1589 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1591 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1592 * exception, and whether it targets Secure state
1594 * @pirq: set to pending exception number
1595 * @ptargets_secure: set to whether pending exception targets Secure
1597 * This function writes the number of the highest priority pending
1598 * exception (the one which would be made active by
1599 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1600 * to true if the current highest priority pending exception should
1601 * be taken to Secure state, false for NS.
1603 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1604 bool *ptargets_secure);
1606 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1609 * Move the current highest priority pending exception from the pending
1610 * state to the active state, and update v7m.exception to indicate that
1611 * it is the exception currently being handled.
1613 void armv7m_nvic_acknowledge_irq(void *opaque);
1615 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1617 * @irq: the exception number to complete
1618 * @secure: true if this exception was secure
1620 * Returns: -1 if the irq was not active
1621 * 1 if completing this irq brought us back to base (no active irqs)
1622 * 0 if there is still an irq active after this one was completed
1623 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1625 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1627 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1630 * Returns: the raw execution priority as defined by the v8M architecture.
1631 * This is the execution priority minus the effects of AIRCR.PRIS,
1632 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1633 * (v8M ARM ARM I_PKLD.)
1635 int armv7m_nvic_raw_execution_priority(void *opaque);
1637 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1638 * priority is negative for the specified security state.
1640 * @secure: the security state to test
1641 * This corresponds to the pseudocode IsReqExecPriNeg().
1643 #ifndef CONFIG_USER_ONLY
1644 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1646 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1652 /* Interface for defining coprocessor registers.
1653 * Registers are defined in tables of arm_cp_reginfo structs
1654 * which are passed to define_arm_cp_regs().
1657 /* When looking up a coprocessor register we look for it
1658 * via an integer which encodes all of:
1659 * coprocessor number
1660 * Crn, Crm, opc1, opc2 fields
1661 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1662 * or via MRRC/MCRR?)
1663 * non-secure/secure bank (AArch32 only)
1664 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1665 * (In this case crn and opc2 should be zero.)
1666 * For AArch64, there is no 32/64 bit size distinction;
1667 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1668 * and 4 bit CRn and CRm. The encoding patterns are chosen
1669 * to be easy to convert to and from the KVM encodings, and also
1670 * so that the hashtable can contain both AArch32 and AArch64
1671 * registers (to allow for interprocessing where we might run
1672 * 32 bit code on a 64 bit core).
1674 /* This bit is private to our hashtable cpreg; in KVM register
1675 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1676 * in the upper bits of the 64 bit ID.
1678 #define CP_REG_AA64_SHIFT 28
1679 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1681 /* To enable banking of coprocessor registers depending on ns-bit we
1682 * add a bit to distinguish between secure and non-secure cpregs in the
1685 #define CP_REG_NS_SHIFT 29
1686 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1688 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1689 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1690 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1692 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1693 (CP_REG_AA64_MASK | \
1694 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1695 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1696 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1697 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1698 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1699 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1701 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1702 * version used as a key for the coprocessor register hashtable
1704 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1706 uint32_t cpregid = kvmid;
1707 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1708 cpregid |= CP_REG_AA64_MASK;
1710 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1711 cpregid |= (1 << 15);
1714 /* KVM is always non-secure so add the NS flag on AArch32 register
1717 cpregid |= 1 << CP_REG_NS_SHIFT;
1722 /* Convert a truncated 32 bit hashtable key into the full
1723 * 64 bit KVM register ID.
1725 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1729 if (cpregid & CP_REG_AA64_MASK) {
1730 kvmid = cpregid & ~CP_REG_AA64_MASK;
1731 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1733 kvmid = cpregid & ~(1 << 15);
1734 if (cpregid & (1 << 15)) {
1735 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1737 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1743 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1744 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1745 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1746 * TCG can assume the value to be constant (ie load at translate time)
1747 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1748 * indicates that the TB should not be ended after a write to this register
1749 * (the default is that the TB ends after cp writes). OVERRIDE permits
1750 * a register definition to override a previous definition for the
1751 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1752 * old must have the OVERRIDE bit set.
1753 * ALIAS indicates that this register is an alias view of some underlying
1754 * state which is also visible via another register, and that the other
1755 * register is handling migration and reset; registers marked ALIAS will not be
1756 * migrated but may have their state set by syncing of register state from KVM.
1757 * NO_RAW indicates that this register has no underlying state and does not
1758 * support raw access for state saving/loading; it will not be used for either
1759 * migration or KVM state synchronization. (Typically this is for "registers"
1760 * which are actually used as instructions for cache maintenance and so on.)
1761 * IO indicates that this register does I/O and therefore its accesses
1762 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1763 * registers which implement clocks or timers require this.
1765 #define ARM_CP_SPECIAL 0x0001
1766 #define ARM_CP_CONST 0x0002
1767 #define ARM_CP_64BIT 0x0004
1768 #define ARM_CP_SUPPRESS_TB_END 0x0008
1769 #define ARM_CP_OVERRIDE 0x0010
1770 #define ARM_CP_ALIAS 0x0020
1771 #define ARM_CP_IO 0x0040
1772 #define ARM_CP_NO_RAW 0x0080
1773 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1774 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1775 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1776 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1777 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1778 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1779 #define ARM_CP_FPU 0x1000
1780 #define ARM_CP_SVE 0x2000
1781 /* Used only as a terminator for ARMCPRegInfo lists */
1782 #define ARM_CP_SENTINEL 0xffff
1783 /* Mask of only the flag bits in a type field */
1784 #define ARM_CP_FLAG_MASK 0x30ff
1786 /* Valid values for ARMCPRegInfo state field, indicating which of
1787 * the AArch32 and AArch64 execution states this register is visible in.
1788 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1789 * If the reginfo is declared to be visible in both states then a second
1790 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1791 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1792 * Note that we rely on the values of these enums as we iterate through
1793 * the various states in some places.
1796 ARM_CP_STATE_AA32 = 0,
1797 ARM_CP_STATE_AA64 = 1,
1798 ARM_CP_STATE_BOTH = 2,
1801 /* ARM CP register secure state flags. These flags identify security state
1802 * attributes for a given CP register entry.
1803 * The existence of both or neither secure and non-secure flags indicates that
1804 * the register has both a secure and non-secure hash entry. A single one of
1805 * these flags causes the register to only be hashed for the specified
1807 * Although definitions may have any combination of the S/NS bits, each
1808 * registered entry will only have one to identify whether the entry is secure
1812 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1813 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1816 /* Return true if cptype is a valid type field. This is used to try to
1817 * catch errors where the sentinel has been accidentally left off the end
1818 * of a list of registers.
1820 static inline bool cptype_valid(int cptype)
1822 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1823 || ((cptype & ARM_CP_SPECIAL) &&
1824 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1828 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1829 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1830 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1831 * (ie any of the privileged modes in Secure state, or Monitor mode).
1832 * If a register is accessible in one privilege level it's always accessible
1833 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1834 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1835 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1836 * terminology a little and call this PL3.
1837 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1838 * with the ELx exception levels.
1840 * If access permissions for a register are more complex than can be
1841 * described with these bits, then use a laxer set of restrictions, and
1842 * do the more restrictive/complex check inside a helper function.
1846 #define PL2_R (0x20 | PL3_R)
1847 #define PL2_W (0x10 | PL3_W)
1848 #define PL1_R (0x08 | PL2_R)
1849 #define PL1_W (0x04 | PL2_W)
1850 #define PL0_R (0x02 | PL1_R)
1851 #define PL0_W (0x01 | PL1_W)
1853 #define PL3_RW (PL3_R | PL3_W)
1854 #define PL2_RW (PL2_R | PL2_W)
1855 #define PL1_RW (PL1_R | PL1_W)
1856 #define PL0_RW (PL0_R | PL0_W)
1858 /* Return the highest implemented Exception Level */
1859 static inline int arm_highest_el(CPUARMState *env)
1861 if (arm_feature(env, ARM_FEATURE_EL3)) {
1864 if (arm_feature(env, ARM_FEATURE_EL2)) {
1870 /* Return true if a v7M CPU is in Handler mode */
1871 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1873 return env->v7m.exception != 0;
1876 /* Return the current Exception Level (as per ARMv8; note that this differs
1877 * from the ARMv7 Privilege Level).
1879 static inline int arm_current_el(CPUARMState *env)
1881 if (arm_feature(env, ARM_FEATURE_M)) {
1882 return arm_v7m_is_handler_mode(env) ||
1883 !(env->v7m.control[env->v7m.secure] & 1);
1887 return extract32(env->pstate, 2, 2);
1890 switch (env->uncached_cpsr & 0x1f) {
1891 case ARM_CPU_MODE_USR:
1893 case ARM_CPU_MODE_HYP:
1895 case ARM_CPU_MODE_MON:
1898 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1899 /* If EL3 is 32-bit then all secure privileged modes run in
1909 typedef struct ARMCPRegInfo ARMCPRegInfo;
1911 typedef enum CPAccessResult {
1912 /* Access is permitted */
1914 /* Access fails due to a configurable trap or enable which would
1915 * result in a categorized exception syndrome giving information about
1916 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1917 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1918 * PL1 if in EL0, otherwise to the current EL).
1921 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1922 * Note that this is not a catch-all case -- the set of cases which may
1923 * result in this failure is specifically defined by the architecture.
1925 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1926 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1927 CP_ACCESS_TRAP_EL2 = 3,
1928 CP_ACCESS_TRAP_EL3 = 4,
1929 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1930 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1931 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1932 /* Access fails and results in an exception syndrome for an FP access,
1933 * trapped directly to EL2 or EL3
1935 CP_ACCESS_TRAP_FP_EL2 = 7,
1936 CP_ACCESS_TRAP_FP_EL3 = 8,
1939 /* Access functions for coprocessor registers. These cannot fail and
1940 * may not raise exceptions.
1942 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1943 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1945 /* Access permission check functions for coprocessor registers. */
1946 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1947 const ARMCPRegInfo *opaque,
1949 /* Hook function for register reset */
1950 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1954 /* Definition of an ARM coprocessor register */
1955 struct ARMCPRegInfo {
1956 /* Name of register (useful mainly for debugging, need not be unique) */
1958 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
1959 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
1960 * 'wildcard' field -- any value of that field in the MRC/MCR insn
1961 * will be decoded to this register. The register read and write
1962 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
1963 * used by the program, so it is possible to register a wildcard and
1964 * then behave differently on read/write if necessary.
1965 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
1966 * must both be zero.
1967 * For AArch64-visible registers, opc0 is also used.
1968 * Since there are no "coprocessors" in AArch64, cp is purely used as a
1969 * way to distinguish (for KVM's benefit) guest-visible system registers
1970 * from demuxed ones provided to preserve the "no side effects on
1971 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
1972 * visible (to match KVM's encoding); cp==0 will be converted to
1973 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
1981 /* Execution state in which this register is visible: ARM_CP_STATE_* */
1983 /* Register type: ARM_CP_* bits/values */
1985 /* Access rights: PL*_[RW] */
1987 /* Security state: ARM_CP_SECSTATE_* bits/values */
1989 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
1990 * this register was defined: can be used to hand data through to the
1991 * register read/write functions, since they are passed the ARMCPRegInfo*.
1994 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
1995 * fieldoffset is non-zero, the reset value of the register.
1997 uint64_t resetvalue;
1998 /* Offset of the field in CPUARMState for this register.
2000 * This is not needed if either:
2001 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2002 * 2. both readfn and writefn are specified
2004 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2006 /* Offsets of the secure and non-secure fields in CPUARMState for the
2007 * register if it is banked. These fields are only used during the static
2008 * registration of a register. During hashing the bank associated
2009 * with a given security state is copied to fieldoffset which is used from
2012 * It is expected that register definitions use either fieldoffset or
2013 * bank_fieldoffsets in the definition but not both. It is also expected
2014 * that both bank offsets are set when defining a banked register. This
2015 * use indicates that a register is banked.
2017 ptrdiff_t bank_fieldoffsets[2];
2019 /* Function for making any access checks for this register in addition to
2020 * those specified by the 'access' permissions bits. If NULL, no extra
2021 * checks required. The access check is performed at runtime, not at
2024 CPAccessFn *accessfn;
2025 /* Function for handling reads of this register. If NULL, then reads
2026 * will be done by loading from the offset into CPUARMState specified
2030 /* Function for handling writes of this register. If NULL, then writes
2031 * will be done by writing to the offset into CPUARMState specified
2035 /* Function for doing a "raw" read; used when we need to copy
2036 * coprocessor state to the kernel for KVM or out for
2037 * migration. This only needs to be provided if there is also a
2038 * readfn and it has side effects (for instance clear-on-read bits).
2040 CPReadFn *raw_readfn;
2041 /* Function for doing a "raw" write; used when we need to copy KVM
2042 * kernel coprocessor state into userspace, or for inbound
2043 * migration. This only needs to be provided if there is also a
2044 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2045 * or similar behaviour.
2047 CPWriteFn *raw_writefn;
2048 /* Function for resetting the register. If NULL, then reset will be done
2049 * by writing resetvalue to the field specified in fieldoffset. If
2050 * fieldoffset is 0 then no reset will be done.
2055 /* Macros which are lvalues for the field in CPUARMState for the
2058 #define CPREG_FIELD32(env, ri) \
2059 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2060 #define CPREG_FIELD64(env, ri) \
2061 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2063 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2065 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2066 const ARMCPRegInfo *regs, void *opaque);
2067 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2068 const ARMCPRegInfo *regs, void *opaque);
2069 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2071 define_arm_cp_regs_with_opaque(cpu, regs, 0);
2073 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2075 define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2077 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2079 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2080 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2082 /* CPReadFn that can be used for read-as-zero behaviour */
2083 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2085 /* CPResetFn that does nothing, for use if no reset is required even
2086 * if fieldoffset is non zero.
2088 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2090 /* Return true if this reginfo struct's field in the cpu state struct
2093 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2095 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2098 static inline bool cp_access_ok(int current_el,
2099 const ARMCPRegInfo *ri, int isread)
2101 return (ri->access >> ((current_el * 2) + isread)) & 1;
2104 /* Raw read of a coprocessor register (as needed for migration, etc) */
2105 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2108 * write_list_to_cpustate
2111 * For each register listed in the ARMCPU cpreg_indexes list, write
2112 * its value from the cpreg_values list into the ARMCPUState structure.
2113 * This updates TCG's working data structures from KVM data or
2114 * from incoming migration state.
2116 * Returns: true if all register values were updated correctly,
2117 * false if some register was unknown or could not be written.
2118 * Note that we do not stop early on failure -- we will attempt
2119 * writing all registers in the list.
2121 bool write_list_to_cpustate(ARMCPU *cpu);
2124 * write_cpustate_to_list:
2127 * For each register listed in the ARMCPU cpreg_indexes list, write
2128 * its value from the ARMCPUState structure into the cpreg_values list.
2129 * This is used to copy info from TCG's working data structures into
2130 * KVM or for outbound migration.
2132 * Returns: true if all register values were read correctly,
2133 * false if some register was unknown or could not be read.
2134 * Note that we do not stop early on failure -- we will attempt
2135 * reading all registers in the list.
2137 bool write_cpustate_to_list(ARMCPU *cpu);
2139 #define ARM_CPUID_TI915T 0x54029152
2140 #define ARM_CPUID_TI925T 0x54029252
2142 #if defined(CONFIG_USER_ONLY)
2143 #define TARGET_PAGE_BITS 12
2145 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2146 * have to support 1K tiny pages.
2148 #define TARGET_PAGE_BITS_VARY
2149 #define TARGET_PAGE_BITS_MIN 10
2152 #if defined(TARGET_AARCH64)
2153 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2154 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2156 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2157 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2160 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2161 unsigned int target_el)
2163 CPUARMState *env = cs->env_ptr;
2164 unsigned int cur_el = arm_current_el(env);
2165 bool secure = arm_is_secure(env);
2166 bool pstate_unmasked;
2167 int8_t unmasked = 0;
2169 /* Don't take exceptions if they target a lower EL.
2170 * This check should catch any exceptions that would not be taken but left
2173 if (cur_el > target_el) {
2179 pstate_unmasked = !(env->daif & PSTATE_F);
2183 pstate_unmasked = !(env->daif & PSTATE_I);
2187 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2188 /* VFIQs are only taken when hypervized and non-secure. */
2191 return !(env->daif & PSTATE_F);
2193 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2194 /* VIRQs are only taken when hypervized and non-secure. */
2197 return !(env->daif & PSTATE_I);
2199 g_assert_not_reached();
2202 /* Use the target EL, current execution state and SCR/HCR settings to
2203 * determine whether the corresponding CPSR bit is used to mask the
2206 if ((target_el > cur_el) && (target_el != 1)) {
2207 /* Exceptions targeting a higher EL may not be maskable */
2208 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2209 /* 64-bit masking rules are simple: exceptions to EL3
2210 * can't be masked, and exceptions to EL2 can only be
2211 * masked from Secure state. The HCR and SCR settings
2212 * don't affect the masking logic, only the interrupt routing.
2214 if (target_el == 3 || !secure) {
2218 /* The old 32-bit-only environment has a more complicated
2219 * masking setup. HCR and SCR bits not only affect interrupt
2220 * routing but also change the behaviour of masking.
2226 /* If FIQs are routed to EL3 or EL2 then there are cases where
2227 * we override the CPSR.F in determining if the exception is
2228 * masked or not. If neither of these are set then we fall back
2229 * to the CPSR.F setting otherwise we further assess the state
2232 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2233 scr = (env->cp15.scr_el3 & SCR_FIQ);
2235 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2236 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2237 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2238 * when non-secure but only when FIQs are only routed to EL3.
2240 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2243 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2244 * we may override the CPSR.I masking when in non-secure state.
2245 * The SCR.IRQ setting has already been taken into consideration
2246 * when setting the target EL, so it does not have a further
2249 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2253 g_assert_not_reached();
2256 if ((scr || hcr) && !secure) {
2262 /* The PSTATE bits only mask the interrupt if we have not overriden the
2265 return unmasked || pstate_unmasked;
2268 #define cpu_init(cpu_model) cpu_generic_init(TYPE_ARM_CPU, cpu_model)
2270 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2271 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2273 #define cpu_signal_handler cpu_arm_signal_handler
2274 #define cpu_list arm_cpu_list
2276 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2279 * + NonSecure EL1 & 0 stage 1
2280 * + NonSecure EL1 & 0 stage 2
2282 * + Secure EL1 & EL0
2285 * + NonSecure PL1 & 0 stage 1
2286 * + NonSecure PL1 & 0 stage 2
2288 * + Secure PL0 & PL1
2289 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2291 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2292 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2293 * may differ in access permissions even if the VA->PA map is the same
2294 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2295 * translation, which means that we have one mmu_idx that deals with two
2296 * concatenated translation regimes [this sort of combined s1+2 TLB is
2297 * architecturally permitted]
2298 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2299 * handling via the TLB. The only way to do a stage 1 translation without
2300 * the immediate stage 2 translation is via the ATS or AT system insns,
2301 * which can be slow-pathed and always do a page table walk.
2302 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2303 * translation regimes, because they map reasonably well to each other
2304 * and they can't both be active at the same time.
2305 * This gives us the following list of mmu_idx values:
2307 * NS EL0 (aka NS PL0) stage 1+2
2308 * NS EL1 (aka NS PL1) stage 1+2
2309 * NS EL2 (aka NS PL2)
2312 * S EL1 (not used if EL3 is 32 bit)
2315 * (The last of these is an mmu_idx because we want to be able to use the TLB
2316 * for the accesses done as part of a stage 1 page table walk, rather than
2317 * having to walk the stage 2 page table over and over.)
2319 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2320 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2321 * NS EL2 if we ever model a Cortex-R52).
2323 * M profile CPUs are rather different as they do not have a true MMU.
2324 * They have the following different MMU indexes:
2327 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2328 * Privileged, execution priority negative (ditto)
2329 * If the CPU supports the v8M Security Extension then there are also:
2332 * Secure User, execution priority negative
2333 * Secure Privileged, execution priority negative
2335 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2336 * are not quite the same -- different CPU types (most notably M profile
2337 * vs A/R profile) would like to use MMU indexes with different semantics,
2338 * but since we don't ever need to use all of those in a single CPU we
2339 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2340 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2341 * the same for any particular CPU.
2342 * Variables of type ARMMUIdx are always full values, and the core
2343 * index values are in variables of type 'int'.
2345 * Our enumeration includes at the end some entries which are not "true"
2346 * mmu_idx values in that they don't have corresponding TLBs and are only
2347 * valid for doing slow path page table walks.
2349 * The constant names here are patterned after the general style of the names
2350 * of the AT/ATS operations.
2351 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2352 * For M profile we arrange them to have a bit for priv, a bit for negpri
2353 * and a bit for secure.
2355 #define ARM_MMU_IDX_A 0x10 /* A profile */
2356 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2357 #define ARM_MMU_IDX_M 0x40 /* M profile */
2359 /* meanings of the bits for M profile mmu idx values */
2360 #define ARM_MMU_IDX_M_PRIV 0x1
2361 #define ARM_MMU_IDX_M_NEGPRI 0x2
2362 #define ARM_MMU_IDX_M_S 0x4
2364 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2365 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2367 typedef enum ARMMMUIdx {
2368 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2369 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2370 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2371 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2372 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2373 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2374 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2375 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2376 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2377 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2378 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2379 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2380 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2381 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2382 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2383 /* Indexes below here don't have TLBs and are used only for AT system
2384 * instructions or for the first stage of an S12 page table walk.
2386 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2387 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2390 /* Bit macros for the core-mmu-index values for each index,
2391 * for use when calling tlb_flush_by_mmuidx() and friends.
2393 typedef enum ARMMMUIdxBit {
2394 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2395 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2396 ARMMMUIdxBit_S1E2 = 1 << 2,
2397 ARMMMUIdxBit_S1E3 = 1 << 3,
2398 ARMMMUIdxBit_S1SE0 = 1 << 4,
2399 ARMMMUIdxBit_S1SE1 = 1 << 5,
2400 ARMMMUIdxBit_S2NS = 1 << 6,
2401 ARMMMUIdxBit_MUser = 1 << 0,
2402 ARMMMUIdxBit_MPriv = 1 << 1,
2403 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2404 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2405 ARMMMUIdxBit_MSUser = 1 << 4,
2406 ARMMMUIdxBit_MSPriv = 1 << 5,
2407 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2408 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2411 #define MMU_USER_IDX 0
2413 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2415 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2418 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2420 if (arm_feature(env, ARM_FEATURE_M)) {
2421 return mmu_idx | ARM_MMU_IDX_M;
2423 return mmu_idx | ARM_MMU_IDX_A;
2427 /* Return the exception level we're running at if this is our mmu_idx */
2428 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2430 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2434 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2436 g_assert_not_reached();
2440 /* Return the MMU index for a v7M CPU in the specified security and
2443 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2447 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2450 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2453 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2454 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2458 mmu_idx |= ARM_MMU_IDX_M_S;
2464 /* Return the MMU index for a v7M CPU in the specified security state */
2465 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2468 bool priv = arm_current_el(env) != 0;
2470 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2473 /* Determine the current mmu_idx to use for normal loads/stores */
2474 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2476 int el = arm_current_el(env);
2478 if (arm_feature(env, ARM_FEATURE_M)) {
2479 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2481 return arm_to_core_mmu_idx(mmu_idx);
2484 if (el < 2 && arm_is_secure_below_el3(env)) {
2485 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2490 /* Indexes used when registering address spaces with cpu_address_space_init */
2491 typedef enum ARMASIdx {
2496 /* Return the Exception Level targeted by debug exceptions. */
2497 static inline int arm_debug_target_el(CPUARMState *env)
2499 bool secure = arm_is_secure(env);
2500 bool route_to_el2 = false;
2502 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2503 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2504 env->cp15.mdcr_el2 & (1 << 8);
2509 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2510 !arm_el_is_aa64(env, 3) && secure) {
2517 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2519 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2522 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2525 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2527 if (arm_is_secure(env)) {
2528 /* MDCR_EL3.SDD disables debug events from Secure state */
2529 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2530 || arm_current_el(env) == 3) {
2535 if (arm_current_el(env) == arm_debug_target_el(env)) {
2536 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2537 || (env->daif & PSTATE_D)) {
2544 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2546 int el = arm_current_el(env);
2548 if (el == 0 && arm_el_is_aa64(env, 1)) {
2549 return aa64_generate_debug_exceptions(env);
2552 if (arm_is_secure(env)) {
2555 if (el == 0 && (env->cp15.sder & 1)) {
2556 /* SDER.SUIDEN means debug exceptions from Secure EL0
2557 * are always enabled. Otherwise they are controlled by
2558 * SDCR.SPD like those from other Secure ELs.
2563 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2566 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2568 /* For 0b00 we return true if external secure invasive debug
2569 * is enabled. On real hardware this is controlled by external
2570 * signals to the core. QEMU always permits debug, and behaves
2571 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2584 /* Return true if debugging exceptions are currently enabled.
2585 * This corresponds to what in ARM ARM pseudocode would be
2586 * if UsingAArch32() then
2587 * return AArch32.GenerateDebugExceptions()
2589 * return AArch64.GenerateDebugExceptions()
2590 * We choose to push the if() down into this function for clarity,
2591 * since the pseudocode has it at all callsites except for the one in
2592 * CheckSoftwareStep(), where it is elided because both branches would
2593 * always return the same value.
2595 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2596 * don't yet implement those exception levels or their associated trap bits.
2598 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2601 return aa64_generate_debug_exceptions(env);
2603 return aa32_generate_debug_exceptions(env);
2607 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2608 * implicitly means this always returns false in pre-v8 CPUs.)
2610 static inline bool arm_singlestep_active(CPUARMState *env)
2612 return extract32(env->cp15.mdscr_el1, 0, 1)
2613 && arm_el_is_aa64(env, arm_debug_target_el(env))
2614 && arm_generate_debug_exceptions(env);
2617 static inline bool arm_sctlr_b(CPUARMState *env)
2620 /* We need not implement SCTLR.ITD in user-mode emulation, so
2621 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2622 * This lets people run BE32 binaries with "-cpu any".
2624 #ifndef CONFIG_USER_ONLY
2625 !arm_feature(env, ARM_FEATURE_V7) &&
2627 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2630 /* Return true if the processor is in big-endian mode. */
2631 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2635 /* In 32bit endianness is determined by looking at CPSR's E bit */
2638 #ifdef CONFIG_USER_ONLY
2639 /* In system mode, BE32 is modelled in line with the
2640 * architecture (as word-invariant big-endianness), where loads
2641 * and stores are done little endian but from addresses which
2642 * are adjusted by XORing with the appropriate constant. So the
2643 * endianness to use for the raw data access is not affected by
2645 * In user mode, however, we model BE32 as byte-invariant
2646 * big-endianness (because user-only code cannot tell the
2647 * difference), and so we need to use a data access endianness
2648 * that depends on SCTLR.B.
2652 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2655 cur_el = arm_current_el(env);
2658 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2661 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2664 #include "exec/cpu-all.h"
2666 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2667 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2668 * We put flags which are shared between 32 and 64 bit mode at the top
2669 * of the word, and flags which apply to only one mode at the bottom.
2671 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2672 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2673 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2674 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2675 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2676 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2677 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2678 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2679 /* Target EL if we take a floating-point-disabled exception */
2680 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2681 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2683 /* Bit usage when in AArch32 state: */
2684 #define ARM_TBFLAG_THUMB_SHIFT 0
2685 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2686 #define ARM_TBFLAG_VECLEN_SHIFT 1
2687 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2688 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2689 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2690 #define ARM_TBFLAG_VFPEN_SHIFT 7
2691 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2692 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2693 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2694 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2695 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2696 /* We store the bottom two bits of the CPAR as TB flags and handle
2697 * checks on the other bits at runtime
2699 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2700 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2701 /* Indicates whether cp register reads and writes by guest code should access
2702 * the secure or nonsecure bank of banked registers; note that this is not
2703 * the same thing as the current security state of the processor!
2705 #define ARM_TBFLAG_NS_SHIFT 19
2706 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2707 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2708 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2709 /* For M profile only, Handler (ie not Thread) mode */
2710 #define ARM_TBFLAG_HANDLER_SHIFT 21
2711 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2713 /* Bit usage when in AArch64 state */
2714 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2715 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2716 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2717 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2718 #define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2719 #define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2720 #define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2721 #define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2723 /* some convenience accessor macros */
2724 #define ARM_TBFLAG_AARCH64_STATE(F) \
2725 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2726 #define ARM_TBFLAG_MMUIDX(F) \
2727 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2728 #define ARM_TBFLAG_SS_ACTIVE(F) \
2729 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2730 #define ARM_TBFLAG_PSTATE_SS(F) \
2731 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2732 #define ARM_TBFLAG_FPEXC_EL(F) \
2733 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2734 #define ARM_TBFLAG_THUMB(F) \
2735 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2736 #define ARM_TBFLAG_VECLEN(F) \
2737 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2738 #define ARM_TBFLAG_VECSTRIDE(F) \
2739 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2740 #define ARM_TBFLAG_VFPEN(F) \
2741 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2742 #define ARM_TBFLAG_CONDEXEC(F) \
2743 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2744 #define ARM_TBFLAG_SCTLR_B(F) \
2745 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2746 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2747 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2748 #define ARM_TBFLAG_NS(F) \
2749 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2750 #define ARM_TBFLAG_BE_DATA(F) \
2751 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2752 #define ARM_TBFLAG_HANDLER(F) \
2753 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2754 #define ARM_TBFLAG_TBI0(F) \
2755 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2756 #define ARM_TBFLAG_TBI1(F) \
2757 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2758 #define ARM_TBFLAG_SVEEXC_EL(F) \
2759 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2760 #define ARM_TBFLAG_ZCR_LEN(F) \
2761 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2763 static inline bool bswap_code(bool sctlr_b)
2765 #ifdef CONFIG_USER_ONLY
2766 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2767 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2768 * would also end up as a mixed-endian mode with BE code, LE data.
2771 #ifdef TARGET_WORDS_BIGENDIAN
2776 /* All code access in ARM is little endian, and there are no loaders
2777 * doing swaps that need to be reversed
2783 #ifdef CONFIG_USER_ONLY
2784 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2787 #ifdef TARGET_WORDS_BIGENDIAN
2790 arm_cpu_data_is_big_endian(env);
2794 #ifndef CONFIG_USER_ONLY
2798 * @mmu_idx: MMU index indicating required translation regime
2800 * Extracts the TBI0 value from the appropriate TCR for the current EL
2802 * Returns: the TBI0 value.
2804 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2809 * @mmu_idx: MMU index indicating required translation regime
2811 * Extracts the TBI1 value from the appropriate TCR for the current EL
2813 * Returns: the TBI1 value.
2815 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2817 /* We can't handle tagged addresses properly in user-only mode */
2818 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2823 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2829 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2830 target_ulong *cs_base, uint32_t *flags);
2833 QEMU_PSCI_CONDUIT_DISABLED = 0,
2834 QEMU_PSCI_CONDUIT_SMC = 1,
2835 QEMU_PSCI_CONDUIT_HVC = 2,
2838 #ifndef CONFIG_USER_ONLY
2839 /* Return the address space index to use for a memory access */
2840 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2842 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2845 /* Return the AddressSpace to use for a memory access
2846 * (which depends on whether the access is S or NS, and whether
2847 * the board gave us a separate AddressSpace for S accesses).
2849 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2851 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2856 * arm_register_el_change_hook:
2857 * Register a hook function which will be called back whenever this
2858 * CPU changes exception level or mode. The hook function will be
2859 * passed a pointer to the ARMCPU and the opaque data pointer passed
2860 * to this function when the hook was registered.
2862 * Note that we currently only support registering a single hook function,
2863 * and will assert if this function is called twice.
2864 * This facility is intended for the use of the GICv3 emulation.
2866 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2870 * arm_get_el_change_hook_opaque:
2871 * Return the opaque data that will be used by the el_change_hook
2874 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2876 return cpu->el_change_hook_opaque;
2881 * Return a pointer to the Dn register within env in 32-bit mode.
2883 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2885 return &env->vfp.zregs[regno >> 1].d[regno & 1];
2890 * Return a pointer to the Qn register within env in 32-bit mode.
2892 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2894 return &env->vfp.zregs[regno].d[0];
2899 * Return a pointer to the Qn register within env in 64-bit mode.
2901 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2903 return &env->vfp.zregs[regno].d[0];