4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #ifdef CONFIG_USER_ONLY
35 #include "qemu_socket.h"
37 /* XXX: these constants may be independent of the host ones even for Unix */
57 typedef struct GDBState {
58 CPUState *env; /* current CPU */
59 enum RSState state; /* parsing state */
63 char last_packet[4100];
65 #ifdef CONFIG_USER_ONLY
73 #ifdef CONFIG_USER_ONLY
74 /* XXX: This is not thread safe. Do we care? */
75 static int gdbserver_fd = -1;
77 /* XXX: remove this hack. */
78 static GDBState gdbserver_state;
80 static int get_char(GDBState *s)
86 ret = recv(s->fd, &ch, 1, 0);
88 if (errno != EINTR && errno != EAGAIN)
90 } else if (ret == 0) {
100 /* GDB stub state for use by semihosting syscalls. */
101 static GDBState *gdb_syscall_state;
102 static gdb_syscall_complete_cb gdb_current_syscall_cb;
110 /* If gdb is connected when the first semihosting syscall occurs then use
111 remote gdb syscalls. Otherwise use native file IO. */
112 int use_gdb_syscalls(void)
114 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
115 gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
118 return gdb_syscall_mode == GDB_SYS_ENABLED;
121 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
123 #ifdef CONFIG_USER_ONLY
127 ret = send(s->fd, buf, len, 0);
129 if (errno != EINTR && errno != EAGAIN)
137 qemu_chr_write(s->chr, buf, len);
141 static inline int fromhex(int v)
143 if (v >= '0' && v <= '9')
145 else if (v >= 'A' && v <= 'F')
147 else if (v >= 'a' && v <= 'f')
153 static inline int tohex(int v)
161 static void memtohex(char *buf, const uint8_t *mem, int len)
166 for(i = 0; i < len; i++) {
168 *q++ = tohex(c >> 4);
169 *q++ = tohex(c & 0xf);
174 static void hextomem(uint8_t *mem, const char *buf, int len)
178 for(i = 0; i < len; i++) {
179 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
184 /* return -1 if error, 0 if OK */
185 static int put_packet(GDBState *s, char *buf)
191 printf("reply='%s'\n", buf);
201 for(i = 0; i < len; i++) {
205 *(p++) = tohex((csum >> 4) & 0xf);
206 *(p++) = tohex((csum) & 0xf);
208 s->last_packet_len = p - s->last_packet;
209 put_buffer(s, s->last_packet, s->last_packet_len);
211 #ifdef CONFIG_USER_ONLY
224 #if defined(TARGET_I386)
226 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
228 uint32_t *registers = (uint32_t *)mem_buf;
231 for(i = 0; i < 8; i++) {
232 registers[i] = env->regs[i];
234 registers[8] = env->eip;
235 registers[9] = env->eflags;
236 registers[10] = env->segs[R_CS].selector;
237 registers[11] = env->segs[R_SS].selector;
238 registers[12] = env->segs[R_DS].selector;
239 registers[13] = env->segs[R_ES].selector;
240 registers[14] = env->segs[R_FS].selector;
241 registers[15] = env->segs[R_GS].selector;
242 /* XXX: convert floats */
243 for(i = 0; i < 8; i++) {
244 memcpy(mem_buf + 16 * 4 + i * 10, &env->fpregs[i], 10);
246 registers[36] = env->fpuc;
247 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
248 registers[37] = fpus;
249 registers[38] = 0; /* XXX: convert tags */
250 registers[39] = 0; /* fiseg */
251 registers[40] = 0; /* fioff */
252 registers[41] = 0; /* foseg */
253 registers[42] = 0; /* fooff */
254 registers[43] = 0; /* fop */
256 for(i = 0; i < 16; i++)
257 tswapls(®isters[i]);
258 for(i = 36; i < 44; i++)
259 tswapls(®isters[i]);
263 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
265 uint32_t *registers = (uint32_t *)mem_buf;
268 for(i = 0; i < 8; i++) {
269 env->regs[i] = tswapl(registers[i]);
271 env->eip = tswapl(registers[8]);
272 env->eflags = tswapl(registers[9]);
273 #if defined(CONFIG_USER_ONLY)
274 #define LOAD_SEG(index, sreg)\
275 if (tswapl(registers[index]) != env->segs[sreg].selector)\
276 cpu_x86_load_seg(env, sreg, tswapl(registers[index]));
286 #elif defined (TARGET_PPC)
287 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
289 uint32_t *registers = (uint32_t *)mem_buf, tmp;
293 for(i = 0; i < 32; i++) {
294 registers[i] = tswapl(env->gpr[i]);
297 for (i = 0; i < 32; i++) {
298 registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
299 registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
301 /* nip, msr, ccr, lnk, ctr, xer, mq */
302 registers[96] = tswapl(env->nip);
303 registers[97] = tswapl(do_load_msr(env));
305 for (i = 0; i < 8; i++)
306 tmp |= env->crf[i] << (32 - ((i + 1) * 4));
307 registers[98] = tswapl(tmp);
308 registers[99] = tswapl(env->lr);
309 registers[100] = tswapl(env->ctr);
310 registers[101] = tswapl(do_load_xer(env));
316 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
318 uint32_t *registers = (uint32_t *)mem_buf;
322 for (i = 0; i < 32; i++) {
323 env->gpr[i] = tswapl(registers[i]);
326 for (i = 0; i < 32; i++) {
327 *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
328 *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
330 /* nip, msr, ccr, lnk, ctr, xer, mq */
331 env->nip = tswapl(registers[96]);
332 do_store_msr(env, tswapl(registers[97]));
333 registers[98] = tswapl(registers[98]);
334 for (i = 0; i < 8; i++)
335 env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
336 env->lr = tswapl(registers[99]);
337 env->ctr = tswapl(registers[100]);
338 do_store_xer(env, tswapl(registers[101]));
340 #elif defined (TARGET_SPARC)
341 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
343 target_ulong *registers = (target_ulong *)mem_buf;
347 for(i = 0; i < 8; i++) {
348 registers[i] = tswapl(env->gregs[i]);
350 /* fill in register window */
351 for(i = 0; i < 24; i++) {
352 registers[i + 8] = tswapl(env->regwptr[i]);
354 #ifndef TARGET_SPARC64
356 for (i = 0; i < 32; i++) {
357 registers[i + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
359 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
360 registers[64] = tswapl(env->y);
365 registers[65] = tswapl(tmp);
367 registers[66] = tswapl(env->wim);
368 registers[67] = tswapl(env->tbr);
369 registers[68] = tswapl(env->pc);
370 registers[69] = tswapl(env->npc);
371 registers[70] = tswapl(env->fsr);
372 registers[71] = 0; /* csr */
374 return 73 * sizeof(target_ulong);
377 for (i = 0; i < 64; i += 2) {
380 tmp = (uint64_t)tswap32(*((uint32_t *)&env->fpr[i])) << 32;
381 tmp |= tswap32(*((uint32_t *)&env->fpr[i + 1]));
382 registers[i/2 + 32] = tmp;
384 registers[64] = tswapl(env->pc);
385 registers[65] = tswapl(env->npc);
386 registers[66] = tswapl(env->tstate[env->tl]);
387 registers[67] = tswapl(env->fsr);
388 registers[68] = tswapl(env->fprs);
389 registers[69] = tswapl(env->y);
390 return 70 * sizeof(target_ulong);
394 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
396 target_ulong *registers = (target_ulong *)mem_buf;
400 for(i = 0; i < 7; i++) {
401 env->gregs[i] = tswapl(registers[i]);
403 /* fill in register window */
404 for(i = 0; i < 24; i++) {
405 env->regwptr[i] = tswapl(registers[i + 8]);
407 #ifndef TARGET_SPARC64
409 for (i = 0; i < 32; i++) {
410 *((uint32_t *)&env->fpr[i]) = tswapl(registers[i + 32]);
412 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
413 env->y = tswapl(registers[64]);
414 PUT_PSR(env, tswapl(registers[65]));
415 env->wim = tswapl(registers[66]);
416 env->tbr = tswapl(registers[67]);
417 env->pc = tswapl(registers[68]);
418 env->npc = tswapl(registers[69]);
419 env->fsr = tswapl(registers[70]);
421 for (i = 0; i < 64; i += 2) {
422 *((uint32_t *)&env->fpr[i]) = tswap32(registers[i/2 + 32] >> 32);
423 *((uint32_t *)&env->fpr[i + 1]) = tswap32(registers[i/2 + 32] & 0xffffffff);
425 env->pc = tswapl(registers[64]);
426 env->npc = tswapl(registers[65]);
427 env->tstate[env->tl] = tswapl(registers[66]);
428 env->fsr = tswapl(registers[67]);
429 env->fprs = tswapl(registers[68]);
430 env->y = tswapl(registers[69]);
433 #elif defined (TARGET_ARM)
434 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
440 /* 16 core integer registers (4 bytes each). */
441 for (i = 0; i < 16; i++)
443 *(uint32_t *)ptr = tswapl(env->regs[i]);
446 /* 8 FPA registers (12 bytes each), FPS (4 bytes).
447 Not yet implemented. */
448 memset (ptr, 0, 8 * 12 + 4);
450 /* CPSR (4 bytes). */
451 *(uint32_t *)ptr = tswapl (cpsr_read(env));
454 return ptr - mem_buf;
457 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
463 /* Core integer registers. */
464 for (i = 0; i < 16; i++)
466 env->regs[i] = tswapl(*(uint32_t *)ptr);
469 /* Ignore FPA regs and scr. */
471 cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
473 #elif defined (TARGET_M68K)
474 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
482 for (i = 0; i < 8; i++) {
483 *(uint32_t *)ptr = tswapl(env->dregs[i]);
487 for (i = 0; i < 8; i++) {
488 *(uint32_t *)ptr = tswapl(env->aregs[i]);
491 *(uint32_t *)ptr = tswapl(env->sr);
493 *(uint32_t *)ptr = tswapl(env->pc);
495 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
496 ColdFire has 8-bit double precision registers. */
497 for (i = 0; i < 8; i++) {
499 *(uint32_t *)ptr = tswap32(u.l.upper);
500 *(uint32_t *)ptr = tswap32(u.l.lower);
502 /* FP control regs (not implemented). */
503 memset (ptr, 0, 3 * 4);
506 return ptr - mem_buf;
509 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
517 for (i = 0; i < 8; i++) {
518 env->dregs[i] = tswapl(*(uint32_t *)ptr);
522 for (i = 0; i < 8; i++) {
523 env->aregs[i] = tswapl(*(uint32_t *)ptr);
526 env->sr = tswapl(*(uint32_t *)ptr);
528 env->pc = tswapl(*(uint32_t *)ptr);
530 /* F0-F7. The 68881/68040 have 12-bit extended precision registers.
531 ColdFire has 8-bit double precision registers. */
532 for (i = 0; i < 8; i++) {
533 u.l.upper = tswap32(*(uint32_t *)ptr);
534 u.l.lower = tswap32(*(uint32_t *)ptr);
537 /* FP control regs (not implemented). */
540 #elif defined (TARGET_MIPS)
541 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
547 for (i = 0; i < 32; i++)
549 *(uint32_t *)ptr = tswapl(env->gpr[i]);
553 *(uint32_t *)ptr = tswapl(env->CP0_Status);
556 *(uint32_t *)ptr = tswapl(env->LO);
559 *(uint32_t *)ptr = tswapl(env->HI);
562 *(uint32_t *)ptr = tswapl(env->CP0_BadVAddr);
565 *(uint32_t *)ptr = tswapl(env->CP0_Cause);
568 *(uint32_t *)ptr = tswapl(env->PC);
572 for (i = 0; i < 32; i++)
574 *(uint32_t *)ptr = tswapl(FPR_W (env, i));
578 *(uint32_t *)ptr = tswapl(env->fcr31);
581 *(uint32_t *)ptr = tswapl(env->fcr0);
585 /* 32 FP registers, fsr, fir, fp. Not yet implemented. */
586 /* what's 'fp' mean here? */
588 return ptr - mem_buf;
591 /* convert MIPS rounding mode in FCR31 to IEEE library */
592 static unsigned int ieee_rm[] =
594 float_round_nearest_even,
599 #define RESTORE_ROUNDING_MODE \
600 set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
602 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
608 for (i = 0; i < 32; i++)
610 env->gpr[i] = tswapl(*(uint32_t *)ptr);
614 env->CP0_Status = tswapl(*(uint32_t *)ptr);
617 env->LO = tswapl(*(uint32_t *)ptr);
620 env->HI = tswapl(*(uint32_t *)ptr);
623 env->CP0_BadVAddr = tswapl(*(uint32_t *)ptr);
626 env->CP0_Cause = tswapl(*(uint32_t *)ptr);
629 env->PC = tswapl(*(uint32_t *)ptr);
633 for (i = 0; i < 32; i++)
635 FPR_W (env, i) = tswapl(*(uint32_t *)ptr);
639 env->fcr31 = tswapl(*(uint32_t *)ptr) & 0x0183FFFF;
642 env->fcr0 = tswapl(*(uint32_t *)ptr);
645 /* set rounding mode */
646 RESTORE_ROUNDING_MODE;
648 #ifndef CONFIG_SOFTFLOAT
649 /* no floating point exception for native float */
650 SET_FP_ENABLE(env->fcr31, 0);
654 #elif defined (TARGET_SH4)
655 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
657 uint32_t *ptr = (uint32_t *)mem_buf;
660 #define SAVE(x) *ptr++=tswapl(x)
661 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
662 for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
664 for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
666 for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
674 SAVE (0); /* TICKS */
675 SAVE (0); /* STALLS */
676 SAVE (0); /* CYCLES */
677 SAVE (0); /* INSTS */
680 return ((uint8_t *)ptr - mem_buf);
683 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
685 uint32_t *ptr = (uint32_t *)mem_buf;
688 #define LOAD(x) (x)=*ptr++;
689 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
690 for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
692 for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
694 for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
704 static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
709 static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
715 static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
718 int ch, reg_size, type;
720 uint8_t mem_buf[2000];
722 target_ulong addr, len;
725 printf("command='%s'\n", line_buf);
731 /* TODO: Make this return the correct value for user-mode. */
732 snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
737 addr = strtoull(p, (char **)&p, 16);
738 #if defined(TARGET_I386)
740 #elif defined (TARGET_PPC)
742 #elif defined (TARGET_SPARC)
745 #elif defined (TARGET_ARM)
746 env->regs[15] = addr;
747 #elif defined (TARGET_SH4)
751 #ifdef CONFIG_USER_ONLY
752 s->running_state = 1;
759 addr = strtoul(p, (char **)&p, 16);
760 #if defined(TARGET_I386)
762 #elif defined (TARGET_PPC)
764 #elif defined (TARGET_SPARC)
767 #elif defined (TARGET_ARM)
768 env->regs[15] = addr;
769 #elif defined (TARGET_SH4)
773 cpu_single_step(env, 1);
774 #ifdef CONFIG_USER_ONLY
775 s->running_state = 1;
785 ret = strtoull(p, (char **)&p, 16);
788 err = strtoull(p, (char **)&p, 16);
795 if (gdb_current_syscall_cb)
796 gdb_current_syscall_cb(s->env, ret, err);
798 put_packet(s, "T02");
800 #ifdef CONFIG_USER_ONLY
801 s->running_state = 1;
809 reg_size = cpu_gdb_read_registers(env, mem_buf);
810 memtohex(buf, mem_buf, reg_size);
814 registers = (void *)mem_buf;
816 hextomem((uint8_t *)registers, p, len);
817 cpu_gdb_write_registers(env, mem_buf, len);
821 addr = strtoull(p, (char **)&p, 16);
824 len = strtoull(p, NULL, 16);
825 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
826 put_packet (s, "E14");
828 memtohex(buf, mem_buf, len);
833 addr = strtoull(p, (char **)&p, 16);
836 len = strtoull(p, (char **)&p, 16);
839 hextomem(mem_buf, p, len);
840 if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
841 put_packet(s, "E14");
846 type = strtoul(p, (char **)&p, 16);
849 addr = strtoull(p, (char **)&p, 16);
852 len = strtoull(p, (char **)&p, 16);
853 if (type == 0 || type == 1) {
854 if (cpu_breakpoint_insert(env, addr) < 0)
855 goto breakpoint_error;
859 put_packet(s, "E22");
863 type = strtoul(p, (char **)&p, 16);
866 addr = strtoull(p, (char **)&p, 16);
869 len = strtoull(p, (char **)&p, 16);
870 if (type == 0 || type == 1) {
871 cpu_breakpoint_remove(env, addr);
874 goto breakpoint_error;
877 #ifdef CONFIG_LINUX_USER
879 if (strncmp(p, "Offsets", 7) == 0) {
880 TaskState *ts = env->opaque;
882 sprintf(buf, "Text=%x;Data=%x;Bss=%x", ts->info->code_offset,
883 ts->info->data_offset, ts->info->data_offset);
891 /* put empty packet */
899 extern void tb_flush(CPUState *env);
901 #ifndef CONFIG_USER_ONLY
902 static void gdb_vm_stopped(void *opaque, int reason)
904 GDBState *s = opaque;
908 if (s->state == RS_SYSCALL)
911 /* disable single step if it was enable */
912 cpu_single_step(s->env, 0);
914 if (reason == EXCP_DEBUG) {
917 } else if (reason == EXCP_INTERRUPT) {
922 snprintf(buf, sizeof(buf), "S%02x", ret);
927 /* Send a gdb syscall request.
928 This accepts limited printf-style format specifiers, specifically:
929 %x - target_ulong argument printed in hex.
930 %s - string pointer (target_ulong) and length (int) pair. */
931 void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
939 s = gdb_syscall_state;
942 gdb_current_syscall_cb = cb;
943 s->state = RS_SYSCALL;
944 #ifndef CONFIG_USER_ONLY
956 addr = va_arg(va, target_ulong);
957 p += sprintf(p, TARGET_FMT_lx, addr);
960 addr = va_arg(va, target_ulong);
961 p += sprintf(p, TARGET_FMT_lx "/%x", addr, va_arg(va, int));
964 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
974 #ifdef CONFIG_USER_ONLY
975 gdb_handlesig(s->env, 0);
977 cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
981 static void gdb_read_byte(GDBState *s, int ch)
983 CPUState *env = s->env;
987 #ifndef CONFIG_USER_ONLY
988 if (s->last_packet_len) {
989 /* Waiting for a response to the last packet. If we see the start
990 of a new command then abandon the previous response. */
993 printf("Got NACK, retransmitting\n");
995 put_buffer(s, s->last_packet, s->last_packet_len);
1001 printf("Got '%c' when expecting ACK/NACK\n", ch);
1003 if (ch == '+' || ch == '$')
1004 s->last_packet_len = 0;
1009 /* when the CPU is running, we cannot do anything except stop
1010 it when receiving a char */
1011 vm_stop(EXCP_INTERRUPT);
1018 s->line_buf_index = 0;
1019 s->state = RS_GETLINE;
1024 s->state = RS_CHKSUM1;
1025 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1028 s->line_buf[s->line_buf_index++] = ch;
1032 s->line_buf[s->line_buf_index] = '\0';
1033 s->line_csum = fromhex(ch) << 4;
1034 s->state = RS_CHKSUM2;
1037 s->line_csum |= fromhex(ch);
1039 for(i = 0; i < s->line_buf_index; i++) {
1040 csum += s->line_buf[i];
1042 if (s->line_csum != (csum & 0xff)) {
1044 put_buffer(s, reply, 1);
1048 put_buffer(s, reply, 1);
1049 s->state = gdb_handle_packet(s, env, s->line_buf);
1058 #ifdef CONFIG_USER_ONLY
1060 gdb_handlesig (CPUState *env, int sig)
1066 if (gdbserver_fd < 0)
1069 s = &gdbserver_state;
1071 /* disable single step if it was enabled */
1072 cpu_single_step(env, 0);
1077 snprintf(buf, sizeof(buf), "S%02x", sig);
1083 s->running_state = 0;
1084 while (s->running_state == 0) {
1085 n = read (s->fd, buf, 256);
1090 for (i = 0; i < n; i++)
1091 gdb_read_byte (s, buf[i]);
1093 else if (n == 0 || errno != EAGAIN)
1095 /* XXX: Connection closed. Should probably wait for annother
1096 connection before continuing. */
1103 /* Tell the remote gdb that the process has exited. */
1104 void gdb_exit(CPUState *env, int code)
1109 if (gdbserver_fd < 0)
1112 s = &gdbserver_state;
1114 snprintf(buf, sizeof(buf), "W%02x", code);
1119 static void gdb_accept(void *opaque)
1122 struct sockaddr_in sockaddr;
1127 len = sizeof(sockaddr);
1128 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1129 if (fd < 0 && errno != EINTR) {
1132 } else if (fd >= 0) {
1137 /* set short latency */
1139 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1141 s = &gdbserver_state;
1142 memset (s, 0, sizeof (GDBState));
1143 s->env = first_cpu; /* XXX: allow to change CPU */
1146 gdb_syscall_state = s;
1148 fcntl(fd, F_SETFL, O_NONBLOCK);
1151 static int gdbserver_open(int port)
1153 struct sockaddr_in sockaddr;
1156 fd = socket(PF_INET, SOCK_STREAM, 0);
1162 /* allow fast reuse */
1164 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1166 sockaddr.sin_family = AF_INET;
1167 sockaddr.sin_port = htons(port);
1168 sockaddr.sin_addr.s_addr = 0;
1169 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1174 ret = listen(fd, 0);
1182 int gdbserver_start(int port)
1184 gdbserver_fd = gdbserver_open(port);
1185 if (gdbserver_fd < 0)
1187 /* accept connections */
1192 static int gdb_chr_can_recieve(void *opaque)
1197 static void gdb_chr_recieve(void *opaque, const uint8_t *buf, int size)
1199 GDBState *s = opaque;
1202 for (i = 0; i < size; i++) {
1203 gdb_read_byte(s, buf[i]);
1207 static void gdb_chr_event(void *opaque, int event)
1210 case CHR_EVENT_RESET:
1211 vm_stop(EXCP_INTERRUPT);
1212 gdb_syscall_state = opaque;
1219 int gdbserver_start(CharDriverState *chr)
1226 s = qemu_mallocz(sizeof(GDBState));
1230 s->env = first_cpu; /* XXX: allow to change CPU */
1232 qemu_chr_add_handlers(chr, gdb_chr_can_recieve, gdb_chr_recieve,
1234 qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1238 int gdbserver_start_port(int port)
1240 CharDriverState *chr;
1241 char gdbstub_port_name[128];
1243 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1244 "tcp::%d,nowait,nodelay,server", port);
1245 chr = qemu_chr_open(gdbstub_port_name);
1248 return gdbserver_start(chr);