2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
11 int access_type, int is_user,
12 hwaddr *phys_ptr, int *prot,
13 target_ulong *page_size);
16 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
20 /* VFP data registers are always little-endian. */
21 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
23 stfq_le_p(buf, env->vfp.regs[reg]);
26 if (arm_feature(env, ARM_FEATURE_NEON)) {
27 /* Aliases for Q regs. */
30 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
31 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
35 switch (reg - nregs) {
36 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
37 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
38 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
43 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
47 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
49 env->vfp.regs[reg] = ldfq_le_p(buf);
52 if (arm_feature(env, ARM_FEATURE_NEON)) {
55 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
56 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
60 switch (reg - nregs) {
61 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
62 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
63 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
68 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
72 /* 128 bit FP register */
73 stfq_le_p(buf, env->vfp.regs[reg * 2]);
74 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
78 stl_p(buf, vfp_get_fpsr(env));
82 stl_p(buf, vfp_get_fpcr(env));
89 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
93 /* 128 bit FP register */
94 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
95 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
99 vfp_set_fpsr(env, ldl_p(buf));
103 vfp_set_fpcr(env, ldl_p(buf));
110 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
112 if (cpreg_field_is_64bit(ri)) {
113 return CPREG_FIELD64(env, ri);
115 return CPREG_FIELD32(env, ri);
119 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
122 if (cpreg_field_is_64bit(ri)) {
123 CPREG_FIELD64(env, ri) = value;
125 CPREG_FIELD32(env, ri) = value;
129 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
131 /* Raw read of a coprocessor register (as needed for migration, etc). */
132 if (ri->type & ARM_CP_CONST) {
133 return ri->resetvalue;
134 } else if (ri->raw_readfn) {
135 return ri->raw_readfn(env, ri);
136 } else if (ri->readfn) {
137 return ri->readfn(env, ri);
139 return raw_read(env, ri);
143 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
146 /* Raw write of a coprocessor register (as needed for migration, etc).
147 * Note that constant registers are treated as write-ignored; the
148 * caller should check for success by whether a readback gives the
151 if (ri->type & ARM_CP_CONST) {
153 } else if (ri->raw_writefn) {
154 ri->raw_writefn(env, ri, v);
155 } else if (ri->writefn) {
156 ri->writefn(env, ri, v);
158 raw_write(env, ri, v);
162 bool write_cpustate_to_list(ARMCPU *cpu)
164 /* Write the coprocessor state from cpu->env to the (index,value) list. */
168 for (i = 0; i < cpu->cpreg_array_len; i++) {
169 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
170 const ARMCPRegInfo *ri;
172 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
177 if (ri->type & ARM_CP_NO_MIGRATE) {
180 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
185 bool write_list_to_cpustate(ARMCPU *cpu)
190 for (i = 0; i < cpu->cpreg_array_len; i++) {
191 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
192 uint64_t v = cpu->cpreg_values[i];
193 const ARMCPRegInfo *ri;
195 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
200 if (ri->type & ARM_CP_NO_MIGRATE) {
203 /* Write value and confirm it reads back as written
204 * (to catch read-only registers and partially read-only
205 * registers where the incoming migration value doesn't match)
207 write_raw_cp_reg(&cpu->env, ri, v);
208 if (read_raw_cp_reg(&cpu->env, ri) != v) {
215 static void add_cpreg_to_list(gpointer key, gpointer opaque)
217 ARMCPU *cpu = opaque;
219 const ARMCPRegInfo *ri;
221 regidx = *(uint32_t *)key;
222 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
224 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
225 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
226 /* The value array need not be initialized at this point */
227 cpu->cpreg_array_len++;
231 static void count_cpreg(gpointer key, gpointer opaque)
233 ARMCPU *cpu = opaque;
235 const ARMCPRegInfo *ri;
237 regidx = *(uint32_t *)key;
238 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
240 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
241 cpu->cpreg_array_len++;
245 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
247 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
248 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
259 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
261 GList **plist = udata;
263 *plist = g_list_prepend(*plist, key);
266 void init_cpreg_list(ARMCPU *cpu)
268 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
269 * Note that we require cpreg_tuples[] to be sorted by key ID.
274 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
276 keys = g_list_sort(keys, cpreg_key_compare);
278 cpu->cpreg_array_len = 0;
280 g_list_foreach(keys, count_cpreg, cpu);
282 arraylen = cpu->cpreg_array_len;
283 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
284 cpu->cpreg_values = g_new(uint64_t, arraylen);
285 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
286 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
287 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
288 cpu->cpreg_array_len = 0;
290 g_list_foreach(keys, add_cpreg_to_list, cpu);
292 assert(cpu->cpreg_array_len == arraylen);
297 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
299 env->cp15.c3 = value;
300 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
303 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
305 if (env->cp15.c13_fcse != value) {
306 /* Unlike real hardware the qemu TLB uses virtual addresses,
307 * not modified virtual addresses, so this causes a TLB flush.
310 env->cp15.c13_fcse = value;
314 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
317 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
318 /* For VMSA (when not using the LPAE long descriptor page table
319 * format) this register includes the ASID, so do a TLB flush.
320 * For PMSA it is purely a process ID and no action is needed.
324 env->cp15.c13_context = value;
327 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
330 /* Invalidate all (TLBIALL) */
334 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
337 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
338 tlb_flush_page(env, value & TARGET_PAGE_MASK);
341 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
344 /* Invalidate by ASID (TLBIASID) */
345 tlb_flush(env, value == 0);
348 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
351 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
352 tlb_flush_page(env, value & TARGET_PAGE_MASK);
355 static const ARMCPRegInfo cp_reginfo[] = {
356 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
357 * version" bits will read as a reserved value, which should cause
358 * Linux to not try to use the debug hardware.
360 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
361 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
362 /* MMU Domain access control / MPU write buffer control */
363 { .name = "DACR", .cp = 15,
364 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
365 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
366 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
367 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
368 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
369 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
370 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
371 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
372 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
373 /* ??? This covers not just the impdef TLB lockdown registers but also
374 * some v7VMSA registers relating to TEX remap, so it is overly broad.
376 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
377 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
378 /* MMU TLB control. Note that the wildcarding means we cover not just
379 * the unified TLB ops but also the dside/iside/inner-shareable variants.
381 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
382 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
383 .type = ARM_CP_NO_MIGRATE },
384 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
385 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
386 .type = ARM_CP_NO_MIGRATE },
387 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
388 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
389 .type = ARM_CP_NO_MIGRATE },
390 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
391 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
392 .type = ARM_CP_NO_MIGRATE },
393 /* Cache maintenance ops; some of this space may be overridden later. */
394 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
395 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
396 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
400 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
401 /* Not all pre-v6 cores implemented this WFI, so this is slightly
404 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
405 .access = PL1_W, .type = ARM_CP_WFI },
409 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
410 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
411 * is UNPREDICTABLE; we choose to NOP as most implementations do).
413 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
414 .access = PL1_W, .type = ARM_CP_WFI },
415 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
416 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
417 * OMAPCP will override this space.
419 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
422 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
423 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
425 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
426 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
427 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
432 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
435 if (env->cp15.c1_coproc != value) {
436 env->cp15.c1_coproc = value;
437 /* ??? Is this safe when called from within a TB? */
442 static const ARMCPRegInfo v6_cp_reginfo[] = {
443 /* prefetch by MVA in v6, NOP in v7 */
444 { .name = "MVA_prefetch",
445 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
446 .access = PL1_W, .type = ARM_CP_NOP },
447 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
448 .access = PL0_W, .type = ARM_CP_NOP },
449 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
450 .access = PL0_W, .type = ARM_CP_NOP },
451 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
452 .access = PL0_W, .type = ARM_CP_NOP },
453 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
454 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
456 /* Watchpoint Fault Address Register : should actually only be present
457 * for 1136, 1176, 11MPCore.
459 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
460 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
461 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
463 .resetvalue = 0, .writefn = cpacr_write },
467 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
469 /* Perfomance monitor registers user accessibility is controlled
472 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
473 return CP_ACCESS_TRAP;
478 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
481 /* only the DP, X, D and E bits are writable */
482 env->cp15.c9_pmcr &= ~0x39;
483 env->cp15.c9_pmcr |= (value & 0x39);
486 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
490 env->cp15.c9_pmcnten |= value;
493 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
497 env->cp15.c9_pmcnten &= ~value;
500 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
503 env->cp15.c9_pmovsr &= ~value;
506 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
509 env->cp15.c9_pmxevtyper = value & 0xff;
512 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
515 env->cp15.c9_pmuserenr = value & 1;
518 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
521 /* We have no event counters so only the C bit can be changed */
523 env->cp15.c9_pminten |= value;
526 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
530 env->cp15.c9_pminten &= ~value;
533 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
536 env->cp15.c12_vbar = value & ~0x1Ful;
539 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
541 ARMCPU *cpu = arm_env_get_cpu(env);
542 return cpu->ccsidr[env->cp15.c0_cssel];
545 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
548 env->cp15.c0_cssel = value & 0xf;
551 static const ARMCPRegInfo v7_cp_reginfo[] = {
552 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
555 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
556 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
557 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
558 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
559 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
560 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
561 .access = PL1_W, .type = ARM_CP_NOP },
562 /* Performance monitors are implementation defined in v7,
563 * but with an ARM recommended set of registers, which we
564 * follow (although we don't actually implement any counters)
566 * Performance registers fall into three categories:
567 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
568 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
569 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
570 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
571 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
573 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
574 .access = PL0_RW, .resetvalue = 0,
575 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
576 .writefn = pmcntenset_write,
577 .accessfn = pmreg_access,
578 .raw_writefn = raw_write },
579 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
580 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
581 .accessfn = pmreg_access,
582 .writefn = pmcntenclr_write,
583 .type = ARM_CP_NO_MIGRATE },
584 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
585 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
586 .accessfn = pmreg_access,
587 .writefn = pmovsr_write,
588 .raw_writefn = raw_write },
589 /* Unimplemented so WI. */
590 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
591 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
592 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
593 * We choose to RAZ/WI.
595 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
596 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
597 .accessfn = pmreg_access },
598 /* Unimplemented, RAZ/WI. */
599 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
600 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
601 .accessfn = pmreg_access },
602 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
604 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
605 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
606 .raw_writefn = raw_write },
607 /* Unimplemented, RAZ/WI. */
608 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
609 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
610 .accessfn = pmreg_access },
611 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
612 .access = PL0_R | PL1_RW,
613 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
615 .writefn = pmuserenr_write, .raw_writefn = raw_write },
616 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
618 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
620 .writefn = pmintenset_write, .raw_writefn = raw_write },
621 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
622 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
623 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
624 .resetvalue = 0, .writefn = pmintenclr_write, },
625 { .name = "VBAR", .cp = 15, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
626 .access = PL1_RW, .writefn = vbar_write,
627 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
629 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
630 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
632 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
633 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
634 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
635 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
636 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
637 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
638 .writefn = csselr_write, .resetvalue = 0 },
639 /* Auxiliary ID register: this actually has an IMPDEF value but for now
640 * just RAZ for all cores:
642 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
643 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
647 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
654 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
656 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
657 return CP_ACCESS_TRAP;
662 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
663 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
664 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
666 .writefn = teecr_write },
667 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
668 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
669 .accessfn = teehbr_access, .resetvalue = 0 },
673 static const ARMCPRegInfo v6k_cp_reginfo[] = {
674 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
675 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
677 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
678 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
680 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
681 .resetfn = arm_cp_reset_ignore },
682 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
683 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
684 .access = PL0_R|PL1_W,
685 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
686 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
687 .access = PL0_R|PL1_W,
688 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
689 .resetfn = arm_cp_reset_ignore },
690 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
691 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
693 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
697 #ifndef CONFIG_USER_ONLY
699 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
701 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
702 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
703 return CP_ACCESS_TRAP;
708 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
710 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
711 if (arm_current_pl(env) == 0 &&
712 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
713 return CP_ACCESS_TRAP;
718 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
720 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
721 * EL0[PV]TEN is zero.
723 if (arm_current_pl(env) == 0 &&
724 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
725 return CP_ACCESS_TRAP;
730 static CPAccessResult gt_pct_access(CPUARMState *env,
731 const ARMCPRegInfo *ri)
733 return gt_counter_access(env, GTIMER_PHYS);
736 static CPAccessResult gt_vct_access(CPUARMState *env,
737 const ARMCPRegInfo *ri)
739 return gt_counter_access(env, GTIMER_VIRT);
742 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
744 return gt_timer_access(env, GTIMER_PHYS);
747 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
749 return gt_timer_access(env, GTIMER_VIRT);
752 static uint64_t gt_get_countervalue(CPUARMState *env)
754 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
757 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
759 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
762 /* Timer enabled: calculate and set current ISTATUS, irq, and
763 * reset timer to when ISTATUS next has to change
765 uint64_t count = gt_get_countervalue(&cpu->env);
766 /* Note that this must be unsigned 64 bit arithmetic: */
767 int istatus = count >= gt->cval;
770 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
771 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
772 (istatus && !(gt->ctl & 2)));
774 /* Next transition is when count rolls back over to zero */
775 nexttick = UINT64_MAX;
777 /* Next transition is when we hit cval */
780 /* Note that the desired next expiry time might be beyond the
781 * signed-64-bit range of a QEMUTimer -- in this case we just
782 * set the timer for as far in the future as possible. When the
783 * timer expires we will reset the timer for any remaining period.
785 if (nexttick > INT64_MAX / GTIMER_SCALE) {
786 nexttick = INT64_MAX / GTIMER_SCALE;
788 timer_mod(cpu->gt_timer[timeridx], nexttick);
790 /* Timer disabled: ISTATUS and timer output always clear */
792 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
793 timer_del(cpu->gt_timer[timeridx]);
797 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
799 ARMCPU *cpu = arm_env_get_cpu(env);
800 int timeridx = ri->opc1 & 1;
802 timer_del(cpu->gt_timer[timeridx]);
805 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
807 return gt_get_countervalue(env);
810 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
813 int timeridx = ri->opc1 & 1;
815 env->cp15.c14_timer[timeridx].cval = value;
816 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
819 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
821 int timeridx = ri->crm & 1;
823 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
824 gt_get_countervalue(env));
827 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
830 int timeridx = ri->crm & 1;
832 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
833 + sextract64(value, 0, 32);
834 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
837 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
840 ARMCPU *cpu = arm_env_get_cpu(env);
841 int timeridx = ri->crm & 1;
842 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
844 env->cp15.c14_timer[timeridx].ctl = value & 3;
845 if ((oldval ^ value) & 1) {
847 gt_recalc_timer(cpu, timeridx);
848 } else if ((oldval & value) & 2) {
849 /* IMASK toggled: don't need to recalculate,
850 * just set the interrupt line based on ISTATUS
852 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
853 (oldval & 4) && (value & 2));
857 void arm_gt_ptimer_cb(void *opaque)
859 ARMCPU *cpu = opaque;
861 gt_recalc_timer(cpu, GTIMER_PHYS);
864 void arm_gt_vtimer_cb(void *opaque)
866 ARMCPU *cpu = opaque;
868 gt_recalc_timer(cpu, GTIMER_VIRT);
871 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
872 /* Note that CNTFRQ is purely reads-as-written for the benefit
873 * of software; writing it doesn't actually change the timer frequency.
874 * Our reset value matches the fixed frequency we implement the timer at.
876 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
877 .access = PL1_RW | PL0_R,
878 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
879 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
880 .accessfn = gt_cntfrq_access,
882 /* overall control: mostly access permissions */
883 { .name = "CNTKCTL", .cp = 15, .crn = 14, .crm = 1, .opc1 = 0, .opc2 = 0,
885 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
888 /* per-timer control */
889 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
890 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
891 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
893 .accessfn = gt_ptimer_access,
894 .writefn = gt_ctl_write, .raw_writefn = raw_write,
896 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
897 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
898 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
900 .accessfn = gt_vtimer_access,
901 .writefn = gt_ctl_write, .raw_writefn = raw_write,
903 /* TimerValue views: a 32 bit downcounting view of the underlying state */
904 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
905 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
906 .accessfn = gt_ptimer_access,
907 .readfn = gt_tval_read, .writefn = gt_tval_write,
909 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
910 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
911 .accessfn = gt_vtimer_access,
912 .readfn = gt_tval_read, .writefn = gt_tval_write,
914 /* The counter itself */
915 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
916 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
917 .accessfn = gt_pct_access,
918 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
920 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
921 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
922 .accessfn = gt_vct_access,
923 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
925 /* Comparison value, indicating when the timer goes off */
926 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
927 .access = PL1_RW | PL0_R,
928 .type = ARM_CP_64BIT | ARM_CP_IO,
929 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
931 .accessfn = gt_ptimer_access,
932 .writefn = gt_cval_write, .raw_writefn = raw_write,
934 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
935 .access = PL1_RW | PL0_R,
936 .type = ARM_CP_64BIT | ARM_CP_IO,
937 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
939 .accessfn = gt_vtimer_access,
940 .writefn = gt_cval_write, .raw_writefn = raw_write,
946 /* In user-mode none of the generic timer registers are accessible,
947 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
948 * so instead just don't register any of them.
950 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
956 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
958 if (arm_feature(env, ARM_FEATURE_LPAE)) {
959 env->cp15.c7_par = value;
960 } else if (arm_feature(env, ARM_FEATURE_V7)) {
961 env->cp15.c7_par = value & 0xfffff6ff;
963 env->cp15.c7_par = value & 0xfffff1ff;
967 #ifndef CONFIG_USER_ONLY
968 /* get_phys_addr() isn't present for user-mode-only targets */
970 /* Return true if extended addresses are enabled, ie this is an
971 * LPAE implementation and we are using the long-descriptor translation
972 * table format because the TTBCR EAE bit is set.
974 static inline bool extended_addresses_enabled(CPUARMState *env)
976 return arm_feature(env, ARM_FEATURE_LPAE)
977 && (env->cp15.c2_control & (1U << 31));
980 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
983 /* Other states are only available with TrustZone; in
984 * a non-TZ implementation these registers don't exist
985 * at all, which is an Uncategorized trap. This underdecoding
986 * is safe because the reginfo is NO_MIGRATE.
988 return CP_ACCESS_TRAP_UNCATEGORIZED;
993 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
996 target_ulong page_size;
998 int ret, is_user = ri->opc2 & 2;
999 int access_type = ri->opc2 & 1;
1001 ret = get_phys_addr(env, value, access_type, is_user,
1002 &phys_addr, &prot, &page_size);
1003 if (extended_addresses_enabled(env)) {
1004 /* ret is a DFSR/IFSR value for the long descriptor
1005 * translation table format, but with WnR always clear.
1006 * Convert it to a 64-bit PAR.
1008 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1010 par64 |= phys_addr & ~0xfffULL;
1011 /* We don't set the ATTR or SH fields in the PAR. */
1014 par64 |= (ret & 0x3f) << 1; /* FS */
1015 /* Note that S2WLK and FSTAGE are always zero, because we don't
1016 * implement virtualization and therefore there can't be a stage 2
1020 env->cp15.c7_par = par64;
1021 env->cp15.c7_par_hi = par64 >> 32;
1023 /* ret is a DFSR/IFSR value for the short descriptor
1024 * translation table format (with WnR always clear).
1025 * Convert it to a 32-bit PAR.
1028 /* We do not set any attribute bits in the PAR */
1029 if (page_size == (1 << 24)
1030 && arm_feature(env, ARM_FEATURE_V7)) {
1031 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1033 env->cp15.c7_par = phys_addr & 0xfffff000;
1036 env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
1037 ((ret & (1 << 12)) >> 6) |
1038 ((ret & 0xf) << 1) | 1;
1040 env->cp15.c7_par_hi = 0;
1045 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1046 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1047 .access = PL1_RW, .resetvalue = 0,
1048 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1049 .writefn = par_write },
1050 #ifndef CONFIG_USER_ONLY
1051 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1052 .access = PL1_W, .accessfn = ats_access,
1053 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1058 /* Return basic MPU access permission bits. */
1059 static uint32_t simple_mpu_ap_bits(uint32_t val)
1066 for (i = 0; i < 16; i += 2) {
1067 ret |= (val >> i) & mask;
1073 /* Pad basic MPU access permission bits to extended format. */
1074 static uint32_t extended_mpu_ap_bits(uint32_t val)
1081 for (i = 0; i < 16; i += 2) {
1082 ret |= (val & mask) << i;
1088 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091 env->cp15.c5_data = extended_mpu_ap_bits(value);
1094 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1096 return simple_mpu_ap_bits(env->cp15.c5_data);
1099 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1102 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1105 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1107 return simple_mpu_ap_bits(env->cp15.c5_insn);
1110 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1111 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1112 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1113 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1114 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1115 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1116 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1117 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1118 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1119 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1121 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1122 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1124 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1125 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1127 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1128 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1130 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1131 /* Protection region base and size registers */
1132 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1133 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1134 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1135 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1136 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1137 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1138 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1139 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1140 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1141 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1142 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1143 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1144 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1145 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1146 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1147 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1148 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1149 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1150 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1151 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1152 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1153 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1154 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1155 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1159 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1162 int maskshift = extract32(value, 0, 3);
1164 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1165 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1169 /* Note that we always calculate c2_mask and c2_base_mask, but
1170 * they are only used for short-descriptor tables (ie if EAE is 0);
1171 * for long-descriptor tables the TTBCR fields are used differently
1172 * and the c2_mask and c2_base_mask values are meaningless.
1174 env->cp15.c2_control = value;
1175 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1176 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1179 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1182 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1183 /* With LPAE the TTBCR could result in a change of ASID
1184 * via the TTBCR.A1 bit, so do a TLB flush.
1188 vmsa_ttbcr_raw_write(env, ri, value);
1191 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1193 env->cp15.c2_base_mask = 0xffffc000u;
1194 env->cp15.c2_control = 0;
1195 env->cp15.c2_mask = 0;
1198 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1199 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1201 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1202 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1204 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1205 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1207 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
1208 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1210 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
1211 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1212 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
1213 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
1214 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1215 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1216 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1221 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1224 env->cp15.c15_ticonfig = value & 0xe7;
1225 /* The OS_TYPE bit in this register changes the reported CPUID! */
1226 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1227 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1230 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1233 env->cp15.c15_threadid = value & 0xffff;
1236 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1239 /* Wait-for-interrupt (deprecated) */
1240 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1243 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1246 /* On OMAP there are registers indicating the max/min index of dcache lines
1247 * containing a dirty line; cache flush operations have to reset these.
1249 env->cp15.c15_i_max = 0x000;
1250 env->cp15.c15_i_min = 0xff0;
1253 static const ARMCPRegInfo omap_cp_reginfo[] = {
1254 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1255 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1256 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1257 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1258 .access = PL1_RW, .type = ARM_CP_NOP },
1259 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1261 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1262 .writefn = omap_ticonfig_write },
1263 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1265 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1266 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1267 .access = PL1_RW, .resetvalue = 0xff0,
1268 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1269 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1271 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1272 .writefn = omap_threadid_write },
1273 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1274 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1275 .type = ARM_CP_NO_MIGRATE,
1276 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1277 /* TODO: Peripheral port remap register:
1278 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1279 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1282 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1283 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1284 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1285 .writefn = omap_cachemaint_write },
1286 { .name = "C9", .cp = 15, .crn = 9,
1287 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1288 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1292 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1296 if (env->cp15.c15_cpar != value) {
1297 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1299 env->cp15.c15_cpar = value;
1303 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1304 { .name = "XSCALE_CPAR",
1305 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1306 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1307 .writefn = xscale_cpar_write, },
1308 { .name = "XSCALE_AUXCR",
1309 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1310 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1315 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1316 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1317 * implementation of this implementation-defined space.
1318 * Ideally this should eventually disappear in favour of actually
1319 * implementing the correct behaviour for all cores.
1321 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1322 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1324 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1329 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1330 /* Cache status: RAZ because we have no cache so it's always clean */
1331 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1332 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1337 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1338 /* We never have a a block transfer operation in progress */
1339 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1340 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1342 /* The cache ops themselves: these all NOP for QEMU */
1343 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1344 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1345 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1346 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1347 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1348 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1349 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1350 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1351 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1352 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1353 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1354 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1358 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1359 /* The cache test-and-clean instructions always return (1 << 30)
1360 * to indicate that there are no dirty cache lines.
1362 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1363 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1364 .resetvalue = (1 << 30) },
1365 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1366 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1367 .resetvalue = (1 << 30) },
1371 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1372 /* Ignore ReadBuffer accesses */
1373 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1374 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1375 .access = PL1_RW, .resetvalue = 0,
1376 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1380 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1382 CPUState *cs = CPU(arm_env_get_cpu(env));
1383 uint32_t mpidr = cs->cpu_index;
1384 /* We don't support setting cluster ID ([8..11])
1385 * so these bits always RAZ.
1387 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1388 mpidr |= (1U << 31);
1389 /* Cores which are uniprocessor (non-coherent)
1390 * but still implement the MP extensions set
1391 * bit 30. (For instance, A9UP.) However we do
1392 * not currently model any of those cores.
1398 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1399 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1400 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1404 static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1406 return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1409 static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
1412 env->cp15.c7_par_hi = value >> 32;
1413 env->cp15.c7_par = value;
1416 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1418 env->cp15.c7_par_hi = 0;
1419 env->cp15.c7_par = 0;
1422 static uint64_t ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri)
1424 return ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
1427 static void ttbr064_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1430 env->cp15.c2_base0_hi = value >> 32;
1431 env->cp15.c2_base0 = value;
1434 static void ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
1437 /* Writes to the 64 bit format TTBRs may change the ASID */
1439 ttbr064_raw_write(env, ri, value);
1442 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1444 env->cp15.c2_base0_hi = 0;
1445 env->cp15.c2_base0 = 0;
1448 static uint64_t ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri)
1450 return ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
1453 static void ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 env->cp15.c2_base1_hi = value >> 32;
1457 env->cp15.c2_base1 = value;
1460 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1462 env->cp15.c2_base1_hi = 0;
1463 env->cp15.c2_base1 = 0;
1466 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1467 /* NOP AMAIR0/1: the override is because these clash with the rather
1468 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1470 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1471 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1473 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1474 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1476 /* 64 bit access versions of the (dummy) debug registers */
1477 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1478 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1479 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1480 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1481 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1482 .access = PL1_RW, .type = ARM_CP_64BIT,
1483 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1484 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1485 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1486 .writefn = ttbr064_write, .raw_writefn = ttbr064_raw_write,
1487 .resetfn = ttbr064_reset },
1488 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1489 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1490 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1494 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1496 return vfp_get_fpcr(env);
1499 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1502 vfp_set_fpcr(env, value);
1505 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1507 return vfp_get_fpsr(env);
1510 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 vfp_set_fpsr(env, value);
1516 static const ARMCPRegInfo v8_cp_reginfo[] = {
1517 /* Minimal set of EL0-visible registers. This will need to be expanded
1518 * significantly for system emulation of AArch64 CPUs.
1520 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1521 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1522 .access = PL0_RW, .type = ARM_CP_NZCV },
1523 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1524 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1525 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1526 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1527 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1528 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1529 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1530 * For system mode the DZP bit here will need to be computed, not constant.
1532 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1533 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1534 .access = PL0_R, .type = ARM_CP_CONST,
1535 .resetvalue = 0x10 },
1536 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1537 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1538 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1542 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1545 env->cp15.c1_sys = value;
1546 /* ??? Lots of these bits are not implemented. */
1547 /* This may enable/disable the MMU, so do a TLB flush. */
1551 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1553 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
1554 * but the AArch32 CTR has its own reginfo struct)
1556 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
1557 return CP_ACCESS_TRAP;
1559 return CP_ACCESS_OK;
1562 void register_cp_regs_for_features(ARMCPU *cpu)
1564 /* Register all the coprocessor registers based on feature bits */
1565 CPUARMState *env = &cpu->env;
1566 if (arm_feature(env, ARM_FEATURE_M)) {
1567 /* M profile has no coprocessor registers */
1571 define_arm_cp_regs(cpu, cp_reginfo);
1572 if (arm_feature(env, ARM_FEATURE_V6)) {
1573 /* The ID registers all have impdef reset values */
1574 ARMCPRegInfo v6_idregs[] = {
1575 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1576 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1577 .resetvalue = cpu->id_pfr0 },
1578 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1579 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1580 .resetvalue = cpu->id_pfr1 },
1581 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1582 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1583 .resetvalue = cpu->id_dfr0 },
1584 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1585 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1586 .resetvalue = cpu->id_afr0 },
1587 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1588 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1589 .resetvalue = cpu->id_mmfr0 },
1590 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1591 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1592 .resetvalue = cpu->id_mmfr1 },
1593 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1594 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1595 .resetvalue = cpu->id_mmfr2 },
1596 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1597 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1598 .resetvalue = cpu->id_mmfr3 },
1599 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1600 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1601 .resetvalue = cpu->id_isar0 },
1602 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1603 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1604 .resetvalue = cpu->id_isar1 },
1605 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1606 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1607 .resetvalue = cpu->id_isar2 },
1608 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1609 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1610 .resetvalue = cpu->id_isar3 },
1611 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1612 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1613 .resetvalue = cpu->id_isar4 },
1614 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1615 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1616 .resetvalue = cpu->id_isar5 },
1617 /* 6..7 are as yet unallocated and must RAZ */
1618 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1619 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1621 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1622 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1626 define_arm_cp_regs(cpu, v6_idregs);
1627 define_arm_cp_regs(cpu, v6_cp_reginfo);
1629 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1631 if (arm_feature(env, ARM_FEATURE_V6K)) {
1632 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1634 if (arm_feature(env, ARM_FEATURE_V7)) {
1635 /* v7 performance monitor control register: same implementor
1636 * field as main ID register, and we implement no event counters.
1638 ARMCPRegInfo pmcr = {
1639 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1640 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1641 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1642 .accessfn = pmreg_access, .writefn = pmcr_write,
1643 .raw_writefn = raw_write,
1645 ARMCPRegInfo clidr = {
1646 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
1647 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1648 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1650 define_one_arm_cp_reg(cpu, &pmcr);
1651 define_one_arm_cp_reg(cpu, &clidr);
1652 define_arm_cp_regs(cpu, v7_cp_reginfo);
1654 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1656 if (arm_feature(env, ARM_FEATURE_V8)) {
1657 define_arm_cp_regs(cpu, v8_cp_reginfo);
1659 if (arm_feature(env, ARM_FEATURE_MPU)) {
1660 /* These are the MPU registers prior to PMSAv6. Any new
1661 * PMSA core later than the ARM946 will require that we
1662 * implement the PMSAv6 or PMSAv7 registers, which are
1663 * completely different.
1665 assert(!arm_feature(env, ARM_FEATURE_V6));
1666 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1668 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1670 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1671 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1673 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1674 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1676 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1677 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1679 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1680 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1682 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1683 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1685 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1686 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1688 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1689 define_arm_cp_regs(cpu, omap_cp_reginfo);
1691 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1692 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1694 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1695 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1697 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1698 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1700 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1701 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1703 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1704 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1705 * be read-only (ie write causes UNDEF exception).
1708 ARMCPRegInfo id_cp_reginfo[] = {
1709 /* Note that the MIDR isn't a simple constant register because
1710 * of the TI925 behaviour where writes to another register can
1711 * cause the MIDR value to change.
1713 * Unimplemented registers in the c15 0 0 0 space default to
1714 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1715 * and friends override accordingly.
1718 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
1719 .access = PL1_R, .resetvalue = cpu->midr,
1720 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
1721 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
1722 .type = ARM_CP_OVERRIDE },
1723 { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
1724 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
1725 .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
1727 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1728 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1729 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
1730 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
1731 .access = PL0_R, .accessfn = ctr_el0_access,
1732 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1734 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1735 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1737 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1738 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1739 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1741 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1742 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1744 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1745 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1747 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1748 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1750 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1751 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1753 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1754 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1757 ARMCPRegInfo crn0_wi_reginfo = {
1758 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1759 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1760 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1762 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1763 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1765 /* Register the blanket "writes ignored" value first to cover the
1766 * whole space. Then update the specific ID registers to allow write
1767 * access, so that they ignore writes rather than causing them to
1770 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1771 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1775 define_arm_cp_regs(cpu, id_cp_reginfo);
1778 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1779 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1782 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1783 ARMCPRegInfo auxcr = {
1784 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1785 .access = PL1_RW, .type = ARM_CP_CONST,
1786 .resetvalue = cpu->reset_auxcr
1788 define_one_arm_cp_reg(cpu, &auxcr);
1791 if (arm_feature(env, ARM_FEATURE_CBAR)) {
1792 ARMCPRegInfo cbar = {
1793 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
1794 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
1795 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
1797 define_one_arm_cp_reg(cpu, &cbar);
1800 /* Generic registers whose values depend on the implementation */
1802 ARMCPRegInfo sctlr = {
1803 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1804 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1805 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
1806 .raw_writefn = raw_write,
1808 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1809 /* Normally we would always end the TB on an SCTLR write, but Linux
1810 * arch/arm/mach-pxa/sleep.S expects two instructions following
1811 * an MMU enable to execute from cache. Imitate this behaviour.
1813 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1815 define_one_arm_cp_reg(cpu, &sctlr);
1819 ARMCPU *cpu_arm_init(const char *cpu_model)
1824 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1828 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1830 /* TODO this should be set centrally, once possible */
1831 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1836 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1838 CPUState *cs = CPU(cpu);
1839 CPUARMState *env = &cpu->env;
1841 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
1842 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
1843 aarch64_fpu_gdb_set_reg,
1844 34, "aarch64-fpu.xml", 0);
1845 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
1846 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1847 51, "arm-neon.xml", 0);
1848 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1849 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1850 35, "arm-vfp3.xml", 0);
1851 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1852 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
1853 19, "arm-vfp.xml", 0);
1857 /* Sort alphabetically by type name, except for "any". */
1858 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1860 ObjectClass *class_a = (ObjectClass *)a;
1861 ObjectClass *class_b = (ObjectClass *)b;
1862 const char *name_a, *name_b;
1864 name_a = object_class_get_name(class_a);
1865 name_b = object_class_get_name(class_b);
1866 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1868 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1871 return strcmp(name_a, name_b);
1875 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1877 ObjectClass *oc = data;
1878 CPUListState *s = user_data;
1879 const char *typename;
1882 typename = object_class_get_name(oc);
1883 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1884 (*s->cpu_fprintf)(s->file, " %s\n",
1889 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1893 .cpu_fprintf = cpu_fprintf,
1897 list = object_class_get_list(TYPE_ARM_CPU, false);
1898 list = g_slist_sort(list, arm_cpu_list_compare);
1899 (*cpu_fprintf)(f, "Available CPUs:\n");
1900 g_slist_foreach(list, arm_cpu_list_entry, &s);
1903 /* The 'host' CPU type is dynamically registered only if KVM is
1904 * enabled, so we have to special-case it here:
1906 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
1910 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
1912 ObjectClass *oc = data;
1913 CpuDefinitionInfoList **cpu_list = user_data;
1914 CpuDefinitionInfoList *entry;
1915 CpuDefinitionInfo *info;
1916 const char *typename;
1918 typename = object_class_get_name(oc);
1919 info = g_malloc0(sizeof(*info));
1920 info->name = g_strndup(typename,
1921 strlen(typename) - strlen("-" TYPE_ARM_CPU));
1923 entry = g_malloc0(sizeof(*entry));
1924 entry->value = info;
1925 entry->next = *cpu_list;
1929 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
1931 CpuDefinitionInfoList *cpu_list = NULL;
1934 list = object_class_get_list(TYPE_ARM_CPU, false);
1935 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
1941 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
1942 void *opaque, int state,
1943 int crm, int opc1, int opc2)
1945 /* Private utility function for define_one_arm_cp_reg_with_opaque():
1946 * add a single reginfo struct to the hash table.
1948 uint32_t *key = g_new(uint32_t, 1);
1949 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1950 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1951 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
1952 /* The AArch32 view of a shared register sees the lower 32 bits
1953 * of a 64 bit backing field. It is not migratable as the AArch64
1954 * view handles that. AArch64 also handles reset.
1955 * We assume it is a cp15 register.
1958 r2->type |= ARM_CP_NO_MIGRATE;
1959 r2->resetfn = arm_cp_reset_ignore;
1960 #ifdef HOST_WORDS_BIGENDIAN
1961 if (r2->fieldoffset) {
1962 r2->fieldoffset += sizeof(uint32_t);
1966 if (state == ARM_CP_STATE_AA64) {
1967 /* To allow abbreviation of ARMCPRegInfo
1968 * definitions, we treat cp == 0 as equivalent to
1969 * the value for "standard guest-visible sysreg".
1972 r2->cp = CP_REG_ARM64_SYSREG_CP;
1974 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
1975 r2->opc0, opc1, opc2);
1977 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
1980 r2->opaque = opaque;
1982 /* reginfo passed to helpers is correct for the actual access,
1983 * and is never ARM_CP_STATE_BOTH:
1986 /* Make sure reginfo passed to helpers for wildcarded regs
1987 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1992 /* By convention, for wildcarded registers only the first
1993 * entry is used for migration; the others are marked as
1994 * NO_MIGRATE so we don't try to transfer the register
1995 * multiple times. Special registers (ie NOP/WFI) are
1998 if ((r->type & ARM_CP_SPECIAL) ||
1999 ((r->crm == CP_ANY) && crm != 0) ||
2000 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2001 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2002 r2->type |= ARM_CP_NO_MIGRATE;
2005 /* Overriding of an existing definition must be explicitly
2008 if (!(r->type & ARM_CP_OVERRIDE)) {
2009 ARMCPRegInfo *oldreg;
2010 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2011 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2012 fprintf(stderr, "Register redefined: cp=%d %d bit "
2013 "crn=%d crm=%d opc1=%d opc2=%d, "
2014 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2015 r2->crn, r2->crm, r2->opc1, r2->opc2,
2016 oldreg->name, r2->name);
2017 g_assert_not_reached();
2020 g_hash_table_insert(cpu->cp_regs, key, r2);
2024 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2025 const ARMCPRegInfo *r, void *opaque)
2027 /* Define implementations of coprocessor registers.
2028 * We store these in a hashtable because typically
2029 * there are less than 150 registers in a space which
2030 * is 16*16*16*8*8 = 262144 in size.
2031 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2032 * If a register is defined twice then the second definition is
2033 * used, so this can be used to define some generic registers and
2034 * then override them with implementation specific variations.
2035 * At least one of the original and the second definition should
2036 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2037 * against accidental use.
2039 * The state field defines whether the register is to be
2040 * visible in the AArch32 or AArch64 execution state. If the
2041 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2042 * reginfo structure for the AArch32 view, which sees the lower
2043 * 32 bits of the 64 bit register.
2045 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2046 * be wildcarded. AArch64 registers are always considered to be 64
2047 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2048 * the register, if any.
2050 int crm, opc1, opc2, state;
2051 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2052 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2053 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2054 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2055 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2056 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2057 /* 64 bit registers have only CRm and Opc1 fields */
2058 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2059 /* op0 only exists in the AArch64 encodings */
2060 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2061 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2062 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2063 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2064 * encodes a minimum access level for the register. We roll this
2065 * runtime check into our general permission check code, so check
2066 * here that the reginfo's specified permissions are strict enough
2067 * to encompass the generic architectural permission check.
2069 if (r->state != ARM_CP_STATE_AA32) {
2072 case 0: case 1: case 2:
2085 /* unallocated encoding, so not possible */
2093 /* min_EL EL1, secure mode only (we don't check the latter) */
2097 /* broken reginfo with out-of-range opc1 */
2101 /* assert our permissions are not too lax (stricter is fine) */
2102 assert((r->access & ~mask) == 0);
2105 /* Check that the register definition has enough info to handle
2106 * reads and writes if they are permitted.
2108 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2109 if (r->access & PL3_R) {
2110 assert(r->fieldoffset || r->readfn);
2112 if (r->access & PL3_W) {
2113 assert(r->fieldoffset || r->writefn);
2116 /* Bad type field probably means missing sentinel at end of reg list */
2117 assert(cptype_valid(r->type));
2118 for (crm = crmmin; crm <= crmmax; crm++) {
2119 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2120 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2121 for (state = ARM_CP_STATE_AA32;
2122 state <= ARM_CP_STATE_AA64; state++) {
2123 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2126 add_cpreg_to_hashtable(cpu, r, opaque, state,
2134 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2135 const ARMCPRegInfo *regs, void *opaque)
2137 /* Define a whole list of registers */
2138 const ARMCPRegInfo *r;
2139 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2140 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2144 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2146 return g_hash_table_lookup(cpregs, &encoded_cp);
2149 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2152 /* Helper coprocessor write function for write-ignore registers */
2155 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2157 /* Helper coprocessor write function for read-as-zero registers */
2161 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2163 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2166 static int bad_mode_switch(CPUARMState *env, int mode)
2168 /* Return true if it is not valid for us to switch to
2169 * this CPU mode (ie all the UNPREDICTABLE cases in
2170 * the ARM ARM CPSRWriteByInstr pseudocode).
2173 case ARM_CPU_MODE_USR:
2174 case ARM_CPU_MODE_SYS:
2175 case ARM_CPU_MODE_SVC:
2176 case ARM_CPU_MODE_ABT:
2177 case ARM_CPU_MODE_UND:
2178 case ARM_CPU_MODE_IRQ:
2179 case ARM_CPU_MODE_FIQ:
2186 uint32_t cpsr_read(CPUARMState *env)
2189 ZF = (env->ZF == 0);
2190 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2191 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2192 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2193 | ((env->condexec_bits & 0xfc) << 8)
2197 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2199 if (mask & CPSR_NZCV) {
2200 env->ZF = (~val) & CPSR_Z;
2202 env->CF = (val >> 29) & 1;
2203 env->VF = (val << 3) & 0x80000000;
2206 env->QF = ((val & CPSR_Q) != 0);
2208 env->thumb = ((val & CPSR_T) != 0);
2209 if (mask & CPSR_IT_0_1) {
2210 env->condexec_bits &= ~3;
2211 env->condexec_bits |= (val >> 25) & 3;
2213 if (mask & CPSR_IT_2_7) {
2214 env->condexec_bits &= 3;
2215 env->condexec_bits |= (val >> 8) & 0xfc;
2217 if (mask & CPSR_GE) {
2218 env->GE = (val >> 16) & 0xf;
2221 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2222 if (bad_mode_switch(env, val & CPSR_M)) {
2223 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2224 * We choose to ignore the attempt and leave the CPSR M field
2229 switch_mode(env, val & CPSR_M);
2232 mask &= ~CACHED_CPSR_BITS;
2233 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2236 /* Sign/zero extend */
2237 uint32_t HELPER(sxtb16)(uint32_t x)
2240 res = (uint16_t)(int8_t)x;
2241 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2245 uint32_t HELPER(uxtb16)(uint32_t x)
2248 res = (uint16_t)(uint8_t)x;
2249 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2253 uint32_t HELPER(clz)(uint32_t x)
2258 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2262 if (num == INT_MIN && den == -1)
2267 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2274 uint32_t HELPER(rbit)(uint32_t x)
2276 x = ((x & 0xff000000) >> 24)
2277 | ((x & 0x00ff0000) >> 8)
2278 | ((x & 0x0000ff00) << 8)
2279 | ((x & 0x000000ff) << 24);
2280 x = ((x & 0xf0f0f0f0) >> 4)
2281 | ((x & 0x0f0f0f0f) << 4);
2282 x = ((x & 0x88888888) >> 3)
2283 | ((x & 0x44444444) >> 1)
2284 | ((x & 0x22222222) << 1)
2285 | ((x & 0x11111111) << 3);
2289 #if defined(CONFIG_USER_ONLY)
2291 void arm_cpu_do_interrupt(CPUState *cs)
2293 ARMCPU *cpu = ARM_CPU(cs);
2294 CPUARMState *env = &cpu->env;
2296 env->exception_index = -1;
2299 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
2303 env->exception_index = EXCP_PREFETCH_ABORT;
2304 env->cp15.c6_insn = address;
2306 env->exception_index = EXCP_DATA_ABORT;
2307 env->cp15.c6_data = address;
2312 /* These should probably raise undefined insn exceptions. */
2313 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2315 cpu_abort(env, "v7m_mrs %d\n", reg);
2318 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2320 cpu_abort(env, "v7m_mrs %d\n", reg);
2324 void switch_mode(CPUARMState *env, int mode)
2326 if (mode != ARM_CPU_MODE_USR)
2327 cpu_abort(env, "Tried to switch out of user mode\n");
2330 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2332 cpu_abort(env, "banked r13 write\n");
2335 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2337 cpu_abort(env, "banked r13 read\n");
2343 /* Map CPU modes onto saved register banks. */
2344 int bank_number(int mode)
2347 case ARM_CPU_MODE_USR:
2348 case ARM_CPU_MODE_SYS:
2350 case ARM_CPU_MODE_SVC:
2352 case ARM_CPU_MODE_ABT:
2354 case ARM_CPU_MODE_UND:
2356 case ARM_CPU_MODE_IRQ:
2358 case ARM_CPU_MODE_FIQ:
2361 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2364 void switch_mode(CPUARMState *env, int mode)
2369 old_mode = env->uncached_cpsr & CPSR_M;
2370 if (mode == old_mode)
2373 if (old_mode == ARM_CPU_MODE_FIQ) {
2374 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2375 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2376 } else if (mode == ARM_CPU_MODE_FIQ) {
2377 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2378 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2381 i = bank_number(old_mode);
2382 env->banked_r13[i] = env->regs[13];
2383 env->banked_r14[i] = env->regs[14];
2384 env->banked_spsr[i] = env->spsr;
2386 i = bank_number(mode);
2387 env->regs[13] = env->banked_r13[i];
2388 env->regs[14] = env->banked_r14[i];
2389 env->spsr = env->banked_spsr[i];
2392 static void v7m_push(CPUARMState *env, uint32_t val)
2394 CPUState *cs = ENV_GET_CPU(env);
2396 stl_phys(cs->as, env->regs[13], val);
2399 static uint32_t v7m_pop(CPUARMState *env)
2401 CPUState *cs = ENV_GET_CPU(env);
2403 val = ldl_phys(cs->as, env->regs[13]);
2408 /* Switch to V7M main or process stack pointer. */
2409 static void switch_v7m_sp(CPUARMState *env, int process)
2412 if (env->v7m.current_sp != process) {
2413 tmp = env->v7m.other_sp;
2414 env->v7m.other_sp = env->regs[13];
2415 env->regs[13] = tmp;
2416 env->v7m.current_sp = process;
2420 static void do_v7m_exception_exit(CPUARMState *env)
2425 type = env->regs[15];
2426 if (env->v7m.exception != 0)
2427 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2429 /* Switch to the target stack. */
2430 switch_v7m_sp(env, (type & 4) != 0);
2431 /* Pop registers. */
2432 env->regs[0] = v7m_pop(env);
2433 env->regs[1] = v7m_pop(env);
2434 env->regs[2] = v7m_pop(env);
2435 env->regs[3] = v7m_pop(env);
2436 env->regs[12] = v7m_pop(env);
2437 env->regs[14] = v7m_pop(env);
2438 env->regs[15] = v7m_pop(env);
2439 xpsr = v7m_pop(env);
2440 xpsr_write(env, xpsr, 0xfffffdff);
2441 /* Undo stack alignment. */
2444 /* ??? The exception return type specifies Thread/Handler mode. However
2445 this is also implied by the xPSR value. Not sure what to do
2446 if there is a mismatch. */
2447 /* ??? Likewise for mismatches between the CONTROL register and the stack
2451 /* Exception names for debug logging; note that not all of these
2452 * precisely correspond to architectural exceptions.
2454 static const char * const excnames[] = {
2455 [EXCP_UDEF] = "Undefined Instruction",
2457 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2458 [EXCP_DATA_ABORT] = "Data Abort",
2461 [EXCP_BKPT] = "Breakpoint",
2462 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2463 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2464 [EXCP_STREX] = "QEMU intercept of STREX",
2467 static inline void arm_log_exception(int idx)
2469 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2470 const char *exc = NULL;
2472 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2473 exc = excnames[idx];
2478 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2482 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2484 ARMCPU *cpu = ARM_CPU(cs);
2485 CPUARMState *env = &cpu->env;
2486 uint32_t xpsr = xpsr_read(env);
2490 arm_log_exception(env->exception_index);
2493 if (env->v7m.current_sp)
2495 if (env->v7m.exception == 0)
2498 /* For exceptions we just mark as pending on the NVIC, and let that
2500 /* TODO: Need to escalate if the current priority is higher than the
2501 one we're raising. */
2502 switch (env->exception_index) {
2504 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2507 /* The PC already points to the next instruction. */
2508 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2510 case EXCP_PREFETCH_ABORT:
2511 case EXCP_DATA_ABORT:
2512 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2515 if (semihosting_enabled) {
2517 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2520 env->regs[0] = do_arm_semihosting(env);
2521 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2525 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2528 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2530 case EXCP_EXCEPTION_EXIT:
2531 do_v7m_exception_exit(env);
2534 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2535 return; /* Never happens. Keep compiler happy. */
2538 /* Align stack pointer. */
2539 /* ??? Should only do this if Configuration Control Register
2540 STACKALIGN bit is set. */
2541 if (env->regs[13] & 4) {
2545 /* Switch to the handler mode. */
2546 v7m_push(env, xpsr);
2547 v7m_push(env, env->regs[15]);
2548 v7m_push(env, env->regs[14]);
2549 v7m_push(env, env->regs[12]);
2550 v7m_push(env, env->regs[3]);
2551 v7m_push(env, env->regs[2]);
2552 v7m_push(env, env->regs[1]);
2553 v7m_push(env, env->regs[0]);
2554 switch_v7m_sp(env, 0);
2556 env->condexec_bits = 0;
2558 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
2559 env->regs[15] = addr & 0xfffffffe;
2560 env->thumb = addr & 1;
2563 /* Handle a CPU exception. */
2564 void arm_cpu_do_interrupt(CPUState *cs)
2566 ARMCPU *cpu = ARM_CPU(cs);
2567 CPUARMState *env = &cpu->env;
2575 arm_log_exception(env->exception_index);
2577 /* TODO: Vectored interrupt controller. */
2578 switch (env->exception_index) {
2580 new_mode = ARM_CPU_MODE_UND;
2589 if (semihosting_enabled) {
2590 /* Check for semihosting interrupt. */
2592 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2595 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2598 /* Only intercept calls from privileged modes, to provide some
2599 semblance of security. */
2600 if (((mask == 0x123456 && !env->thumb)
2601 || (mask == 0xab && env->thumb))
2602 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2603 env->regs[0] = do_arm_semihosting(env);
2604 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2608 new_mode = ARM_CPU_MODE_SVC;
2611 /* The PC already points to the next instruction. */
2615 /* See if this is a semihosting syscall. */
2616 if (env->thumb && semihosting_enabled) {
2617 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2619 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
2621 env->regs[0] = do_arm_semihosting(env);
2622 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2626 env->cp15.c5_insn = 2;
2627 /* Fall through to prefetch abort. */
2628 case EXCP_PREFETCH_ABORT:
2629 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
2630 env->cp15.c5_insn, env->cp15.c6_insn);
2631 new_mode = ARM_CPU_MODE_ABT;
2633 mask = CPSR_A | CPSR_I;
2636 case EXCP_DATA_ABORT:
2637 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
2638 env->cp15.c5_data, env->cp15.c6_data);
2639 new_mode = ARM_CPU_MODE_ABT;
2641 mask = CPSR_A | CPSR_I;
2645 new_mode = ARM_CPU_MODE_IRQ;
2647 /* Disable IRQ and imprecise data aborts. */
2648 mask = CPSR_A | CPSR_I;
2652 new_mode = ARM_CPU_MODE_FIQ;
2654 /* Disable FIQ, IRQ and imprecise data aborts. */
2655 mask = CPSR_A | CPSR_I | CPSR_F;
2659 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
2660 return; /* Never happens. Keep compiler happy. */
2663 if (env->cp15.c1_sys & SCTLR_V) {
2664 /* when enabled, base address cannot be remapped. */
2667 /* ARM v7 architectures provide a vector base address register to remap
2668 * the interrupt vector table.
2669 * This register is only followed in non-monitor mode, and has a secure
2670 * and un-secure copy. Since the cpu is always in a un-secure operation
2671 * and is never in monitor mode this feature is always active.
2672 * Note: only bits 31:5 are valid.
2674 addr += env->cp15.c12_vbar;
2676 switch_mode (env, new_mode);
2677 env->spsr = cpsr_read(env);
2678 /* Clear IT bits. */
2679 env->condexec_bits = 0;
2680 /* Switch to the new mode, and to the correct instruction set. */
2681 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
2682 env->uncached_cpsr |= mask;
2683 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2684 * and we should just guard the thumb mode on V4 */
2685 if (arm_feature(env, ARM_FEATURE_V4T)) {
2686 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
2688 env->regs[14] = env->regs[15] + offset;
2689 env->regs[15] = addr;
2690 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
2693 /* Check section/page access permissions.
2694 Returns the page protection flags, or zero if the access is not
2696 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
2697 int access_type, int is_user)
2701 if (domain_prot == 3) {
2702 return PAGE_READ | PAGE_WRITE;
2705 if (access_type == 1)
2708 prot_ro = PAGE_READ;
2712 if (arm_feature(env, ARM_FEATURE_V7)) {
2715 if (access_type == 1)
2717 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
2719 return is_user ? 0 : PAGE_READ;
2726 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
2731 return PAGE_READ | PAGE_WRITE;
2733 return PAGE_READ | PAGE_WRITE;
2734 case 4: /* Reserved. */
2737 return is_user ? 0 : prot_ro;
2741 if (!arm_feature (env, ARM_FEATURE_V6K))
2749 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
2753 if (address & env->cp15.c2_mask)
2754 table = env->cp15.c2_base1 & 0xffffc000;
2756 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
2758 table |= (address >> 18) & 0x3ffc;
2762 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
2763 int is_user, hwaddr *phys_ptr,
2764 int *prot, target_ulong *page_size)
2766 CPUState *cs = ENV_GET_CPU(env);
2776 /* Pagetable walk. */
2777 /* Lookup l1 descriptor. */
2778 table = get_level1_table_address(env, address);
2779 desc = ldl_phys(cs->as, table);
2781 domain = (desc >> 5) & 0x0f;
2782 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2784 /* Section translation fault. */
2788 if (domain_prot == 0 || domain_prot == 2) {
2790 code = 9; /* Section domain fault. */
2792 code = 11; /* Page domain fault. */
2797 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2798 ap = (desc >> 10) & 3;
2800 *page_size = 1024 * 1024;
2802 /* Lookup l2 entry. */
2804 /* Coarse pagetable. */
2805 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2807 /* Fine pagetable. */
2808 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2810 desc = ldl_phys(cs->as, table);
2812 case 0: /* Page translation fault. */
2815 case 1: /* 64k page. */
2816 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2817 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2818 *page_size = 0x10000;
2820 case 2: /* 4k page. */
2821 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2822 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
2823 *page_size = 0x1000;
2825 case 3: /* 1k page. */
2827 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2828 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2830 /* Page translation fault. */
2835 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2837 ap = (desc >> 4) & 3;
2841 /* Never happens, but compiler isn't smart enough to tell. */
2846 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2848 /* Access permission fault. */
2852 *phys_ptr = phys_addr;
2855 return code | (domain << 4);
2858 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2859 int is_user, hwaddr *phys_ptr,
2860 int *prot, target_ulong *page_size)
2862 CPUState *cs = ENV_GET_CPU(env);
2874 /* Pagetable walk. */
2875 /* Lookup l1 descriptor. */
2876 table = get_level1_table_address(env, address);
2877 desc = ldl_phys(cs->as, table);
2879 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2880 /* Section translation fault, or attempt to use the encoding
2881 * which is Reserved on implementations without PXN.
2886 if ((type == 1) || !(desc & (1 << 18))) {
2887 /* Page or Section. */
2888 domain = (desc >> 5) & 0x0f;
2890 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2891 if (domain_prot == 0 || domain_prot == 2) {
2893 code = 9; /* Section domain fault. */
2895 code = 11; /* Page domain fault. */
2900 if (desc & (1 << 18)) {
2902 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2903 *page_size = 0x1000000;
2906 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2907 *page_size = 0x100000;
2909 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2910 xn = desc & (1 << 4);
2914 if (arm_feature(env, ARM_FEATURE_PXN)) {
2915 pxn = (desc >> 2) & 1;
2917 /* Lookup l2 entry. */
2918 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2919 desc = ldl_phys(cs->as, table);
2920 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2922 case 0: /* Page translation fault. */
2925 case 1: /* 64k page. */
2926 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2927 xn = desc & (1 << 15);
2928 *page_size = 0x10000;
2930 case 2: case 3: /* 4k page. */
2931 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2933 *page_size = 0x1000;
2936 /* Never happens, but compiler isn't smart enough to tell. */
2941 if (domain_prot == 3) {
2942 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2944 if (pxn && !is_user) {
2947 if (xn && access_type == 2)
2950 /* The simplified model uses AP[0] as an access control bit. */
2951 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
2952 /* Access flag fault. */
2953 code = (code == 15) ? 6 : 3;
2956 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2958 /* Access permission fault. */
2965 *phys_ptr = phys_addr;
2968 return code | (domain << 4);
2971 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2972 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2975 translation_fault = 1,
2977 permission_fault = 3,
2980 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2981 int access_type, int is_user,
2982 hwaddr *phys_ptr, int *prot,
2983 target_ulong *page_size_ptr)
2985 CPUState *cs = ENV_GET_CPU(env);
2986 /* Read an LPAE long-descriptor translation table. */
2987 MMUFaultType fault_type = translation_fault;
2995 uint32_t tableattrs;
2996 target_ulong page_size;
2999 /* Determine whether this address is in the region controlled by
3000 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3001 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3002 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3004 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
3005 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
3006 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
3007 /* there is a ttbr0 region and we are in it (high bits all zero) */
3009 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
3010 /* there is a ttbr1 region and we are in it (high bits all one) */
3013 /* ttbr0 region is "everything not in the ttbr1 region" */
3016 /* ttbr1 region is "everything not in the ttbr0 region" */
3019 /* in the gap between the two regions, this is a Translation fault */
3020 fault_type = translation_fault;
3024 /* Note that QEMU ignores shareability and cacheability attributes,
3025 * so we don't need to do anything with the SH, ORGN, IRGN fields
3026 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3027 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3028 * implement any ASID-like capability so we can ignore it (instead
3029 * we will always flush the TLB any time the ASID is changed).
3031 if (ttbr_select == 0) {
3032 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
3033 epd = extract32(env->cp15.c2_control, 7, 1);
3036 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
3037 epd = extract32(env->cp15.c2_control, 23, 1);
3042 /* Translation table walk disabled => Translation fault on TLB miss */
3046 /* If the region is small enough we will skip straight to a 2nd level
3047 * lookup. This affects the number of bits of the address used in
3048 * combination with the TTBR to find the first descriptor. ('n' here
3049 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3050 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3059 /* Clear the vaddr bits which aren't part of the within-region address,
3060 * so that we don't have to special case things when calculating the
3061 * first descriptor address.
3063 address &= (0xffffffffU >> tsz);
3065 /* Now we can extract the actual base address from the TTBR */
3066 descaddr = extract64(ttbr, 0, 40);
3067 descaddr &= ~((1ULL << n) - 1);
3071 uint64_t descriptor;
3073 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3074 descriptor = ldq_phys(cs->as, descaddr);
3075 if (!(descriptor & 1) ||
3076 (!(descriptor & 2) && (level == 3))) {
3077 /* Invalid, or the Reserved level 3 encoding */
3080 descaddr = descriptor & 0xfffffff000ULL;
3082 if ((descriptor & 2) && (level < 3)) {
3083 /* Table entry. The top five bits are attributes which may
3084 * propagate down through lower levels of the table (and
3085 * which are all arranged so that 0 means "no effect", so
3086 * we can gather them up by ORing in the bits at each level).
3088 tableattrs |= extract64(descriptor, 59, 5);
3092 /* Block entry at level 1 or 2, or page entry at level 3.
3093 * These are basically the same thing, although the number
3094 * of bits we pull in from the vaddr varies.
3096 page_size = (1 << (39 - (9 * level)));
3097 descaddr |= (address & (page_size - 1));
3098 /* Extract attributes from the descriptor and merge with table attrs */
3099 attrs = extract64(descriptor, 2, 10)
3100 | (extract64(descriptor, 52, 12) << 10);
3101 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3102 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3103 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3104 * means "force PL1 access only", which means forcing AP[1] to 0.
3106 if (extract32(tableattrs, 2, 1)) {
3109 /* Since we're always in the Non-secure state, NSTable is ignored. */
3112 /* Here descaddr is the final physical address, and attributes
3115 fault_type = access_fault;
3116 if ((attrs & (1 << 8)) == 0) {
3120 fault_type = permission_fault;
3121 if (is_user && !(attrs & (1 << 4))) {
3122 /* Unprivileged access not enabled */
3125 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3126 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3128 if (access_type == 2) {
3131 *prot &= ~PAGE_EXEC;
3133 if (attrs & (1 << 5)) {
3134 /* Write access forbidden */
3135 if (access_type == 1) {
3138 *prot &= ~PAGE_WRITE;
3141 *phys_ptr = descaddr;
3142 *page_size_ptr = page_size;
3146 /* Long-descriptor format IFSR/DFSR value */
3147 return (1 << 9) | (fault_type << 2) | level;
3150 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3151 int access_type, int is_user,
3152 hwaddr *phys_ptr, int *prot)
3158 *phys_ptr = address;
3159 for (n = 7; n >= 0; n--) {
3160 base = env->cp15.c6_region[n];
3161 if ((base & 1) == 0)
3163 mask = 1 << ((base >> 1) & 0x1f);
3164 /* Keep this shift separate from the above to avoid an
3165 (undefined) << 32. */
3166 mask = (mask << 1) - 1;
3167 if (((base ^ address) & ~mask) == 0)
3173 if (access_type == 2) {
3174 mask = env->cp15.c5_insn;
3176 mask = env->cp15.c5_data;
3178 mask = (mask >> (n * 4)) & 0xf;
3185 *prot = PAGE_READ | PAGE_WRITE;
3190 *prot |= PAGE_WRITE;
3193 *prot = PAGE_READ | PAGE_WRITE;
3204 /* Bad permission. */
3211 /* get_phys_addr - get the physical address for this virtual address
3213 * Find the physical address corresponding to the given virtual address,
3214 * by doing a translation table walk on MMU based systems or using the
3215 * MPU state on MPU based systems.
3217 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3218 * prot and page_size are not filled in, and the return value provides
3219 * information on why the translation aborted, in the format of a
3220 * DFSR/IFSR fault register, with the following caveats:
3221 * * we honour the short vs long DFSR format differences.
3222 * * the WnR bit is never set (the caller must do this).
3223 * * for MPU based systems we don't bother to return a full FSR format
3227 * @address: virtual address to get physical address for
3228 * @access_type: 0 for read, 1 for write, 2 for execute
3229 * @is_user: 0 for privileged access, 1 for user
3230 * @phys_ptr: set to the physical address corresponding to the virtual address
3231 * @prot: set to the permissions for the page containing phys_ptr
3232 * @page_size: set to the size of the page containing phys_ptr
3234 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3235 int access_type, int is_user,
3236 hwaddr *phys_ptr, int *prot,
3237 target_ulong *page_size)
3239 /* Fast Context Switch Extension. */
3240 if (address < 0x02000000)
3241 address += env->cp15.c13_fcse;
3243 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
3244 /* MMU/MPU disabled. */
3245 *phys_ptr = address;
3246 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3247 *page_size = TARGET_PAGE_SIZE;
3249 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3250 *page_size = TARGET_PAGE_SIZE;
3251 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3253 } else if (extended_addresses_enabled(env)) {
3254 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3256 } else if (env->cp15.c1_sys & SCTLR_XP) {
3257 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3260 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3265 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
3266 int access_type, int mmu_idx)
3269 target_ulong page_size;
3273 is_user = mmu_idx == MMU_USER_IDX;
3274 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3277 /* Map a single [sub]page. */
3278 phys_addr &= ~(hwaddr)0x3ff;
3279 address &= ~(uint32_t)0x3ff;
3280 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
3284 if (access_type == 2) {
3285 env->cp15.c5_insn = ret;
3286 env->cp15.c6_insn = address;
3287 env->exception_index = EXCP_PREFETCH_ABORT;
3289 env->cp15.c5_data = ret;
3290 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3291 env->cp15.c5_data |= (1 << 11);
3292 env->cp15.c6_data = address;
3293 env->exception_index = EXCP_DATA_ABORT;
3298 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3300 ARMCPU *cpu = ARM_CPU(cs);
3302 target_ulong page_size;
3306 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3315 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3317 if ((env->uncached_cpsr & CPSR_M) == mode) {
3318 env->regs[13] = val;
3320 env->banked_r13[bank_number(mode)] = val;
3324 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3326 if ((env->uncached_cpsr & CPSR_M) == mode) {
3327 return env->regs[13];
3329 return env->banked_r13[bank_number(mode)];
3333 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3337 return xpsr_read(env) & 0xf8000000;
3339 return xpsr_read(env) & 0xf80001ff;
3341 return xpsr_read(env) & 0xff00fc00;
3343 return xpsr_read(env) & 0xff00fdff;
3345 return xpsr_read(env) & 0x000001ff;
3347 return xpsr_read(env) & 0x0700fc00;
3349 return xpsr_read(env) & 0x0700edff;
3351 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3353 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3354 case 16: /* PRIMASK */
3355 return (env->uncached_cpsr & CPSR_I) != 0;
3356 case 17: /* BASEPRI */
3357 case 18: /* BASEPRI_MAX */
3358 return env->v7m.basepri;
3359 case 19: /* FAULTMASK */
3360 return (env->uncached_cpsr & CPSR_F) != 0;
3361 case 20: /* CONTROL */
3362 return env->v7m.control;
3364 /* ??? For debugging only. */
3365 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
3370 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3374 xpsr_write(env, val, 0xf8000000);
3377 xpsr_write(env, val, 0xf8000000);
3380 xpsr_write(env, val, 0xfe00fc00);
3383 xpsr_write(env, val, 0xfe00fc00);
3386 /* IPSR bits are readonly. */
3389 xpsr_write(env, val, 0x0600fc00);
3392 xpsr_write(env, val, 0x0600fc00);
3395 if (env->v7m.current_sp)
3396 env->v7m.other_sp = val;
3398 env->regs[13] = val;
3401 if (env->v7m.current_sp)
3402 env->regs[13] = val;
3404 env->v7m.other_sp = val;
3406 case 16: /* PRIMASK */
3408 env->uncached_cpsr |= CPSR_I;
3410 env->uncached_cpsr &= ~CPSR_I;
3412 case 17: /* BASEPRI */
3413 env->v7m.basepri = val & 0xff;
3415 case 18: /* BASEPRI_MAX */
3417 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3418 env->v7m.basepri = val;
3420 case 19: /* FAULTMASK */
3422 env->uncached_cpsr |= CPSR_F;
3424 env->uncached_cpsr &= ~CPSR_F;
3426 case 20: /* CONTROL */
3427 env->v7m.control = val & 3;
3428 switch_v7m_sp(env, (val & 2) != 0);
3431 /* ??? For debugging only. */
3432 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
3439 /* Note that signed overflow is undefined in C. The following routines are
3440 careful to use unsigned types where modulo arithmetic is required.
3441 Failure to do so _will_ break on newer gcc. */
3443 /* Signed saturating arithmetic. */
3445 /* Perform 16-bit signed saturating addition. */
3446 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3451 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3460 /* Perform 8-bit signed saturating addition. */
3461 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3466 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3475 /* Perform 16-bit signed saturating subtraction. */
3476 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3481 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3490 /* Perform 8-bit signed saturating subtraction. */
3491 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3496 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3505 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3506 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3507 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3508 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3511 #include "op_addsub.h"
3513 /* Unsigned saturating arithmetic. */
3514 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3523 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3531 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3540 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3548 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3549 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3550 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3551 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3554 #include "op_addsub.h"
3556 /* Signed modulo arithmetic. */
3557 #define SARITH16(a, b, n, op) do { \
3559 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3560 RESULT(sum, n, 16); \
3562 ge |= 3 << (n * 2); \
3565 #define SARITH8(a, b, n, op) do { \
3567 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3568 RESULT(sum, n, 8); \
3574 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3575 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3576 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3577 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3581 #include "op_addsub.h"
3583 /* Unsigned modulo arithmetic. */
3584 #define ADD16(a, b, n) do { \
3586 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3587 RESULT(sum, n, 16); \
3588 if ((sum >> 16) == 1) \
3589 ge |= 3 << (n * 2); \
3592 #define ADD8(a, b, n) do { \
3594 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3595 RESULT(sum, n, 8); \
3596 if ((sum >> 8) == 1) \
3600 #define SUB16(a, b, n) do { \
3602 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3603 RESULT(sum, n, 16); \
3604 if ((sum >> 16) == 0) \
3605 ge |= 3 << (n * 2); \
3608 #define SUB8(a, b, n) do { \
3610 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3611 RESULT(sum, n, 8); \
3612 if ((sum >> 8) == 0) \
3619 #include "op_addsub.h"
3621 /* Halved signed arithmetic. */
3622 #define ADD16(a, b, n) \
3623 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3624 #define SUB16(a, b, n) \
3625 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3626 #define ADD8(a, b, n) \
3627 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3628 #define SUB8(a, b, n) \
3629 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3632 #include "op_addsub.h"
3634 /* Halved unsigned arithmetic. */
3635 #define ADD16(a, b, n) \
3636 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3637 #define SUB16(a, b, n) \
3638 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3639 #define ADD8(a, b, n) \
3640 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3641 #define SUB8(a, b, n) \
3642 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3645 #include "op_addsub.h"
3647 static inline uint8_t do_usad(uint8_t a, uint8_t b)
3655 /* Unsigned sum of absolute byte differences. */
3656 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
3659 sum = do_usad(a, b);
3660 sum += do_usad(a >> 8, b >> 8);
3661 sum += do_usad(a >> 16, b >>16);
3662 sum += do_usad(a >> 24, b >> 24);
3666 /* For ARMv6 SEL instruction. */
3667 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
3680 return (a & mask) | (b & ~mask);
3683 /* VFP support. We follow the convention used for VFP instructions:
3684 Single precision routines have a "s" suffix, double precision a
3687 /* Convert host exception flags to vfp form. */
3688 static inline int vfp_exceptbits_from_host(int host_bits)
3690 int target_bits = 0;
3692 if (host_bits & float_flag_invalid)
3694 if (host_bits & float_flag_divbyzero)
3696 if (host_bits & float_flag_overflow)
3698 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
3700 if (host_bits & float_flag_inexact)
3701 target_bits |= 0x10;
3702 if (host_bits & float_flag_input_denormal)
3703 target_bits |= 0x80;
3707 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
3712 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
3713 | (env->vfp.vec_len << 16)
3714 | (env->vfp.vec_stride << 20);
3715 i = get_float_exception_flags(&env->vfp.fp_status);
3716 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
3717 fpscr |= vfp_exceptbits_from_host(i);
3721 uint32_t vfp_get_fpscr(CPUARMState *env)
3723 return HELPER(vfp_get_fpscr)(env);
3726 /* Convert vfp exception flags to target form. */
3727 static inline int vfp_exceptbits_to_host(int target_bits)
3731 if (target_bits & 1)
3732 host_bits |= float_flag_invalid;
3733 if (target_bits & 2)
3734 host_bits |= float_flag_divbyzero;
3735 if (target_bits & 4)
3736 host_bits |= float_flag_overflow;
3737 if (target_bits & 8)
3738 host_bits |= float_flag_underflow;
3739 if (target_bits & 0x10)
3740 host_bits |= float_flag_inexact;
3741 if (target_bits & 0x80)
3742 host_bits |= float_flag_input_denormal;
3746 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
3751 changed = env->vfp.xregs[ARM_VFP_FPSCR];
3752 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
3753 env->vfp.vec_len = (val >> 16) & 7;
3754 env->vfp.vec_stride = (val >> 20) & 3;
3757 if (changed & (3 << 22)) {
3758 i = (val >> 22) & 3;
3760 case FPROUNDING_TIEEVEN:
3761 i = float_round_nearest_even;
3763 case FPROUNDING_POSINF:
3766 case FPROUNDING_NEGINF:
3767 i = float_round_down;
3769 case FPROUNDING_ZERO:
3770 i = float_round_to_zero;
3773 set_float_rounding_mode(i, &env->vfp.fp_status);
3775 if (changed & (1 << 24)) {
3776 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3777 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3779 if (changed & (1 << 25))
3780 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3782 i = vfp_exceptbits_to_host(val);
3783 set_float_exception_flags(i, &env->vfp.fp_status);
3784 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3787 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3789 HELPER(vfp_set_fpscr)(env, val);
3792 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3794 #define VFP_BINOP(name) \
3795 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3797 float_status *fpst = fpstp; \
3798 return float32_ ## name(a, b, fpst); \
3800 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3802 float_status *fpst = fpstp; \
3803 return float64_ ## name(a, b, fpst); \
3815 float32 VFP_HELPER(neg, s)(float32 a)
3817 return float32_chs(a);
3820 float64 VFP_HELPER(neg, d)(float64 a)
3822 return float64_chs(a);
3825 float32 VFP_HELPER(abs, s)(float32 a)
3827 return float32_abs(a);
3830 float64 VFP_HELPER(abs, d)(float64 a)
3832 return float64_abs(a);
3835 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3837 return float32_sqrt(a, &env->vfp.fp_status);
3840 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3842 return float64_sqrt(a, &env->vfp.fp_status);
3845 /* XXX: check quiet/signaling case */
3846 #define DO_VFP_cmp(p, type) \
3847 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3850 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3851 case 0: flags = 0x6; break; \
3852 case -1: flags = 0x8; break; \
3853 case 1: flags = 0x2; break; \
3854 default: case 2: flags = 0x3; break; \
3856 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3857 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3859 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3862 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3863 case 0: flags = 0x6; break; \
3864 case -1: flags = 0x8; break; \
3865 case 1: flags = 0x2; break; \
3866 default: case 2: flags = 0x3; break; \
3868 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3869 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3871 DO_VFP_cmp(s, float32)
3872 DO_VFP_cmp(d, float64)
3875 /* Integer to float and float to integer conversions */
3877 #define CONV_ITOF(name, fsz, sign) \
3878 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3880 float_status *fpst = fpstp; \
3881 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3884 #define CONV_FTOI(name, fsz, sign, round) \
3885 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3887 float_status *fpst = fpstp; \
3888 if (float##fsz##_is_any_nan(x)) { \
3889 float_raise(float_flag_invalid, fpst); \
3892 return float##fsz##_to_##sign##int32##round(x, fpst); \
3895 #define FLOAT_CONVS(name, p, fsz, sign) \
3896 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3897 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3898 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3900 FLOAT_CONVS(si, s, 32, )
3901 FLOAT_CONVS(si, d, 64, )
3902 FLOAT_CONVS(ui, s, 32, u)
3903 FLOAT_CONVS(ui, d, 64, u)
3909 /* floating point conversion */
3910 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3912 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3913 /* ARM requires that S<->D conversion of any kind of NaN generates
3914 * a quiet NaN by forcing the most significant frac bit to 1.
3916 return float64_maybe_silence_nan(r);
3919 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3921 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3922 /* ARM requires that S<->D conversion of any kind of NaN generates
3923 * a quiet NaN by forcing the most significant frac bit to 1.
3925 return float32_maybe_silence_nan(r);
3928 /* VFP3 fixed point conversion. */
3929 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3930 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
3933 float_status *fpst = fpstp; \
3935 tmp = itype##_to_##float##fsz(x, fpst); \
3936 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3939 /* Notice that we want only input-denormal exception flags from the
3940 * scalbn operation: the other possible flags (overflow+inexact if
3941 * we overflow to infinity, output-denormal) aren't correct for the
3942 * complete scale-and-convert operation.
3944 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
3945 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
3949 float_status *fpst = fpstp; \
3950 int old_exc_flags = get_float_exception_flags(fpst); \
3952 if (float##fsz##_is_any_nan(x)) { \
3953 float_raise(float_flag_invalid, fpst); \
3956 tmp = float##fsz##_scalbn(x, shift, fpst); \
3957 old_exc_flags |= get_float_exception_flags(fpst) \
3958 & float_flag_input_denormal; \
3959 set_float_exception_flags(old_exc_flags, fpst); \
3960 return float##fsz##_to_##itype##round(tmp, fpst); \
3963 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
3964 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3965 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
3966 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
3968 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
3969 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
3970 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
3972 VFP_CONV_FIX(sh, d, 64, 64, int16)
3973 VFP_CONV_FIX(sl, d, 64, 64, int32)
3974 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
3975 VFP_CONV_FIX(uh, d, 64, 64, uint16)
3976 VFP_CONV_FIX(ul, d, 64, 64, uint32)
3977 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
3978 VFP_CONV_FIX(sh, s, 32, 32, int16)
3979 VFP_CONV_FIX(sl, s, 32, 32, int32)
3980 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
3981 VFP_CONV_FIX(uh, s, 32, 32, uint16)
3982 VFP_CONV_FIX(ul, s, 32, 32, uint32)
3983 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
3985 #undef VFP_CONV_FIX_FLOAT
3986 #undef VFP_CONV_FLOAT_FIX_ROUND
3988 /* Set the current fp rounding mode and return the old one.
3989 * The argument is a softfloat float_round_ value.
3991 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
3993 float_status *fp_status = &env->vfp.fp_status;
3995 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
3996 set_float_rounding_mode(rmode, fp_status);
4001 /* Set the current fp rounding mode in the standard fp status and return
4002 * the old one. This is for NEON instructions that need to change the
4003 * rounding mode but wish to use the standard FPSCR values for everything
4004 * else. Always set the rounding mode back to the correct value after
4006 * The argument is a softfloat float_round_ value.
4008 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4010 float_status *fp_status = &env->vfp.standard_fp_status;
4012 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4013 set_float_rounding_mode(rmode, fp_status);
4018 /* Half precision conversions. */
4019 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4021 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4022 float32 r = float16_to_float32(make_float16(a), ieee, s);
4024 return float32_maybe_silence_nan(r);
4029 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4031 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4032 float16 r = float32_to_float16(a, ieee, s);
4034 r = float16_maybe_silence_nan(r);
4036 return float16_val(r);
4039 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4041 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4044 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4046 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4049 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4051 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4054 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4056 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4059 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4061 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4062 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4064 return float64_maybe_silence_nan(r);
4069 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4071 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4072 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4074 r = float16_maybe_silence_nan(r);
4076 return float16_val(r);
4079 #define float32_two make_float32(0x40000000)
4080 #define float32_three make_float32(0x40400000)
4081 #define float32_one_point_five make_float32(0x3fc00000)
4083 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4085 float_status *s = &env->vfp.standard_fp_status;
4086 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4087 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4088 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4089 float_raise(float_flag_input_denormal, s);
4093 return float32_sub(float32_two, float32_mul(a, b, s), s);
4096 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4098 float_status *s = &env->vfp.standard_fp_status;
4100 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4101 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4102 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4103 float_raise(float_flag_input_denormal, s);
4105 return float32_one_point_five;
4107 product = float32_mul(a, b, s);
4108 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4113 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4114 * int->float conversions at run-time. */
4115 #define float64_256 make_float64(0x4070000000000000LL)
4116 #define float64_512 make_float64(0x4080000000000000LL)
4118 /* The algorithm that must be used to calculate the estimate
4119 * is specified by the ARM ARM.
4121 static float64 recip_estimate(float64 a, CPUARMState *env)
4123 /* These calculations mustn't set any fp exception flags,
4124 * so we use a local copy of the fp_status.
4126 float_status dummy_status = env->vfp.standard_fp_status;
4127 float_status *s = &dummy_status;
4128 /* q = (int)(a * 512.0) */
4129 float64 q = float64_mul(float64_512, a, s);
4130 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4132 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4133 q = int64_to_float64(q_int, s);
4134 q = float64_add(q, float64_half, s);
4135 q = float64_div(q, float64_512, s);
4136 q = float64_div(float64_one, q, s);
4138 /* s = (int)(256.0 * r + 0.5) */
4139 q = float64_mul(q, float64_256, s);
4140 q = float64_add(q, float64_half, s);
4141 q_int = float64_to_int64_round_to_zero(q, s);
4143 /* return (double)s / 256.0 */
4144 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4147 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
4149 float_status *s = &env->vfp.standard_fp_status;
4151 uint32_t val32 = float32_val(a);
4154 int a_exp = (val32 & 0x7f800000) >> 23;
4155 int sign = val32 & 0x80000000;
4157 if (float32_is_any_nan(a)) {
4158 if (float32_is_signaling_nan(a)) {
4159 float_raise(float_flag_invalid, s);
4161 return float32_default_nan;
4162 } else if (float32_is_infinity(a)) {
4163 return float32_set_sign(float32_zero, float32_is_neg(a));
4164 } else if (float32_is_zero_or_denormal(a)) {
4165 if (!float32_is_zero(a)) {
4166 float_raise(float_flag_input_denormal, s);
4168 float_raise(float_flag_divbyzero, s);
4169 return float32_set_sign(float32_infinity, float32_is_neg(a));
4170 } else if (a_exp >= 253) {
4171 float_raise(float_flag_underflow, s);
4172 return float32_set_sign(float32_zero, float32_is_neg(a));
4175 f64 = make_float64((0x3feULL << 52)
4176 | ((int64_t)(val32 & 0x7fffff) << 29));
4178 result_exp = 253 - a_exp;
4180 f64 = recip_estimate(f64, env);
4183 | ((result_exp & 0xff) << 23)
4184 | ((float64_val(f64) >> 29) & 0x7fffff);
4185 return make_float32(val32);
4188 /* The algorithm that must be used to calculate the estimate
4189 * is specified by the ARM ARM.
4191 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
4193 /* These calculations mustn't set any fp exception flags,
4194 * so we use a local copy of the fp_status.
4196 float_status dummy_status = env->vfp.standard_fp_status;
4197 float_status *s = &dummy_status;
4201 if (float64_lt(a, float64_half, s)) {
4202 /* range 0.25 <= a < 0.5 */
4204 /* a in units of 1/512 rounded down */
4205 /* q0 = (int)(a * 512.0); */
4206 q = float64_mul(float64_512, a, s);
4207 q_int = float64_to_int64_round_to_zero(q, s);
4209 /* reciprocal root r */
4210 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4211 q = int64_to_float64(q_int, s);
4212 q = float64_add(q, float64_half, s);
4213 q = float64_div(q, float64_512, s);
4214 q = float64_sqrt(q, s);
4215 q = float64_div(float64_one, q, s);
4217 /* range 0.5 <= a < 1.0 */
4219 /* a in units of 1/256 rounded down */
4220 /* q1 = (int)(a * 256.0); */
4221 q = float64_mul(float64_256, a, s);
4222 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4224 /* reciprocal root r */
4225 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4226 q = int64_to_float64(q_int, s);
4227 q = float64_add(q, float64_half, s);
4228 q = float64_div(q, float64_256, s);
4229 q = float64_sqrt(q, s);
4230 q = float64_div(float64_one, q, s);
4232 /* r in units of 1/256 rounded to nearest */
4233 /* s = (int)(256.0 * r + 0.5); */
4235 q = float64_mul(q, float64_256,s );
4236 q = float64_add(q, float64_half, s);
4237 q_int = float64_to_int64_round_to_zero(q, s);
4239 /* return (double)s / 256.0;*/
4240 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4243 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
4245 float_status *s = &env->vfp.standard_fp_status;
4251 val = float32_val(a);
4253 if (float32_is_any_nan(a)) {
4254 if (float32_is_signaling_nan(a)) {
4255 float_raise(float_flag_invalid, s);
4257 return float32_default_nan;
4258 } else if (float32_is_zero_or_denormal(a)) {
4259 if (!float32_is_zero(a)) {
4260 float_raise(float_flag_input_denormal, s);
4262 float_raise(float_flag_divbyzero, s);
4263 return float32_set_sign(float32_infinity, float32_is_neg(a));
4264 } else if (float32_is_neg(a)) {
4265 float_raise(float_flag_invalid, s);
4266 return float32_default_nan;
4267 } else if (float32_is_infinity(a)) {
4268 return float32_zero;
4271 /* Normalize to a double-precision value between 0.25 and 1.0,
4272 * preserving the parity of the exponent. */
4273 if ((val & 0x800000) == 0) {
4274 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4276 | ((uint64_t)(val & 0x7fffff) << 29));
4278 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
4280 | ((uint64_t)(val & 0x7fffff) << 29));
4283 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
4285 f64 = recip_sqrt_estimate(f64, env);
4287 val64 = float64_val(f64);
4289 val = ((result_exp & 0xff) << 23)
4290 | ((val64 >> 29) & 0x7fffff);
4291 return make_float32(val);
4294 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
4298 if ((a & 0x80000000) == 0) {
4302 f64 = make_float64((0x3feULL << 52)
4303 | ((int64_t)(a & 0x7fffffff) << 21));
4305 f64 = recip_estimate (f64, env);
4307 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4310 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
4314 if ((a & 0xc0000000) == 0) {
4318 if (a & 0x80000000) {
4319 f64 = make_float64((0x3feULL << 52)
4320 | ((uint64_t)(a & 0x7fffffff) << 21));
4321 } else { /* bits 31-30 == '01' */
4322 f64 = make_float64((0x3fdULL << 52)
4323 | ((uint64_t)(a & 0x3fffffff) << 22));
4326 f64 = recip_sqrt_estimate(f64, env);
4328 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4331 /* VFPv4 fused multiply-accumulate */
4332 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4334 float_status *fpst = fpstp;
4335 return float32_muladd(a, b, c, 0, fpst);
4338 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4340 float_status *fpst = fpstp;
4341 return float64_muladd(a, b, c, 0, fpst);
4344 /* ARMv8 round to integral */
4345 float32 HELPER(rints_exact)(float32 x, void *fp_status)
4347 return float32_round_to_int(x, fp_status);
4350 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
4352 return float64_round_to_int(x, fp_status);
4355 float32 HELPER(rints)(float32 x, void *fp_status)
4357 int old_flags = get_float_exception_flags(fp_status), new_flags;
4360 ret = float32_round_to_int(x, fp_status);
4362 /* Suppress any inexact exceptions the conversion produced */
4363 if (!(old_flags & float_flag_inexact)) {
4364 new_flags = get_float_exception_flags(fp_status);
4365 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4371 float64 HELPER(rintd)(float64 x, void *fp_status)
4373 int old_flags = get_float_exception_flags(fp_status), new_flags;
4376 ret = float64_round_to_int(x, fp_status);
4378 new_flags = get_float_exception_flags(fp_status);
4380 /* Suppress any inexact exceptions the conversion produced */
4381 if (!(old_flags & float_flag_inexact)) {
4382 new_flags = get_float_exception_flags(fp_status);
4383 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4389 /* Convert ARM rounding mode to softfloat */
4390 int arm_rmode_to_sf(int rmode)
4393 case FPROUNDING_TIEAWAY:
4394 rmode = float_round_ties_away;
4396 case FPROUNDING_ODD:
4397 /* FIXME: add support for TIEAWAY and ODD */
4398 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
4400 case FPROUNDING_TIEEVEN:
4402 rmode = float_round_nearest_even;
4404 case FPROUNDING_POSINF:
4405 rmode = float_round_up;
4407 case FPROUNDING_NEGINF:
4408 rmode = float_round_down;
4410 case FPROUNDING_ZERO:
4411 rmode = float_round_to_zero;