2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
21 #include "migration.h"
22 #include "qemu-file.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
37 * Print and error on both the Monitor and the Log file.
39 #define ERROR(errp, fmt, ...) \
41 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42 if (errp && (*(errp) == NULL)) { \
43 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
56 * This is only for non-live state being migrated.
57 * Instead of RDMA_WRITE messages, we use RDMA_SEND
58 * messages for that state, which requires a different
59 * delivery design than main memory.
61 #define RDMA_SEND_INCREMENT 32768
64 * Maximum size infiniband SEND message
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
69 #define RDMA_CONTROL_VERSION_CURRENT 1
71 * Capabilities for negotiation.
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
76 * Add the other flags above to this list of known capabilities
77 * as they are introduced.
79 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
81 #define CHECK_ERROR_STATE() \
83 if (rdma->error_state) { \
84 if (!rdma->error_reported) { \
85 error_report("RDMA is in an error state waiting migration" \
87 rdma->error_reported = 1; \
90 return rdma->error_state; \
95 * A work request ID is 64-bits and we split up these bits
98 * bits 0-15 : type of control message, 2^16
99 * bits 16-29: ram block index, 2^14
100 * bits 30-63: ram block chunk number, 2^34
102 * The last two bit ranges are only used for RDMA writes,
103 * in order to track their completion and potentially
104 * also track unregistration status of the message.
106 #define RDMA_WRID_TYPE_SHIFT 0UL
107 #define RDMA_WRID_BLOCK_SHIFT 16UL
108 #define RDMA_WRID_CHUNK_SHIFT 30UL
110 #define RDMA_WRID_TYPE_MASK \
111 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
113 #define RDMA_WRID_BLOCK_MASK \
114 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
116 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
119 * RDMA migration protocol:
120 * 1. RDMA Writes (data messages, i.e. RAM)
121 * 2. IB Send/Recv (control channel messages)
125 RDMA_WRID_RDMA_WRITE = 1,
126 RDMA_WRID_SEND_CONTROL = 2000,
127 RDMA_WRID_RECV_CONTROL = 4000,
130 static const char *wrid_desc[] = {
131 [RDMA_WRID_NONE] = "NONE",
132 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
133 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
134 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
138 * Work request IDs for IB SEND messages only (not RDMA writes).
139 * This is used by the migration protocol to transmit
140 * control messages (such as device state and registration commands)
142 * We could use more WRs, but we have enough for now.
152 * SEND/RECV IB Control Messages.
155 RDMA_CONTROL_NONE = 0,
157 RDMA_CONTROL_READY, /* ready to receive */
158 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
159 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
160 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
161 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
162 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
163 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
164 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
165 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
166 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 * Memory and MR structures used to represent an IB Send/Recv work request.
172 * This is *not* used for RDMA writes, only IB Send/Recv.
175 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
176 struct ibv_mr *control_mr; /* registration metadata */
177 size_t control_len; /* length of the message */
178 uint8_t *control_curr; /* start of unconsumed bytes */
179 } RDMAWorkRequestData;
182 * Negotiate RDMA capabilities during connection-setup time.
189 static void caps_to_network(RDMACapabilities *cap)
191 cap->version = htonl(cap->version);
192 cap->flags = htonl(cap->flags);
195 static void network_to_caps(RDMACapabilities *cap)
197 cap->version = ntohl(cap->version);
198 cap->flags = ntohl(cap->flags);
202 * Representation of a RAMBlock from an RDMA perspective.
203 * This is not transmitted, only local.
204 * This and subsequent structures cannot be linked lists
205 * because we're using a single IB message to transmit
206 * the information. It's small anyway, so a list is overkill.
208 typedef struct RDMALocalBlock {
210 uint8_t *local_host_addr; /* local virtual address */
211 uint64_t remote_host_addr; /* remote virtual address */
214 struct ibv_mr **pmr; /* MRs for chunk-level registration */
215 struct ibv_mr *mr; /* MR for non-chunk-level registration */
216 uint32_t *remote_keys; /* rkeys for chunk-level registration */
217 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
218 int index; /* which block are we */
219 unsigned int src_index; /* (Only used on dest) */
222 unsigned long *transit_bitmap;
223 unsigned long *unregister_bitmap;
227 * Also represents a RAMblock, but only on the dest.
228 * This gets transmitted by the dest during connection-time
229 * to the source VM and then is used to populate the
230 * corresponding RDMALocalBlock with
231 * the information needed to perform the actual RDMA.
233 typedef struct QEMU_PACKED RDMADestBlock {
234 uint64_t remote_host_addr;
237 uint32_t remote_rkey;
241 static const char *control_desc(unsigned int rdma_control)
243 static const char *strs[] = {
244 [RDMA_CONTROL_NONE] = "NONE",
245 [RDMA_CONTROL_ERROR] = "ERROR",
246 [RDMA_CONTROL_READY] = "READY",
247 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
248 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
249 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
250 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
251 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
252 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
253 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
254 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
255 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
258 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
259 return "??BAD CONTROL VALUE??";
262 return strs[rdma_control];
265 static uint64_t htonll(uint64_t v)
267 union { uint32_t lv[2]; uint64_t llv; } u;
268 u.lv[0] = htonl(v >> 32);
269 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
273 static uint64_t ntohll(uint64_t v) {
274 union { uint32_t lv[2]; uint64_t llv; } u;
276 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
279 static void dest_block_to_network(RDMADestBlock *db)
281 db->remote_host_addr = htonll(db->remote_host_addr);
282 db->offset = htonll(db->offset);
283 db->length = htonll(db->length);
284 db->remote_rkey = htonl(db->remote_rkey);
287 static void network_to_dest_block(RDMADestBlock *db)
289 db->remote_host_addr = ntohll(db->remote_host_addr);
290 db->offset = ntohll(db->offset);
291 db->length = ntohll(db->length);
292 db->remote_rkey = ntohl(db->remote_rkey);
296 * Virtual address of the above structures used for transmitting
297 * the RAMBlock descriptions at connection-time.
298 * This structure is *not* transmitted.
300 typedef struct RDMALocalBlocks {
302 bool init; /* main memory init complete */
303 RDMALocalBlock *block;
307 * Main data structure for RDMA state.
308 * While there is only one copy of this structure being allocated right now,
309 * this is the place where one would start if you wanted to consider
310 * having more than one RDMA connection open at the same time.
312 typedef struct RDMAContext {
316 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
319 * This is used by *_exchange_send() to figure out whether or not
320 * the initial "READY" message has already been received or not.
321 * This is because other functions may potentially poll() and detect
322 * the READY message before send() does, in which case we need to
323 * know if it completed.
325 int control_ready_expected;
327 /* number of outstanding writes */
330 /* store info about current buffer so that we can
331 merge it with future sends */
332 uint64_t current_addr;
333 uint64_t current_length;
334 /* index of ram block the current buffer belongs to */
336 /* index of the chunk in the current ram block */
342 * infiniband-specific variables for opening the device
343 * and maintaining connection state and so forth.
345 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
346 * cm_id->verbs, cm_id->channel, and cm_id->qp.
348 struct rdma_cm_id *cm_id; /* connection manager ID */
349 struct rdma_cm_id *listen_id;
352 struct ibv_context *verbs;
353 struct rdma_event_channel *channel;
354 struct ibv_qp *qp; /* queue pair */
355 struct ibv_comp_channel *comp_channel; /* completion channel */
356 struct ibv_pd *pd; /* protection domain */
357 struct ibv_cq *cq; /* completion queue */
360 * If a previous write failed (perhaps because of a failed
361 * memory registration, then do not attempt any future work
362 * and remember the error state.
369 * Description of ram blocks used throughout the code.
371 RDMALocalBlocks local_ram_blocks;
372 RDMADestBlock *dest_blocks;
374 /* Index of the next RAMBlock received during block registration */
375 unsigned int next_src_index;
378 * Migration on *destination* started.
379 * Then use coroutine yield function.
380 * Source runs in a thread, so we don't care.
382 int migration_started_on_destination;
384 int total_registrations;
387 int unregister_current, unregister_next;
388 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
390 GHashTable *blockmap;
392 /* the RDMAContext for return path */
393 struct RDMAContext *return_path;
397 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
398 #define QIO_CHANNEL_RDMA(obj) \
399 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
401 typedef struct QIOChannelRDMA QIOChannelRDMA;
404 struct QIOChannelRDMA {
407 RDMAContext *rdmaout;
409 bool blocking; /* XXX we don't actually honour this yet */
413 * Main structure for IB Send/Recv control messages.
414 * This gets prepended at the beginning of every Send/Recv.
416 typedef struct QEMU_PACKED {
417 uint32_t len; /* Total length of data portion */
418 uint32_t type; /* which control command to perform */
419 uint32_t repeat; /* number of commands in data portion of same type */
423 static void control_to_network(RDMAControlHeader *control)
425 control->type = htonl(control->type);
426 control->len = htonl(control->len);
427 control->repeat = htonl(control->repeat);
430 static void network_to_control(RDMAControlHeader *control)
432 control->type = ntohl(control->type);
433 control->len = ntohl(control->len);
434 control->repeat = ntohl(control->repeat);
438 * Register a single Chunk.
439 * Information sent by the source VM to inform the dest
440 * to register an single chunk of memory before we can perform
441 * the actual RDMA operation.
443 typedef struct QEMU_PACKED {
445 uint64_t current_addr; /* offset into the ram_addr_t space */
446 uint64_t chunk; /* chunk to lookup if unregistering */
448 uint32_t current_index; /* which ramblock the chunk belongs to */
450 uint64_t chunks; /* how many sequential chunks to register */
453 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
455 RDMALocalBlock *local_block;
456 local_block = &rdma->local_ram_blocks.block[reg->current_index];
458 if (local_block->is_ram_block) {
460 * current_addr as passed in is an address in the local ram_addr_t
461 * space, we need to translate this for the destination
463 reg->key.current_addr -= local_block->offset;
464 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
466 reg->key.current_addr = htonll(reg->key.current_addr);
467 reg->current_index = htonl(reg->current_index);
468 reg->chunks = htonll(reg->chunks);
471 static void network_to_register(RDMARegister *reg)
473 reg->key.current_addr = ntohll(reg->key.current_addr);
474 reg->current_index = ntohl(reg->current_index);
475 reg->chunks = ntohll(reg->chunks);
478 typedef struct QEMU_PACKED {
479 uint32_t value; /* if zero, we will madvise() */
480 uint32_t block_idx; /* which ram block index */
481 uint64_t offset; /* Address in remote ram_addr_t space */
482 uint64_t length; /* length of the chunk */
485 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
487 comp->value = htonl(comp->value);
489 * comp->offset as passed in is an address in the local ram_addr_t
490 * space, we need to translate this for the destination
492 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
493 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
494 comp->block_idx = htonl(comp->block_idx);
495 comp->offset = htonll(comp->offset);
496 comp->length = htonll(comp->length);
499 static void network_to_compress(RDMACompress *comp)
501 comp->value = ntohl(comp->value);
502 comp->block_idx = ntohl(comp->block_idx);
503 comp->offset = ntohll(comp->offset);
504 comp->length = ntohll(comp->length);
508 * The result of the dest's memory registration produces an "rkey"
509 * which the source VM must reference in order to perform
510 * the RDMA operation.
512 typedef struct QEMU_PACKED {
516 } RDMARegisterResult;
518 static void result_to_network(RDMARegisterResult *result)
520 result->rkey = htonl(result->rkey);
521 result->host_addr = htonll(result->host_addr);
524 static void network_to_result(RDMARegisterResult *result)
526 result->rkey = ntohl(result->rkey);
527 result->host_addr = ntohll(result->host_addr);
530 const char *print_wrid(int wrid);
531 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
532 uint8_t *data, RDMAControlHeader *resp,
534 int (*callback)(RDMAContext *rdma));
536 static inline uint64_t ram_chunk_index(const uint8_t *start,
539 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
542 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
545 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
546 (i << RDMA_REG_CHUNK_SHIFT));
549 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
552 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
553 (1UL << RDMA_REG_CHUNK_SHIFT);
555 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
556 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
562 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
564 ram_addr_t block_offset, uint64_t length)
566 RDMALocalBlocks *local = &rdma->local_ram_blocks;
567 RDMALocalBlock *block;
568 RDMALocalBlock *old = local->block;
570 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
572 if (local->nb_blocks) {
575 if (rdma->blockmap) {
576 for (x = 0; x < local->nb_blocks; x++) {
577 g_hash_table_remove(rdma->blockmap,
578 (void *)(uintptr_t)old[x].offset);
579 g_hash_table_insert(rdma->blockmap,
580 (void *)(uintptr_t)old[x].offset,
584 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
588 block = &local->block[local->nb_blocks];
590 block->block_name = g_strdup(block_name);
591 block->local_host_addr = host_addr;
592 block->offset = block_offset;
593 block->length = length;
594 block->index = local->nb_blocks;
595 block->src_index = ~0U; /* Filled in by the receipt of the block list */
596 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
597 block->transit_bitmap = bitmap_new(block->nb_chunks);
598 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
599 block->unregister_bitmap = bitmap_new(block->nb_chunks);
600 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
601 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
603 block->is_ram_block = local->init ? false : true;
605 if (rdma->blockmap) {
606 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
609 trace_rdma_add_block(block_name, local->nb_blocks,
610 (uintptr_t) block->local_host_addr,
611 block->offset, block->length,
612 (uintptr_t) (block->local_host_addr + block->length),
613 BITS_TO_LONGS(block->nb_chunks) *
614 sizeof(unsigned long) * 8,
623 * Memory regions need to be registered with the device and queue pairs setup
624 * in advanced before the migration starts. This tells us where the RAM blocks
625 * are so that we can register them individually.
627 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
628 ram_addr_t block_offset, ram_addr_t length, void *opaque)
630 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
634 * Identify the RAMBlocks and their quantity. They will be references to
635 * identify chunk boundaries inside each RAMBlock and also be referenced
636 * during dynamic page registration.
638 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
640 RDMALocalBlocks *local = &rdma->local_ram_blocks;
642 assert(rdma->blockmap == NULL);
643 memset(local, 0, sizeof *local);
644 qemu_ram_foreach_migratable_block(qemu_rdma_init_one_block, rdma);
645 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
646 rdma->dest_blocks = g_new0(RDMADestBlock,
647 rdma->local_ram_blocks.nb_blocks);
653 * Note: If used outside of cleanup, the caller must ensure that the destination
654 * block structures are also updated
656 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
658 RDMALocalBlocks *local = &rdma->local_ram_blocks;
659 RDMALocalBlock *old = local->block;
662 if (rdma->blockmap) {
663 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
668 for (j = 0; j < block->nb_chunks; j++) {
669 if (!block->pmr[j]) {
672 ibv_dereg_mr(block->pmr[j]);
673 rdma->total_registrations--;
680 ibv_dereg_mr(block->mr);
681 rdma->total_registrations--;
685 g_free(block->transit_bitmap);
686 block->transit_bitmap = NULL;
688 g_free(block->unregister_bitmap);
689 block->unregister_bitmap = NULL;
691 g_free(block->remote_keys);
692 block->remote_keys = NULL;
694 g_free(block->block_name);
695 block->block_name = NULL;
697 if (rdma->blockmap) {
698 for (x = 0; x < local->nb_blocks; x++) {
699 g_hash_table_remove(rdma->blockmap,
700 (void *)(uintptr_t)old[x].offset);
704 if (local->nb_blocks > 1) {
706 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
709 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
712 if (block->index < (local->nb_blocks - 1)) {
713 memcpy(local->block + block->index, old + (block->index + 1),
714 sizeof(RDMALocalBlock) *
715 (local->nb_blocks - (block->index + 1)));
716 for (x = block->index; x < local->nb_blocks - 1; x++) {
717 local->block[x].index--;
721 assert(block == local->block);
725 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
726 block->offset, block->length,
727 (uintptr_t)(block->local_host_addr + block->length),
728 BITS_TO_LONGS(block->nb_chunks) *
729 sizeof(unsigned long) * 8, block->nb_chunks);
735 if (local->nb_blocks && rdma->blockmap) {
736 for (x = 0; x < local->nb_blocks; x++) {
737 g_hash_table_insert(rdma->blockmap,
738 (void *)(uintptr_t)local->block[x].offset,
747 * Put in the log file which RDMA device was opened and the details
748 * associated with that device.
750 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
752 struct ibv_port_attr port;
754 if (ibv_query_port(verbs, 1, &port)) {
755 error_report("Failed to query port information");
759 printf("%s RDMA Device opened: kernel name %s "
760 "uverbs device name %s, "
761 "infiniband_verbs class device path %s, "
762 "infiniband class device path %s, "
763 "transport: (%d) %s\n",
766 verbs->device->dev_name,
767 verbs->device->dev_path,
768 verbs->device->ibdev_path,
770 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
771 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
772 ? "Ethernet" : "Unknown"));
776 * Put in the log file the RDMA gid addressing information,
777 * useful for folks who have trouble understanding the
778 * RDMA device hierarchy in the kernel.
780 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
784 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
785 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
786 trace_qemu_rdma_dump_gid(who, sgid, dgid);
790 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
791 * We will try the next addrinfo struct, and fail if there are
792 * no other valid addresses to bind against.
794 * If user is listening on '[::]', then we will not have a opened a device
795 * yet and have no way of verifying if the device is RoCE or not.
797 * In this case, the source VM will throw an error for ALL types of
798 * connections (both IPv4 and IPv6) if the destination machine does not have
799 * a regular infiniband network available for use.
801 * The only way to guarantee that an error is thrown for broken kernels is
802 * for the management software to choose a *specific* interface at bind time
803 * and validate what time of hardware it is.
805 * Unfortunately, this puts the user in a fix:
807 * If the source VM connects with an IPv4 address without knowing that the
808 * destination has bound to '[::]' the migration will unconditionally fail
809 * unless the management software is explicitly listening on the IPv4
810 * address while using a RoCE-based device.
812 * If the source VM connects with an IPv6 address, then we're OK because we can
813 * throw an error on the source (and similarly on the destination).
815 * But in mixed environments, this will be broken for a while until it is fixed
818 * We do provide a *tiny* bit of help in this function: We can list all of the
819 * devices in the system and check to see if all the devices are RoCE or
822 * If we detect that we have a *pure* RoCE environment, then we can safely
823 * thrown an error even if the management software has specified '[::]' as the
826 * However, if there is are multiple hetergeneous devices, then we cannot make
827 * this assumption and the user just has to be sure they know what they are
830 * Patches are being reviewed on linux-rdma.
832 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
834 struct ibv_port_attr port_attr;
836 /* This bug only exists in linux, to our knowledge. */
840 * Verbs are only NULL if management has bound to '[::]'.
842 * Let's iterate through all the devices and see if there any pure IB
843 * devices (non-ethernet).
845 * If not, then we can safely proceed with the migration.
846 * Otherwise, there are no guarantees until the bug is fixed in linux.
850 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
851 bool roce_found = false;
852 bool ib_found = false;
854 for (x = 0; x < num_devices; x++) {
855 verbs = ibv_open_device(dev_list[x]);
857 if (errno == EPERM) {
864 if (ibv_query_port(verbs, 1, &port_attr)) {
865 ibv_close_device(verbs);
866 ERROR(errp, "Could not query initial IB port");
870 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
872 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
876 ibv_close_device(verbs);
882 fprintf(stderr, "WARN: migrations may fail:"
883 " IPv6 over RoCE / iWARP in linux"
884 " is broken. But since you appear to have a"
885 " mixed RoCE / IB environment, be sure to only"
886 " migrate over the IB fabric until the kernel "
887 " fixes the bug.\n");
889 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
890 " and your management software has specified '[::]'"
891 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
900 * If we have a verbs context, that means that some other than '[::]' was
901 * used by the management software for binding. In which case we can
902 * actually warn the user about a potentially broken kernel.
905 /* IB ports start with 1, not 0 */
906 if (ibv_query_port(verbs, 1, &port_attr)) {
907 ERROR(errp, "Could not query initial IB port");
911 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
912 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
927 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
930 struct rdma_addrinfo *res;
932 struct rdma_cm_event *cm_event;
933 char ip[40] = "unknown";
934 struct rdma_addrinfo *e;
936 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
937 ERROR(errp, "RDMA hostname has not been set");
941 /* create CM channel */
942 rdma->channel = rdma_create_event_channel();
943 if (!rdma->channel) {
944 ERROR(errp, "could not create CM channel");
949 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
951 ERROR(errp, "could not create channel id");
952 goto err_resolve_create_id;
955 snprintf(port_str, 16, "%d", rdma->port);
958 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
960 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
961 goto err_resolve_get_addr;
964 for (e = res; e != NULL; e = e->ai_next) {
965 inet_ntop(e->ai_family,
966 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
967 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
969 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
970 RDMA_RESOLVE_TIMEOUT_MS);
972 if (e->ai_family == AF_INET6) {
973 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
982 ERROR(errp, "could not resolve address %s", rdma->host);
983 goto err_resolve_get_addr;
986 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
988 ret = rdma_get_cm_event(rdma->channel, &cm_event);
990 ERROR(errp, "could not perform event_addr_resolved");
991 goto err_resolve_get_addr;
994 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
995 ERROR(errp, "result not equal to event_addr_resolved %s",
996 rdma_event_str(cm_event->event));
997 perror("rdma_resolve_addr");
998 rdma_ack_cm_event(cm_event);
1000 goto err_resolve_get_addr;
1002 rdma_ack_cm_event(cm_event);
1005 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1007 ERROR(errp, "could not resolve rdma route");
1008 goto err_resolve_get_addr;
1011 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1013 ERROR(errp, "could not perform event_route_resolved");
1014 goto err_resolve_get_addr;
1016 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1017 ERROR(errp, "result not equal to event_route_resolved: %s",
1018 rdma_event_str(cm_event->event));
1019 rdma_ack_cm_event(cm_event);
1021 goto err_resolve_get_addr;
1023 rdma_ack_cm_event(cm_event);
1024 rdma->verbs = rdma->cm_id->verbs;
1025 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1026 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1029 err_resolve_get_addr:
1030 rdma_destroy_id(rdma->cm_id);
1032 err_resolve_create_id:
1033 rdma_destroy_event_channel(rdma->channel);
1034 rdma->channel = NULL;
1039 * Create protection domain and completion queues
1041 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1044 rdma->pd = ibv_alloc_pd(rdma->verbs);
1046 error_report("failed to allocate protection domain");
1050 /* create completion channel */
1051 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1052 if (!rdma->comp_channel) {
1053 error_report("failed to allocate completion channel");
1054 goto err_alloc_pd_cq;
1058 * Completion queue can be filled by both read and write work requests,
1059 * so must reflect the sum of both possible queue sizes.
1061 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1062 NULL, rdma->comp_channel, 0);
1064 error_report("failed to allocate completion queue");
1065 goto err_alloc_pd_cq;
1072 ibv_dealloc_pd(rdma->pd);
1074 if (rdma->comp_channel) {
1075 ibv_destroy_comp_channel(rdma->comp_channel);
1078 rdma->comp_channel = NULL;
1084 * Create queue pairs.
1086 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1088 struct ibv_qp_init_attr attr = { 0 };
1091 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1092 attr.cap.max_recv_wr = 3;
1093 attr.cap.max_send_sge = 1;
1094 attr.cap.max_recv_sge = 1;
1095 attr.send_cq = rdma->cq;
1096 attr.recv_cq = rdma->cq;
1097 attr.qp_type = IBV_QPT_RC;
1099 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1104 rdma->qp = rdma->cm_id->qp;
1108 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1111 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1113 for (i = 0; i < local->nb_blocks; i++) {
1114 local->block[i].mr =
1115 ibv_reg_mr(rdma->pd,
1116 local->block[i].local_host_addr,
1117 local->block[i].length,
1118 IBV_ACCESS_LOCAL_WRITE |
1119 IBV_ACCESS_REMOTE_WRITE
1121 if (!local->block[i].mr) {
1122 perror("Failed to register local dest ram block!\n");
1125 rdma->total_registrations++;
1128 if (i >= local->nb_blocks) {
1132 for (i--; i >= 0; i--) {
1133 ibv_dereg_mr(local->block[i].mr);
1134 rdma->total_registrations--;
1142 * Find the ram block that corresponds to the page requested to be
1143 * transmitted by QEMU.
1145 * Once the block is found, also identify which 'chunk' within that
1146 * block that the page belongs to.
1148 * This search cannot fail or the migration will fail.
1150 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1151 uintptr_t block_offset,
1154 uint64_t *block_index,
1155 uint64_t *chunk_index)
1157 uint64_t current_addr = block_offset + offset;
1158 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1159 (void *) block_offset);
1161 assert(current_addr >= block->offset);
1162 assert((current_addr + length) <= (block->offset + block->length));
1164 *block_index = block->index;
1165 *chunk_index = ram_chunk_index(block->local_host_addr,
1166 block->local_host_addr + (current_addr - block->offset));
1172 * Register a chunk with IB. If the chunk was already registered
1173 * previously, then skip.
1175 * Also return the keys associated with the registration needed
1176 * to perform the actual RDMA operation.
1178 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1179 RDMALocalBlock *block, uintptr_t host_addr,
1180 uint32_t *lkey, uint32_t *rkey, int chunk,
1181 uint8_t *chunk_start, uint8_t *chunk_end)
1185 *lkey = block->mr->lkey;
1188 *rkey = block->mr->rkey;
1193 /* allocate memory to store chunk MRs */
1195 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1199 * If 'rkey', then we're the destination, so grant access to the source.
1201 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1203 if (!block->pmr[chunk]) {
1204 uint64_t len = chunk_end - chunk_start;
1206 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1208 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1210 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1211 IBV_ACCESS_REMOTE_WRITE) : 0));
1213 if (!block->pmr[chunk]) {
1214 perror("Failed to register chunk!");
1215 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1216 " start %" PRIuPTR " end %" PRIuPTR
1218 " local %" PRIuPTR " registrations: %d\n",
1219 block->index, chunk, (uintptr_t)chunk_start,
1220 (uintptr_t)chunk_end, host_addr,
1221 (uintptr_t)block->local_host_addr,
1222 rdma->total_registrations);
1225 rdma->total_registrations++;
1229 *lkey = block->pmr[chunk]->lkey;
1232 *rkey = block->pmr[chunk]->rkey;
1238 * Register (at connection time) the memory used for control
1241 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1243 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1244 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1245 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1246 if (rdma->wr_data[idx].control_mr) {
1247 rdma->total_registrations++;
1250 error_report("qemu_rdma_reg_control failed");
1254 const char *print_wrid(int wrid)
1256 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1257 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1259 return wrid_desc[wrid];
1263 * RDMA requires memory registration (mlock/pinning), but this is not good for
1266 * In preparation for the future where LRU information or workload-specific
1267 * writable writable working set memory access behavior is available to QEMU
1268 * it would be nice to have in place the ability to UN-register/UN-pin
1269 * particular memory regions from the RDMA hardware when it is determine that
1270 * those regions of memory will likely not be accessed again in the near future.
1272 * While we do not yet have such information right now, the following
1273 * compile-time option allows us to perform a non-optimized version of this
1276 * By uncommenting this option, you will cause *all* RDMA transfers to be
1277 * unregistered immediately after the transfer completes on both sides of the
1278 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1280 * This will have a terrible impact on migration performance, so until future
1281 * workload information or LRU information is available, do not attempt to use
1282 * this feature except for basic testing.
1284 //#define RDMA_UNREGISTRATION_EXAMPLE
1287 * Perform a non-optimized memory unregistration after every transfer
1288 * for demonstration purposes, only if pin-all is not requested.
1290 * Potential optimizations:
1291 * 1. Start a new thread to run this function continuously
1293 - and for receipt of unregister messages
1295 * 3. Use workload hints.
1297 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1299 while (rdma->unregistrations[rdma->unregister_current]) {
1301 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1303 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1305 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1306 RDMALocalBlock *block =
1307 &(rdma->local_ram_blocks.block[index]);
1308 RDMARegister reg = { .current_index = index };
1309 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1311 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1312 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1316 trace_qemu_rdma_unregister_waiting_proc(chunk,
1317 rdma->unregister_current);
1319 rdma->unregistrations[rdma->unregister_current] = 0;
1320 rdma->unregister_current++;
1322 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1323 rdma->unregister_current = 0;
1328 * Unregistration is speculative (because migration is single-threaded
1329 * and we cannot break the protocol's inifinband message ordering).
1330 * Thus, if the memory is currently being used for transmission,
1331 * then abort the attempt to unregister and try again
1332 * later the next time a completion is received for this memory.
1334 clear_bit(chunk, block->unregister_bitmap);
1336 if (test_bit(chunk, block->transit_bitmap)) {
1337 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1341 trace_qemu_rdma_unregister_waiting_send(chunk);
1343 ret = ibv_dereg_mr(block->pmr[chunk]);
1344 block->pmr[chunk] = NULL;
1345 block->remote_keys[chunk] = 0;
1348 perror("unregistration chunk failed");
1351 rdma->total_registrations--;
1353 reg.key.chunk = chunk;
1354 register_to_network(rdma, ®);
1355 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®,
1361 trace_qemu_rdma_unregister_waiting_complete(chunk);
1367 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1370 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1372 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1373 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1379 * Set bit for unregistration in the next iteration.
1380 * We cannot transmit right here, but will unpin later.
1382 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1383 uint64_t chunk, uint64_t wr_id)
1385 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1386 error_report("rdma migration: queue is full");
1388 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1390 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1391 trace_qemu_rdma_signal_unregister_append(chunk,
1392 rdma->unregister_next);
1394 rdma->unregistrations[rdma->unregister_next++] =
1395 qemu_rdma_make_wrid(wr_id, index, chunk);
1397 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1398 rdma->unregister_next = 0;
1401 trace_qemu_rdma_signal_unregister_already(chunk);
1407 * Consult the connection manager to see a work request
1408 * (of any kind) has completed.
1409 * Return the work request ID that completed.
1411 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1418 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1421 *wr_id_out = RDMA_WRID_NONE;
1426 error_report("ibv_poll_cq return %d", ret);
1430 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1432 if (wc.status != IBV_WC_SUCCESS) {
1433 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1434 wc.status, ibv_wc_status_str(wc.status));
1435 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1440 if (rdma->control_ready_expected &&
1441 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1442 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1443 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1444 rdma->control_ready_expected = 0;
1447 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1449 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1451 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1452 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1454 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1455 index, chunk, block->local_host_addr,
1456 (void *)(uintptr_t)block->remote_host_addr);
1458 clear_bit(chunk, block->transit_bitmap);
1460 if (rdma->nb_sent > 0) {
1464 if (!rdma->pin_all) {
1466 * FYI: If one wanted to signal a specific chunk to be unregistered
1467 * using LRU or workload-specific information, this is the function
1468 * you would call to do so. That chunk would then get asynchronously
1469 * unregistered later.
1471 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1472 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1476 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1479 *wr_id_out = wc.wr_id;
1481 *byte_len = wc.byte_len;
1487 /* Wait for activity on the completion channel.
1488 * Returns 0 on success, none-0 on error.
1490 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1492 struct rdma_cm_event *cm_event;
1496 * Coroutine doesn't start until migration_fd_process_incoming()
1497 * so don't yield unless we know we're running inside of a coroutine.
1499 if (rdma->migration_started_on_destination &&
1500 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1501 yield_until_fd_readable(rdma->comp_channel->fd);
1503 /* This is the source side, we're in a separate thread
1504 * or destination prior to migration_fd_process_incoming()
1505 * after postcopy, the destination also in a seprate thread.
1506 * we can't yield; so we have to poll the fd.
1507 * But we need to be able to handle 'cancel' or an error
1508 * without hanging forever.
1510 while (!rdma->error_state && !rdma->received_error) {
1512 pfds[0].fd = rdma->comp_channel->fd;
1513 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1514 pfds[0].revents = 0;
1516 pfds[1].fd = rdma->channel->fd;
1517 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1518 pfds[1].revents = 0;
1520 /* 0.1s timeout, should be fine for a 'cancel' */
1521 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1523 case 1: /* fd active */
1524 if (pfds[0].revents) {
1528 if (pfds[1].revents) {
1529 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1531 rdma_ack_cm_event(cm_event);
1534 error_report("receive cm event while wait comp channel,"
1535 "cm event is %d", cm_event->event);
1536 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1537 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1543 case 0: /* Timeout, go around again */
1546 default: /* Error of some type -
1547 * I don't trust errno from qemu_poll_ns
1549 error_report("%s: poll failed", __func__);
1553 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1554 /* Bail out and let the cancellation happen */
1560 if (rdma->received_error) {
1563 return rdma->error_state;
1567 * Block until the next work request has completed.
1569 * First poll to see if a work request has already completed,
1572 * If we encounter completed work requests for IDs other than
1573 * the one we're interested in, then that's generally an error.
1575 * The only exception is actual RDMA Write completions. These
1576 * completions only need to be recorded, but do not actually
1577 * need further processing.
1579 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1582 int num_cq_events = 0, ret = 0;
1585 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1587 if (ibv_req_notify_cq(rdma->cq, 0)) {
1591 while (wr_id != wrid_requested) {
1592 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1597 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1599 if (wr_id == RDMA_WRID_NONE) {
1602 if (wr_id != wrid_requested) {
1603 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1604 wrid_requested, print_wrid(wr_id), wr_id);
1608 if (wr_id == wrid_requested) {
1613 ret = qemu_rdma_wait_comp_channel(rdma);
1615 goto err_block_for_wrid;
1618 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1620 perror("ibv_get_cq_event");
1621 goto err_block_for_wrid;
1626 ret = -ibv_req_notify_cq(cq, 0);
1628 goto err_block_for_wrid;
1631 while (wr_id != wrid_requested) {
1632 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1634 goto err_block_for_wrid;
1637 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1639 if (wr_id == RDMA_WRID_NONE) {
1642 if (wr_id != wrid_requested) {
1643 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1644 wrid_requested, print_wrid(wr_id), wr_id);
1648 if (wr_id == wrid_requested) {
1649 goto success_block_for_wrid;
1653 success_block_for_wrid:
1654 if (num_cq_events) {
1655 ibv_ack_cq_events(cq, num_cq_events);
1660 if (num_cq_events) {
1661 ibv_ack_cq_events(cq, num_cq_events);
1664 rdma->error_state = ret;
1669 * Post a SEND message work request for the control channel
1670 * containing some data and block until the post completes.
1672 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1673 RDMAControlHeader *head)
1676 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1677 struct ibv_send_wr *bad_wr;
1678 struct ibv_sge sge = {
1679 .addr = (uintptr_t)(wr->control),
1680 .length = head->len + sizeof(RDMAControlHeader),
1681 .lkey = wr->control_mr->lkey,
1683 struct ibv_send_wr send_wr = {
1684 .wr_id = RDMA_WRID_SEND_CONTROL,
1685 .opcode = IBV_WR_SEND,
1686 .send_flags = IBV_SEND_SIGNALED,
1691 trace_qemu_rdma_post_send_control(control_desc(head->type));
1694 * We don't actually need to do a memcpy() in here if we used
1695 * the "sge" properly, but since we're only sending control messages
1696 * (not RAM in a performance-critical path), then its OK for now.
1698 * The copy makes the RDMAControlHeader simpler to manipulate
1699 * for the time being.
1701 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1702 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1703 control_to_network((void *) wr->control);
1706 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1710 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1713 error_report("Failed to use post IB SEND for control");
1717 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1719 error_report("rdma migration: send polling control error");
1726 * Post a RECV work request in anticipation of some future receipt
1727 * of data on the control channel.
1729 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1731 struct ibv_recv_wr *bad_wr;
1732 struct ibv_sge sge = {
1733 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1734 .length = RDMA_CONTROL_MAX_BUFFER,
1735 .lkey = rdma->wr_data[idx].control_mr->lkey,
1738 struct ibv_recv_wr recv_wr = {
1739 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1745 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1753 * Block and wait for a RECV control channel message to arrive.
1755 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1756 RDMAControlHeader *head, int expecting, int idx)
1759 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1763 error_report("rdma migration: recv polling control error!");
1767 network_to_control((void *) rdma->wr_data[idx].control);
1768 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1770 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1772 if (expecting == RDMA_CONTROL_NONE) {
1773 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1775 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1776 error_report("Was expecting a %s (%d) control message"
1777 ", but got: %s (%d), length: %d",
1778 control_desc(expecting), expecting,
1779 control_desc(head->type), head->type, head->len);
1780 if (head->type == RDMA_CONTROL_ERROR) {
1781 rdma->received_error = true;
1785 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1786 error_report("too long length: %d", head->len);
1789 if (sizeof(*head) + head->len != byte_len) {
1790 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1798 * When a RECV work request has completed, the work request's
1799 * buffer is pointed at the header.
1801 * This will advance the pointer to the data portion
1802 * of the control message of the work request's buffer that
1803 * was populated after the work request finished.
1805 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1806 RDMAControlHeader *head)
1808 rdma->wr_data[idx].control_len = head->len;
1809 rdma->wr_data[idx].control_curr =
1810 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1814 * This is an 'atomic' high-level operation to deliver a single, unified
1815 * control-channel message.
1817 * Additionally, if the user is expecting some kind of reply to this message,
1818 * they can request a 'resp' response message be filled in by posting an
1819 * additional work request on behalf of the user and waiting for an additional
1822 * The extra (optional) response is used during registration to us from having
1823 * to perform an *additional* exchange of message just to provide a response by
1824 * instead piggy-backing on the acknowledgement.
1826 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1827 uint8_t *data, RDMAControlHeader *resp,
1829 int (*callback)(RDMAContext *rdma))
1834 * Wait until the dest is ready before attempting to deliver the message
1835 * by waiting for a READY message.
1837 if (rdma->control_ready_expected) {
1838 RDMAControlHeader resp;
1839 ret = qemu_rdma_exchange_get_response(rdma,
1840 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1847 * If the user is expecting a response, post a WR in anticipation of it.
1850 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1852 error_report("rdma migration: error posting"
1853 " extra control recv for anticipated result!");
1859 * Post a WR to replace the one we just consumed for the READY message.
1861 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1863 error_report("rdma migration: error posting first control recv!");
1868 * Deliver the control message that was requested.
1870 ret = qemu_rdma_post_send_control(rdma, data, head);
1873 error_report("Failed to send control buffer!");
1878 * If we're expecting a response, block and wait for it.
1882 trace_qemu_rdma_exchange_send_issue_callback();
1883 ret = callback(rdma);
1889 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1890 ret = qemu_rdma_exchange_get_response(rdma, resp,
1891 resp->type, RDMA_WRID_DATA);
1897 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1899 *resp_idx = RDMA_WRID_DATA;
1901 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1904 rdma->control_ready_expected = 1;
1910 * This is an 'atomic' high-level operation to receive a single, unified
1911 * control-channel message.
1913 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1916 RDMAControlHeader ready = {
1918 .type = RDMA_CONTROL_READY,
1924 * Inform the source that we're ready to receive a message.
1926 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1929 error_report("Failed to send control buffer!");
1934 * Block and wait for the message.
1936 ret = qemu_rdma_exchange_get_response(rdma, head,
1937 expecting, RDMA_WRID_READY);
1943 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1946 * Post a new RECV work request to replace the one we just consumed.
1948 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1950 error_report("rdma migration: error posting second control recv!");
1958 * Write an actual chunk of memory using RDMA.
1960 * If we're using dynamic registration on the dest-side, we have to
1961 * send a registration command first.
1963 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1964 int current_index, uint64_t current_addr,
1968 struct ibv_send_wr send_wr = { 0 };
1969 struct ibv_send_wr *bad_wr;
1970 int reg_result_idx, ret, count = 0;
1971 uint64_t chunk, chunks;
1972 uint8_t *chunk_start, *chunk_end;
1973 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1975 RDMARegisterResult *reg_result;
1976 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1977 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1978 .type = RDMA_CONTROL_REGISTER_REQUEST,
1983 sge.addr = (uintptr_t)(block->local_host_addr +
1984 (current_addr - block->offset));
1985 sge.length = length;
1987 chunk = ram_chunk_index(block->local_host_addr,
1988 (uint8_t *)(uintptr_t)sge.addr);
1989 chunk_start = ram_chunk_start(block, chunk);
1991 if (block->is_ram_block) {
1992 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1994 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1998 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2000 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2005 trace_qemu_rdma_write_one_top(chunks + 1,
2007 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2009 chunk_end = ram_chunk_end(block, chunk + chunks);
2011 if (!rdma->pin_all) {
2012 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2013 qemu_rdma_unregister_waiting(rdma);
2017 while (test_bit(chunk, block->transit_bitmap)) {
2019 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2020 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2022 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2025 error_report("Failed to Wait for previous write to complete "
2026 "block %d chunk %" PRIu64
2027 " current %" PRIu64 " len %" PRIu64 " %d",
2028 current_index, chunk, sge.addr, length, rdma->nb_sent);
2033 if (!rdma->pin_all || !block->is_ram_block) {
2034 if (!block->remote_keys[chunk]) {
2036 * This chunk has not yet been registered, so first check to see
2037 * if the entire chunk is zero. If so, tell the other size to
2038 * memset() + madvise() the entire chunk without RDMA.
2041 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2042 RDMACompress comp = {
2043 .offset = current_addr,
2045 .block_idx = current_index,
2049 head.len = sizeof(comp);
2050 head.type = RDMA_CONTROL_COMPRESS;
2052 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2053 current_index, current_addr);
2055 compress_to_network(rdma, &comp);
2056 ret = qemu_rdma_exchange_send(rdma, &head,
2057 (uint8_t *) &comp, NULL, NULL, NULL);
2063 acct_update_position(f, sge.length, true);
2069 * Otherwise, tell other side to register.
2071 reg.current_index = current_index;
2072 if (block->is_ram_block) {
2073 reg.key.current_addr = current_addr;
2075 reg.key.chunk = chunk;
2077 reg.chunks = chunks;
2079 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2082 register_to_network(rdma, ®);
2083 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®,
2084 &resp, ®_result_idx, NULL);
2089 /* try to overlap this single registration with the one we sent. */
2090 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2091 &sge.lkey, NULL, chunk,
2092 chunk_start, chunk_end)) {
2093 error_report("cannot get lkey");
2097 reg_result = (RDMARegisterResult *)
2098 rdma->wr_data[reg_result_idx].control_curr;
2100 network_to_result(reg_result);
2102 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2103 reg_result->rkey, chunk);
2105 block->remote_keys[chunk] = reg_result->rkey;
2106 block->remote_host_addr = reg_result->host_addr;
2108 /* already registered before */
2109 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2110 &sge.lkey, NULL, chunk,
2111 chunk_start, chunk_end)) {
2112 error_report("cannot get lkey!");
2117 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2119 send_wr.wr.rdma.rkey = block->remote_rkey;
2121 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2122 &sge.lkey, NULL, chunk,
2123 chunk_start, chunk_end)) {
2124 error_report("cannot get lkey!");
2130 * Encode the ram block index and chunk within this wrid.
2131 * We will use this information at the time of completion
2132 * to figure out which bitmap to check against and then which
2133 * chunk in the bitmap to look for.
2135 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2136 current_index, chunk);
2138 send_wr.opcode = IBV_WR_RDMA_WRITE;
2139 send_wr.send_flags = IBV_SEND_SIGNALED;
2140 send_wr.sg_list = &sge;
2141 send_wr.num_sge = 1;
2142 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2143 (current_addr - block->offset);
2145 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2149 * ibv_post_send() does not return negative error numbers,
2150 * per the specification they are positive - no idea why.
2152 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2154 if (ret == ENOMEM) {
2155 trace_qemu_rdma_write_one_queue_full();
2156 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2158 error_report("rdma migration: failed to make "
2159 "room in full send queue! %d", ret);
2165 } else if (ret > 0) {
2166 perror("rdma migration: post rdma write failed");
2170 set_bit(chunk, block->transit_bitmap);
2171 acct_update_position(f, sge.length, false);
2172 rdma->total_writes++;
2178 * Push out any unwritten RDMA operations.
2180 * We support sending out multiple chunks at the same time.
2181 * Not all of them need to get signaled in the completion queue.
2183 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2187 if (!rdma->current_length) {
2191 ret = qemu_rdma_write_one(f, rdma,
2192 rdma->current_index, rdma->current_addr, rdma->current_length);
2200 trace_qemu_rdma_write_flush(rdma->nb_sent);
2203 rdma->current_length = 0;
2204 rdma->current_addr = 0;
2209 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2210 uint64_t offset, uint64_t len)
2212 RDMALocalBlock *block;
2216 if (rdma->current_index < 0) {
2220 if (rdma->current_chunk < 0) {
2224 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2225 host_addr = block->local_host_addr + (offset - block->offset);
2226 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2228 if (rdma->current_length == 0) {
2233 * Only merge into chunk sequentially.
2235 if (offset != (rdma->current_addr + rdma->current_length)) {
2239 if (offset < block->offset) {
2243 if ((offset + len) > (block->offset + block->length)) {
2247 if ((host_addr + len) > chunk_end) {
2255 * We're not actually writing here, but doing three things:
2257 * 1. Identify the chunk the buffer belongs to.
2258 * 2. If the chunk is full or the buffer doesn't belong to the current
2259 * chunk, then start a new chunk and flush() the old chunk.
2260 * 3. To keep the hardware busy, we also group chunks into batches
2261 * and only require that a batch gets acknowledged in the completion
2262 * qeueue instead of each individual chunk.
2264 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2265 uint64_t block_offset, uint64_t offset,
2268 uint64_t current_addr = block_offset + offset;
2269 uint64_t index = rdma->current_index;
2270 uint64_t chunk = rdma->current_chunk;
2273 /* If we cannot merge it, we flush the current buffer first. */
2274 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2275 ret = qemu_rdma_write_flush(f, rdma);
2279 rdma->current_length = 0;
2280 rdma->current_addr = current_addr;
2282 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2283 offset, len, &index, &chunk);
2285 error_report("ram block search failed");
2288 rdma->current_index = index;
2289 rdma->current_chunk = chunk;
2293 rdma->current_length += len;
2295 /* flush it if buffer is too large */
2296 if (rdma->current_length >= RDMA_MERGE_MAX) {
2297 return qemu_rdma_write_flush(f, rdma);
2303 static void qemu_rdma_cleanup(RDMAContext *rdma)
2307 if (rdma->cm_id && rdma->connected) {
2308 if ((rdma->error_state ||
2309 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2310 !rdma->received_error) {
2311 RDMAControlHeader head = { .len = 0,
2312 .type = RDMA_CONTROL_ERROR,
2315 error_report("Early error. Sending error.");
2316 qemu_rdma_post_send_control(rdma, NULL, &head);
2319 rdma_disconnect(rdma->cm_id);
2320 trace_qemu_rdma_cleanup_disconnect();
2321 rdma->connected = false;
2324 if (rdma->channel) {
2325 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2327 g_free(rdma->dest_blocks);
2328 rdma->dest_blocks = NULL;
2330 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2331 if (rdma->wr_data[idx].control_mr) {
2332 rdma->total_registrations--;
2333 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2335 rdma->wr_data[idx].control_mr = NULL;
2338 if (rdma->local_ram_blocks.block) {
2339 while (rdma->local_ram_blocks.nb_blocks) {
2340 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2345 rdma_destroy_qp(rdma->cm_id);
2349 ibv_destroy_cq(rdma->cq);
2352 if (rdma->comp_channel) {
2353 ibv_destroy_comp_channel(rdma->comp_channel);
2354 rdma->comp_channel = NULL;
2357 ibv_dealloc_pd(rdma->pd);
2361 rdma_destroy_id(rdma->cm_id);
2365 /* the destination side, listen_id and channel is shared */
2366 if (rdma->listen_id) {
2367 if (!rdma->is_return_path) {
2368 rdma_destroy_id(rdma->listen_id);
2370 rdma->listen_id = NULL;
2372 if (rdma->channel) {
2373 if (!rdma->is_return_path) {
2374 rdma_destroy_event_channel(rdma->channel);
2376 rdma->channel = NULL;
2380 if (rdma->channel) {
2381 rdma_destroy_event_channel(rdma->channel);
2382 rdma->channel = NULL;
2389 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2392 Error *local_err = NULL, **temp = &local_err;
2395 * Will be validated against destination's actual capabilities
2396 * after the connect() completes.
2398 rdma->pin_all = pin_all;
2400 ret = qemu_rdma_resolve_host(rdma, temp);
2402 goto err_rdma_source_init;
2405 ret = qemu_rdma_alloc_pd_cq(rdma);
2407 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2408 " limits may be too low. Please check $ ulimit -a # and "
2409 "search for 'ulimit -l' in the output");
2410 goto err_rdma_source_init;
2413 ret = qemu_rdma_alloc_qp(rdma);
2415 ERROR(temp, "rdma migration: error allocating qp!");
2416 goto err_rdma_source_init;
2419 ret = qemu_rdma_init_ram_blocks(rdma);
2421 ERROR(temp, "rdma migration: error initializing ram blocks!");
2422 goto err_rdma_source_init;
2425 /* Build the hash that maps from offset to RAMBlock */
2426 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2427 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2428 g_hash_table_insert(rdma->blockmap,
2429 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2430 &rdma->local_ram_blocks.block[idx]);
2433 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2434 ret = qemu_rdma_reg_control(rdma, idx);
2436 ERROR(temp, "rdma migration: error registering %d control!",
2438 goto err_rdma_source_init;
2444 err_rdma_source_init:
2445 error_propagate(errp, local_err);
2446 qemu_rdma_cleanup(rdma);
2450 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2452 RDMACapabilities cap = {
2453 .version = RDMA_CONTROL_VERSION_CURRENT,
2456 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2458 .private_data = &cap,
2459 .private_data_len = sizeof(cap),
2461 struct rdma_cm_event *cm_event;
2465 * Only negotiate the capability with destination if the user
2466 * on the source first requested the capability.
2468 if (rdma->pin_all) {
2469 trace_qemu_rdma_connect_pin_all_requested();
2470 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2473 caps_to_network(&cap);
2475 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2477 ERROR(errp, "posting second control recv");
2478 goto err_rdma_source_connect;
2481 ret = rdma_connect(rdma->cm_id, &conn_param);
2483 perror("rdma_connect");
2484 ERROR(errp, "connecting to destination!");
2485 goto err_rdma_source_connect;
2488 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2490 perror("rdma_get_cm_event after rdma_connect");
2491 ERROR(errp, "connecting to destination!");
2492 rdma_ack_cm_event(cm_event);
2493 goto err_rdma_source_connect;
2496 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2497 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2498 ERROR(errp, "connecting to destination!");
2499 rdma_ack_cm_event(cm_event);
2500 goto err_rdma_source_connect;
2502 rdma->connected = true;
2504 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2505 network_to_caps(&cap);
2508 * Verify that the *requested* capabilities are supported by the destination
2509 * and disable them otherwise.
2511 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2512 ERROR(errp, "Server cannot support pinning all memory. "
2513 "Will register memory dynamically.");
2514 rdma->pin_all = false;
2517 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2519 rdma_ack_cm_event(cm_event);
2521 rdma->control_ready_expected = 1;
2525 err_rdma_source_connect:
2526 qemu_rdma_cleanup(rdma);
2530 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2533 struct rdma_cm_id *listen_id;
2534 char ip[40] = "unknown";
2535 struct rdma_addrinfo *res, *e;
2538 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2539 rdma->wr_data[idx].control_len = 0;
2540 rdma->wr_data[idx].control_curr = NULL;
2543 if (!rdma->host || !rdma->host[0]) {
2544 ERROR(errp, "RDMA host is not set!");
2545 rdma->error_state = -EINVAL;
2548 /* create CM channel */
2549 rdma->channel = rdma_create_event_channel();
2550 if (!rdma->channel) {
2551 ERROR(errp, "could not create rdma event channel");
2552 rdma->error_state = -EINVAL;
2557 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2559 ERROR(errp, "could not create cm_id!");
2560 goto err_dest_init_create_listen_id;
2563 snprintf(port_str, 16, "%d", rdma->port);
2564 port_str[15] = '\0';
2566 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2568 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2569 goto err_dest_init_bind_addr;
2572 for (e = res; e != NULL; e = e->ai_next) {
2573 inet_ntop(e->ai_family,
2574 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2575 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2576 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2580 if (e->ai_family == AF_INET6) {
2581 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2590 ERROR(errp, "Error: could not rdma_bind_addr!");
2591 goto err_dest_init_bind_addr;
2594 rdma->listen_id = listen_id;
2595 qemu_rdma_dump_gid("dest_init", listen_id);
2598 err_dest_init_bind_addr:
2599 rdma_destroy_id(listen_id);
2600 err_dest_init_create_listen_id:
2601 rdma_destroy_event_channel(rdma->channel);
2602 rdma->channel = NULL;
2603 rdma->error_state = ret;
2608 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2613 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2614 rdma_return_path->wr_data[idx].control_len = 0;
2615 rdma_return_path->wr_data[idx].control_curr = NULL;
2618 /*the CM channel and CM id is shared*/
2619 rdma_return_path->channel = rdma->channel;
2620 rdma_return_path->listen_id = rdma->listen_id;
2622 rdma->return_path = rdma_return_path;
2623 rdma_return_path->return_path = rdma;
2624 rdma_return_path->is_return_path = true;
2627 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2629 RDMAContext *rdma = NULL;
2630 InetSocketAddress *addr;
2633 rdma = g_new0(RDMAContext, 1);
2634 rdma->current_index = -1;
2635 rdma->current_chunk = -1;
2637 addr = g_new(InetSocketAddress, 1);
2638 if (!inet_parse(addr, host_port, NULL)) {
2639 rdma->port = atoi(addr->port);
2640 rdma->host = g_strdup(addr->host);
2642 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2647 qapi_free_InetSocketAddress(addr);
2654 * QEMUFile interface to the control channel.
2655 * SEND messages for control only.
2656 * VM's ram is handled with regular RDMA messages.
2658 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2659 const struct iovec *iov,
2665 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2666 QEMUFile *f = rioc->file;
2674 rdma = atomic_rcu_read(&rioc->rdmaout);
2681 CHECK_ERROR_STATE();
2684 * Push out any writes that
2685 * we're queued up for VM's ram.
2687 ret = qemu_rdma_write_flush(f, rdma);
2689 rdma->error_state = ret;
2694 for (i = 0; i < niov; i++) {
2695 size_t remaining = iov[i].iov_len;
2696 uint8_t * data = (void *)iov[i].iov_base;
2698 RDMAControlHeader head;
2700 len = MIN(remaining, RDMA_SEND_INCREMENT);
2704 head.type = RDMA_CONTROL_QEMU_FILE;
2706 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2709 rdma->error_state = ret;
2723 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2724 size_t size, int idx)
2728 if (rdma->wr_data[idx].control_len) {
2729 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2731 len = MIN(size, rdma->wr_data[idx].control_len);
2732 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2733 rdma->wr_data[idx].control_curr += len;
2734 rdma->wr_data[idx].control_len -= len;
2741 * QEMUFile interface to the control channel.
2742 * RDMA links don't use bytestreams, so we have to
2743 * return bytes to QEMUFile opportunistically.
2745 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2746 const struct iovec *iov,
2752 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2754 RDMAControlHeader head;
2760 rdma = atomic_rcu_read(&rioc->rdmain);
2767 CHECK_ERROR_STATE();
2769 for (i = 0; i < niov; i++) {
2770 size_t want = iov[i].iov_len;
2771 uint8_t *data = (void *)iov[i].iov_base;
2774 * First, we hold on to the last SEND message we
2775 * were given and dish out the bytes until we run
2778 ret = qemu_rdma_fill(rdma, data, want, 0);
2781 /* Got what we needed, so go to next iovec */
2786 /* If we got any data so far, then don't wait
2787 * for more, just return what we have */
2793 /* We've got nothing at all, so lets wait for
2796 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2799 rdma->error_state = ret;
2805 * SEND was received with new bytes, now try again.
2807 ret = qemu_rdma_fill(rdma, data, want, 0);
2811 /* Still didn't get enough, so lets just return */
2815 return QIO_CHANNEL_ERR_BLOCK;
2826 * Block until all the outstanding chunks have been delivered by the hardware.
2828 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2832 if (qemu_rdma_write_flush(f, rdma) < 0) {
2836 while (rdma->nb_sent) {
2837 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2839 error_report("rdma migration: complete polling error!");
2844 qemu_rdma_unregister_waiting(rdma);
2850 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2854 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2855 /* XXX we should make readv/writev actually honour this :-) */
2856 rioc->blocking = blocking;
2861 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2862 struct QIOChannelRDMASource {
2864 QIOChannelRDMA *rioc;
2865 GIOCondition condition;
2869 qio_channel_rdma_source_prepare(GSource *source,
2872 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2874 GIOCondition cond = 0;
2878 if (rsource->condition == G_IO_IN) {
2879 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2881 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2885 error_report("RDMAContext is NULL when prepare Gsource");
2890 if (rdma->wr_data[0].control_len) {
2896 return cond & rsource->condition;
2900 qio_channel_rdma_source_check(GSource *source)
2902 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2904 GIOCondition cond = 0;
2907 if (rsource->condition == G_IO_IN) {
2908 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2910 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2914 error_report("RDMAContext is NULL when check Gsource");
2919 if (rdma->wr_data[0].control_len) {
2925 return cond & rsource->condition;
2929 qio_channel_rdma_source_dispatch(GSource *source,
2930 GSourceFunc callback,
2933 QIOChannelFunc func = (QIOChannelFunc)callback;
2934 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2936 GIOCondition cond = 0;
2939 if (rsource->condition == G_IO_IN) {
2940 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2942 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2946 error_report("RDMAContext is NULL when dispatch Gsource");
2951 if (rdma->wr_data[0].control_len) {
2957 return (*func)(QIO_CHANNEL(rsource->rioc),
2958 (cond & rsource->condition),
2963 qio_channel_rdma_source_finalize(GSource *source)
2965 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2967 object_unref(OBJECT(ssource->rioc));
2970 GSourceFuncs qio_channel_rdma_source_funcs = {
2971 qio_channel_rdma_source_prepare,
2972 qio_channel_rdma_source_check,
2973 qio_channel_rdma_source_dispatch,
2974 qio_channel_rdma_source_finalize
2977 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2978 GIOCondition condition)
2980 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2981 QIOChannelRDMASource *ssource;
2984 source = g_source_new(&qio_channel_rdma_source_funcs,
2985 sizeof(QIOChannelRDMASource));
2986 ssource = (QIOChannelRDMASource *)source;
2988 ssource->rioc = rioc;
2989 object_ref(OBJECT(rioc));
2991 ssource->condition = condition;
2996 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2999 IOHandler *io_write,
3002 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3004 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3005 false, io_read, io_write, NULL, opaque);
3007 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3008 false, io_read, io_write, NULL, opaque);
3012 static int qio_channel_rdma_close(QIOChannel *ioc,
3015 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3016 RDMAContext *rdmain, *rdmaout;
3017 trace_qemu_rdma_close();
3019 rdmain = rioc->rdmain;
3021 atomic_rcu_set(&rioc->rdmain, NULL);
3024 rdmaout = rioc->rdmaout;
3026 atomic_rcu_set(&rioc->rdmaout, NULL);
3032 qemu_rdma_cleanup(rdmain);
3036 qemu_rdma_cleanup(rdmaout);
3046 qio_channel_rdma_shutdown(QIOChannel *ioc,
3047 QIOChannelShutdown how,
3050 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3051 RDMAContext *rdmain, *rdmaout;
3055 rdmain = atomic_rcu_read(&rioc->rdmain);
3056 rdmaout = atomic_rcu_read(&rioc->rdmain);
3059 case QIO_CHANNEL_SHUTDOWN_READ:
3061 rdmain->error_state = -1;
3064 case QIO_CHANNEL_SHUTDOWN_WRITE:
3066 rdmaout->error_state = -1;
3069 case QIO_CHANNEL_SHUTDOWN_BOTH:
3072 rdmain->error_state = -1;
3075 rdmaout->error_state = -1;
3087 * This means that 'block_offset' is a full virtual address that does not
3088 * belong to a RAMBlock of the virtual machine and instead
3089 * represents a private malloc'd memory area that the caller wishes to
3093 * Offset is an offset to be added to block_offset and used
3094 * to also lookup the corresponding RAMBlock.
3097 * Initiate an transfer this size.
3100 * A 'hint' or 'advice' that means that we wish to speculatively
3101 * and asynchronously unregister this memory. In this case, there is no
3102 * guarantee that the unregister will actually happen, for example,
3103 * if the memory is being actively transmitted. Additionally, the memory
3104 * may be re-registered at any future time if a write within the same
3105 * chunk was requested again, even if you attempted to unregister it
3108 * @size < 0 : TODO, not yet supported
3109 * Unregister the memory NOW. This means that the caller does not
3110 * expect there to be any future RDMA transfers and we just want to clean
3111 * things up. This is used in case the upper layer owns the memory and
3112 * cannot wait for qemu_fclose() to occur.
3114 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3115 * sent. Usually, this will not be more than a few bytes of
3116 * the protocol because most transfers are sent asynchronously.
3118 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3119 ram_addr_t block_offset, ram_addr_t offset,
3120 size_t size, uint64_t *bytes_sent)
3122 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3127 rdma = atomic_rcu_read(&rioc->rdmaout);
3134 CHECK_ERROR_STATE();
3136 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3138 return RAM_SAVE_CONTROL_NOT_SUPP;
3145 * Add this page to the current 'chunk'. If the chunk
3146 * is full, or the page doen't belong to the current chunk,
3147 * an actual RDMA write will occur and a new chunk will be formed.
3149 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3151 error_report("rdma migration: write error! %d", ret);
3156 * We always return 1 bytes because the RDMA
3157 * protocol is completely asynchronous. We do not yet know
3158 * whether an identified chunk is zero or not because we're
3159 * waiting for other pages to potentially be merged with
3160 * the current chunk. So, we have to call qemu_update_position()
3161 * later on when the actual write occurs.
3167 uint64_t index, chunk;
3169 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3171 ret = qemu_rdma_drain_cq(f, rdma);
3173 fprintf(stderr, "rdma: failed to synchronously drain"
3174 " completion queue before unregistration.\n");
3180 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3181 offset, size, &index, &chunk);
3184 error_report("ram block search failed");
3188 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3191 * TODO: Synchronous, guaranteed unregistration (should not occur during
3192 * fast-path). Otherwise, unregisters will process on the next call to
3193 * qemu_rdma_drain_cq()
3195 qemu_rdma_unregister_waiting(rdma);
3201 * Drain the Completion Queue if possible, but do not block,
3204 * If nothing to poll, the end of the iteration will do this
3205 * again to make sure we don't overflow the request queue.
3208 uint64_t wr_id, wr_id_in;
3209 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3211 error_report("rdma migration: polling error! %d", ret);
3215 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3217 if (wr_id == RDMA_WRID_NONE) {
3223 return RAM_SAVE_CONTROL_DELAYED;
3225 rdma->error_state = ret;
3230 static void rdma_accept_incoming_migration(void *opaque);
3232 static void rdma_cm_poll_handler(void *opaque)
3234 RDMAContext *rdma = opaque;
3236 struct rdma_cm_event *cm_event;
3237 MigrationIncomingState *mis = migration_incoming_get_current();
3239 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3241 error_report("get_cm_event failed %d", errno);
3244 rdma_ack_cm_event(cm_event);
3246 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3247 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3248 error_report("receive cm event, cm event is %d", cm_event->event);
3249 rdma->error_state = -EPIPE;
3250 if (rdma->return_path) {
3251 rdma->return_path->error_state = -EPIPE;
3254 if (mis->migration_incoming_co) {
3255 qemu_coroutine_enter(mis->migration_incoming_co);
3261 static int qemu_rdma_accept(RDMAContext *rdma)
3263 RDMACapabilities cap;
3264 struct rdma_conn_param conn_param = {
3265 .responder_resources = 2,
3266 .private_data = &cap,
3267 .private_data_len = sizeof(cap),
3269 struct rdma_cm_event *cm_event;
3270 struct ibv_context *verbs;
3274 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3276 goto err_rdma_dest_wait;
3279 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3280 rdma_ack_cm_event(cm_event);
3281 goto err_rdma_dest_wait;
3284 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3286 network_to_caps(&cap);
3288 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3289 error_report("Unknown source RDMA version: %d, bailing...",
3291 rdma_ack_cm_event(cm_event);
3292 goto err_rdma_dest_wait;
3296 * Respond with only the capabilities this version of QEMU knows about.
3298 cap.flags &= known_capabilities;
3301 * Enable the ones that we do know about.
3302 * Add other checks here as new ones are introduced.
3304 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3305 rdma->pin_all = true;
3308 rdma->cm_id = cm_event->id;
3309 verbs = cm_event->id->verbs;
3311 rdma_ack_cm_event(cm_event);
3313 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3315 caps_to_network(&cap);
3317 trace_qemu_rdma_accept_pin_verbsc(verbs);
3320 rdma->verbs = verbs;
3321 } else if (rdma->verbs != verbs) {
3322 error_report("ibv context not matching %p, %p!", rdma->verbs,
3324 goto err_rdma_dest_wait;
3327 qemu_rdma_dump_id("dest_init", verbs);
3329 ret = qemu_rdma_alloc_pd_cq(rdma);
3331 error_report("rdma migration: error allocating pd and cq!");
3332 goto err_rdma_dest_wait;
3335 ret = qemu_rdma_alloc_qp(rdma);
3337 error_report("rdma migration: error allocating qp!");
3338 goto err_rdma_dest_wait;
3341 ret = qemu_rdma_init_ram_blocks(rdma);
3343 error_report("rdma migration: error initializing ram blocks!");
3344 goto err_rdma_dest_wait;
3347 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3348 ret = qemu_rdma_reg_control(rdma, idx);
3350 error_report("rdma: error registering %d control", idx);
3351 goto err_rdma_dest_wait;
3355 /* Accept the second connection request for return path */
3356 if (migrate_postcopy() && !rdma->is_return_path) {
3357 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3359 (void *)(intptr_t)rdma->return_path);
3361 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3365 ret = rdma_accept(rdma->cm_id, &conn_param);
3367 error_report("rdma_accept returns %d", ret);
3368 goto err_rdma_dest_wait;
3371 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3373 error_report("rdma_accept get_cm_event failed %d", ret);
3374 goto err_rdma_dest_wait;
3377 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3378 error_report("rdma_accept not event established");
3379 rdma_ack_cm_event(cm_event);
3380 goto err_rdma_dest_wait;
3383 rdma_ack_cm_event(cm_event);
3384 rdma->connected = true;
3386 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3388 error_report("rdma migration: error posting second control recv");
3389 goto err_rdma_dest_wait;
3392 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3397 rdma->error_state = ret;
3398 qemu_rdma_cleanup(rdma);
3402 static int dest_ram_sort_func(const void *a, const void *b)
3404 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3405 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3407 return (a_index < b_index) ? -1 : (a_index != b_index);
3411 * During each iteration of the migration, we listen for instructions
3412 * by the source VM to perform dynamic page registrations before they
3413 * can perform RDMA operations.
3415 * We respond with the 'rkey'.
3417 * Keep doing this until the source tells us to stop.
3419 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3421 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3422 .type = RDMA_CONTROL_REGISTER_RESULT,
3425 RDMAControlHeader unreg_resp = { .len = 0,
3426 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3429 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3431 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3433 RDMALocalBlocks *local;
3434 RDMAControlHeader head;
3435 RDMARegister *reg, *registers;
3437 RDMARegisterResult *reg_result;
3438 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3439 RDMALocalBlock *block;
3447 rdma = atomic_rcu_read(&rioc->rdmain);
3454 CHECK_ERROR_STATE();
3456 local = &rdma->local_ram_blocks;
3458 trace_qemu_rdma_registration_handle_wait();
3460 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3466 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3467 error_report("rdma: Too many requests in this message (%d)."
3468 "Bailing.", head.repeat);
3473 switch (head.type) {
3474 case RDMA_CONTROL_COMPRESS:
3475 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3476 network_to_compress(comp);
3478 trace_qemu_rdma_registration_handle_compress(comp->length,
3481 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3482 error_report("rdma: 'compress' bad block index %u (vs %d)",
3483 (unsigned int)comp->block_idx,
3484 rdma->local_ram_blocks.nb_blocks);
3488 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3490 host_addr = block->local_host_addr +
3491 (comp->offset - block->offset);
3493 ram_handle_compressed(host_addr, comp->value, comp->length);
3496 case RDMA_CONTROL_REGISTER_FINISHED:
3497 trace_qemu_rdma_registration_handle_finished();
3500 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3501 trace_qemu_rdma_registration_handle_ram_blocks();
3503 /* Sort our local RAM Block list so it's the same as the source,
3504 * we can do this since we've filled in a src_index in the list
3505 * as we received the RAMBlock list earlier.
3507 qsort(rdma->local_ram_blocks.block,
3508 rdma->local_ram_blocks.nb_blocks,
3509 sizeof(RDMALocalBlock), dest_ram_sort_func);
3510 for (i = 0; i < local->nb_blocks; i++) {
3511 local->block[i].index = i;
3514 if (rdma->pin_all) {
3515 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3517 error_report("rdma migration: error dest "
3518 "registering ram blocks");
3524 * Dest uses this to prepare to transmit the RAMBlock descriptions
3525 * to the source VM after connection setup.
3526 * Both sides use the "remote" structure to communicate and update
3527 * their "local" descriptions with what was sent.
3529 for (i = 0; i < local->nb_blocks; i++) {
3530 rdma->dest_blocks[i].remote_host_addr =
3531 (uintptr_t)(local->block[i].local_host_addr);
3533 if (rdma->pin_all) {
3534 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3537 rdma->dest_blocks[i].offset = local->block[i].offset;
3538 rdma->dest_blocks[i].length = local->block[i].length;
3540 dest_block_to_network(&rdma->dest_blocks[i]);
3541 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3542 local->block[i].block_name,
3543 local->block[i].offset,
3544 local->block[i].length,
3545 local->block[i].local_host_addr,
3546 local->block[i].src_index);
3549 blocks.len = rdma->local_ram_blocks.nb_blocks
3550 * sizeof(RDMADestBlock);
3553 ret = qemu_rdma_post_send_control(rdma,
3554 (uint8_t *) rdma->dest_blocks, &blocks);
3557 error_report("rdma migration: error sending remote info");
3562 case RDMA_CONTROL_REGISTER_REQUEST:
3563 trace_qemu_rdma_registration_handle_register(head.repeat);
3565 reg_resp.repeat = head.repeat;
3566 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3568 for (count = 0; count < head.repeat; count++) {
3570 uint8_t *chunk_start, *chunk_end;
3572 reg = ®isters[count];
3573 network_to_register(reg);
3575 reg_result = &results[count];
3577 trace_qemu_rdma_registration_handle_register_loop(count,
3578 reg->current_index, reg->key.current_addr, reg->chunks);
3580 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3581 error_report("rdma: 'register' bad block index %u (vs %d)",
3582 (unsigned int)reg->current_index,
3583 rdma->local_ram_blocks.nb_blocks);
3587 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3588 if (block->is_ram_block) {
3589 if (block->offset > reg->key.current_addr) {
3590 error_report("rdma: bad register address for block %s"
3591 " offset: %" PRIx64 " current_addr: %" PRIx64,
3592 block->block_name, block->offset,
3593 reg->key.current_addr);
3597 host_addr = (block->local_host_addr +
3598 (reg->key.current_addr - block->offset));
3599 chunk = ram_chunk_index(block->local_host_addr,
3600 (uint8_t *) host_addr);
3602 chunk = reg->key.chunk;
3603 host_addr = block->local_host_addr +
3604 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3605 /* Check for particularly bad chunk value */
3606 if (host_addr < (void *)block->local_host_addr) {
3607 error_report("rdma: bad chunk for block %s"
3609 block->block_name, reg->key.chunk);
3614 chunk_start = ram_chunk_start(block, chunk);
3615 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3616 if (qemu_rdma_register_and_get_keys(rdma, block,
3617 (uintptr_t)host_addr, NULL, ®_result->rkey,
3618 chunk, chunk_start, chunk_end)) {
3619 error_report("cannot get rkey");
3624 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3626 trace_qemu_rdma_registration_handle_register_rkey(
3629 result_to_network(reg_result);
3632 ret = qemu_rdma_post_send_control(rdma,
3633 (uint8_t *) results, ®_resp);
3636 error_report("Failed to send control buffer");
3640 case RDMA_CONTROL_UNREGISTER_REQUEST:
3641 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3642 unreg_resp.repeat = head.repeat;
3643 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3645 for (count = 0; count < head.repeat; count++) {
3646 reg = ®isters[count];
3647 network_to_register(reg);
3649 trace_qemu_rdma_registration_handle_unregister_loop(count,
3650 reg->current_index, reg->key.chunk);
3652 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3654 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3655 block->pmr[reg->key.chunk] = NULL;
3658 perror("rdma unregistration chunk failed");
3663 rdma->total_registrations--;
3665 trace_qemu_rdma_registration_handle_unregister_success(
3669 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3672 error_report("Failed to send control buffer");
3676 case RDMA_CONTROL_REGISTER_RESULT:
3677 error_report("Invalid RESULT message at dest.");
3681 error_report("Unknown control message %s", control_desc(head.type));
3688 rdma->error_state = ret;
3695 * Called via a ram_control_load_hook during the initial RAM load section which
3696 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3698 * We've already built our local RAMBlock list, but not yet sent the list to
3702 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3709 rdma = atomic_rcu_read(&rioc->rdmain);
3716 /* Find the matching RAMBlock in our local list */
3717 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3718 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3725 error_report("RAMBlock '%s' not found on destination", name);
3730 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3731 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3732 rdma->next_src_index++;
3738 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3741 case RAM_CONTROL_BLOCK_REG:
3742 return rdma_block_notification_handle(opaque, data);
3744 case RAM_CONTROL_HOOK:
3745 return qemu_rdma_registration_handle(f, opaque);
3748 /* Shouldn't be called with any other values */
3753 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3754 uint64_t flags, void *data)
3756 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3760 rdma = atomic_rcu_read(&rioc->rdmaout);
3766 CHECK_ERROR_STATE();
3768 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3773 trace_qemu_rdma_registration_start(flags);
3774 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3782 * Inform dest that dynamic registrations are done for now.
3783 * First, flush writes, if any.
3785 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3786 uint64_t flags, void *data)
3788 Error *local_err = NULL, **errp = &local_err;
3789 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3791 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3795 rdma = atomic_rcu_read(&rioc->rdmaout);
3801 CHECK_ERROR_STATE();
3803 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3809 ret = qemu_rdma_drain_cq(f, rdma);
3815 if (flags == RAM_CONTROL_SETUP) {
3816 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3817 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3818 int reg_result_idx, i, nb_dest_blocks;
3820 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3821 trace_qemu_rdma_registration_stop_ram();
3824 * Make sure that we parallelize the pinning on both sides.
3825 * For very large guests, doing this serially takes a really
3826 * long time, so we have to 'interleave' the pinning locally
3827 * with the control messages by performing the pinning on this
3828 * side before we receive the control response from the other
3829 * side that the pinning has completed.
3831 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3832 ®_result_idx, rdma->pin_all ?
3833 qemu_rdma_reg_whole_ram_blocks : NULL);
3835 ERROR(errp, "receiving remote info!");
3840 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3843 * The protocol uses two different sets of rkeys (mutually exclusive):
3844 * 1. One key to represent the virtual address of the entire ram block.
3845 * (dynamic chunk registration disabled - pin everything with one rkey.)
3846 * 2. One to represent individual chunks within a ram block.
3847 * (dynamic chunk registration enabled - pin individual chunks.)
3849 * Once the capability is successfully negotiated, the destination transmits
3850 * the keys to use (or sends them later) including the virtual addresses
3851 * and then propagates the remote ram block descriptions to his local copy.
3854 if (local->nb_blocks != nb_dest_blocks) {
3855 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3856 "Your QEMU command line parameters are probably "
3857 "not identical on both the source and destination.",
3858 local->nb_blocks, nb_dest_blocks);
3859 rdma->error_state = -EINVAL;
3864 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3865 memcpy(rdma->dest_blocks,
3866 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3867 for (i = 0; i < nb_dest_blocks; i++) {
3868 network_to_dest_block(&rdma->dest_blocks[i]);
3870 /* We require that the blocks are in the same order */
3871 if (rdma->dest_blocks[i].length != local->block[i].length) {
3872 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3873 "vs %" PRIu64, local->block[i].block_name, i,
3874 local->block[i].length,
3875 rdma->dest_blocks[i].length);
3876 rdma->error_state = -EINVAL;
3880 local->block[i].remote_host_addr =
3881 rdma->dest_blocks[i].remote_host_addr;
3882 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3886 trace_qemu_rdma_registration_stop(flags);
3888 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3889 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3898 rdma->error_state = ret;
3903 static const QEMUFileHooks rdma_read_hooks = {
3904 .hook_ram_load = rdma_load_hook,
3907 static const QEMUFileHooks rdma_write_hooks = {
3908 .before_ram_iterate = qemu_rdma_registration_start,
3909 .after_ram_iterate = qemu_rdma_registration_stop,
3910 .save_page = qemu_rdma_save_page,
3914 static void qio_channel_rdma_finalize(Object *obj)
3916 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3918 qemu_rdma_cleanup(rioc->rdmain);
3919 g_free(rioc->rdmain);
3920 rioc->rdmain = NULL;
3922 if (rioc->rdmaout) {
3923 qemu_rdma_cleanup(rioc->rdmaout);
3924 g_free(rioc->rdmaout);
3925 rioc->rdmaout = NULL;
3929 static void qio_channel_rdma_class_init(ObjectClass *klass,
3930 void *class_data G_GNUC_UNUSED)
3932 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3934 ioc_klass->io_writev = qio_channel_rdma_writev;
3935 ioc_klass->io_readv = qio_channel_rdma_readv;
3936 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3937 ioc_klass->io_close = qio_channel_rdma_close;
3938 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3939 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3940 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3943 static const TypeInfo qio_channel_rdma_info = {
3944 .parent = TYPE_QIO_CHANNEL,
3945 .name = TYPE_QIO_CHANNEL_RDMA,
3946 .instance_size = sizeof(QIOChannelRDMA),
3947 .instance_finalize = qio_channel_rdma_finalize,
3948 .class_init = qio_channel_rdma_class_init,
3951 static void qio_channel_rdma_register_types(void)
3953 type_register_static(&qio_channel_rdma_info);
3956 type_init(qio_channel_rdma_register_types);
3958 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3960 QIOChannelRDMA *rioc;
3962 if (qemu_file_mode_is_not_valid(mode)) {
3966 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3968 if (mode[0] == 'w') {
3969 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3970 rioc->rdmaout = rdma;
3971 rioc->rdmain = rdma->return_path;
3972 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3974 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3975 rioc->rdmain = rdma;
3976 rioc->rdmaout = rdma->return_path;
3977 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3983 static void rdma_accept_incoming_migration(void *opaque)
3985 RDMAContext *rdma = opaque;
3988 Error *local_err = NULL, **errp = &local_err;
3990 trace_qemu_rdma_accept_incoming_migration();
3991 ret = qemu_rdma_accept(rdma);
3994 ERROR(errp, "RDMA Migration initialization failed!");
3998 trace_qemu_rdma_accept_incoming_migration_accepted();
4000 if (rdma->is_return_path) {
4004 f = qemu_fopen_rdma(rdma, "rb");
4006 ERROR(errp, "could not qemu_fopen_rdma!");
4007 qemu_rdma_cleanup(rdma);
4011 rdma->migration_started_on_destination = 1;
4012 migration_fd_process_incoming(f);
4015 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4018 RDMAContext *rdma, *rdma_return_path = NULL;
4019 Error *local_err = NULL;
4021 trace_rdma_start_incoming_migration();
4022 rdma = qemu_rdma_data_init(host_port, &local_err);
4028 ret = qemu_rdma_dest_init(rdma, &local_err);
4034 trace_rdma_start_incoming_migration_after_dest_init();
4036 ret = rdma_listen(rdma->listen_id, 5);
4039 ERROR(errp, "listening on socket!");
4043 trace_rdma_start_incoming_migration_after_rdma_listen();
4045 /* initialize the RDMAContext for return path */
4046 if (migrate_postcopy()) {
4047 rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4049 if (rdma_return_path == NULL) {
4053 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4056 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4057 NULL, (void *)(intptr_t)rdma);
4060 error_propagate(errp, local_err);
4062 g_free(rdma_return_path);
4065 void rdma_start_outgoing_migration(void *opaque,
4066 const char *host_port, Error **errp)
4068 MigrationState *s = opaque;
4069 RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
4070 RDMAContext *rdma_return_path = NULL;
4077 ret = qemu_rdma_source_init(rdma,
4078 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4084 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4085 ret = qemu_rdma_connect(rdma, errp);
4091 /* RDMA postcopy need a seprate queue pair for return path */
4092 if (migrate_postcopy()) {
4093 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4095 if (rdma_return_path == NULL) {
4099 ret = qemu_rdma_source_init(rdma_return_path,
4100 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4106 ret = qemu_rdma_connect(rdma_return_path, errp);
4112 rdma->return_path = rdma_return_path;
4113 rdma_return_path->return_path = rdma;
4114 rdma_return_path->is_return_path = true;
4117 trace_rdma_start_outgoing_migration_after_rdma_connect();
4119 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4120 migrate_fd_connect(s, NULL);
4124 g_free(rdma_return_path);