]> Git Repo - qemu.git/blob - migration/rdma.c
migration/rdma: Fix qemu_rdma_cleanup null check
[qemu.git] / migration / rdma.c
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <[email protected]>
9  *  Jiuxing Liu <[email protected]>
10  *  Daniel P. Berrange <[email protected]>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
31 #include <netdb.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
34 #include "trace.h"
35
36 /*
37  * Print and error on both the Monitor and the Log file.
38  */
39 #define ERROR(errp, fmt, ...) \
40     do { \
41         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42         if (errp && (*(errp) == NULL)) { \
43             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
44         } \
45     } while (0)
46
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
48
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
52
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
54
55 /*
56  * This is only for non-live state being migrated.
57  * Instead of RDMA_WRITE messages, we use RDMA_SEND
58  * messages for that state, which requires a different
59  * delivery design than main memory.
60  */
61 #define RDMA_SEND_INCREMENT 32768
62
63 /*
64  * Maximum size infiniband SEND message
65  */
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
68
69 #define RDMA_CONTROL_VERSION_CURRENT 1
70 /*
71  * Capabilities for negotiation.
72  */
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
74
75 /*
76  * Add the other flags above to this list of known capabilities
77  * as they are introduced.
78  */
79 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
80
81 #define CHECK_ERROR_STATE() \
82     do { \
83         if (rdma->error_state) { \
84             if (!rdma->error_reported) { \
85                 error_report("RDMA is in an error state waiting migration" \
86                                 " to abort!"); \
87                 rdma->error_reported = 1; \
88             } \
89             rcu_read_unlock(); \
90             return rdma->error_state; \
91         } \
92     } while (0)
93
94 /*
95  * A work request ID is 64-bits and we split up these bits
96  * into 3 parts:
97  *
98  * bits 0-15 : type of control message, 2^16
99  * bits 16-29: ram block index, 2^14
100  * bits 30-63: ram block chunk number, 2^34
101  *
102  * The last two bit ranges are only used for RDMA writes,
103  * in order to track their completion and potentially
104  * also track unregistration status of the message.
105  */
106 #define RDMA_WRID_TYPE_SHIFT  0UL
107 #define RDMA_WRID_BLOCK_SHIFT 16UL
108 #define RDMA_WRID_CHUNK_SHIFT 30UL
109
110 #define RDMA_WRID_TYPE_MASK \
111     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
112
113 #define RDMA_WRID_BLOCK_MASK \
114     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
115
116 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
117
118 /*
119  * RDMA migration protocol:
120  * 1. RDMA Writes (data messages, i.e. RAM)
121  * 2. IB Send/Recv (control channel messages)
122  */
123 enum {
124     RDMA_WRID_NONE = 0,
125     RDMA_WRID_RDMA_WRITE = 1,
126     RDMA_WRID_SEND_CONTROL = 2000,
127     RDMA_WRID_RECV_CONTROL = 4000,
128 };
129
130 static const char *wrid_desc[] = {
131     [RDMA_WRID_NONE] = "NONE",
132     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
133     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
134     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
135 };
136
137 /*
138  * Work request IDs for IB SEND messages only (not RDMA writes).
139  * This is used by the migration protocol to transmit
140  * control messages (such as device state and registration commands)
141  *
142  * We could use more WRs, but we have enough for now.
143  */
144 enum {
145     RDMA_WRID_READY = 0,
146     RDMA_WRID_DATA,
147     RDMA_WRID_CONTROL,
148     RDMA_WRID_MAX,
149 };
150
151 /*
152  * SEND/RECV IB Control Messages.
153  */
154 enum {
155     RDMA_CONTROL_NONE = 0,
156     RDMA_CONTROL_ERROR,
157     RDMA_CONTROL_READY,               /* ready to receive */
158     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
159     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
160     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
161     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
162     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
163     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
164     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
165     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
166     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
167 };
168
169
170 /*
171  * Memory and MR structures used to represent an IB Send/Recv work request.
172  * This is *not* used for RDMA writes, only IB Send/Recv.
173  */
174 typedef struct {
175     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
176     struct   ibv_mr *control_mr;               /* registration metadata */
177     size_t   control_len;                      /* length of the message */
178     uint8_t *control_curr;                     /* start of unconsumed bytes */
179 } RDMAWorkRequestData;
180
181 /*
182  * Negotiate RDMA capabilities during connection-setup time.
183  */
184 typedef struct {
185     uint32_t version;
186     uint32_t flags;
187 } RDMACapabilities;
188
189 static void caps_to_network(RDMACapabilities *cap)
190 {
191     cap->version = htonl(cap->version);
192     cap->flags = htonl(cap->flags);
193 }
194
195 static void network_to_caps(RDMACapabilities *cap)
196 {
197     cap->version = ntohl(cap->version);
198     cap->flags = ntohl(cap->flags);
199 }
200
201 /*
202  * Representation of a RAMBlock from an RDMA perspective.
203  * This is not transmitted, only local.
204  * This and subsequent structures cannot be linked lists
205  * because we're using a single IB message to transmit
206  * the information. It's small anyway, so a list is overkill.
207  */
208 typedef struct RDMALocalBlock {
209     char          *block_name;
210     uint8_t       *local_host_addr; /* local virtual address */
211     uint64_t       remote_host_addr; /* remote virtual address */
212     uint64_t       offset;
213     uint64_t       length;
214     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
215     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
216     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
217     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
218     int            index;           /* which block are we */
219     unsigned int   src_index;       /* (Only used on dest) */
220     bool           is_ram_block;
221     int            nb_chunks;
222     unsigned long *transit_bitmap;
223     unsigned long *unregister_bitmap;
224 } RDMALocalBlock;
225
226 /*
227  * Also represents a RAMblock, but only on the dest.
228  * This gets transmitted by the dest during connection-time
229  * to the source VM and then is used to populate the
230  * corresponding RDMALocalBlock with
231  * the information needed to perform the actual RDMA.
232  */
233 typedef struct QEMU_PACKED RDMADestBlock {
234     uint64_t remote_host_addr;
235     uint64_t offset;
236     uint64_t length;
237     uint32_t remote_rkey;
238     uint32_t padding;
239 } RDMADestBlock;
240
241 static const char *control_desc(unsigned int rdma_control)
242 {
243     static const char *strs[] = {
244         [RDMA_CONTROL_NONE] = "NONE",
245         [RDMA_CONTROL_ERROR] = "ERROR",
246         [RDMA_CONTROL_READY] = "READY",
247         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
248         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
249         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
250         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
251         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
252         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
253         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
254         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
255         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
256     };
257
258     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
259         return "??BAD CONTROL VALUE??";
260     }
261
262     return strs[rdma_control];
263 }
264
265 static uint64_t htonll(uint64_t v)
266 {
267     union { uint32_t lv[2]; uint64_t llv; } u;
268     u.lv[0] = htonl(v >> 32);
269     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
270     return u.llv;
271 }
272
273 static uint64_t ntohll(uint64_t v) {
274     union { uint32_t lv[2]; uint64_t llv; } u;
275     u.llv = v;
276     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
277 }
278
279 static void dest_block_to_network(RDMADestBlock *db)
280 {
281     db->remote_host_addr = htonll(db->remote_host_addr);
282     db->offset = htonll(db->offset);
283     db->length = htonll(db->length);
284     db->remote_rkey = htonl(db->remote_rkey);
285 }
286
287 static void network_to_dest_block(RDMADestBlock *db)
288 {
289     db->remote_host_addr = ntohll(db->remote_host_addr);
290     db->offset = ntohll(db->offset);
291     db->length = ntohll(db->length);
292     db->remote_rkey = ntohl(db->remote_rkey);
293 }
294
295 /*
296  * Virtual address of the above structures used for transmitting
297  * the RAMBlock descriptions at connection-time.
298  * This structure is *not* transmitted.
299  */
300 typedef struct RDMALocalBlocks {
301     int nb_blocks;
302     bool     init;             /* main memory init complete */
303     RDMALocalBlock *block;
304 } RDMALocalBlocks;
305
306 /*
307  * Main data structure for RDMA state.
308  * While there is only one copy of this structure being allocated right now,
309  * this is the place where one would start if you wanted to consider
310  * having more than one RDMA connection open at the same time.
311  */
312 typedef struct RDMAContext {
313     char *host;
314     int port;
315
316     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
317
318     /*
319      * This is used by *_exchange_send() to figure out whether or not
320      * the initial "READY" message has already been received or not.
321      * This is because other functions may potentially poll() and detect
322      * the READY message before send() does, in which case we need to
323      * know if it completed.
324      */
325     int control_ready_expected;
326
327     /* number of outstanding writes */
328     int nb_sent;
329
330     /* store info about current buffer so that we can
331        merge it with future sends */
332     uint64_t current_addr;
333     uint64_t current_length;
334     /* index of ram block the current buffer belongs to */
335     int current_index;
336     /* index of the chunk in the current ram block */
337     int current_chunk;
338
339     bool pin_all;
340
341     /*
342      * infiniband-specific variables for opening the device
343      * and maintaining connection state and so forth.
344      *
345      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
346      * cm_id->verbs, cm_id->channel, and cm_id->qp.
347      */
348     struct rdma_cm_id *cm_id;               /* connection manager ID */
349     struct rdma_cm_id *listen_id;
350     bool connected;
351
352     struct ibv_context          *verbs;
353     struct rdma_event_channel   *channel;
354     struct ibv_qp *qp;                      /* queue pair */
355     struct ibv_comp_channel *comp_channel;  /* completion channel */
356     struct ibv_pd *pd;                      /* protection domain */
357     struct ibv_cq *cq;                      /* completion queue */
358
359     /*
360      * If a previous write failed (perhaps because of a failed
361      * memory registration, then do not attempt any future work
362      * and remember the error state.
363      */
364     int error_state;
365     int error_reported;
366     int received_error;
367
368     /*
369      * Description of ram blocks used throughout the code.
370      */
371     RDMALocalBlocks local_ram_blocks;
372     RDMADestBlock  *dest_blocks;
373
374     /* Index of the next RAMBlock received during block registration */
375     unsigned int    next_src_index;
376
377     /*
378      * Migration on *destination* started.
379      * Then use coroutine yield function.
380      * Source runs in a thread, so we don't care.
381      */
382     int migration_started_on_destination;
383
384     int total_registrations;
385     int total_writes;
386
387     int unregister_current, unregister_next;
388     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
389
390     GHashTable *blockmap;
391
392     /* the RDMAContext for return path */
393     struct RDMAContext *return_path;
394     bool is_return_path;
395 } RDMAContext;
396
397 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
398 #define QIO_CHANNEL_RDMA(obj)                                     \
399     OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
400
401 typedef struct QIOChannelRDMA QIOChannelRDMA;
402
403
404 struct QIOChannelRDMA {
405     QIOChannel parent;
406     RDMAContext *rdmain;
407     RDMAContext *rdmaout;
408     QEMUFile *file;
409     bool blocking; /* XXX we don't actually honour this yet */
410 };
411
412 /*
413  * Main structure for IB Send/Recv control messages.
414  * This gets prepended at the beginning of every Send/Recv.
415  */
416 typedef struct QEMU_PACKED {
417     uint32_t len;     /* Total length of data portion */
418     uint32_t type;    /* which control command to perform */
419     uint32_t repeat;  /* number of commands in data portion of same type */
420     uint32_t padding;
421 } RDMAControlHeader;
422
423 static void control_to_network(RDMAControlHeader *control)
424 {
425     control->type = htonl(control->type);
426     control->len = htonl(control->len);
427     control->repeat = htonl(control->repeat);
428 }
429
430 static void network_to_control(RDMAControlHeader *control)
431 {
432     control->type = ntohl(control->type);
433     control->len = ntohl(control->len);
434     control->repeat = ntohl(control->repeat);
435 }
436
437 /*
438  * Register a single Chunk.
439  * Information sent by the source VM to inform the dest
440  * to register an single chunk of memory before we can perform
441  * the actual RDMA operation.
442  */
443 typedef struct QEMU_PACKED {
444     union QEMU_PACKED {
445         uint64_t current_addr;  /* offset into the ram_addr_t space */
446         uint64_t chunk;         /* chunk to lookup if unregistering */
447     } key;
448     uint32_t current_index; /* which ramblock the chunk belongs to */
449     uint32_t padding;
450     uint64_t chunks;            /* how many sequential chunks to register */
451 } RDMARegister;
452
453 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
454 {
455     RDMALocalBlock *local_block;
456     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
457
458     if (local_block->is_ram_block) {
459         /*
460          * current_addr as passed in is an address in the local ram_addr_t
461          * space, we need to translate this for the destination
462          */
463         reg->key.current_addr -= local_block->offset;
464         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
465     }
466     reg->key.current_addr = htonll(reg->key.current_addr);
467     reg->current_index = htonl(reg->current_index);
468     reg->chunks = htonll(reg->chunks);
469 }
470
471 static void network_to_register(RDMARegister *reg)
472 {
473     reg->key.current_addr = ntohll(reg->key.current_addr);
474     reg->current_index = ntohl(reg->current_index);
475     reg->chunks = ntohll(reg->chunks);
476 }
477
478 typedef struct QEMU_PACKED {
479     uint32_t value;     /* if zero, we will madvise() */
480     uint32_t block_idx; /* which ram block index */
481     uint64_t offset;    /* Address in remote ram_addr_t space */
482     uint64_t length;    /* length of the chunk */
483 } RDMACompress;
484
485 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
486 {
487     comp->value = htonl(comp->value);
488     /*
489      * comp->offset as passed in is an address in the local ram_addr_t
490      * space, we need to translate this for the destination
491      */
492     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
493     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
494     comp->block_idx = htonl(comp->block_idx);
495     comp->offset = htonll(comp->offset);
496     comp->length = htonll(comp->length);
497 }
498
499 static void network_to_compress(RDMACompress *comp)
500 {
501     comp->value = ntohl(comp->value);
502     comp->block_idx = ntohl(comp->block_idx);
503     comp->offset = ntohll(comp->offset);
504     comp->length = ntohll(comp->length);
505 }
506
507 /*
508  * The result of the dest's memory registration produces an "rkey"
509  * which the source VM must reference in order to perform
510  * the RDMA operation.
511  */
512 typedef struct QEMU_PACKED {
513     uint32_t rkey;
514     uint32_t padding;
515     uint64_t host_addr;
516 } RDMARegisterResult;
517
518 static void result_to_network(RDMARegisterResult *result)
519 {
520     result->rkey = htonl(result->rkey);
521     result->host_addr = htonll(result->host_addr);
522 };
523
524 static void network_to_result(RDMARegisterResult *result)
525 {
526     result->rkey = ntohl(result->rkey);
527     result->host_addr = ntohll(result->host_addr);
528 };
529
530 const char *print_wrid(int wrid);
531 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
532                                    uint8_t *data, RDMAControlHeader *resp,
533                                    int *resp_idx,
534                                    int (*callback)(RDMAContext *rdma));
535
536 static inline uint64_t ram_chunk_index(const uint8_t *start,
537                                        const uint8_t *host)
538 {
539     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
540 }
541
542 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
543                                        uint64_t i)
544 {
545     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
546                                   (i << RDMA_REG_CHUNK_SHIFT));
547 }
548
549 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
550                                      uint64_t i)
551 {
552     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
553                                          (1UL << RDMA_REG_CHUNK_SHIFT);
554
555     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
556         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
557     }
558
559     return result;
560 }
561
562 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
563                          void *host_addr,
564                          ram_addr_t block_offset, uint64_t length)
565 {
566     RDMALocalBlocks *local = &rdma->local_ram_blocks;
567     RDMALocalBlock *block;
568     RDMALocalBlock *old = local->block;
569
570     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
571
572     if (local->nb_blocks) {
573         int x;
574
575         if (rdma->blockmap) {
576             for (x = 0; x < local->nb_blocks; x++) {
577                 g_hash_table_remove(rdma->blockmap,
578                                     (void *)(uintptr_t)old[x].offset);
579                 g_hash_table_insert(rdma->blockmap,
580                                     (void *)(uintptr_t)old[x].offset,
581                                     &local->block[x]);
582             }
583         }
584         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
585         g_free(old);
586     }
587
588     block = &local->block[local->nb_blocks];
589
590     block->block_name = g_strdup(block_name);
591     block->local_host_addr = host_addr;
592     block->offset = block_offset;
593     block->length = length;
594     block->index = local->nb_blocks;
595     block->src_index = ~0U; /* Filled in by the receipt of the block list */
596     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
597     block->transit_bitmap = bitmap_new(block->nb_chunks);
598     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
599     block->unregister_bitmap = bitmap_new(block->nb_chunks);
600     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
601     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
602
603     block->is_ram_block = local->init ? false : true;
604
605     if (rdma->blockmap) {
606         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
607     }
608
609     trace_rdma_add_block(block_name, local->nb_blocks,
610                          (uintptr_t) block->local_host_addr,
611                          block->offset, block->length,
612                          (uintptr_t) (block->local_host_addr + block->length),
613                          BITS_TO_LONGS(block->nb_chunks) *
614                              sizeof(unsigned long) * 8,
615                          block->nb_chunks);
616
617     local->nb_blocks++;
618
619     return 0;
620 }
621
622 /*
623  * Memory regions need to be registered with the device and queue pairs setup
624  * in advanced before the migration starts. This tells us where the RAM blocks
625  * are so that we can register them individually.
626  */
627 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
628     ram_addr_t block_offset, ram_addr_t length, void *opaque)
629 {
630     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
631 }
632
633 /*
634  * Identify the RAMBlocks and their quantity. They will be references to
635  * identify chunk boundaries inside each RAMBlock and also be referenced
636  * during dynamic page registration.
637  */
638 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
639 {
640     RDMALocalBlocks *local = &rdma->local_ram_blocks;
641
642     assert(rdma->blockmap == NULL);
643     memset(local, 0, sizeof *local);
644     qemu_ram_foreach_migratable_block(qemu_rdma_init_one_block, rdma);
645     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
646     rdma->dest_blocks = g_new0(RDMADestBlock,
647                                rdma->local_ram_blocks.nb_blocks);
648     local->init = true;
649     return 0;
650 }
651
652 /*
653  * Note: If used outside of cleanup, the caller must ensure that the destination
654  * block structures are also updated
655  */
656 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
657 {
658     RDMALocalBlocks *local = &rdma->local_ram_blocks;
659     RDMALocalBlock *old = local->block;
660     int x;
661
662     if (rdma->blockmap) {
663         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
664     }
665     if (block->pmr) {
666         int j;
667
668         for (j = 0; j < block->nb_chunks; j++) {
669             if (!block->pmr[j]) {
670                 continue;
671             }
672             ibv_dereg_mr(block->pmr[j]);
673             rdma->total_registrations--;
674         }
675         g_free(block->pmr);
676         block->pmr = NULL;
677     }
678
679     if (block->mr) {
680         ibv_dereg_mr(block->mr);
681         rdma->total_registrations--;
682         block->mr = NULL;
683     }
684
685     g_free(block->transit_bitmap);
686     block->transit_bitmap = NULL;
687
688     g_free(block->unregister_bitmap);
689     block->unregister_bitmap = NULL;
690
691     g_free(block->remote_keys);
692     block->remote_keys = NULL;
693
694     g_free(block->block_name);
695     block->block_name = NULL;
696
697     if (rdma->blockmap) {
698         for (x = 0; x < local->nb_blocks; x++) {
699             g_hash_table_remove(rdma->blockmap,
700                                 (void *)(uintptr_t)old[x].offset);
701         }
702     }
703
704     if (local->nb_blocks > 1) {
705
706         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
707
708         if (block->index) {
709             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
710         }
711
712         if (block->index < (local->nb_blocks - 1)) {
713             memcpy(local->block + block->index, old + (block->index + 1),
714                 sizeof(RDMALocalBlock) *
715                     (local->nb_blocks - (block->index + 1)));
716             for (x = block->index; x < local->nb_blocks - 1; x++) {
717                 local->block[x].index--;
718             }
719         }
720     } else {
721         assert(block == local->block);
722         local->block = NULL;
723     }
724
725     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
726                            block->offset, block->length,
727                             (uintptr_t)(block->local_host_addr + block->length),
728                            BITS_TO_LONGS(block->nb_chunks) *
729                                sizeof(unsigned long) * 8, block->nb_chunks);
730
731     g_free(old);
732
733     local->nb_blocks--;
734
735     if (local->nb_blocks && rdma->blockmap) {
736         for (x = 0; x < local->nb_blocks; x++) {
737             g_hash_table_insert(rdma->blockmap,
738                                 (void *)(uintptr_t)local->block[x].offset,
739                                 &local->block[x]);
740         }
741     }
742
743     return 0;
744 }
745
746 /*
747  * Put in the log file which RDMA device was opened and the details
748  * associated with that device.
749  */
750 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
751 {
752     struct ibv_port_attr port;
753
754     if (ibv_query_port(verbs, 1, &port)) {
755         error_report("Failed to query port information");
756         return;
757     }
758
759     printf("%s RDMA Device opened: kernel name %s "
760            "uverbs device name %s, "
761            "infiniband_verbs class device path %s, "
762            "infiniband class device path %s, "
763            "transport: (%d) %s\n",
764                 who,
765                 verbs->device->name,
766                 verbs->device->dev_name,
767                 verbs->device->dev_path,
768                 verbs->device->ibdev_path,
769                 port.link_layer,
770                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
771                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
772                     ? "Ethernet" : "Unknown"));
773 }
774
775 /*
776  * Put in the log file the RDMA gid addressing information,
777  * useful for folks who have trouble understanding the
778  * RDMA device hierarchy in the kernel.
779  */
780 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
781 {
782     char sgid[33];
783     char dgid[33];
784     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
785     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
786     trace_qemu_rdma_dump_gid(who, sgid, dgid);
787 }
788
789 /*
790  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
791  * We will try the next addrinfo struct, and fail if there are
792  * no other valid addresses to bind against.
793  *
794  * If user is listening on '[::]', then we will not have a opened a device
795  * yet and have no way of verifying if the device is RoCE or not.
796  *
797  * In this case, the source VM will throw an error for ALL types of
798  * connections (both IPv4 and IPv6) if the destination machine does not have
799  * a regular infiniband network available for use.
800  *
801  * The only way to guarantee that an error is thrown for broken kernels is
802  * for the management software to choose a *specific* interface at bind time
803  * and validate what time of hardware it is.
804  *
805  * Unfortunately, this puts the user in a fix:
806  *
807  *  If the source VM connects with an IPv4 address without knowing that the
808  *  destination has bound to '[::]' the migration will unconditionally fail
809  *  unless the management software is explicitly listening on the IPv4
810  *  address while using a RoCE-based device.
811  *
812  *  If the source VM connects with an IPv6 address, then we're OK because we can
813  *  throw an error on the source (and similarly on the destination).
814  *
815  *  But in mixed environments, this will be broken for a while until it is fixed
816  *  inside linux.
817  *
818  * We do provide a *tiny* bit of help in this function: We can list all of the
819  * devices in the system and check to see if all the devices are RoCE or
820  * Infiniband.
821  *
822  * If we detect that we have a *pure* RoCE environment, then we can safely
823  * thrown an error even if the management software has specified '[::]' as the
824  * bind address.
825  *
826  * However, if there is are multiple hetergeneous devices, then we cannot make
827  * this assumption and the user just has to be sure they know what they are
828  * doing.
829  *
830  * Patches are being reviewed on linux-rdma.
831  */
832 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
833 {
834     struct ibv_port_attr port_attr;
835
836     /* This bug only exists in linux, to our knowledge. */
837 #ifdef CONFIG_LINUX
838
839     /*
840      * Verbs are only NULL if management has bound to '[::]'.
841      *
842      * Let's iterate through all the devices and see if there any pure IB
843      * devices (non-ethernet).
844      *
845      * If not, then we can safely proceed with the migration.
846      * Otherwise, there are no guarantees until the bug is fixed in linux.
847      */
848     if (!verbs) {
849         int num_devices, x;
850         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
851         bool roce_found = false;
852         bool ib_found = false;
853
854         for (x = 0; x < num_devices; x++) {
855             verbs = ibv_open_device(dev_list[x]);
856             if (!verbs) {
857                 if (errno == EPERM) {
858                     continue;
859                 } else {
860                     return -EINVAL;
861                 }
862             }
863
864             if (ibv_query_port(verbs, 1, &port_attr)) {
865                 ibv_close_device(verbs);
866                 ERROR(errp, "Could not query initial IB port");
867                 return -EINVAL;
868             }
869
870             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
871                 ib_found = true;
872             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
873                 roce_found = true;
874             }
875
876             ibv_close_device(verbs);
877
878         }
879
880         if (roce_found) {
881             if (ib_found) {
882                 fprintf(stderr, "WARN: migrations may fail:"
883                                 " IPv6 over RoCE / iWARP in linux"
884                                 " is broken. But since you appear to have a"
885                                 " mixed RoCE / IB environment, be sure to only"
886                                 " migrate over the IB fabric until the kernel "
887                                 " fixes the bug.\n");
888             } else {
889                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
890                             " and your management software has specified '[::]'"
891                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
892                 return -ENONET;
893             }
894         }
895
896         return 0;
897     }
898
899     /*
900      * If we have a verbs context, that means that some other than '[::]' was
901      * used by the management software for binding. In which case we can
902      * actually warn the user about a potentially broken kernel.
903      */
904
905     /* IB ports start with 1, not 0 */
906     if (ibv_query_port(verbs, 1, &port_attr)) {
907         ERROR(errp, "Could not query initial IB port");
908         return -EINVAL;
909     }
910
911     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
912         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
913                     "(but patches on linux-rdma in progress)");
914         return -ENONET;
915     }
916
917 #endif
918
919     return 0;
920 }
921
922 /*
923  * Figure out which RDMA device corresponds to the requested IP hostname
924  * Also create the initial connection manager identifiers for opening
925  * the connection.
926  */
927 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
928 {
929     int ret;
930     struct rdma_addrinfo *res;
931     char port_str[16];
932     struct rdma_cm_event *cm_event;
933     char ip[40] = "unknown";
934     struct rdma_addrinfo *e;
935
936     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
937         ERROR(errp, "RDMA hostname has not been set");
938         return -EINVAL;
939     }
940
941     /* create CM channel */
942     rdma->channel = rdma_create_event_channel();
943     if (!rdma->channel) {
944         ERROR(errp, "could not create CM channel");
945         return -EINVAL;
946     }
947
948     /* create CM id */
949     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
950     if (ret) {
951         ERROR(errp, "could not create channel id");
952         goto err_resolve_create_id;
953     }
954
955     snprintf(port_str, 16, "%d", rdma->port);
956     port_str[15] = '\0';
957
958     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
959     if (ret < 0) {
960         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
961         goto err_resolve_get_addr;
962     }
963
964     for (e = res; e != NULL; e = e->ai_next) {
965         inet_ntop(e->ai_family,
966             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
967         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
968
969         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
970                 RDMA_RESOLVE_TIMEOUT_MS);
971         if (!ret) {
972             if (e->ai_family == AF_INET6) {
973                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
974                 if (ret) {
975                     continue;
976                 }
977             }
978             goto route;
979         }
980     }
981
982     ERROR(errp, "could not resolve address %s", rdma->host);
983     goto err_resolve_get_addr;
984
985 route:
986     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
987
988     ret = rdma_get_cm_event(rdma->channel, &cm_event);
989     if (ret) {
990         ERROR(errp, "could not perform event_addr_resolved");
991         goto err_resolve_get_addr;
992     }
993
994     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
995         ERROR(errp, "result not equal to event_addr_resolved %s",
996                 rdma_event_str(cm_event->event));
997         perror("rdma_resolve_addr");
998         rdma_ack_cm_event(cm_event);
999         ret = -EINVAL;
1000         goto err_resolve_get_addr;
1001     }
1002     rdma_ack_cm_event(cm_event);
1003
1004     /* resolve route */
1005     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1006     if (ret) {
1007         ERROR(errp, "could not resolve rdma route");
1008         goto err_resolve_get_addr;
1009     }
1010
1011     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1012     if (ret) {
1013         ERROR(errp, "could not perform event_route_resolved");
1014         goto err_resolve_get_addr;
1015     }
1016     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1017         ERROR(errp, "result not equal to event_route_resolved: %s",
1018                         rdma_event_str(cm_event->event));
1019         rdma_ack_cm_event(cm_event);
1020         ret = -EINVAL;
1021         goto err_resolve_get_addr;
1022     }
1023     rdma_ack_cm_event(cm_event);
1024     rdma->verbs = rdma->cm_id->verbs;
1025     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1026     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1027     return 0;
1028
1029 err_resolve_get_addr:
1030     rdma_destroy_id(rdma->cm_id);
1031     rdma->cm_id = NULL;
1032 err_resolve_create_id:
1033     rdma_destroy_event_channel(rdma->channel);
1034     rdma->channel = NULL;
1035     return ret;
1036 }
1037
1038 /*
1039  * Create protection domain and completion queues
1040  */
1041 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1042 {
1043     /* allocate pd */
1044     rdma->pd = ibv_alloc_pd(rdma->verbs);
1045     if (!rdma->pd) {
1046         error_report("failed to allocate protection domain");
1047         return -1;
1048     }
1049
1050     /* create completion channel */
1051     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1052     if (!rdma->comp_channel) {
1053         error_report("failed to allocate completion channel");
1054         goto err_alloc_pd_cq;
1055     }
1056
1057     /*
1058      * Completion queue can be filled by both read and write work requests,
1059      * so must reflect the sum of both possible queue sizes.
1060      */
1061     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1062             NULL, rdma->comp_channel, 0);
1063     if (!rdma->cq) {
1064         error_report("failed to allocate completion queue");
1065         goto err_alloc_pd_cq;
1066     }
1067
1068     return 0;
1069
1070 err_alloc_pd_cq:
1071     if (rdma->pd) {
1072         ibv_dealloc_pd(rdma->pd);
1073     }
1074     if (rdma->comp_channel) {
1075         ibv_destroy_comp_channel(rdma->comp_channel);
1076     }
1077     rdma->pd = NULL;
1078     rdma->comp_channel = NULL;
1079     return -1;
1080
1081 }
1082
1083 /*
1084  * Create queue pairs.
1085  */
1086 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1087 {
1088     struct ibv_qp_init_attr attr = { 0 };
1089     int ret;
1090
1091     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1092     attr.cap.max_recv_wr = 3;
1093     attr.cap.max_send_sge = 1;
1094     attr.cap.max_recv_sge = 1;
1095     attr.send_cq = rdma->cq;
1096     attr.recv_cq = rdma->cq;
1097     attr.qp_type = IBV_QPT_RC;
1098
1099     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1100     if (ret) {
1101         return -1;
1102     }
1103
1104     rdma->qp = rdma->cm_id->qp;
1105     return 0;
1106 }
1107
1108 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1109 {
1110     int i;
1111     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1112
1113     for (i = 0; i < local->nb_blocks; i++) {
1114         local->block[i].mr =
1115             ibv_reg_mr(rdma->pd,
1116                     local->block[i].local_host_addr,
1117                     local->block[i].length,
1118                     IBV_ACCESS_LOCAL_WRITE |
1119                     IBV_ACCESS_REMOTE_WRITE
1120                     );
1121         if (!local->block[i].mr) {
1122             perror("Failed to register local dest ram block!\n");
1123             break;
1124         }
1125         rdma->total_registrations++;
1126     }
1127
1128     if (i >= local->nb_blocks) {
1129         return 0;
1130     }
1131
1132     for (i--; i >= 0; i--) {
1133         ibv_dereg_mr(local->block[i].mr);
1134         rdma->total_registrations--;
1135     }
1136
1137     return -1;
1138
1139 }
1140
1141 /*
1142  * Find the ram block that corresponds to the page requested to be
1143  * transmitted by QEMU.
1144  *
1145  * Once the block is found, also identify which 'chunk' within that
1146  * block that the page belongs to.
1147  *
1148  * This search cannot fail or the migration will fail.
1149  */
1150 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1151                                       uintptr_t block_offset,
1152                                       uint64_t offset,
1153                                       uint64_t length,
1154                                       uint64_t *block_index,
1155                                       uint64_t *chunk_index)
1156 {
1157     uint64_t current_addr = block_offset + offset;
1158     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1159                                                 (void *) block_offset);
1160     assert(block);
1161     assert(current_addr >= block->offset);
1162     assert((current_addr + length) <= (block->offset + block->length));
1163
1164     *block_index = block->index;
1165     *chunk_index = ram_chunk_index(block->local_host_addr,
1166                 block->local_host_addr + (current_addr - block->offset));
1167
1168     return 0;
1169 }
1170
1171 /*
1172  * Register a chunk with IB. If the chunk was already registered
1173  * previously, then skip.
1174  *
1175  * Also return the keys associated with the registration needed
1176  * to perform the actual RDMA operation.
1177  */
1178 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1179         RDMALocalBlock *block, uintptr_t host_addr,
1180         uint32_t *lkey, uint32_t *rkey, int chunk,
1181         uint8_t *chunk_start, uint8_t *chunk_end)
1182 {
1183     if (block->mr) {
1184         if (lkey) {
1185             *lkey = block->mr->lkey;
1186         }
1187         if (rkey) {
1188             *rkey = block->mr->rkey;
1189         }
1190         return 0;
1191     }
1192
1193     /* allocate memory to store chunk MRs */
1194     if (!block->pmr) {
1195         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1196     }
1197
1198     /*
1199      * If 'rkey', then we're the destination, so grant access to the source.
1200      *
1201      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1202      */
1203     if (!block->pmr[chunk]) {
1204         uint64_t len = chunk_end - chunk_start;
1205
1206         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1207
1208         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1209                 chunk_start, len,
1210                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1211                         IBV_ACCESS_REMOTE_WRITE) : 0));
1212
1213         if (!block->pmr[chunk]) {
1214             perror("Failed to register chunk!");
1215             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1216                             " start %" PRIuPTR " end %" PRIuPTR
1217                             " host %" PRIuPTR
1218                             " local %" PRIuPTR " registrations: %d\n",
1219                             block->index, chunk, (uintptr_t)chunk_start,
1220                             (uintptr_t)chunk_end, host_addr,
1221                             (uintptr_t)block->local_host_addr,
1222                             rdma->total_registrations);
1223             return -1;
1224         }
1225         rdma->total_registrations++;
1226     }
1227
1228     if (lkey) {
1229         *lkey = block->pmr[chunk]->lkey;
1230     }
1231     if (rkey) {
1232         *rkey = block->pmr[chunk]->rkey;
1233     }
1234     return 0;
1235 }
1236
1237 /*
1238  * Register (at connection time) the memory used for control
1239  * channel messages.
1240  */
1241 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1242 {
1243     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1244             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1245             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1246     if (rdma->wr_data[idx].control_mr) {
1247         rdma->total_registrations++;
1248         return 0;
1249     }
1250     error_report("qemu_rdma_reg_control failed");
1251     return -1;
1252 }
1253
1254 const char *print_wrid(int wrid)
1255 {
1256     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1257         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1258     }
1259     return wrid_desc[wrid];
1260 }
1261
1262 /*
1263  * RDMA requires memory registration (mlock/pinning), but this is not good for
1264  * overcommitment.
1265  *
1266  * In preparation for the future where LRU information or workload-specific
1267  * writable writable working set memory access behavior is available to QEMU
1268  * it would be nice to have in place the ability to UN-register/UN-pin
1269  * particular memory regions from the RDMA hardware when it is determine that
1270  * those regions of memory will likely not be accessed again in the near future.
1271  *
1272  * While we do not yet have such information right now, the following
1273  * compile-time option allows us to perform a non-optimized version of this
1274  * behavior.
1275  *
1276  * By uncommenting this option, you will cause *all* RDMA transfers to be
1277  * unregistered immediately after the transfer completes on both sides of the
1278  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1279  *
1280  * This will have a terrible impact on migration performance, so until future
1281  * workload information or LRU information is available, do not attempt to use
1282  * this feature except for basic testing.
1283  */
1284 //#define RDMA_UNREGISTRATION_EXAMPLE
1285
1286 /*
1287  * Perform a non-optimized memory unregistration after every transfer
1288  * for demonstration purposes, only if pin-all is not requested.
1289  *
1290  * Potential optimizations:
1291  * 1. Start a new thread to run this function continuously
1292         - for bit clearing
1293         - and for receipt of unregister messages
1294  * 2. Use an LRU.
1295  * 3. Use workload hints.
1296  */
1297 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1298 {
1299     while (rdma->unregistrations[rdma->unregister_current]) {
1300         int ret;
1301         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1302         uint64_t chunk =
1303             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1304         uint64_t index =
1305             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1306         RDMALocalBlock *block =
1307             &(rdma->local_ram_blocks.block[index]);
1308         RDMARegister reg = { .current_index = index };
1309         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1310                                  };
1311         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1312                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1313                                    .repeat = 1,
1314                                  };
1315
1316         trace_qemu_rdma_unregister_waiting_proc(chunk,
1317                                                 rdma->unregister_current);
1318
1319         rdma->unregistrations[rdma->unregister_current] = 0;
1320         rdma->unregister_current++;
1321
1322         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1323             rdma->unregister_current = 0;
1324         }
1325
1326
1327         /*
1328          * Unregistration is speculative (because migration is single-threaded
1329          * and we cannot break the protocol's inifinband message ordering).
1330          * Thus, if the memory is currently being used for transmission,
1331          * then abort the attempt to unregister and try again
1332          * later the next time a completion is received for this memory.
1333          */
1334         clear_bit(chunk, block->unregister_bitmap);
1335
1336         if (test_bit(chunk, block->transit_bitmap)) {
1337             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1338             continue;
1339         }
1340
1341         trace_qemu_rdma_unregister_waiting_send(chunk);
1342
1343         ret = ibv_dereg_mr(block->pmr[chunk]);
1344         block->pmr[chunk] = NULL;
1345         block->remote_keys[chunk] = 0;
1346
1347         if (ret != 0) {
1348             perror("unregistration chunk failed");
1349             return -ret;
1350         }
1351         rdma->total_registrations--;
1352
1353         reg.key.chunk = chunk;
1354         register_to_network(rdma, &reg);
1355         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1356                                 &resp, NULL, NULL);
1357         if (ret < 0) {
1358             return ret;
1359         }
1360
1361         trace_qemu_rdma_unregister_waiting_complete(chunk);
1362     }
1363
1364     return 0;
1365 }
1366
1367 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1368                                          uint64_t chunk)
1369 {
1370     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1371
1372     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1373     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1374
1375     return result;
1376 }
1377
1378 /*
1379  * Set bit for unregistration in the next iteration.
1380  * We cannot transmit right here, but will unpin later.
1381  */
1382 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1383                                         uint64_t chunk, uint64_t wr_id)
1384 {
1385     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1386         error_report("rdma migration: queue is full");
1387     } else {
1388         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1389
1390         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1391             trace_qemu_rdma_signal_unregister_append(chunk,
1392                                                      rdma->unregister_next);
1393
1394             rdma->unregistrations[rdma->unregister_next++] =
1395                     qemu_rdma_make_wrid(wr_id, index, chunk);
1396
1397             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1398                 rdma->unregister_next = 0;
1399             }
1400         } else {
1401             trace_qemu_rdma_signal_unregister_already(chunk);
1402         }
1403     }
1404 }
1405
1406 /*
1407  * Consult the connection manager to see a work request
1408  * (of any kind) has completed.
1409  * Return the work request ID that completed.
1410  */
1411 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1412                                uint32_t *byte_len)
1413 {
1414     int ret;
1415     struct ibv_wc wc;
1416     uint64_t wr_id;
1417
1418     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1419
1420     if (!ret) {
1421         *wr_id_out = RDMA_WRID_NONE;
1422         return 0;
1423     }
1424
1425     if (ret < 0) {
1426         error_report("ibv_poll_cq return %d", ret);
1427         return ret;
1428     }
1429
1430     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1431
1432     if (wc.status != IBV_WC_SUCCESS) {
1433         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1434                         wc.status, ibv_wc_status_str(wc.status));
1435         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1436
1437         return -1;
1438     }
1439
1440     if (rdma->control_ready_expected &&
1441         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1442         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1443                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1444         rdma->control_ready_expected = 0;
1445     }
1446
1447     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1448         uint64_t chunk =
1449             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1450         uint64_t index =
1451             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1452         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1453
1454         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1455                                    index, chunk, block->local_host_addr,
1456                                    (void *)(uintptr_t)block->remote_host_addr);
1457
1458         clear_bit(chunk, block->transit_bitmap);
1459
1460         if (rdma->nb_sent > 0) {
1461             rdma->nb_sent--;
1462         }
1463
1464         if (!rdma->pin_all) {
1465             /*
1466              * FYI: If one wanted to signal a specific chunk to be unregistered
1467              * using LRU or workload-specific information, this is the function
1468              * you would call to do so. That chunk would then get asynchronously
1469              * unregistered later.
1470              */
1471 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1472             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1473 #endif
1474         }
1475     } else {
1476         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1477     }
1478
1479     *wr_id_out = wc.wr_id;
1480     if (byte_len) {
1481         *byte_len = wc.byte_len;
1482     }
1483
1484     return  0;
1485 }
1486
1487 /* Wait for activity on the completion channel.
1488  * Returns 0 on success, none-0 on error.
1489  */
1490 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1491 {
1492     struct rdma_cm_event *cm_event;
1493     int ret = -1;
1494
1495     /*
1496      * Coroutine doesn't start until migration_fd_process_incoming()
1497      * so don't yield unless we know we're running inside of a coroutine.
1498      */
1499     if (rdma->migration_started_on_destination &&
1500         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1501         yield_until_fd_readable(rdma->comp_channel->fd);
1502     } else {
1503         /* This is the source side, we're in a separate thread
1504          * or destination prior to migration_fd_process_incoming()
1505          * after postcopy, the destination also in a seprate thread.
1506          * we can't yield; so we have to poll the fd.
1507          * But we need to be able to handle 'cancel' or an error
1508          * without hanging forever.
1509          */
1510         while (!rdma->error_state  && !rdma->received_error) {
1511             GPollFD pfds[2];
1512             pfds[0].fd = rdma->comp_channel->fd;
1513             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1514             pfds[0].revents = 0;
1515
1516             pfds[1].fd = rdma->channel->fd;
1517             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1518             pfds[1].revents = 0;
1519
1520             /* 0.1s timeout, should be fine for a 'cancel' */
1521             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1522             case 2:
1523             case 1: /* fd active */
1524                 if (pfds[0].revents) {
1525                     return 0;
1526                 }
1527
1528                 if (pfds[1].revents) {
1529                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1530                     if (!ret) {
1531                         rdma_ack_cm_event(cm_event);
1532                     }
1533
1534                     error_report("receive cm event while wait comp channel,"
1535                                  "cm event is %d", cm_event->event);
1536                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1537                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1538                         return -EPIPE;
1539                     }
1540                 }
1541                 break;
1542
1543             case 0: /* Timeout, go around again */
1544                 break;
1545
1546             default: /* Error of some type -
1547                       * I don't trust errno from qemu_poll_ns
1548                      */
1549                 error_report("%s: poll failed", __func__);
1550                 return -EPIPE;
1551             }
1552
1553             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1554                 /* Bail out and let the cancellation happen */
1555                 return -EPIPE;
1556             }
1557         }
1558     }
1559
1560     if (rdma->received_error) {
1561         return -EPIPE;
1562     }
1563     return rdma->error_state;
1564 }
1565
1566 /*
1567  * Block until the next work request has completed.
1568  *
1569  * First poll to see if a work request has already completed,
1570  * otherwise block.
1571  *
1572  * If we encounter completed work requests for IDs other than
1573  * the one we're interested in, then that's generally an error.
1574  *
1575  * The only exception is actual RDMA Write completions. These
1576  * completions only need to be recorded, but do not actually
1577  * need further processing.
1578  */
1579 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1580                                     uint32_t *byte_len)
1581 {
1582     int num_cq_events = 0, ret = 0;
1583     struct ibv_cq *cq;
1584     void *cq_ctx;
1585     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1586
1587     if (ibv_req_notify_cq(rdma->cq, 0)) {
1588         return -1;
1589     }
1590     /* poll cq first */
1591     while (wr_id != wrid_requested) {
1592         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1593         if (ret < 0) {
1594             return ret;
1595         }
1596
1597         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1598
1599         if (wr_id == RDMA_WRID_NONE) {
1600             break;
1601         }
1602         if (wr_id != wrid_requested) {
1603             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1604                        wrid_requested, print_wrid(wr_id), wr_id);
1605         }
1606     }
1607
1608     if (wr_id == wrid_requested) {
1609         return 0;
1610     }
1611
1612     while (1) {
1613         ret = qemu_rdma_wait_comp_channel(rdma);
1614         if (ret) {
1615             goto err_block_for_wrid;
1616         }
1617
1618         ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1619         if (ret) {
1620             perror("ibv_get_cq_event");
1621             goto err_block_for_wrid;
1622         }
1623
1624         num_cq_events++;
1625
1626         ret = -ibv_req_notify_cq(cq, 0);
1627         if (ret) {
1628             goto err_block_for_wrid;
1629         }
1630
1631         while (wr_id != wrid_requested) {
1632             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1633             if (ret < 0) {
1634                 goto err_block_for_wrid;
1635             }
1636
1637             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1638
1639             if (wr_id == RDMA_WRID_NONE) {
1640                 break;
1641             }
1642             if (wr_id != wrid_requested) {
1643                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1644                                    wrid_requested, print_wrid(wr_id), wr_id);
1645             }
1646         }
1647
1648         if (wr_id == wrid_requested) {
1649             goto success_block_for_wrid;
1650         }
1651     }
1652
1653 success_block_for_wrid:
1654     if (num_cq_events) {
1655         ibv_ack_cq_events(cq, num_cq_events);
1656     }
1657     return 0;
1658
1659 err_block_for_wrid:
1660     if (num_cq_events) {
1661         ibv_ack_cq_events(cq, num_cq_events);
1662     }
1663
1664     rdma->error_state = ret;
1665     return ret;
1666 }
1667
1668 /*
1669  * Post a SEND message work request for the control channel
1670  * containing some data and block until the post completes.
1671  */
1672 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1673                                        RDMAControlHeader *head)
1674 {
1675     int ret = 0;
1676     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1677     struct ibv_send_wr *bad_wr;
1678     struct ibv_sge sge = {
1679                            .addr = (uintptr_t)(wr->control),
1680                            .length = head->len + sizeof(RDMAControlHeader),
1681                            .lkey = wr->control_mr->lkey,
1682                          };
1683     struct ibv_send_wr send_wr = {
1684                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1685                                    .opcode = IBV_WR_SEND,
1686                                    .send_flags = IBV_SEND_SIGNALED,
1687                                    .sg_list = &sge,
1688                                    .num_sge = 1,
1689                                 };
1690
1691     trace_qemu_rdma_post_send_control(control_desc(head->type));
1692
1693     /*
1694      * We don't actually need to do a memcpy() in here if we used
1695      * the "sge" properly, but since we're only sending control messages
1696      * (not RAM in a performance-critical path), then its OK for now.
1697      *
1698      * The copy makes the RDMAControlHeader simpler to manipulate
1699      * for the time being.
1700      */
1701     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1702     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1703     control_to_network((void *) wr->control);
1704
1705     if (buf) {
1706         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1707     }
1708
1709
1710     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1711
1712     if (ret > 0) {
1713         error_report("Failed to use post IB SEND for control");
1714         return -ret;
1715     }
1716
1717     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1718     if (ret < 0) {
1719         error_report("rdma migration: send polling control error");
1720     }
1721
1722     return ret;
1723 }
1724
1725 /*
1726  * Post a RECV work request in anticipation of some future receipt
1727  * of data on the control channel.
1728  */
1729 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1730 {
1731     struct ibv_recv_wr *bad_wr;
1732     struct ibv_sge sge = {
1733                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1734                             .length = RDMA_CONTROL_MAX_BUFFER,
1735                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1736                          };
1737
1738     struct ibv_recv_wr recv_wr = {
1739                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1740                                     .sg_list = &sge,
1741                                     .num_sge = 1,
1742                                  };
1743
1744
1745     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1746         return -1;
1747     }
1748
1749     return 0;
1750 }
1751
1752 /*
1753  * Block and wait for a RECV control channel message to arrive.
1754  */
1755 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1756                 RDMAControlHeader *head, int expecting, int idx)
1757 {
1758     uint32_t byte_len;
1759     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1760                                        &byte_len);
1761
1762     if (ret < 0) {
1763         error_report("rdma migration: recv polling control error!");
1764         return ret;
1765     }
1766
1767     network_to_control((void *) rdma->wr_data[idx].control);
1768     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1769
1770     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1771
1772     if (expecting == RDMA_CONTROL_NONE) {
1773         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1774                                              head->type);
1775     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1776         error_report("Was expecting a %s (%d) control message"
1777                 ", but got: %s (%d), length: %d",
1778                 control_desc(expecting), expecting,
1779                 control_desc(head->type), head->type, head->len);
1780         if (head->type == RDMA_CONTROL_ERROR) {
1781             rdma->received_error = true;
1782         }
1783         return -EIO;
1784     }
1785     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1786         error_report("too long length: %d", head->len);
1787         return -EINVAL;
1788     }
1789     if (sizeof(*head) + head->len != byte_len) {
1790         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1791         return -EINVAL;
1792     }
1793
1794     return 0;
1795 }
1796
1797 /*
1798  * When a RECV work request has completed, the work request's
1799  * buffer is pointed at the header.
1800  *
1801  * This will advance the pointer to the data portion
1802  * of the control message of the work request's buffer that
1803  * was populated after the work request finished.
1804  */
1805 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1806                                   RDMAControlHeader *head)
1807 {
1808     rdma->wr_data[idx].control_len = head->len;
1809     rdma->wr_data[idx].control_curr =
1810         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1811 }
1812
1813 /*
1814  * This is an 'atomic' high-level operation to deliver a single, unified
1815  * control-channel message.
1816  *
1817  * Additionally, if the user is expecting some kind of reply to this message,
1818  * they can request a 'resp' response message be filled in by posting an
1819  * additional work request on behalf of the user and waiting for an additional
1820  * completion.
1821  *
1822  * The extra (optional) response is used during registration to us from having
1823  * to perform an *additional* exchange of message just to provide a response by
1824  * instead piggy-backing on the acknowledgement.
1825  */
1826 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1827                                    uint8_t *data, RDMAControlHeader *resp,
1828                                    int *resp_idx,
1829                                    int (*callback)(RDMAContext *rdma))
1830 {
1831     int ret = 0;
1832
1833     /*
1834      * Wait until the dest is ready before attempting to deliver the message
1835      * by waiting for a READY message.
1836      */
1837     if (rdma->control_ready_expected) {
1838         RDMAControlHeader resp;
1839         ret = qemu_rdma_exchange_get_response(rdma,
1840                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1841         if (ret < 0) {
1842             return ret;
1843         }
1844     }
1845
1846     /*
1847      * If the user is expecting a response, post a WR in anticipation of it.
1848      */
1849     if (resp) {
1850         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1851         if (ret) {
1852             error_report("rdma migration: error posting"
1853                     " extra control recv for anticipated result!");
1854             return ret;
1855         }
1856     }
1857
1858     /*
1859      * Post a WR to replace the one we just consumed for the READY message.
1860      */
1861     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1862     if (ret) {
1863         error_report("rdma migration: error posting first control recv!");
1864         return ret;
1865     }
1866
1867     /*
1868      * Deliver the control message that was requested.
1869      */
1870     ret = qemu_rdma_post_send_control(rdma, data, head);
1871
1872     if (ret < 0) {
1873         error_report("Failed to send control buffer!");
1874         return ret;
1875     }
1876
1877     /*
1878      * If we're expecting a response, block and wait for it.
1879      */
1880     if (resp) {
1881         if (callback) {
1882             trace_qemu_rdma_exchange_send_issue_callback();
1883             ret = callback(rdma);
1884             if (ret < 0) {
1885                 return ret;
1886             }
1887         }
1888
1889         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1890         ret = qemu_rdma_exchange_get_response(rdma, resp,
1891                                               resp->type, RDMA_WRID_DATA);
1892
1893         if (ret < 0) {
1894             return ret;
1895         }
1896
1897         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1898         if (resp_idx) {
1899             *resp_idx = RDMA_WRID_DATA;
1900         }
1901         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1902     }
1903
1904     rdma->control_ready_expected = 1;
1905
1906     return 0;
1907 }
1908
1909 /*
1910  * This is an 'atomic' high-level operation to receive a single, unified
1911  * control-channel message.
1912  */
1913 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1914                                 int expecting)
1915 {
1916     RDMAControlHeader ready = {
1917                                 .len = 0,
1918                                 .type = RDMA_CONTROL_READY,
1919                                 .repeat = 1,
1920                               };
1921     int ret;
1922
1923     /*
1924      * Inform the source that we're ready to receive a message.
1925      */
1926     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1927
1928     if (ret < 0) {
1929         error_report("Failed to send control buffer!");
1930         return ret;
1931     }
1932
1933     /*
1934      * Block and wait for the message.
1935      */
1936     ret = qemu_rdma_exchange_get_response(rdma, head,
1937                                           expecting, RDMA_WRID_READY);
1938
1939     if (ret < 0) {
1940         return ret;
1941     }
1942
1943     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1944
1945     /*
1946      * Post a new RECV work request to replace the one we just consumed.
1947      */
1948     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1949     if (ret) {
1950         error_report("rdma migration: error posting second control recv!");
1951         return ret;
1952     }
1953
1954     return 0;
1955 }
1956
1957 /*
1958  * Write an actual chunk of memory using RDMA.
1959  *
1960  * If we're using dynamic registration on the dest-side, we have to
1961  * send a registration command first.
1962  */
1963 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1964                                int current_index, uint64_t current_addr,
1965                                uint64_t length)
1966 {
1967     struct ibv_sge sge;
1968     struct ibv_send_wr send_wr = { 0 };
1969     struct ibv_send_wr *bad_wr;
1970     int reg_result_idx, ret, count = 0;
1971     uint64_t chunk, chunks;
1972     uint8_t *chunk_start, *chunk_end;
1973     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1974     RDMARegister reg;
1975     RDMARegisterResult *reg_result;
1976     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1977     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1978                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1979                                .repeat = 1,
1980                              };
1981
1982 retry:
1983     sge.addr = (uintptr_t)(block->local_host_addr +
1984                             (current_addr - block->offset));
1985     sge.length = length;
1986
1987     chunk = ram_chunk_index(block->local_host_addr,
1988                             (uint8_t *)(uintptr_t)sge.addr);
1989     chunk_start = ram_chunk_start(block, chunk);
1990
1991     if (block->is_ram_block) {
1992         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1993
1994         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1995             chunks--;
1996         }
1997     } else {
1998         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1999
2000         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2001             chunks--;
2002         }
2003     }
2004
2005     trace_qemu_rdma_write_one_top(chunks + 1,
2006                                   (chunks + 1) *
2007                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2008
2009     chunk_end = ram_chunk_end(block, chunk + chunks);
2010
2011     if (!rdma->pin_all) {
2012 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2013         qemu_rdma_unregister_waiting(rdma);
2014 #endif
2015     }
2016
2017     while (test_bit(chunk, block->transit_bitmap)) {
2018         (void)count;
2019         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2020                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2021
2022         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2023
2024         if (ret < 0) {
2025             error_report("Failed to Wait for previous write to complete "
2026                     "block %d chunk %" PRIu64
2027                     " current %" PRIu64 " len %" PRIu64 " %d",
2028                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2029             return ret;
2030         }
2031     }
2032
2033     if (!rdma->pin_all || !block->is_ram_block) {
2034         if (!block->remote_keys[chunk]) {
2035             /*
2036              * This chunk has not yet been registered, so first check to see
2037              * if the entire chunk is zero. If so, tell the other size to
2038              * memset() + madvise() the entire chunk without RDMA.
2039              */
2040
2041             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2042                 RDMACompress comp = {
2043                                         .offset = current_addr,
2044                                         .value = 0,
2045                                         .block_idx = current_index,
2046                                         .length = length,
2047                                     };
2048
2049                 head.len = sizeof(comp);
2050                 head.type = RDMA_CONTROL_COMPRESS;
2051
2052                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2053                                                current_index, current_addr);
2054
2055                 compress_to_network(rdma, &comp);
2056                 ret = qemu_rdma_exchange_send(rdma, &head,
2057                                 (uint8_t *) &comp, NULL, NULL, NULL);
2058
2059                 if (ret < 0) {
2060                     return -EIO;
2061                 }
2062
2063                 acct_update_position(f, sge.length, true);
2064
2065                 return 1;
2066             }
2067
2068             /*
2069              * Otherwise, tell other side to register.
2070              */
2071             reg.current_index = current_index;
2072             if (block->is_ram_block) {
2073                 reg.key.current_addr = current_addr;
2074             } else {
2075                 reg.key.chunk = chunk;
2076             }
2077             reg.chunks = chunks;
2078
2079             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2080                                               current_addr);
2081
2082             register_to_network(rdma, &reg);
2083             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2084                                     &resp, &reg_result_idx, NULL);
2085             if (ret < 0) {
2086                 return ret;
2087             }
2088
2089             /* try to overlap this single registration with the one we sent. */
2090             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2091                                                 &sge.lkey, NULL, chunk,
2092                                                 chunk_start, chunk_end)) {
2093                 error_report("cannot get lkey");
2094                 return -EINVAL;
2095             }
2096
2097             reg_result = (RDMARegisterResult *)
2098                     rdma->wr_data[reg_result_idx].control_curr;
2099
2100             network_to_result(reg_result);
2101
2102             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2103                                                  reg_result->rkey, chunk);
2104
2105             block->remote_keys[chunk] = reg_result->rkey;
2106             block->remote_host_addr = reg_result->host_addr;
2107         } else {
2108             /* already registered before */
2109             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2110                                                 &sge.lkey, NULL, chunk,
2111                                                 chunk_start, chunk_end)) {
2112                 error_report("cannot get lkey!");
2113                 return -EINVAL;
2114             }
2115         }
2116
2117         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2118     } else {
2119         send_wr.wr.rdma.rkey = block->remote_rkey;
2120
2121         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2122                                                      &sge.lkey, NULL, chunk,
2123                                                      chunk_start, chunk_end)) {
2124             error_report("cannot get lkey!");
2125             return -EINVAL;
2126         }
2127     }
2128
2129     /*
2130      * Encode the ram block index and chunk within this wrid.
2131      * We will use this information at the time of completion
2132      * to figure out which bitmap to check against and then which
2133      * chunk in the bitmap to look for.
2134      */
2135     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2136                                         current_index, chunk);
2137
2138     send_wr.opcode = IBV_WR_RDMA_WRITE;
2139     send_wr.send_flags = IBV_SEND_SIGNALED;
2140     send_wr.sg_list = &sge;
2141     send_wr.num_sge = 1;
2142     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2143                                 (current_addr - block->offset);
2144
2145     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2146                                    sge.length);
2147
2148     /*
2149      * ibv_post_send() does not return negative error numbers,
2150      * per the specification they are positive - no idea why.
2151      */
2152     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2153
2154     if (ret == ENOMEM) {
2155         trace_qemu_rdma_write_one_queue_full();
2156         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2157         if (ret < 0) {
2158             error_report("rdma migration: failed to make "
2159                          "room in full send queue! %d", ret);
2160             return ret;
2161         }
2162
2163         goto retry;
2164
2165     } else if (ret > 0) {
2166         perror("rdma migration: post rdma write failed");
2167         return -ret;
2168     }
2169
2170     set_bit(chunk, block->transit_bitmap);
2171     acct_update_position(f, sge.length, false);
2172     rdma->total_writes++;
2173
2174     return 0;
2175 }
2176
2177 /*
2178  * Push out any unwritten RDMA operations.
2179  *
2180  * We support sending out multiple chunks at the same time.
2181  * Not all of them need to get signaled in the completion queue.
2182  */
2183 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2184 {
2185     int ret;
2186
2187     if (!rdma->current_length) {
2188         return 0;
2189     }
2190
2191     ret = qemu_rdma_write_one(f, rdma,
2192             rdma->current_index, rdma->current_addr, rdma->current_length);
2193
2194     if (ret < 0) {
2195         return ret;
2196     }
2197
2198     if (ret == 0) {
2199         rdma->nb_sent++;
2200         trace_qemu_rdma_write_flush(rdma->nb_sent);
2201     }
2202
2203     rdma->current_length = 0;
2204     rdma->current_addr = 0;
2205
2206     return 0;
2207 }
2208
2209 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2210                     uint64_t offset, uint64_t len)
2211 {
2212     RDMALocalBlock *block;
2213     uint8_t *host_addr;
2214     uint8_t *chunk_end;
2215
2216     if (rdma->current_index < 0) {
2217         return 0;
2218     }
2219
2220     if (rdma->current_chunk < 0) {
2221         return 0;
2222     }
2223
2224     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2225     host_addr = block->local_host_addr + (offset - block->offset);
2226     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2227
2228     if (rdma->current_length == 0) {
2229         return 0;
2230     }
2231
2232     /*
2233      * Only merge into chunk sequentially.
2234      */
2235     if (offset != (rdma->current_addr + rdma->current_length)) {
2236         return 0;
2237     }
2238
2239     if (offset < block->offset) {
2240         return 0;
2241     }
2242
2243     if ((offset + len) > (block->offset + block->length)) {
2244         return 0;
2245     }
2246
2247     if ((host_addr + len) > chunk_end) {
2248         return 0;
2249     }
2250
2251     return 1;
2252 }
2253
2254 /*
2255  * We're not actually writing here, but doing three things:
2256  *
2257  * 1. Identify the chunk the buffer belongs to.
2258  * 2. If the chunk is full or the buffer doesn't belong to the current
2259  *    chunk, then start a new chunk and flush() the old chunk.
2260  * 3. To keep the hardware busy, we also group chunks into batches
2261  *    and only require that a batch gets acknowledged in the completion
2262  *    qeueue instead of each individual chunk.
2263  */
2264 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2265                            uint64_t block_offset, uint64_t offset,
2266                            uint64_t len)
2267 {
2268     uint64_t current_addr = block_offset + offset;
2269     uint64_t index = rdma->current_index;
2270     uint64_t chunk = rdma->current_chunk;
2271     int ret;
2272
2273     /* If we cannot merge it, we flush the current buffer first. */
2274     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2275         ret = qemu_rdma_write_flush(f, rdma);
2276         if (ret) {
2277             return ret;
2278         }
2279         rdma->current_length = 0;
2280         rdma->current_addr = current_addr;
2281
2282         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2283                                          offset, len, &index, &chunk);
2284         if (ret) {
2285             error_report("ram block search failed");
2286             return ret;
2287         }
2288         rdma->current_index = index;
2289         rdma->current_chunk = chunk;
2290     }
2291
2292     /* merge it */
2293     rdma->current_length += len;
2294
2295     /* flush it if buffer is too large */
2296     if (rdma->current_length >= RDMA_MERGE_MAX) {
2297         return qemu_rdma_write_flush(f, rdma);
2298     }
2299
2300     return 0;
2301 }
2302
2303 static void qemu_rdma_cleanup(RDMAContext *rdma)
2304 {
2305     int idx;
2306
2307     if (rdma->cm_id && rdma->connected) {
2308         if ((rdma->error_state ||
2309              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2310             !rdma->received_error) {
2311             RDMAControlHeader head = { .len = 0,
2312                                        .type = RDMA_CONTROL_ERROR,
2313                                        .repeat = 1,
2314                                      };
2315             error_report("Early error. Sending error.");
2316             qemu_rdma_post_send_control(rdma, NULL, &head);
2317         }
2318
2319         rdma_disconnect(rdma->cm_id);
2320         trace_qemu_rdma_cleanup_disconnect();
2321         rdma->connected = false;
2322     }
2323
2324     if (rdma->channel) {
2325         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2326     }
2327     g_free(rdma->dest_blocks);
2328     rdma->dest_blocks = NULL;
2329
2330     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2331         if (rdma->wr_data[idx].control_mr) {
2332             rdma->total_registrations--;
2333             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2334         }
2335         rdma->wr_data[idx].control_mr = NULL;
2336     }
2337
2338     if (rdma->local_ram_blocks.block) {
2339         while (rdma->local_ram_blocks.nb_blocks) {
2340             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2341         }
2342     }
2343
2344     if (rdma->qp) {
2345         rdma_destroy_qp(rdma->cm_id);
2346         rdma->qp = NULL;
2347     }
2348     if (rdma->cq) {
2349         ibv_destroy_cq(rdma->cq);
2350         rdma->cq = NULL;
2351     }
2352     if (rdma->comp_channel) {
2353         ibv_destroy_comp_channel(rdma->comp_channel);
2354         rdma->comp_channel = NULL;
2355     }
2356     if (rdma->pd) {
2357         ibv_dealloc_pd(rdma->pd);
2358         rdma->pd = NULL;
2359     }
2360     if (rdma->cm_id) {
2361         rdma_destroy_id(rdma->cm_id);
2362         rdma->cm_id = NULL;
2363     }
2364
2365     /* the destination side, listen_id and channel is shared */
2366     if (rdma->listen_id) {
2367         if (!rdma->is_return_path) {
2368             rdma_destroy_id(rdma->listen_id);
2369         }
2370         rdma->listen_id = NULL;
2371
2372         if (rdma->channel) {
2373             if (!rdma->is_return_path) {
2374                 rdma_destroy_event_channel(rdma->channel);
2375             }
2376             rdma->channel = NULL;
2377         }
2378     }
2379
2380     if (rdma->channel) {
2381         rdma_destroy_event_channel(rdma->channel);
2382         rdma->channel = NULL;
2383     }
2384     g_free(rdma->host);
2385     rdma->host = NULL;
2386 }
2387
2388
2389 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2390 {
2391     int ret, idx;
2392     Error *local_err = NULL, **temp = &local_err;
2393
2394     /*
2395      * Will be validated against destination's actual capabilities
2396      * after the connect() completes.
2397      */
2398     rdma->pin_all = pin_all;
2399
2400     ret = qemu_rdma_resolve_host(rdma, temp);
2401     if (ret) {
2402         goto err_rdma_source_init;
2403     }
2404
2405     ret = qemu_rdma_alloc_pd_cq(rdma);
2406     if (ret) {
2407         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2408                     " limits may be too low. Please check $ ulimit -a # and "
2409                     "search for 'ulimit -l' in the output");
2410         goto err_rdma_source_init;
2411     }
2412
2413     ret = qemu_rdma_alloc_qp(rdma);
2414     if (ret) {
2415         ERROR(temp, "rdma migration: error allocating qp!");
2416         goto err_rdma_source_init;
2417     }
2418
2419     ret = qemu_rdma_init_ram_blocks(rdma);
2420     if (ret) {
2421         ERROR(temp, "rdma migration: error initializing ram blocks!");
2422         goto err_rdma_source_init;
2423     }
2424
2425     /* Build the hash that maps from offset to RAMBlock */
2426     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2427     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2428         g_hash_table_insert(rdma->blockmap,
2429                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2430                 &rdma->local_ram_blocks.block[idx]);
2431     }
2432
2433     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2434         ret = qemu_rdma_reg_control(rdma, idx);
2435         if (ret) {
2436             ERROR(temp, "rdma migration: error registering %d control!",
2437                                                             idx);
2438             goto err_rdma_source_init;
2439         }
2440     }
2441
2442     return 0;
2443
2444 err_rdma_source_init:
2445     error_propagate(errp, local_err);
2446     qemu_rdma_cleanup(rdma);
2447     return -1;
2448 }
2449
2450 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2451 {
2452     RDMACapabilities cap = {
2453                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2454                                 .flags = 0,
2455                            };
2456     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2457                                           .retry_count = 5,
2458                                           .private_data = &cap,
2459                                           .private_data_len = sizeof(cap),
2460                                         };
2461     struct rdma_cm_event *cm_event;
2462     int ret;
2463
2464     /*
2465      * Only negotiate the capability with destination if the user
2466      * on the source first requested the capability.
2467      */
2468     if (rdma->pin_all) {
2469         trace_qemu_rdma_connect_pin_all_requested();
2470         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2471     }
2472
2473     caps_to_network(&cap);
2474
2475     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2476     if (ret) {
2477         ERROR(errp, "posting second control recv");
2478         goto err_rdma_source_connect;
2479     }
2480
2481     ret = rdma_connect(rdma->cm_id, &conn_param);
2482     if (ret) {
2483         perror("rdma_connect");
2484         ERROR(errp, "connecting to destination!");
2485         goto err_rdma_source_connect;
2486     }
2487
2488     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2489     if (ret) {
2490         perror("rdma_get_cm_event after rdma_connect");
2491         ERROR(errp, "connecting to destination!");
2492         rdma_ack_cm_event(cm_event);
2493         goto err_rdma_source_connect;
2494     }
2495
2496     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2497         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2498         ERROR(errp, "connecting to destination!");
2499         rdma_ack_cm_event(cm_event);
2500         goto err_rdma_source_connect;
2501     }
2502     rdma->connected = true;
2503
2504     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2505     network_to_caps(&cap);
2506
2507     /*
2508      * Verify that the *requested* capabilities are supported by the destination
2509      * and disable them otherwise.
2510      */
2511     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2512         ERROR(errp, "Server cannot support pinning all memory. "
2513                         "Will register memory dynamically.");
2514         rdma->pin_all = false;
2515     }
2516
2517     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2518
2519     rdma_ack_cm_event(cm_event);
2520
2521     rdma->control_ready_expected = 1;
2522     rdma->nb_sent = 0;
2523     return 0;
2524
2525 err_rdma_source_connect:
2526     qemu_rdma_cleanup(rdma);
2527     return -1;
2528 }
2529
2530 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2531 {
2532     int ret, idx;
2533     struct rdma_cm_id *listen_id;
2534     char ip[40] = "unknown";
2535     struct rdma_addrinfo *res, *e;
2536     char port_str[16];
2537
2538     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2539         rdma->wr_data[idx].control_len = 0;
2540         rdma->wr_data[idx].control_curr = NULL;
2541     }
2542
2543     if (!rdma->host || !rdma->host[0]) {
2544         ERROR(errp, "RDMA host is not set!");
2545         rdma->error_state = -EINVAL;
2546         return -1;
2547     }
2548     /* create CM channel */
2549     rdma->channel = rdma_create_event_channel();
2550     if (!rdma->channel) {
2551         ERROR(errp, "could not create rdma event channel");
2552         rdma->error_state = -EINVAL;
2553         return -1;
2554     }
2555
2556     /* create CM id */
2557     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2558     if (ret) {
2559         ERROR(errp, "could not create cm_id!");
2560         goto err_dest_init_create_listen_id;
2561     }
2562
2563     snprintf(port_str, 16, "%d", rdma->port);
2564     port_str[15] = '\0';
2565
2566     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2567     if (ret < 0) {
2568         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2569         goto err_dest_init_bind_addr;
2570     }
2571
2572     for (e = res; e != NULL; e = e->ai_next) {
2573         inet_ntop(e->ai_family,
2574             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2575         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2576         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2577         if (ret) {
2578             continue;
2579         }
2580         if (e->ai_family == AF_INET6) {
2581             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2582             if (ret) {
2583                 continue;
2584             }
2585         }
2586         break;
2587     }
2588
2589     if (!e) {
2590         ERROR(errp, "Error: could not rdma_bind_addr!");
2591         goto err_dest_init_bind_addr;
2592     }
2593
2594     rdma->listen_id = listen_id;
2595     qemu_rdma_dump_gid("dest_init", listen_id);
2596     return 0;
2597
2598 err_dest_init_bind_addr:
2599     rdma_destroy_id(listen_id);
2600 err_dest_init_create_listen_id:
2601     rdma_destroy_event_channel(rdma->channel);
2602     rdma->channel = NULL;
2603     rdma->error_state = ret;
2604     return ret;
2605
2606 }
2607
2608 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2609                                             RDMAContext *rdma)
2610 {
2611     int idx;
2612
2613     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2614         rdma_return_path->wr_data[idx].control_len = 0;
2615         rdma_return_path->wr_data[idx].control_curr = NULL;
2616     }
2617
2618     /*the CM channel and CM id is shared*/
2619     rdma_return_path->channel = rdma->channel;
2620     rdma_return_path->listen_id = rdma->listen_id;
2621
2622     rdma->return_path = rdma_return_path;
2623     rdma_return_path->return_path = rdma;
2624     rdma_return_path->is_return_path = true;
2625 }
2626
2627 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2628 {
2629     RDMAContext *rdma = NULL;
2630     InetSocketAddress *addr;
2631
2632     if (host_port) {
2633         rdma = g_new0(RDMAContext, 1);
2634         rdma->current_index = -1;
2635         rdma->current_chunk = -1;
2636
2637         addr = g_new(InetSocketAddress, 1);
2638         if (!inet_parse(addr, host_port, NULL)) {
2639             rdma->port = atoi(addr->port);
2640             rdma->host = g_strdup(addr->host);
2641         } else {
2642             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2643             g_free(rdma);
2644             rdma = NULL;
2645         }
2646
2647         qapi_free_InetSocketAddress(addr);
2648     }
2649
2650     return rdma;
2651 }
2652
2653 /*
2654  * QEMUFile interface to the control channel.
2655  * SEND messages for control only.
2656  * VM's ram is handled with regular RDMA messages.
2657  */
2658 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2659                                        const struct iovec *iov,
2660                                        size_t niov,
2661                                        int *fds,
2662                                        size_t nfds,
2663                                        Error **errp)
2664 {
2665     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2666     QEMUFile *f = rioc->file;
2667     RDMAContext *rdma;
2668     int ret;
2669     ssize_t done = 0;
2670     size_t i;
2671     size_t len = 0;
2672
2673     rcu_read_lock();
2674     rdma = atomic_rcu_read(&rioc->rdmaout);
2675
2676     if (!rdma) {
2677         rcu_read_unlock();
2678         return -EIO;
2679     }
2680
2681     CHECK_ERROR_STATE();
2682
2683     /*
2684      * Push out any writes that
2685      * we're queued up for VM's ram.
2686      */
2687     ret = qemu_rdma_write_flush(f, rdma);
2688     if (ret < 0) {
2689         rdma->error_state = ret;
2690         rcu_read_unlock();
2691         return ret;
2692     }
2693
2694     for (i = 0; i < niov; i++) {
2695         size_t remaining = iov[i].iov_len;
2696         uint8_t * data = (void *)iov[i].iov_base;
2697         while (remaining) {
2698             RDMAControlHeader head;
2699
2700             len = MIN(remaining, RDMA_SEND_INCREMENT);
2701             remaining -= len;
2702
2703             head.len = len;
2704             head.type = RDMA_CONTROL_QEMU_FILE;
2705
2706             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2707
2708             if (ret < 0) {
2709                 rdma->error_state = ret;
2710                 rcu_read_unlock();
2711                 return ret;
2712             }
2713
2714             data += len;
2715             done += len;
2716         }
2717     }
2718
2719     rcu_read_unlock();
2720     return done;
2721 }
2722
2723 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2724                              size_t size, int idx)
2725 {
2726     size_t len = 0;
2727
2728     if (rdma->wr_data[idx].control_len) {
2729         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2730
2731         len = MIN(size, rdma->wr_data[idx].control_len);
2732         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2733         rdma->wr_data[idx].control_curr += len;
2734         rdma->wr_data[idx].control_len -= len;
2735     }
2736
2737     return len;
2738 }
2739
2740 /*
2741  * QEMUFile interface to the control channel.
2742  * RDMA links don't use bytestreams, so we have to
2743  * return bytes to QEMUFile opportunistically.
2744  */
2745 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2746                                       const struct iovec *iov,
2747                                       size_t niov,
2748                                       int **fds,
2749                                       size_t *nfds,
2750                                       Error **errp)
2751 {
2752     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2753     RDMAContext *rdma;
2754     RDMAControlHeader head;
2755     int ret = 0;
2756     ssize_t i;
2757     size_t done = 0;
2758
2759     rcu_read_lock();
2760     rdma = atomic_rcu_read(&rioc->rdmain);
2761
2762     if (!rdma) {
2763         rcu_read_unlock();
2764         return -EIO;
2765     }
2766
2767     CHECK_ERROR_STATE();
2768
2769     for (i = 0; i < niov; i++) {
2770         size_t want = iov[i].iov_len;
2771         uint8_t *data = (void *)iov[i].iov_base;
2772
2773         /*
2774          * First, we hold on to the last SEND message we
2775          * were given and dish out the bytes until we run
2776          * out of bytes.
2777          */
2778         ret = qemu_rdma_fill(rdma, data, want, 0);
2779         done += ret;
2780         want -= ret;
2781         /* Got what we needed, so go to next iovec */
2782         if (want == 0) {
2783             continue;
2784         }
2785
2786         /* If we got any data so far, then don't wait
2787          * for more, just return what we have */
2788         if (done > 0) {
2789             break;
2790         }
2791
2792
2793         /* We've got nothing at all, so lets wait for
2794          * more to arrive
2795          */
2796         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2797
2798         if (ret < 0) {
2799             rdma->error_state = ret;
2800             rcu_read_unlock();
2801             return ret;
2802         }
2803
2804         /*
2805          * SEND was received with new bytes, now try again.
2806          */
2807         ret = qemu_rdma_fill(rdma, data, want, 0);
2808         done += ret;
2809         want -= ret;
2810
2811         /* Still didn't get enough, so lets just return */
2812         if (want) {
2813             if (done == 0) {
2814                 rcu_read_unlock();
2815                 return QIO_CHANNEL_ERR_BLOCK;
2816             } else {
2817                 break;
2818             }
2819         }
2820     }
2821     rcu_read_unlock();
2822     return done;
2823 }
2824
2825 /*
2826  * Block until all the outstanding chunks have been delivered by the hardware.
2827  */
2828 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2829 {
2830     int ret;
2831
2832     if (qemu_rdma_write_flush(f, rdma) < 0) {
2833         return -EIO;
2834     }
2835
2836     while (rdma->nb_sent) {
2837         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2838         if (ret < 0) {
2839             error_report("rdma migration: complete polling error!");
2840             return -EIO;
2841         }
2842     }
2843
2844     qemu_rdma_unregister_waiting(rdma);
2845
2846     return 0;
2847 }
2848
2849
2850 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2851                                          bool blocking,
2852                                          Error **errp)
2853 {
2854     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2855     /* XXX we should make readv/writev actually honour this :-) */
2856     rioc->blocking = blocking;
2857     return 0;
2858 }
2859
2860
2861 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2862 struct QIOChannelRDMASource {
2863     GSource parent;
2864     QIOChannelRDMA *rioc;
2865     GIOCondition condition;
2866 };
2867
2868 static gboolean
2869 qio_channel_rdma_source_prepare(GSource *source,
2870                                 gint *timeout)
2871 {
2872     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2873     RDMAContext *rdma;
2874     GIOCondition cond = 0;
2875     *timeout = -1;
2876
2877     rcu_read_lock();
2878     if (rsource->condition == G_IO_IN) {
2879         rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2880     } else {
2881         rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2882     }
2883
2884     if (!rdma) {
2885         error_report("RDMAContext is NULL when prepare Gsource");
2886         rcu_read_unlock();
2887         return FALSE;
2888     }
2889
2890     if (rdma->wr_data[0].control_len) {
2891         cond |= G_IO_IN;
2892     }
2893     cond |= G_IO_OUT;
2894
2895     rcu_read_unlock();
2896     return cond & rsource->condition;
2897 }
2898
2899 static gboolean
2900 qio_channel_rdma_source_check(GSource *source)
2901 {
2902     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2903     RDMAContext *rdma;
2904     GIOCondition cond = 0;
2905
2906     rcu_read_lock();
2907     if (rsource->condition == G_IO_IN) {
2908         rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2909     } else {
2910         rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2911     }
2912
2913     if (!rdma) {
2914         error_report("RDMAContext is NULL when check Gsource");
2915         rcu_read_unlock();
2916         return FALSE;
2917     }
2918
2919     if (rdma->wr_data[0].control_len) {
2920         cond |= G_IO_IN;
2921     }
2922     cond |= G_IO_OUT;
2923
2924     rcu_read_unlock();
2925     return cond & rsource->condition;
2926 }
2927
2928 static gboolean
2929 qio_channel_rdma_source_dispatch(GSource *source,
2930                                  GSourceFunc callback,
2931                                  gpointer user_data)
2932 {
2933     QIOChannelFunc func = (QIOChannelFunc)callback;
2934     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2935     RDMAContext *rdma;
2936     GIOCondition cond = 0;
2937
2938     rcu_read_lock();
2939     if (rsource->condition == G_IO_IN) {
2940         rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2941     } else {
2942         rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2943     }
2944
2945     if (!rdma) {
2946         error_report("RDMAContext is NULL when dispatch Gsource");
2947         rcu_read_unlock();
2948         return FALSE;
2949     }
2950
2951     if (rdma->wr_data[0].control_len) {
2952         cond |= G_IO_IN;
2953     }
2954     cond |= G_IO_OUT;
2955
2956     rcu_read_unlock();
2957     return (*func)(QIO_CHANNEL(rsource->rioc),
2958                    (cond & rsource->condition),
2959                    user_data);
2960 }
2961
2962 static void
2963 qio_channel_rdma_source_finalize(GSource *source)
2964 {
2965     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2966
2967     object_unref(OBJECT(ssource->rioc));
2968 }
2969
2970 GSourceFuncs qio_channel_rdma_source_funcs = {
2971     qio_channel_rdma_source_prepare,
2972     qio_channel_rdma_source_check,
2973     qio_channel_rdma_source_dispatch,
2974     qio_channel_rdma_source_finalize
2975 };
2976
2977 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2978                                               GIOCondition condition)
2979 {
2980     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2981     QIOChannelRDMASource *ssource;
2982     GSource *source;
2983
2984     source = g_source_new(&qio_channel_rdma_source_funcs,
2985                           sizeof(QIOChannelRDMASource));
2986     ssource = (QIOChannelRDMASource *)source;
2987
2988     ssource->rioc = rioc;
2989     object_ref(OBJECT(rioc));
2990
2991     ssource->condition = condition;
2992
2993     return source;
2994 }
2995
2996 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2997                                                   AioContext *ctx,
2998                                                   IOHandler *io_read,
2999                                                   IOHandler *io_write,
3000                                                   void *opaque)
3001 {
3002     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3003     if (io_read) {
3004         aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3005                            false, io_read, io_write, NULL, opaque);
3006     } else {
3007         aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3008                            false, io_read, io_write, NULL, opaque);
3009     }
3010 }
3011
3012 static int qio_channel_rdma_close(QIOChannel *ioc,
3013                                   Error **errp)
3014 {
3015     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3016     RDMAContext *rdmain, *rdmaout;
3017     trace_qemu_rdma_close();
3018
3019     rdmain = rioc->rdmain;
3020     if (rdmain) {
3021         atomic_rcu_set(&rioc->rdmain, NULL);
3022     }
3023
3024     rdmaout = rioc->rdmaout;
3025     if (rdmaout) {
3026         atomic_rcu_set(&rioc->rdmaout, NULL);
3027     }
3028
3029     synchronize_rcu();
3030
3031     if (rdmain) {
3032         qemu_rdma_cleanup(rdmain);
3033     }
3034
3035     if (rdmaout) {
3036         qemu_rdma_cleanup(rdmaout);
3037     }
3038
3039     g_free(rdmain);
3040     g_free(rdmaout);
3041
3042     return 0;
3043 }
3044
3045 static int
3046 qio_channel_rdma_shutdown(QIOChannel *ioc,
3047                             QIOChannelShutdown how,
3048                             Error **errp)
3049 {
3050     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3051     RDMAContext *rdmain, *rdmaout;
3052
3053     rcu_read_lock();
3054
3055     rdmain = atomic_rcu_read(&rioc->rdmain);
3056     rdmaout = atomic_rcu_read(&rioc->rdmain);
3057
3058     switch (how) {
3059     case QIO_CHANNEL_SHUTDOWN_READ:
3060         if (rdmain) {
3061             rdmain->error_state = -1;
3062         }
3063         break;
3064     case QIO_CHANNEL_SHUTDOWN_WRITE:
3065         if (rdmaout) {
3066             rdmaout->error_state = -1;
3067         }
3068         break;
3069     case QIO_CHANNEL_SHUTDOWN_BOTH:
3070     default:
3071         if (rdmain) {
3072             rdmain->error_state = -1;
3073         }
3074         if (rdmaout) {
3075             rdmaout->error_state = -1;
3076         }
3077         break;
3078     }
3079
3080     rcu_read_unlock();
3081     return 0;
3082 }
3083
3084 /*
3085  * Parameters:
3086  *    @offset == 0 :
3087  *        This means that 'block_offset' is a full virtual address that does not
3088  *        belong to a RAMBlock of the virtual machine and instead
3089  *        represents a private malloc'd memory area that the caller wishes to
3090  *        transfer.
3091  *
3092  *    @offset != 0 :
3093  *        Offset is an offset to be added to block_offset and used
3094  *        to also lookup the corresponding RAMBlock.
3095  *
3096  *    @size > 0 :
3097  *        Initiate an transfer this size.
3098  *
3099  *    @size == 0 :
3100  *        A 'hint' or 'advice' that means that we wish to speculatively
3101  *        and asynchronously unregister this memory. In this case, there is no
3102  *        guarantee that the unregister will actually happen, for example,
3103  *        if the memory is being actively transmitted. Additionally, the memory
3104  *        may be re-registered at any future time if a write within the same
3105  *        chunk was requested again, even if you attempted to unregister it
3106  *        here.
3107  *
3108  *    @size < 0 : TODO, not yet supported
3109  *        Unregister the memory NOW. This means that the caller does not
3110  *        expect there to be any future RDMA transfers and we just want to clean
3111  *        things up. This is used in case the upper layer owns the memory and
3112  *        cannot wait for qemu_fclose() to occur.
3113  *
3114  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3115  *                  sent. Usually, this will not be more than a few bytes of
3116  *                  the protocol because most transfers are sent asynchronously.
3117  */
3118 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3119                                   ram_addr_t block_offset, ram_addr_t offset,
3120                                   size_t size, uint64_t *bytes_sent)
3121 {
3122     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3123     RDMAContext *rdma;
3124     int ret;
3125
3126     rcu_read_lock();
3127     rdma = atomic_rcu_read(&rioc->rdmaout);
3128
3129     if (!rdma) {
3130         rcu_read_unlock();
3131         return -EIO;
3132     }
3133
3134     CHECK_ERROR_STATE();
3135
3136     if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3137         rcu_read_unlock();
3138         return RAM_SAVE_CONTROL_NOT_SUPP;
3139     }
3140
3141     qemu_fflush(f);
3142
3143     if (size > 0) {
3144         /*
3145          * Add this page to the current 'chunk'. If the chunk
3146          * is full, or the page doen't belong to the current chunk,
3147          * an actual RDMA write will occur and a new chunk will be formed.
3148          */
3149         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3150         if (ret < 0) {
3151             error_report("rdma migration: write error! %d", ret);
3152             goto err;
3153         }
3154
3155         /*
3156          * We always return 1 bytes because the RDMA
3157          * protocol is completely asynchronous. We do not yet know
3158          * whether an  identified chunk is zero or not because we're
3159          * waiting for other pages to potentially be merged with
3160          * the current chunk. So, we have to call qemu_update_position()
3161          * later on when the actual write occurs.
3162          */
3163         if (bytes_sent) {
3164             *bytes_sent = 1;
3165         }
3166     } else {
3167         uint64_t index, chunk;
3168
3169         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3170         if (size < 0) {
3171             ret = qemu_rdma_drain_cq(f, rdma);
3172             if (ret < 0) {
3173                 fprintf(stderr, "rdma: failed to synchronously drain"
3174                                 " completion queue before unregistration.\n");
3175                 goto err;
3176             }
3177         }
3178         */
3179
3180         ret = qemu_rdma_search_ram_block(rdma, block_offset,
3181                                          offset, size, &index, &chunk);
3182
3183         if (ret) {
3184             error_report("ram block search failed");
3185             goto err;
3186         }
3187
3188         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3189
3190         /*
3191          * TODO: Synchronous, guaranteed unregistration (should not occur during
3192          * fast-path). Otherwise, unregisters will process on the next call to
3193          * qemu_rdma_drain_cq()
3194         if (size < 0) {
3195             qemu_rdma_unregister_waiting(rdma);
3196         }
3197         */
3198     }
3199
3200     /*
3201      * Drain the Completion Queue if possible, but do not block,
3202      * just poll.
3203      *
3204      * If nothing to poll, the end of the iteration will do this
3205      * again to make sure we don't overflow the request queue.
3206      */
3207     while (1) {
3208         uint64_t wr_id, wr_id_in;
3209         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3210         if (ret < 0) {
3211             error_report("rdma migration: polling error! %d", ret);
3212             goto err;
3213         }
3214
3215         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3216
3217         if (wr_id == RDMA_WRID_NONE) {
3218             break;
3219         }
3220     }
3221
3222     rcu_read_unlock();
3223     return RAM_SAVE_CONTROL_DELAYED;
3224 err:
3225     rdma->error_state = ret;
3226     rcu_read_unlock();
3227     return ret;
3228 }
3229
3230 static void rdma_accept_incoming_migration(void *opaque);
3231
3232 static void rdma_cm_poll_handler(void *opaque)
3233 {
3234     RDMAContext *rdma = opaque;
3235     int ret;
3236     struct rdma_cm_event *cm_event;
3237     MigrationIncomingState *mis = migration_incoming_get_current();
3238
3239     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3240     if (ret) {
3241         error_report("get_cm_event failed %d", errno);
3242         return;
3243     }
3244     rdma_ack_cm_event(cm_event);
3245
3246     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3247         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3248         error_report("receive cm event, cm event is %d", cm_event->event);
3249         rdma->error_state = -EPIPE;
3250         if (rdma->return_path) {
3251             rdma->return_path->error_state = -EPIPE;
3252         }
3253
3254         if (mis->migration_incoming_co) {
3255             qemu_coroutine_enter(mis->migration_incoming_co);
3256         }
3257         return;
3258     }
3259 }
3260
3261 static int qemu_rdma_accept(RDMAContext *rdma)
3262 {
3263     RDMACapabilities cap;
3264     struct rdma_conn_param conn_param = {
3265                                             .responder_resources = 2,
3266                                             .private_data = &cap,
3267                                             .private_data_len = sizeof(cap),
3268                                          };
3269     struct rdma_cm_event *cm_event;
3270     struct ibv_context *verbs;
3271     int ret = -EINVAL;
3272     int idx;
3273
3274     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3275     if (ret) {
3276         goto err_rdma_dest_wait;
3277     }
3278
3279     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3280         rdma_ack_cm_event(cm_event);
3281         goto err_rdma_dest_wait;
3282     }
3283
3284     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3285
3286     network_to_caps(&cap);
3287
3288     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3289             error_report("Unknown source RDMA version: %d, bailing...",
3290                             cap.version);
3291             rdma_ack_cm_event(cm_event);
3292             goto err_rdma_dest_wait;
3293     }
3294
3295     /*
3296      * Respond with only the capabilities this version of QEMU knows about.
3297      */
3298     cap.flags &= known_capabilities;
3299
3300     /*
3301      * Enable the ones that we do know about.
3302      * Add other checks here as new ones are introduced.
3303      */
3304     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3305         rdma->pin_all = true;
3306     }
3307
3308     rdma->cm_id = cm_event->id;
3309     verbs = cm_event->id->verbs;
3310
3311     rdma_ack_cm_event(cm_event);
3312
3313     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3314
3315     caps_to_network(&cap);
3316
3317     trace_qemu_rdma_accept_pin_verbsc(verbs);
3318
3319     if (!rdma->verbs) {
3320         rdma->verbs = verbs;
3321     } else if (rdma->verbs != verbs) {
3322             error_report("ibv context not matching %p, %p!", rdma->verbs,
3323                          verbs);
3324             goto err_rdma_dest_wait;
3325     }
3326
3327     qemu_rdma_dump_id("dest_init", verbs);
3328
3329     ret = qemu_rdma_alloc_pd_cq(rdma);
3330     if (ret) {
3331         error_report("rdma migration: error allocating pd and cq!");
3332         goto err_rdma_dest_wait;
3333     }
3334
3335     ret = qemu_rdma_alloc_qp(rdma);
3336     if (ret) {
3337         error_report("rdma migration: error allocating qp!");
3338         goto err_rdma_dest_wait;
3339     }
3340
3341     ret = qemu_rdma_init_ram_blocks(rdma);
3342     if (ret) {
3343         error_report("rdma migration: error initializing ram blocks!");
3344         goto err_rdma_dest_wait;
3345     }
3346
3347     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3348         ret = qemu_rdma_reg_control(rdma, idx);
3349         if (ret) {
3350             error_report("rdma: error registering %d control", idx);
3351             goto err_rdma_dest_wait;
3352         }
3353     }
3354
3355     /* Accept the second connection request for return path */
3356     if (migrate_postcopy() && !rdma->is_return_path) {
3357         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3358                             NULL,
3359                             (void *)(intptr_t)rdma->return_path);
3360     } else {
3361         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3362                             NULL, rdma);
3363     }
3364
3365     ret = rdma_accept(rdma->cm_id, &conn_param);
3366     if (ret) {
3367         error_report("rdma_accept returns %d", ret);
3368         goto err_rdma_dest_wait;
3369     }
3370
3371     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3372     if (ret) {
3373         error_report("rdma_accept get_cm_event failed %d", ret);
3374         goto err_rdma_dest_wait;
3375     }
3376
3377     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3378         error_report("rdma_accept not event established");
3379         rdma_ack_cm_event(cm_event);
3380         goto err_rdma_dest_wait;
3381     }
3382
3383     rdma_ack_cm_event(cm_event);
3384     rdma->connected = true;
3385
3386     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3387     if (ret) {
3388         error_report("rdma migration: error posting second control recv");
3389         goto err_rdma_dest_wait;
3390     }
3391
3392     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3393
3394     return 0;
3395
3396 err_rdma_dest_wait:
3397     rdma->error_state = ret;
3398     qemu_rdma_cleanup(rdma);
3399     return ret;
3400 }
3401
3402 static int dest_ram_sort_func(const void *a, const void *b)
3403 {
3404     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3405     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3406
3407     return (a_index < b_index) ? -1 : (a_index != b_index);
3408 }
3409
3410 /*
3411  * During each iteration of the migration, we listen for instructions
3412  * by the source VM to perform dynamic page registrations before they
3413  * can perform RDMA operations.
3414  *
3415  * We respond with the 'rkey'.
3416  *
3417  * Keep doing this until the source tells us to stop.
3418  */
3419 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3420 {
3421     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3422                                .type = RDMA_CONTROL_REGISTER_RESULT,
3423                                .repeat = 0,
3424                              };
3425     RDMAControlHeader unreg_resp = { .len = 0,
3426                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3427                                .repeat = 0,
3428                              };
3429     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3430                                  .repeat = 1 };
3431     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3432     RDMAContext *rdma;
3433     RDMALocalBlocks *local;
3434     RDMAControlHeader head;
3435     RDMARegister *reg, *registers;
3436     RDMACompress *comp;
3437     RDMARegisterResult *reg_result;
3438     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3439     RDMALocalBlock *block;
3440     void *host_addr;
3441     int ret = 0;
3442     int idx = 0;
3443     int count = 0;
3444     int i = 0;
3445
3446     rcu_read_lock();
3447     rdma = atomic_rcu_read(&rioc->rdmain);
3448
3449     if (!rdma) {
3450         rcu_read_unlock();
3451         return -EIO;
3452     }
3453
3454     CHECK_ERROR_STATE();
3455
3456     local = &rdma->local_ram_blocks;
3457     do {
3458         trace_qemu_rdma_registration_handle_wait();
3459
3460         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3461
3462         if (ret < 0) {
3463             break;
3464         }
3465
3466         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3467             error_report("rdma: Too many requests in this message (%d)."
3468                             "Bailing.", head.repeat);
3469             ret = -EIO;
3470             break;
3471         }
3472
3473         switch (head.type) {
3474         case RDMA_CONTROL_COMPRESS:
3475             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3476             network_to_compress(comp);
3477
3478             trace_qemu_rdma_registration_handle_compress(comp->length,
3479                                                          comp->block_idx,
3480                                                          comp->offset);
3481             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3482                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3483                              (unsigned int)comp->block_idx,
3484                              rdma->local_ram_blocks.nb_blocks);
3485                 ret = -EIO;
3486                 goto out;
3487             }
3488             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3489
3490             host_addr = block->local_host_addr +
3491                             (comp->offset - block->offset);
3492
3493             ram_handle_compressed(host_addr, comp->value, comp->length);
3494             break;
3495
3496         case RDMA_CONTROL_REGISTER_FINISHED:
3497             trace_qemu_rdma_registration_handle_finished();
3498             goto out;
3499
3500         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3501             trace_qemu_rdma_registration_handle_ram_blocks();
3502
3503             /* Sort our local RAM Block list so it's the same as the source,
3504              * we can do this since we've filled in a src_index in the list
3505              * as we received the RAMBlock list earlier.
3506              */
3507             qsort(rdma->local_ram_blocks.block,
3508                   rdma->local_ram_blocks.nb_blocks,
3509                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3510             for (i = 0; i < local->nb_blocks; i++) {
3511                 local->block[i].index = i;
3512             }
3513
3514             if (rdma->pin_all) {
3515                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3516                 if (ret) {
3517                     error_report("rdma migration: error dest "
3518                                     "registering ram blocks");
3519                     goto out;
3520                 }
3521             }
3522
3523             /*
3524              * Dest uses this to prepare to transmit the RAMBlock descriptions
3525              * to the source VM after connection setup.
3526              * Both sides use the "remote" structure to communicate and update
3527              * their "local" descriptions with what was sent.
3528              */
3529             for (i = 0; i < local->nb_blocks; i++) {
3530                 rdma->dest_blocks[i].remote_host_addr =
3531                     (uintptr_t)(local->block[i].local_host_addr);
3532
3533                 if (rdma->pin_all) {
3534                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3535                 }
3536
3537                 rdma->dest_blocks[i].offset = local->block[i].offset;
3538                 rdma->dest_blocks[i].length = local->block[i].length;
3539
3540                 dest_block_to_network(&rdma->dest_blocks[i]);
3541                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3542                     local->block[i].block_name,
3543                     local->block[i].offset,
3544                     local->block[i].length,
3545                     local->block[i].local_host_addr,
3546                     local->block[i].src_index);
3547             }
3548
3549             blocks.len = rdma->local_ram_blocks.nb_blocks
3550                                                 * sizeof(RDMADestBlock);
3551
3552
3553             ret = qemu_rdma_post_send_control(rdma,
3554                                         (uint8_t *) rdma->dest_blocks, &blocks);
3555
3556             if (ret < 0) {
3557                 error_report("rdma migration: error sending remote info");
3558                 goto out;
3559             }
3560
3561             break;
3562         case RDMA_CONTROL_REGISTER_REQUEST:
3563             trace_qemu_rdma_registration_handle_register(head.repeat);
3564
3565             reg_resp.repeat = head.repeat;
3566             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3567
3568             for (count = 0; count < head.repeat; count++) {
3569                 uint64_t chunk;
3570                 uint8_t *chunk_start, *chunk_end;
3571
3572                 reg = &registers[count];
3573                 network_to_register(reg);
3574
3575                 reg_result = &results[count];
3576
3577                 trace_qemu_rdma_registration_handle_register_loop(count,
3578                          reg->current_index, reg->key.current_addr, reg->chunks);
3579
3580                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3581                     error_report("rdma: 'register' bad block index %u (vs %d)",
3582                                  (unsigned int)reg->current_index,
3583                                  rdma->local_ram_blocks.nb_blocks);
3584                     ret = -ENOENT;
3585                     goto out;
3586                 }
3587                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3588                 if (block->is_ram_block) {
3589                     if (block->offset > reg->key.current_addr) {
3590                         error_report("rdma: bad register address for block %s"
3591                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3592                             block->block_name, block->offset,
3593                             reg->key.current_addr);
3594                         ret = -ERANGE;
3595                         goto out;
3596                     }
3597                     host_addr = (block->local_host_addr +
3598                                 (reg->key.current_addr - block->offset));
3599                     chunk = ram_chunk_index(block->local_host_addr,
3600                                             (uint8_t *) host_addr);
3601                 } else {
3602                     chunk = reg->key.chunk;
3603                     host_addr = block->local_host_addr +
3604                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3605                     /* Check for particularly bad chunk value */
3606                     if (host_addr < (void *)block->local_host_addr) {
3607                         error_report("rdma: bad chunk for block %s"
3608                             " chunk: %" PRIx64,
3609                             block->block_name, reg->key.chunk);
3610                         ret = -ERANGE;
3611                         goto out;
3612                     }
3613                 }
3614                 chunk_start = ram_chunk_start(block, chunk);
3615                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3616                 if (qemu_rdma_register_and_get_keys(rdma, block,
3617                             (uintptr_t)host_addr, NULL, &reg_result->rkey,
3618                             chunk, chunk_start, chunk_end)) {
3619                     error_report("cannot get rkey");
3620                     ret = -EINVAL;
3621                     goto out;
3622                 }
3623
3624                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3625
3626                 trace_qemu_rdma_registration_handle_register_rkey(
3627                                                            reg_result->rkey);
3628
3629                 result_to_network(reg_result);
3630             }
3631
3632             ret = qemu_rdma_post_send_control(rdma,
3633                             (uint8_t *) results, &reg_resp);
3634
3635             if (ret < 0) {
3636                 error_report("Failed to send control buffer");
3637                 goto out;
3638             }
3639             break;
3640         case RDMA_CONTROL_UNREGISTER_REQUEST:
3641             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3642             unreg_resp.repeat = head.repeat;
3643             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3644
3645             for (count = 0; count < head.repeat; count++) {
3646                 reg = &registers[count];
3647                 network_to_register(reg);
3648
3649                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3650                            reg->current_index, reg->key.chunk);
3651
3652                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3653
3654                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3655                 block->pmr[reg->key.chunk] = NULL;
3656
3657                 if (ret != 0) {
3658                     perror("rdma unregistration chunk failed");
3659                     ret = -ret;
3660                     goto out;
3661                 }
3662
3663                 rdma->total_registrations--;
3664
3665                 trace_qemu_rdma_registration_handle_unregister_success(
3666                                                        reg->key.chunk);
3667             }
3668
3669             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3670
3671             if (ret < 0) {
3672                 error_report("Failed to send control buffer");
3673                 goto out;
3674             }
3675             break;
3676         case RDMA_CONTROL_REGISTER_RESULT:
3677             error_report("Invalid RESULT message at dest.");
3678             ret = -EIO;
3679             goto out;
3680         default:
3681             error_report("Unknown control message %s", control_desc(head.type));
3682             ret = -EIO;
3683             goto out;
3684         }
3685     } while (1);
3686 out:
3687     if (ret < 0) {
3688         rdma->error_state = ret;
3689     }
3690     rcu_read_unlock();
3691     return ret;
3692 }
3693
3694 /* Destination:
3695  * Called via a ram_control_load_hook during the initial RAM load section which
3696  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3697  * on the source.
3698  * We've already built our local RAMBlock list, but not yet sent the list to
3699  * the source.
3700  */
3701 static int
3702 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3703 {
3704     RDMAContext *rdma;
3705     int curr;
3706     int found = -1;
3707
3708     rcu_read_lock();
3709     rdma = atomic_rcu_read(&rioc->rdmain);
3710
3711     if (!rdma) {
3712         rcu_read_unlock();
3713         return -EIO;
3714     }
3715
3716     /* Find the matching RAMBlock in our local list */
3717     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3718         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3719             found = curr;
3720             break;
3721         }
3722     }
3723
3724     if (found == -1) {
3725         error_report("RAMBlock '%s' not found on destination", name);
3726         rcu_read_unlock();
3727         return -ENOENT;
3728     }
3729
3730     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3731     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3732     rdma->next_src_index++;
3733
3734     rcu_read_unlock();
3735     return 0;
3736 }
3737
3738 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3739 {
3740     switch (flags) {
3741     case RAM_CONTROL_BLOCK_REG:
3742         return rdma_block_notification_handle(opaque, data);
3743
3744     case RAM_CONTROL_HOOK:
3745         return qemu_rdma_registration_handle(f, opaque);
3746
3747     default:
3748         /* Shouldn't be called with any other values */
3749         abort();
3750     }
3751 }
3752
3753 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3754                                         uint64_t flags, void *data)
3755 {
3756     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3757     RDMAContext *rdma;
3758
3759     rcu_read_lock();
3760     rdma = atomic_rcu_read(&rioc->rdmaout);
3761     if (!rdma) {
3762         rcu_read_unlock();
3763         return -EIO;
3764     }
3765
3766     CHECK_ERROR_STATE();
3767
3768     if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3769         rcu_read_unlock();
3770         return 0;
3771     }
3772
3773     trace_qemu_rdma_registration_start(flags);
3774     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3775     qemu_fflush(f);
3776
3777     rcu_read_unlock();
3778     return 0;
3779 }
3780
3781 /*
3782  * Inform dest that dynamic registrations are done for now.
3783  * First, flush writes, if any.
3784  */
3785 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3786                                        uint64_t flags, void *data)
3787 {
3788     Error *local_err = NULL, **errp = &local_err;
3789     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3790     RDMAContext *rdma;
3791     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3792     int ret = 0;
3793
3794     rcu_read_lock();
3795     rdma = atomic_rcu_read(&rioc->rdmaout);
3796     if (!rdma) {
3797         rcu_read_unlock();
3798         return -EIO;
3799     }
3800
3801     CHECK_ERROR_STATE();
3802
3803     if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3804         rcu_read_unlock();
3805         return 0;
3806     }
3807
3808     qemu_fflush(f);
3809     ret = qemu_rdma_drain_cq(f, rdma);
3810
3811     if (ret < 0) {
3812         goto err;
3813     }
3814
3815     if (flags == RAM_CONTROL_SETUP) {
3816         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3817         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3818         int reg_result_idx, i, nb_dest_blocks;
3819
3820         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3821         trace_qemu_rdma_registration_stop_ram();
3822
3823         /*
3824          * Make sure that we parallelize the pinning on both sides.
3825          * For very large guests, doing this serially takes a really
3826          * long time, so we have to 'interleave' the pinning locally
3827          * with the control messages by performing the pinning on this
3828          * side before we receive the control response from the other
3829          * side that the pinning has completed.
3830          */
3831         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3832                     &reg_result_idx, rdma->pin_all ?
3833                     qemu_rdma_reg_whole_ram_blocks : NULL);
3834         if (ret < 0) {
3835             ERROR(errp, "receiving remote info!");
3836             rcu_read_unlock();
3837             return ret;
3838         }
3839
3840         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3841
3842         /*
3843          * The protocol uses two different sets of rkeys (mutually exclusive):
3844          * 1. One key to represent the virtual address of the entire ram block.
3845          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3846          * 2. One to represent individual chunks within a ram block.
3847          *    (dynamic chunk registration enabled - pin individual chunks.)
3848          *
3849          * Once the capability is successfully negotiated, the destination transmits
3850          * the keys to use (or sends them later) including the virtual addresses
3851          * and then propagates the remote ram block descriptions to his local copy.
3852          */
3853
3854         if (local->nb_blocks != nb_dest_blocks) {
3855             ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3856                         "Your QEMU command line parameters are probably "
3857                         "not identical on both the source and destination.",
3858                         local->nb_blocks, nb_dest_blocks);
3859             rdma->error_state = -EINVAL;
3860             rcu_read_unlock();
3861             return -EINVAL;
3862         }
3863
3864         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3865         memcpy(rdma->dest_blocks,
3866             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3867         for (i = 0; i < nb_dest_blocks; i++) {
3868             network_to_dest_block(&rdma->dest_blocks[i]);
3869
3870             /* We require that the blocks are in the same order */
3871             if (rdma->dest_blocks[i].length != local->block[i].length) {
3872                 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3873                             "vs %" PRIu64, local->block[i].block_name, i,
3874                             local->block[i].length,
3875                             rdma->dest_blocks[i].length);
3876                 rdma->error_state = -EINVAL;
3877                 rcu_read_unlock();
3878                 return -EINVAL;
3879             }
3880             local->block[i].remote_host_addr =
3881                     rdma->dest_blocks[i].remote_host_addr;
3882             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3883         }
3884     }
3885
3886     trace_qemu_rdma_registration_stop(flags);
3887
3888     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3889     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3890
3891     if (ret < 0) {
3892         goto err;
3893     }
3894
3895     rcu_read_unlock();
3896     return 0;
3897 err:
3898     rdma->error_state = ret;
3899     rcu_read_unlock();
3900     return ret;
3901 }
3902
3903 static const QEMUFileHooks rdma_read_hooks = {
3904     .hook_ram_load = rdma_load_hook,
3905 };
3906
3907 static const QEMUFileHooks rdma_write_hooks = {
3908     .before_ram_iterate = qemu_rdma_registration_start,
3909     .after_ram_iterate  = qemu_rdma_registration_stop,
3910     .save_page          = qemu_rdma_save_page,
3911 };
3912
3913
3914 static void qio_channel_rdma_finalize(Object *obj)
3915 {
3916     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3917     if (rioc->rdmain) {
3918         qemu_rdma_cleanup(rioc->rdmain);
3919         g_free(rioc->rdmain);
3920         rioc->rdmain = NULL;
3921     }
3922     if (rioc->rdmaout) {
3923         qemu_rdma_cleanup(rioc->rdmaout);
3924         g_free(rioc->rdmaout);
3925         rioc->rdmaout = NULL;
3926     }
3927 }
3928
3929 static void qio_channel_rdma_class_init(ObjectClass *klass,
3930                                         void *class_data G_GNUC_UNUSED)
3931 {
3932     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3933
3934     ioc_klass->io_writev = qio_channel_rdma_writev;
3935     ioc_klass->io_readv = qio_channel_rdma_readv;
3936     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3937     ioc_klass->io_close = qio_channel_rdma_close;
3938     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3939     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3940     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3941 }
3942
3943 static const TypeInfo qio_channel_rdma_info = {
3944     .parent = TYPE_QIO_CHANNEL,
3945     .name = TYPE_QIO_CHANNEL_RDMA,
3946     .instance_size = sizeof(QIOChannelRDMA),
3947     .instance_finalize = qio_channel_rdma_finalize,
3948     .class_init = qio_channel_rdma_class_init,
3949 };
3950
3951 static void qio_channel_rdma_register_types(void)
3952 {
3953     type_register_static(&qio_channel_rdma_info);
3954 }
3955
3956 type_init(qio_channel_rdma_register_types);
3957
3958 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3959 {
3960     QIOChannelRDMA *rioc;
3961
3962     if (qemu_file_mode_is_not_valid(mode)) {
3963         return NULL;
3964     }
3965
3966     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3967
3968     if (mode[0] == 'w') {
3969         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3970         rioc->rdmaout = rdma;
3971         rioc->rdmain = rdma->return_path;
3972         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3973     } else {
3974         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3975         rioc->rdmain = rdma;
3976         rioc->rdmaout = rdma->return_path;
3977         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3978     }
3979
3980     return rioc->file;
3981 }
3982
3983 static void rdma_accept_incoming_migration(void *opaque)
3984 {
3985     RDMAContext *rdma = opaque;
3986     int ret;
3987     QEMUFile *f;
3988     Error *local_err = NULL, **errp = &local_err;
3989
3990     trace_qemu_rdma_accept_incoming_migration();
3991     ret = qemu_rdma_accept(rdma);
3992
3993     if (ret) {
3994         ERROR(errp, "RDMA Migration initialization failed!");
3995         return;
3996     }
3997
3998     trace_qemu_rdma_accept_incoming_migration_accepted();
3999
4000     if (rdma->is_return_path) {
4001         return;
4002     }
4003
4004     f = qemu_fopen_rdma(rdma, "rb");
4005     if (f == NULL) {
4006         ERROR(errp, "could not qemu_fopen_rdma!");
4007         qemu_rdma_cleanup(rdma);
4008         return;
4009     }
4010
4011     rdma->migration_started_on_destination = 1;
4012     migration_fd_process_incoming(f);
4013 }
4014
4015 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4016 {
4017     int ret;
4018     RDMAContext *rdma, *rdma_return_path = NULL;
4019     Error *local_err = NULL;
4020
4021     trace_rdma_start_incoming_migration();
4022     rdma = qemu_rdma_data_init(host_port, &local_err);
4023
4024     if (rdma == NULL) {
4025         goto err;
4026     }
4027
4028     ret = qemu_rdma_dest_init(rdma, &local_err);
4029
4030     if (ret) {
4031         goto err;
4032     }
4033
4034     trace_rdma_start_incoming_migration_after_dest_init();
4035
4036     ret = rdma_listen(rdma->listen_id, 5);
4037
4038     if (ret) {
4039         ERROR(errp, "listening on socket!");
4040         goto err;
4041     }
4042
4043     trace_rdma_start_incoming_migration_after_rdma_listen();
4044
4045     /* initialize the RDMAContext for return path */
4046     if (migrate_postcopy()) {
4047         rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4048
4049         if (rdma_return_path == NULL) {
4050             goto err;
4051         }
4052
4053         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4054     }
4055
4056     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4057                         NULL, (void *)(intptr_t)rdma);
4058     return;
4059 err:
4060     error_propagate(errp, local_err);
4061     g_free(rdma);
4062     g_free(rdma_return_path);
4063 }
4064
4065 void rdma_start_outgoing_migration(void *opaque,
4066                             const char *host_port, Error **errp)
4067 {
4068     MigrationState *s = opaque;
4069     RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
4070     RDMAContext *rdma_return_path = NULL;
4071     int ret = 0;
4072
4073     if (rdma == NULL) {
4074         goto err;
4075     }
4076
4077     ret = qemu_rdma_source_init(rdma,
4078         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4079
4080     if (ret) {
4081         goto err;
4082     }
4083
4084     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4085     ret = qemu_rdma_connect(rdma, errp);
4086
4087     if (ret) {
4088         goto err;
4089     }
4090
4091     /* RDMA postcopy need a seprate queue pair for return path */
4092     if (migrate_postcopy()) {
4093         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4094
4095         if (rdma_return_path == NULL) {
4096             goto err;
4097         }
4098
4099         ret = qemu_rdma_source_init(rdma_return_path,
4100             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4101
4102         if (ret) {
4103             goto err;
4104         }
4105
4106         ret = qemu_rdma_connect(rdma_return_path, errp);
4107
4108         if (ret) {
4109             goto err;
4110         }
4111
4112         rdma->return_path = rdma_return_path;
4113         rdma_return_path->return_path = rdma;
4114         rdma_return_path->is_return_path = true;
4115     }
4116
4117     trace_rdma_start_outgoing_migration_after_rdma_connect();
4118
4119     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4120     migrate_fd_connect(s, NULL);
4121     return;
4122 err:
4123     g_free(rdma);
4124     g_free(rdma_return_path);
4125 }
This page took 0.2558 seconds and 4 git commands to generate.