3 #include "exec/gdbstub.h"
5 #include "qemu/host-utils.h"
6 #include "sysemu/arch_init.h"
7 #include "sysemu/sysemu.h"
8 #include "qemu/bitops.h"
9 #include "qemu/crc32c.h"
10 #include <zlib.h> /* For crc32 */
12 #ifndef CONFIG_USER_ONLY
13 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
14 int access_type, int is_user,
15 hwaddr *phys_ptr, int *prot,
16 target_ulong *page_size);
18 /* Definitions for the PMCCNTR and PMCR registers */
24 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
28 /* VFP data registers are always little-endian. */
29 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
31 stfq_le_p(buf, env->vfp.regs[reg]);
34 if (arm_feature(env, ARM_FEATURE_NEON)) {
35 /* Aliases for Q regs. */
38 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
39 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
43 switch (reg - nregs) {
44 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
45 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
46 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
51 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
57 env->vfp.regs[reg] = ldfq_le_p(buf);
60 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
64 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
68 switch (reg - nregs) {
69 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
70 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
71 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
76 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
80 /* 128 bit FP register */
81 stfq_le_p(buf, env->vfp.regs[reg * 2]);
82 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
86 stl_p(buf, vfp_get_fpsr(env));
90 stl_p(buf, vfp_get_fpcr(env));
97 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
101 /* 128 bit FP register */
102 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
103 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
107 vfp_set_fpsr(env, ldl_p(buf));
111 vfp_set_fpcr(env, ldl_p(buf));
118 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
120 if (cpreg_field_is_64bit(ri)) {
121 return CPREG_FIELD64(env, ri);
123 return CPREG_FIELD32(env, ri);
127 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
130 if (cpreg_field_is_64bit(ri)) {
131 CPREG_FIELD64(env, ri) = value;
133 CPREG_FIELD32(env, ri) = value;
137 static uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
139 /* Raw read of a coprocessor register (as needed for migration, etc). */
140 if (ri->type & ARM_CP_CONST) {
141 return ri->resetvalue;
142 } else if (ri->raw_readfn) {
143 return ri->raw_readfn(env, ri);
144 } else if (ri->readfn) {
145 return ri->readfn(env, ri);
147 return raw_read(env, ri);
151 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
154 /* Raw write of a coprocessor register (as needed for migration, etc).
155 * Note that constant registers are treated as write-ignored; the
156 * caller should check for success by whether a readback gives the
159 if (ri->type & ARM_CP_CONST) {
161 } else if (ri->raw_writefn) {
162 ri->raw_writefn(env, ri, v);
163 } else if (ri->writefn) {
164 ri->writefn(env, ri, v);
166 raw_write(env, ri, v);
170 bool write_cpustate_to_list(ARMCPU *cpu)
172 /* Write the coprocessor state from cpu->env to the (index,value) list. */
176 for (i = 0; i < cpu->cpreg_array_len; i++) {
177 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
178 const ARMCPRegInfo *ri;
180 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
185 if (ri->type & ARM_CP_NO_MIGRATE) {
188 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
193 bool write_list_to_cpustate(ARMCPU *cpu)
198 for (i = 0; i < cpu->cpreg_array_len; i++) {
199 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
200 uint64_t v = cpu->cpreg_values[i];
201 const ARMCPRegInfo *ri;
203 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
208 if (ri->type & ARM_CP_NO_MIGRATE) {
211 /* Write value and confirm it reads back as written
212 * (to catch read-only registers and partially read-only
213 * registers where the incoming migration value doesn't match)
215 write_raw_cp_reg(&cpu->env, ri, v);
216 if (read_raw_cp_reg(&cpu->env, ri) != v) {
223 static void add_cpreg_to_list(gpointer key, gpointer opaque)
225 ARMCPU *cpu = opaque;
227 const ARMCPRegInfo *ri;
229 regidx = *(uint32_t *)key;
230 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
232 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
233 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
234 /* The value array need not be initialized at this point */
235 cpu->cpreg_array_len++;
239 static void count_cpreg(gpointer key, gpointer opaque)
241 ARMCPU *cpu = opaque;
243 const ARMCPRegInfo *ri;
245 regidx = *(uint32_t *)key;
246 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 if (!(ri->type & ARM_CP_NO_MIGRATE)) {
249 cpu->cpreg_array_len++;
253 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
255 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
256 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
267 static void cpreg_make_keylist(gpointer key, gpointer value, gpointer udata)
269 GList **plist = udata;
271 *plist = g_list_prepend(*plist, key);
274 void init_cpreg_list(ARMCPU *cpu)
276 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
277 * Note that we require cpreg_tuples[] to be sorted by key ID.
282 g_hash_table_foreach(cpu->cp_regs, cpreg_make_keylist, &keys);
284 keys = g_list_sort(keys, cpreg_key_compare);
286 cpu->cpreg_array_len = 0;
288 g_list_foreach(keys, count_cpreg, cpu);
290 arraylen = cpu->cpreg_array_len;
291 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
292 cpu->cpreg_values = g_new(uint64_t, arraylen);
293 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
294 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
295 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
296 cpu->cpreg_array_len = 0;
298 g_list_foreach(keys, add_cpreg_to_list, cpu);
300 assert(cpu->cpreg_array_len == arraylen);
305 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
307 ARMCPU *cpu = arm_env_get_cpu(env);
309 env->cp15.c3 = value;
310 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
313 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
315 ARMCPU *cpu = arm_env_get_cpu(env);
317 if (env->cp15.c13_fcse != value) {
318 /* Unlike real hardware the qemu TLB uses virtual addresses,
319 * not modified virtual addresses, so this causes a TLB flush.
321 tlb_flush(CPU(cpu), 1);
322 env->cp15.c13_fcse = value;
326 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
329 ARMCPU *cpu = arm_env_get_cpu(env);
331 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
332 /* For VMSA (when not using the LPAE long descriptor page table
333 * format) this register includes the ASID, so do a TLB flush.
334 * For PMSA it is purely a process ID and no action is needed.
336 tlb_flush(CPU(cpu), 1);
338 env->cp15.c13_context = value;
341 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
344 /* Invalidate all (TLBIALL) */
345 ARMCPU *cpu = arm_env_get_cpu(env);
347 tlb_flush(CPU(cpu), 1);
350 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
353 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
354 ARMCPU *cpu = arm_env_get_cpu(env);
356 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
359 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
362 /* Invalidate by ASID (TLBIASID) */
363 ARMCPU *cpu = arm_env_get_cpu(env);
365 tlb_flush(CPU(cpu), value == 0);
368 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
371 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
372 ARMCPU *cpu = arm_env_get_cpu(env);
374 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
377 static const ARMCPRegInfo cp_reginfo[] = {
378 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
379 * version" bits will read as a reserved value, which should cause
380 * Linux to not try to use the debug hardware.
382 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
383 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
384 /* MMU Domain access control / MPU write buffer control */
385 { .name = "DACR", .cp = 15,
386 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
387 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
388 .resetvalue = 0, .writefn = dacr_write, .raw_writefn = raw_write, },
389 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
390 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
391 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
392 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
393 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_context),
394 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
395 /* ??? This covers not just the impdef TLB lockdown registers but also
396 * some v7VMSA registers relating to TEX remap, so it is overly broad.
398 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
399 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
400 /* MMU TLB control. Note that the wildcarding means we cover not just
401 * the unified TLB ops but also the dside/iside/inner-shareable variants.
403 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
404 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
405 .type = ARM_CP_NO_MIGRATE },
406 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
407 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
408 .type = ARM_CP_NO_MIGRATE },
409 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
410 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
411 .type = ARM_CP_NO_MIGRATE },
412 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
413 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
414 .type = ARM_CP_NO_MIGRATE },
415 /* Cache maintenance ops; some of this space may be overridden later. */
416 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
417 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
418 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
422 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
423 /* Not all pre-v6 cores implemented this WFI, so this is slightly
426 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
427 .access = PL1_W, .type = ARM_CP_WFI },
431 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
432 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
433 * is UNPREDICTABLE; we choose to NOP as most implementations do).
435 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
436 .access = PL1_W, .type = ARM_CP_WFI },
437 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
438 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
439 * OMAPCP will override this space.
441 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
442 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
444 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
445 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
447 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
448 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
449 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
454 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
457 if (env->cp15.c1_coproc != value) {
458 env->cp15.c1_coproc = value;
459 /* ??? Is this safe when called from within a TB? */
464 static const ARMCPRegInfo v6_cp_reginfo[] = {
465 /* prefetch by MVA in v6, NOP in v7 */
466 { .name = "MVA_prefetch",
467 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
468 .access = PL1_W, .type = ARM_CP_NOP },
469 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
470 .access = PL0_W, .type = ARM_CP_NOP },
471 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
472 .access = PL0_W, .type = ARM_CP_NOP },
473 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
474 .access = PL0_W, .type = ARM_CP_NOP },
475 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
476 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
478 /* Watchpoint Fault Address Register : should actually only be present
479 * for 1136, 1176, 11MPCore.
481 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
482 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
483 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
484 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
485 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
486 .resetvalue = 0, .writefn = cpacr_write },
490 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
492 /* Performance monitor registers user accessibility is controlled
495 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
496 return CP_ACCESS_TRAP;
501 #ifndef CONFIG_USER_ONLY
502 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
505 /* Don't computer the number of ticks in user mode */
508 temp_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
509 get_ticks_per_sec() / 1000000;
511 if (env->cp15.c9_pmcr & PMCRE) {
512 /* If the counter is enabled */
513 if (env->cp15.c9_pmcr & PMCRD) {
514 /* Increment once every 64 processor clock cycles */
515 env->cp15.c15_ccnt = (temp_ticks/64) - env->cp15.c15_ccnt;
517 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
522 /* The counter has been reset */
523 env->cp15.c15_ccnt = 0;
526 /* only the DP, X, D and E bits are writable */
527 env->cp15.c9_pmcr &= ~0x39;
528 env->cp15.c9_pmcr |= (value & 0x39);
530 if (env->cp15.c9_pmcr & PMCRE) {
531 if (env->cp15.c9_pmcr & PMCRD) {
532 /* Increment once every 64 processor clock cycles */
535 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
539 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
541 uint32_t total_ticks;
543 if (!(env->cp15.c9_pmcr & PMCRE)) {
544 /* Counter is disabled, do not change value */
545 return env->cp15.c15_ccnt;
548 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
549 get_ticks_per_sec() / 1000000;
551 if (env->cp15.c9_pmcr & PMCRD) {
552 /* Increment once every 64 processor clock cycles */
555 return total_ticks - env->cp15.c15_ccnt;
558 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
561 uint32_t total_ticks;
563 if (!(env->cp15.c9_pmcr & PMCRE)) {
564 /* Counter is disabled, set the absolute value */
565 env->cp15.c15_ccnt = value;
569 total_ticks = qemu_clock_get_us(QEMU_CLOCK_VIRTUAL) *
570 get_ticks_per_sec() / 1000000;
572 if (env->cp15.c9_pmcr & PMCRD) {
573 /* Increment once every 64 processor clock cycles */
576 env->cp15.c15_ccnt = total_ticks - value;
580 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
584 env->cp15.c9_pmcnten |= value;
587 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
591 env->cp15.c9_pmcnten &= ~value;
594 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
597 env->cp15.c9_pmovsr &= ~value;
600 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
603 env->cp15.c9_pmxevtyper = value & 0xff;
606 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
609 env->cp15.c9_pmuserenr = value & 1;
612 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
615 /* We have no event counters so only the C bit can be changed */
617 env->cp15.c9_pminten |= value;
620 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
624 env->cp15.c9_pminten &= ~value;
627 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
630 /* Note that even though the AArch64 view of this register has bits
631 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
632 * architectural requirements for bits which are RES0 only in some
633 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
634 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
636 env->cp15.c12_vbar = value & ~0x1Ful;
639 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
641 ARMCPU *cpu = arm_env_get_cpu(env);
642 return cpu->ccsidr[env->cp15.c0_cssel];
645 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
648 env->cp15.c0_cssel = value & 0xf;
651 static const ARMCPRegInfo v7_cp_reginfo[] = {
652 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
655 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
656 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
657 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
658 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
659 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
660 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
661 .access = PL1_W, .type = ARM_CP_NOP },
662 /* Performance monitors are implementation defined in v7,
663 * but with an ARM recommended set of registers, which we
664 * follow (although we don't actually implement any counters)
666 * Performance registers fall into three categories:
667 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
668 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
669 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
670 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
671 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
673 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
674 .access = PL0_RW, .resetvalue = 0,
675 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
676 .writefn = pmcntenset_write,
677 .accessfn = pmreg_access,
678 .raw_writefn = raw_write },
679 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
680 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
681 .accessfn = pmreg_access,
682 .writefn = pmcntenclr_write,
683 .type = ARM_CP_NO_MIGRATE },
684 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
685 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
686 .accessfn = pmreg_access,
687 .writefn = pmovsr_write,
688 .raw_writefn = raw_write },
689 /* Unimplemented so WI. */
690 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
691 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
692 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
693 * We choose to RAZ/WI.
695 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
696 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
697 .accessfn = pmreg_access },
698 #ifndef CONFIG_USER_ONLY
699 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
700 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
701 .readfn = pmccntr_read, .writefn = pmccntr_write,
702 .accessfn = pmreg_access },
704 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
706 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
707 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
708 .raw_writefn = raw_write },
709 /* Unimplemented, RAZ/WI. */
710 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
711 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
712 .accessfn = pmreg_access },
713 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
714 .access = PL0_R | PL1_RW,
715 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
717 .writefn = pmuserenr_write, .raw_writefn = raw_write },
718 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
720 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
722 .writefn = pmintenset_write, .raw_writefn = raw_write },
723 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
724 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
725 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
726 .resetvalue = 0, .writefn = pmintenclr_write, },
727 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
728 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
729 .access = PL1_RW, .writefn = vbar_write,
730 .fieldoffset = offsetof(CPUARMState, cp15.c12_vbar),
732 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
733 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
735 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
736 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
737 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_MIGRATE },
738 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
739 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
740 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
741 .writefn = csselr_write, .resetvalue = 0 },
742 /* Auxiliary ID register: this actually has an IMPDEF value but for now
743 * just RAZ for all cores:
745 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
746 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
747 /* MAIR can just read-as-written because we don't implement caches
748 * and so don't need to care about memory attributes.
750 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
751 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
752 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el1),
754 /* For non-long-descriptor page tables these are PRRR and NMRR;
755 * regardless they still act as reads-as-written for QEMU.
756 * The override is necessary because of the overly-broad TLB_LOCKDOWN
759 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
760 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
761 .fieldoffset = offsetoflow32(CPUARMState, cp15.mair_el1),
762 .resetfn = arm_cp_reset_ignore },
763 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, .type = ARM_CP_OVERRIDE,
764 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
765 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el1),
766 .resetfn = arm_cp_reset_ignore },
770 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
777 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
779 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
780 return CP_ACCESS_TRAP;
785 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
786 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
787 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
789 .writefn = teecr_write },
790 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
791 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
792 .accessfn = teehbr_access, .resetvalue = 0 },
796 static const ARMCPRegInfo v6k_cp_reginfo[] = {
797 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
798 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
800 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el0), .resetvalue = 0 },
801 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
803 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidr_el0),
804 .resetfn = arm_cp_reset_ignore },
805 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
806 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
807 .access = PL0_R|PL1_W,
808 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el0), .resetvalue = 0 },
809 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
810 .access = PL0_R|PL1_W,
811 .fieldoffset = offsetoflow32(CPUARMState, cp15.tpidrro_el0),
812 .resetfn = arm_cp_reset_ignore },
813 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_BOTH,
814 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
816 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el1), .resetvalue = 0 },
820 #ifndef CONFIG_USER_ONLY
822 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
824 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
825 if (arm_current_pl(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
826 return CP_ACCESS_TRAP;
831 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
833 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
834 if (arm_current_pl(env) == 0 &&
835 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
836 return CP_ACCESS_TRAP;
841 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
843 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
844 * EL0[PV]TEN is zero.
846 if (arm_current_pl(env) == 0 &&
847 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
848 return CP_ACCESS_TRAP;
853 static CPAccessResult gt_pct_access(CPUARMState *env,
854 const ARMCPRegInfo *ri)
856 return gt_counter_access(env, GTIMER_PHYS);
859 static CPAccessResult gt_vct_access(CPUARMState *env,
860 const ARMCPRegInfo *ri)
862 return gt_counter_access(env, GTIMER_VIRT);
865 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
867 return gt_timer_access(env, GTIMER_PHYS);
870 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
872 return gt_timer_access(env, GTIMER_VIRT);
875 static uint64_t gt_get_countervalue(CPUARMState *env)
877 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
880 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
882 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
885 /* Timer enabled: calculate and set current ISTATUS, irq, and
886 * reset timer to when ISTATUS next has to change
888 uint64_t count = gt_get_countervalue(&cpu->env);
889 /* Note that this must be unsigned 64 bit arithmetic: */
890 int istatus = count >= gt->cval;
893 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
894 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
895 (istatus && !(gt->ctl & 2)));
897 /* Next transition is when count rolls back over to zero */
898 nexttick = UINT64_MAX;
900 /* Next transition is when we hit cval */
903 /* Note that the desired next expiry time might be beyond the
904 * signed-64-bit range of a QEMUTimer -- in this case we just
905 * set the timer for as far in the future as possible. When the
906 * timer expires we will reset the timer for any remaining period.
908 if (nexttick > INT64_MAX / GTIMER_SCALE) {
909 nexttick = INT64_MAX / GTIMER_SCALE;
911 timer_mod(cpu->gt_timer[timeridx], nexttick);
913 /* Timer disabled: ISTATUS and timer output always clear */
915 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
916 timer_del(cpu->gt_timer[timeridx]);
920 static void gt_cnt_reset(CPUARMState *env, const ARMCPRegInfo *ri)
922 ARMCPU *cpu = arm_env_get_cpu(env);
923 int timeridx = ri->opc1 & 1;
925 timer_del(cpu->gt_timer[timeridx]);
928 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
930 return gt_get_countervalue(env);
933 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
936 int timeridx = ri->opc1 & 1;
938 env->cp15.c14_timer[timeridx].cval = value;
939 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
942 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
944 int timeridx = ri->crm & 1;
946 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
947 gt_get_countervalue(env));
950 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
953 int timeridx = ri->crm & 1;
955 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) +
956 + sextract64(value, 0, 32);
957 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
960 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
963 ARMCPU *cpu = arm_env_get_cpu(env);
964 int timeridx = ri->crm & 1;
965 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
967 env->cp15.c14_timer[timeridx].ctl = value & 3;
968 if ((oldval ^ value) & 1) {
970 gt_recalc_timer(cpu, timeridx);
971 } else if ((oldval & value) & 2) {
972 /* IMASK toggled: don't need to recalculate,
973 * just set the interrupt line based on ISTATUS
975 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
976 (oldval & 4) && (value & 2));
980 void arm_gt_ptimer_cb(void *opaque)
982 ARMCPU *cpu = opaque;
984 gt_recalc_timer(cpu, GTIMER_PHYS);
987 void arm_gt_vtimer_cb(void *opaque)
989 ARMCPU *cpu = opaque;
991 gt_recalc_timer(cpu, GTIMER_VIRT);
994 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
995 /* Note that CNTFRQ is purely reads-as-written for the benefit
996 * of software; writing it doesn't actually change the timer frequency.
997 * Our reset value matches the fixed frequency we implement the timer at.
999 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1000 .type = ARM_CP_NO_MIGRATE,
1001 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1002 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1003 .resetfn = arm_cp_reset_ignore,
1005 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1006 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1007 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1008 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1009 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1011 /* overall control: mostly access permissions */
1012 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1013 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1015 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1018 /* per-timer control */
1019 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1020 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1021 .accessfn = gt_ptimer_access,
1022 .fieldoffset = offsetoflow32(CPUARMState,
1023 cp15.c14_timer[GTIMER_PHYS].ctl),
1024 .resetfn = arm_cp_reset_ignore,
1025 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1027 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1028 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1029 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1030 .accessfn = gt_ptimer_access,
1031 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1033 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1035 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1036 .type = ARM_CP_IO | ARM_CP_NO_MIGRATE, .access = PL1_RW | PL0_R,
1037 .accessfn = gt_vtimer_access,
1038 .fieldoffset = offsetoflow32(CPUARMState,
1039 cp15.c14_timer[GTIMER_VIRT].ctl),
1040 .resetfn = arm_cp_reset_ignore,
1041 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1043 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1044 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1045 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1046 .accessfn = gt_vtimer_access,
1047 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1049 .writefn = gt_ctl_write, .raw_writefn = raw_write,
1051 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1052 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1053 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1054 .accessfn = gt_ptimer_access,
1055 .readfn = gt_tval_read, .writefn = gt_tval_write,
1057 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1059 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1060 .readfn = gt_tval_read, .writefn = gt_tval_write,
1062 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1063 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1064 .accessfn = gt_vtimer_access,
1065 .readfn = gt_tval_read, .writefn = gt_tval_write,
1067 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1068 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1069 .type = ARM_CP_NO_MIGRATE | ARM_CP_IO, .access = PL1_RW | PL0_R,
1070 .readfn = gt_tval_read, .writefn = gt_tval_write,
1072 /* The counter itself */
1073 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1074 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1075 .accessfn = gt_pct_access,
1076 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1078 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1079 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1080 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1081 .accessfn = gt_pct_access,
1082 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1084 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1085 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE | ARM_CP_IO,
1086 .accessfn = gt_vct_access,
1087 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1089 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1090 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1091 .access = PL0_R, .type = ARM_CP_NO_MIGRATE | ARM_CP_IO,
1092 .accessfn = gt_vct_access,
1093 .readfn = gt_cnt_read, .resetfn = gt_cnt_reset,
1095 /* Comparison value, indicating when the timer goes off */
1096 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1097 .access = PL1_RW | PL0_R,
1098 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1100 .accessfn = gt_ptimer_access, .resetfn = arm_cp_reset_ignore,
1101 .writefn = gt_cval_write, .raw_writefn = raw_write,
1103 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1104 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1105 .access = PL1_RW | PL0_R,
1107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1108 .resetvalue = 0, .accessfn = gt_vtimer_access,
1109 .writefn = gt_cval_write, .raw_writefn = raw_write,
1111 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1112 .access = PL1_RW | PL0_R,
1113 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_MIGRATE,
1114 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1115 .accessfn = gt_vtimer_access, .resetfn = arm_cp_reset_ignore,
1116 .writefn = gt_cval_write, .raw_writefn = raw_write,
1118 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1119 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1120 .access = PL1_RW | PL0_R,
1122 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1123 .resetvalue = 0, .accessfn = gt_vtimer_access,
1124 .writefn = gt_cval_write, .raw_writefn = raw_write,
1130 /* In user-mode none of the generic timer registers are accessible,
1131 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1132 * so instead just don't register any of them.
1134 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1142 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1143 env->cp15.c7_par = value;
1144 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1145 env->cp15.c7_par = value & 0xfffff6ff;
1147 env->cp15.c7_par = value & 0xfffff1ff;
1151 #ifndef CONFIG_USER_ONLY
1152 /* get_phys_addr() isn't present for user-mode-only targets */
1154 /* Return true if extended addresses are enabled, ie this is an
1155 * LPAE implementation and we are using the long-descriptor translation
1156 * table format because the TTBCR EAE bit is set.
1158 static inline bool extended_addresses_enabled(CPUARMState *env)
1160 return arm_feature(env, ARM_FEATURE_LPAE)
1161 && (env->cp15.c2_control & (1U << 31));
1164 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
1167 /* Other states are only available with TrustZone; in
1168 * a non-TZ implementation these registers don't exist
1169 * at all, which is an Uncategorized trap. This underdecoding
1170 * is safe because the reginfo is NO_MIGRATE.
1172 return CP_ACCESS_TRAP_UNCATEGORIZED;
1174 return CP_ACCESS_OK;
1177 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1180 target_ulong page_size;
1182 int ret, is_user = ri->opc2 & 2;
1183 int access_type = ri->opc2 & 1;
1185 ret = get_phys_addr(env, value, access_type, is_user,
1186 &phys_addr, &prot, &page_size);
1187 if (extended_addresses_enabled(env)) {
1188 /* ret is a DFSR/IFSR value for the long descriptor
1189 * translation table format, but with WnR always clear.
1190 * Convert it to a 64-bit PAR.
1192 uint64_t par64 = (1 << 11); /* LPAE bit always set */
1194 par64 |= phys_addr & ~0xfffULL;
1195 /* We don't set the ATTR or SH fields in the PAR. */
1198 par64 |= (ret & 0x3f) << 1; /* FS */
1199 /* Note that S2WLK and FSTAGE are always zero, because we don't
1200 * implement virtualization and therefore there can't be a stage 2
1204 env->cp15.c7_par = par64;
1205 env->cp15.c7_par_hi = par64 >> 32;
1207 /* ret is a DFSR/IFSR value for the short descriptor
1208 * translation table format (with WnR always clear).
1209 * Convert it to a 32-bit PAR.
1212 /* We do not set any attribute bits in the PAR */
1213 if (page_size == (1 << 24)
1214 && arm_feature(env, ARM_FEATURE_V7)) {
1215 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
1217 env->cp15.c7_par = phys_addr & 0xfffff000;
1220 env->cp15.c7_par = ((ret & (1 << 10)) >> 5) |
1221 ((ret & (1 << 12)) >> 6) |
1222 ((ret & 0xf) << 1) | 1;
1224 env->cp15.c7_par_hi = 0;
1229 static const ARMCPRegInfo vapa_cp_reginfo[] = {
1230 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
1231 .access = PL1_RW, .resetvalue = 0,
1232 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
1233 .writefn = par_write },
1234 #ifndef CONFIG_USER_ONLY
1235 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
1236 .access = PL1_W, .accessfn = ats_access,
1237 .writefn = ats_write, .type = ARM_CP_NO_MIGRATE },
1242 /* Return basic MPU access permission bits. */
1243 static uint32_t simple_mpu_ap_bits(uint32_t val)
1250 for (i = 0; i < 16; i += 2) {
1251 ret |= (val >> i) & mask;
1257 /* Pad basic MPU access permission bits to extended format. */
1258 static uint32_t extended_mpu_ap_bits(uint32_t val)
1265 for (i = 0; i < 16; i += 2) {
1266 ret |= (val & mask) << i;
1272 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1275 env->cp15.c5_data = extended_mpu_ap_bits(value);
1278 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1280 return simple_mpu_ap_bits(env->cp15.c5_data);
1283 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1286 env->cp15.c5_insn = extended_mpu_ap_bits(value);
1289 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1291 return simple_mpu_ap_bits(env->cp15.c5_insn);
1294 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
1295 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1296 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1297 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
1298 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
1299 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1300 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE,
1301 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
1302 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
1303 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
1305 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1306 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
1308 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1309 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1311 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
1312 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1314 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
1315 /* Protection region base and size registers */
1316 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
1317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
1319 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
1320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
1322 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
1323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
1325 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
1326 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1327 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
1328 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
1329 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1330 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
1331 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
1332 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1333 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
1334 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
1335 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1336 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
1337 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
1338 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
1339 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
1343 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
1346 int maskshift = extract32(value, 0, 3);
1348 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & (1 << 31))) {
1349 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
1353 /* Note that we always calculate c2_mask and c2_base_mask, but
1354 * they are only used for short-descriptor tables (ie if EAE is 0);
1355 * for long-descriptor tables the TTBCR fields are used differently
1356 * and the c2_mask and c2_base_mask values are meaningless.
1358 env->cp15.c2_control = value;
1359 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> maskshift);
1360 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> maskshift);
1363 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1366 ARMCPU *cpu = arm_env_get_cpu(env);
1368 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1369 /* With LPAE the TTBCR could result in a change of ASID
1370 * via the TTBCR.A1 bit, so do a TLB flush.
1372 tlb_flush(CPU(cpu), 1);
1374 vmsa_ttbcr_raw_write(env, ri, value);
1377 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1379 env->cp15.c2_base_mask = 0xffffc000u;
1380 env->cp15.c2_control = 0;
1381 env->cp15.c2_mask = 0;
1384 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1387 ARMCPU *cpu = arm_env_get_cpu(env);
1389 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
1390 tlb_flush(CPU(cpu), 1);
1391 env->cp15.c2_control = value;
1394 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1397 /* 64 bit accesses to the TTBRs can change the ASID and so we
1398 * must flush the TLB.
1400 if (cpreg_field_is_64bit(ri)) {
1401 ARMCPU *cpu = arm_env_get_cpu(env);
1403 tlb_flush(CPU(cpu), 1);
1405 raw_write(env, ri, value);
1408 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
1409 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
1411 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1412 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
1414 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
1415 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
1416 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
1417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1418 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1419 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
1420 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
1421 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1422 .writefn = vmsa_ttbr_write, .resetvalue = 0 },
1423 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
1424 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1425 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
1426 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
1427 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
1428 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
1429 .access = PL1_RW, .type = ARM_CP_NO_MIGRATE, .writefn = vmsa_ttbcr_write,
1430 .resetfn = arm_cp_reset_ignore, .raw_writefn = vmsa_ttbcr_raw_write,
1431 .fieldoffset = offsetoflow32(CPUARMState, cp15.c2_control) },
1432 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
1433 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
1438 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
1441 env->cp15.c15_ticonfig = value & 0xe7;
1442 /* The OS_TYPE bit in this register changes the reported CPUID! */
1443 env->cp15.c0_cpuid = (value & (1 << 5)) ?
1444 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1447 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1450 env->cp15.c15_threadid = value & 0xffff;
1453 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456 /* Wait-for-interrupt (deprecated) */
1457 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
1460 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
1463 /* On OMAP there are registers indicating the max/min index of dcache lines
1464 * containing a dirty line; cache flush operations have to reset these.
1466 env->cp15.c15_i_max = 0x000;
1467 env->cp15.c15_i_min = 0xff0;
1470 static const ARMCPRegInfo omap_cp_reginfo[] = {
1471 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
1472 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
1473 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
1474 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1475 .access = PL1_RW, .type = ARM_CP_NOP },
1476 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1478 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
1479 .writefn = omap_ticonfig_write },
1480 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
1482 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
1483 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
1484 .access = PL1_RW, .resetvalue = 0xff0,
1485 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
1486 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
1488 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
1489 .writefn = omap_threadid_write },
1490 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
1491 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1492 .type = ARM_CP_NO_MIGRATE,
1493 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
1494 /* TODO: Peripheral port remap register:
1495 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1496 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1499 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
1500 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
1501 .type = ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE,
1502 .writefn = omap_cachemaint_write },
1503 { .name = "C9", .cp = 15, .crn = 9,
1504 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
1505 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
1509 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1513 if (env->cp15.c15_cpar != value) {
1514 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1516 env->cp15.c15_cpar = value;
1520 static const ARMCPRegInfo xscale_cp_reginfo[] = {
1521 { .name = "XSCALE_CPAR",
1522 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
1523 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
1524 .writefn = xscale_cpar_write, },
1525 { .name = "XSCALE_AUXCR",
1526 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
1527 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
1532 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
1533 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1534 * implementation of this implementation-defined space.
1535 * Ideally this should eventually disappear in favour of actually
1536 * implementing the correct behaviour for all cores.
1538 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
1539 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1541 .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE | ARM_CP_OVERRIDE,
1546 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
1547 /* Cache status: RAZ because we have no cache so it's always clean */
1548 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
1549 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1554 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
1555 /* We never have a a block transfer operation in progress */
1556 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
1557 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1559 /* The cache ops themselves: these all NOP for QEMU */
1560 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
1561 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1562 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
1563 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1564 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
1565 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1566 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
1567 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1568 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
1569 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1570 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
1571 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
1575 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
1576 /* The cache test-and-clean instructions always return (1 << 30)
1577 * to indicate that there are no dirty cache lines.
1579 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
1580 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1581 .resetvalue = (1 << 30) },
1582 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
1583 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_MIGRATE,
1584 .resetvalue = (1 << 30) },
1588 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
1589 /* Ignore ReadBuffer accesses */
1590 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
1591 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
1592 .access = PL1_RW, .resetvalue = 0,
1593 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_MIGRATE },
1597 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1599 CPUState *cs = CPU(arm_env_get_cpu(env));
1600 uint32_t mpidr = cs->cpu_index;
1601 /* We don't support setting cluster ID ([8..11]) (known as Aff1
1602 * in later ARM ARM versions), or any of the higher affinity level fields,
1603 * so these bits always RAZ.
1605 if (arm_feature(env, ARM_FEATURE_V7MP)) {
1606 mpidr |= (1U << 31);
1607 /* Cores which are uniprocessor (non-coherent)
1608 * but still implement the MP extensions set
1609 * bit 30. (For instance, A9UP.) However we do
1610 * not currently model any of those cores.
1616 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
1617 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
1618 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
1619 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_MIGRATE },
1623 static uint64_t par64_read(CPUARMState *env, const ARMCPRegInfo *ri)
1625 return ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
1628 static void par64_write(CPUARMState *env, const ARMCPRegInfo *ri,
1631 env->cp15.c7_par_hi = value >> 32;
1632 env->cp15.c7_par = value;
1635 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1637 env->cp15.c7_par_hi = 0;
1638 env->cp15.c7_par = 0;
1641 static const ARMCPRegInfo lpae_cp_reginfo[] = {
1642 /* NOP AMAIR0/1: the override is because these clash with the rather
1643 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1645 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
1646 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
1647 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1649 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
1650 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
1651 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1653 /* 64 bit access versions of the (dummy) debug registers */
1654 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1655 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1656 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1657 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1658 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1659 .access = PL1_RW, .type = ARM_CP_64BIT,
1660 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1661 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1662 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1663 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el1),
1664 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1665 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1666 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_NO_MIGRATE,
1667 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el1),
1668 .writefn = vmsa_ttbr_write, .resetfn = arm_cp_reset_ignore },
1672 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1674 return vfp_get_fpcr(env);
1677 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1680 vfp_set_fpcr(env, value);
1683 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1685 return vfp_get_fpsr(env);
1688 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691 vfp_set_fpsr(env, value);
1694 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
1695 const ARMCPRegInfo *ri)
1697 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
1698 * SCTLR_EL1.UCI is set.
1700 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCI)) {
1701 return CP_ACCESS_TRAP;
1703 return CP_ACCESS_OK;
1706 static void tlbi_aa64_va_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709 /* Invalidate by VA (AArch64 version) */
1710 ARMCPU *cpu = arm_env_get_cpu(env);
1711 uint64_t pageaddr = value << 12;
1712 tlb_flush_page(CPU(cpu), pageaddr);
1715 static void tlbi_aa64_vaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
1718 /* Invalidate by VA, all ASIDs (AArch64 version) */
1719 ARMCPU *cpu = arm_env_get_cpu(env);
1720 uint64_t pageaddr = value << 12;
1721 tlb_flush_page(CPU(cpu), pageaddr);
1724 static void tlbi_aa64_asid_write(CPUARMState *env, const ARMCPRegInfo *ri,
1727 /* Invalidate by ASID (AArch64 version) */
1728 ARMCPU *cpu = arm_env_get_cpu(env);
1729 int asid = extract64(value, 48, 16);
1730 tlb_flush(CPU(cpu), asid == 0);
1733 static const ARMCPRegInfo v8_cp_reginfo[] = {
1734 /* Minimal set of EL0-visible registers. This will need to be expanded
1735 * significantly for system emulation of AArch64 CPUs.
1737 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
1738 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
1739 .access = PL0_RW, .type = ARM_CP_NZCV },
1740 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
1741 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
1742 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
1743 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
1744 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
1745 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
1746 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1747 * For system mode the DZP bit here will need to be computed, not constant.
1749 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
1750 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
1751 .access = PL0_R, .type = ARM_CP_CONST,
1752 .resetvalue = 0x10 },
1753 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
1754 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
1755 .access = PL1_R, .type = ARM_CP_CURRENTEL },
1756 /* Cache ops: all NOPs since we don't emulate caches */
1757 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
1758 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
1759 .access = PL1_W, .type = ARM_CP_NOP },
1760 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
1761 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
1762 .access = PL1_W, .type = ARM_CP_NOP },
1763 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
1764 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
1765 .access = PL0_W, .type = ARM_CP_NOP,
1766 .accessfn = aa64_cacheop_access },
1767 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
1768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
1769 .access = PL1_W, .type = ARM_CP_NOP },
1770 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
1771 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
1772 .access = PL1_W, .type = ARM_CP_NOP },
1773 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
1774 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
1775 .access = PL0_W, .type = ARM_CP_NOP,
1776 .accessfn = aa64_cacheop_access },
1777 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
1778 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
1779 .access = PL1_W, .type = ARM_CP_NOP },
1780 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
1781 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
1782 .access = PL0_W, .type = ARM_CP_NOP,
1783 .accessfn = aa64_cacheop_access },
1784 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
1785 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
1786 .access = PL0_W, .type = ARM_CP_NOP,
1787 .accessfn = aa64_cacheop_access },
1788 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
1789 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
1790 .access = PL1_W, .type = ARM_CP_NOP },
1791 /* TLBI operations */
1792 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
1793 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1794 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1795 .writefn = tlbiall_write },
1796 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
1797 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1798 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1799 .writefn = tlbi_aa64_va_write },
1800 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
1801 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1802 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1803 .writefn = tlbi_aa64_asid_write },
1804 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
1805 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1806 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1807 .writefn = tlbi_aa64_vaa_write },
1808 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
1809 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 5,
1810 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1811 .writefn = tlbi_aa64_va_write },
1812 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
1813 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 3, .opc2 = 7,
1814 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1815 .writefn = tlbi_aa64_vaa_write },
1816 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
1817 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1818 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1819 .writefn = tlbiall_write },
1820 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
1821 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1822 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1823 .writefn = tlbi_aa64_va_write },
1824 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
1825 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1826 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1827 .writefn = tlbi_aa64_asid_write },
1828 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
1829 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1830 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1831 .writefn = tlbi_aa64_vaa_write },
1832 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
1833 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 5,
1834 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1835 .writefn = tlbi_aa64_va_write },
1836 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
1837 .opc0 = 1, .opc2 = 0, .crn = 8, .crm = 7, .opc2 = 7,
1838 .access = PL1_W, .type = ARM_CP_NO_MIGRATE,
1839 .writefn = tlbi_aa64_vaa_write },
1840 /* Dummy implementation of monitor debug system control register:
1841 * we don't support debug.
1843 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_AA64,
1844 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
1845 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1846 /* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
1847 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_AA64,
1848 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
1849 .access = PL1_W, .type = ARM_CP_NOP },
1853 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856 ARMCPU *cpu = arm_env_get_cpu(env);
1858 env->cp15.c1_sys = value;
1859 /* ??? Lots of these bits are not implemented. */
1860 /* This may enable/disable the MMU, so do a TLB flush. */
1861 tlb_flush(CPU(cpu), 1);
1864 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
1866 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
1867 * but the AArch32 CTR has its own reginfo struct)
1869 if (arm_current_pl(env) == 0 && !(env->cp15.c1_sys & SCTLR_UCT)) {
1870 return CP_ACCESS_TRAP;
1872 return CP_ACCESS_OK;
1875 static void define_aarch64_debug_regs(ARMCPU *cpu)
1877 /* Define breakpoint and watchpoint registers. These do nothing
1878 * but read as written, for now.
1882 for (i = 0; i < 16; i++) {
1883 ARMCPRegInfo dbgregs[] = {
1884 { .name = "DBGBVR", .state = ARM_CP_STATE_AA64,
1885 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
1887 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]) },
1888 { .name = "DBGBCR", .state = ARM_CP_STATE_AA64,
1889 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
1891 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]) },
1892 { .name = "DBGWVR", .state = ARM_CP_STATE_AA64,
1893 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
1895 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]) },
1896 { .name = "DBGWCR", .state = ARM_CP_STATE_AA64,
1897 .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
1899 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]) },
1902 define_arm_cp_regs(cpu, dbgregs);
1906 void register_cp_regs_for_features(ARMCPU *cpu)
1908 /* Register all the coprocessor registers based on feature bits */
1909 CPUARMState *env = &cpu->env;
1910 if (arm_feature(env, ARM_FEATURE_M)) {
1911 /* M profile has no coprocessor registers */
1915 define_arm_cp_regs(cpu, cp_reginfo);
1916 if (arm_feature(env, ARM_FEATURE_V6)) {
1917 /* The ID registers all have impdef reset values */
1918 ARMCPRegInfo v6_idregs[] = {
1919 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1920 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1921 .resetvalue = cpu->id_pfr0 },
1922 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1923 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1924 .resetvalue = cpu->id_pfr1 },
1925 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1926 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1927 .resetvalue = cpu->id_dfr0 },
1928 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1929 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1930 .resetvalue = cpu->id_afr0 },
1931 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1932 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1933 .resetvalue = cpu->id_mmfr0 },
1934 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1935 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1936 .resetvalue = cpu->id_mmfr1 },
1937 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1938 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1939 .resetvalue = cpu->id_mmfr2 },
1940 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1941 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1942 .resetvalue = cpu->id_mmfr3 },
1943 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1944 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1945 .resetvalue = cpu->id_isar0 },
1946 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1947 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1948 .resetvalue = cpu->id_isar1 },
1949 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1950 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1951 .resetvalue = cpu->id_isar2 },
1952 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1953 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1954 .resetvalue = cpu->id_isar3 },
1955 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1956 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1957 .resetvalue = cpu->id_isar4 },
1958 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1959 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1960 .resetvalue = cpu->id_isar5 },
1961 /* 6..7 are as yet unallocated and must RAZ */
1962 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1963 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1965 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1966 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1970 define_arm_cp_regs(cpu, v6_idregs);
1971 define_arm_cp_regs(cpu, v6_cp_reginfo);
1973 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1975 if (arm_feature(env, ARM_FEATURE_V6K)) {
1976 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1978 if (arm_feature(env, ARM_FEATURE_V7)) {
1979 /* v7 performance monitor control register: same implementor
1980 * field as main ID register, and we implement only the cycle
1983 #ifndef CONFIG_USER_ONLY
1984 ARMCPRegInfo pmcr = {
1985 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1986 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1988 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1989 .accessfn = pmreg_access, .writefn = pmcr_write,
1990 .raw_writefn = raw_write,
1992 define_one_arm_cp_reg(cpu, &pmcr);
1994 ARMCPRegInfo clidr = {
1995 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
1996 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1997 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1999 define_one_arm_cp_reg(cpu, &clidr);
2000 define_arm_cp_regs(cpu, v7_cp_reginfo);
2002 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
2004 if (arm_feature(env, ARM_FEATURE_V8)) {
2005 /* AArch64 ID registers, which all have impdef reset values */
2006 ARMCPRegInfo v8_idregs[] = {
2007 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
2008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
2009 .access = PL1_R, .type = ARM_CP_CONST,
2010 .resetvalue = cpu->id_aa64pfr0 },
2011 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
2012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
2013 .access = PL1_R, .type = ARM_CP_CONST,
2014 .resetvalue = cpu->id_aa64pfr1},
2015 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
2016 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
2017 .access = PL1_R, .type = ARM_CP_CONST,
2018 .resetvalue = cpu->id_aa64dfr0 },
2019 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
2020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
2021 .access = PL1_R, .type = ARM_CP_CONST,
2022 .resetvalue = cpu->id_aa64dfr1 },
2023 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
2024 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
2025 .access = PL1_R, .type = ARM_CP_CONST,
2026 .resetvalue = cpu->id_aa64afr0 },
2027 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
2028 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
2029 .access = PL1_R, .type = ARM_CP_CONST,
2030 .resetvalue = cpu->id_aa64afr1 },
2031 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
2032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
2033 .access = PL1_R, .type = ARM_CP_CONST,
2034 .resetvalue = cpu->id_aa64isar0 },
2035 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
2036 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
2037 .access = PL1_R, .type = ARM_CP_CONST,
2038 .resetvalue = cpu->id_aa64isar1 },
2039 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
2040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
2041 .access = PL1_R, .type = ARM_CP_CONST,
2042 .resetvalue = cpu->id_aa64mmfr0 },
2043 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
2044 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
2045 .access = PL1_R, .type = ARM_CP_CONST,
2046 .resetvalue = cpu->id_aa64mmfr1 },
2049 define_arm_cp_regs(cpu, v8_idregs);
2050 define_arm_cp_regs(cpu, v8_cp_reginfo);
2051 define_aarch64_debug_regs(cpu);
2053 if (arm_feature(env, ARM_FEATURE_MPU)) {
2054 /* These are the MPU registers prior to PMSAv6. Any new
2055 * PMSA core later than the ARM946 will require that we
2056 * implement the PMSAv6 or PMSAv7 registers, which are
2057 * completely different.
2059 assert(!arm_feature(env, ARM_FEATURE_V6));
2060 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
2062 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
2064 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
2065 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
2067 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
2068 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
2070 if (arm_feature(env, ARM_FEATURE_VAPA)) {
2071 define_arm_cp_regs(cpu, vapa_cp_reginfo);
2073 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
2074 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
2076 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
2077 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
2079 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
2080 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
2082 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
2083 define_arm_cp_regs(cpu, omap_cp_reginfo);
2085 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
2086 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
2088 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2089 define_arm_cp_regs(cpu, xscale_cp_reginfo);
2091 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
2092 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
2094 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2095 define_arm_cp_regs(cpu, lpae_cp_reginfo);
2097 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
2098 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
2099 * be read-only (ie write causes UNDEF exception).
2102 ARMCPRegInfo id_cp_reginfo[] = {
2103 /* Note that the MIDR isn't a simple constant register because
2104 * of the TI925 behaviour where writes to another register can
2105 * cause the MIDR value to change.
2107 * Unimplemented registers in the c15 0 0 0 space default to
2108 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
2109 * and friends override accordingly.
2112 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
2113 .access = PL1_R, .resetvalue = cpu->midr,
2114 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
2115 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
2116 .type = ARM_CP_OVERRIDE },
2117 { .name = "MIDR_EL1", .state = ARM_CP_STATE_AA64,
2118 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 0, .crm = 0,
2119 .access = PL1_R, .resetvalue = cpu->midr, .type = ARM_CP_CONST },
2121 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
2122 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2123 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
2124 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
2125 .access = PL0_R, .accessfn = ctr_el0_access,
2126 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
2128 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
2129 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2131 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
2132 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2133 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
2135 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
2136 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2138 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
2139 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2141 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
2142 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2144 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
2145 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2147 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
2148 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2151 ARMCPRegInfo crn0_wi_reginfo = {
2152 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
2153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
2154 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
2156 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
2157 arm_feature(env, ARM_FEATURE_STRONGARM)) {
2159 /* Register the blanket "writes ignored" value first to cover the
2160 * whole space. Then update the specific ID registers to allow write
2161 * access, so that they ignore writes rather than causing them to
2164 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
2165 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
2169 define_arm_cp_regs(cpu, id_cp_reginfo);
2172 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
2173 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
2176 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
2177 ARMCPRegInfo auxcr = {
2178 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
2179 .access = PL1_RW, .type = ARM_CP_CONST,
2180 .resetvalue = cpu->reset_auxcr
2182 define_one_arm_cp_reg(cpu, &auxcr);
2185 if (arm_feature(env, ARM_FEATURE_CBAR)) {
2186 ARMCPRegInfo cbar = {
2187 .name = "CBAR", .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
2188 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
2189 .fieldoffset = offsetof(CPUARMState, cp15.c15_config_base_address)
2191 define_one_arm_cp_reg(cpu, &cbar);
2194 /* Generic registers whose values depend on the implementation */
2196 ARMCPRegInfo sctlr = {
2197 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
2198 .opc0 = 3, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
2199 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
2200 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
2201 .raw_writefn = raw_write,
2203 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2204 /* Normally we would always end the TB on an SCTLR write, but Linux
2205 * arch/arm/mach-pxa/sleep.S expects two instructions following
2206 * an MMU enable to execute from cache. Imitate this behaviour.
2208 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
2210 define_one_arm_cp_reg(cpu, &sctlr);
2214 ARMCPU *cpu_arm_init(const char *cpu_model)
2216 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
2219 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
2221 CPUState *cs = CPU(cpu);
2222 CPUARMState *env = &cpu->env;
2224 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2225 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
2226 aarch64_fpu_gdb_set_reg,
2227 34, "aarch64-fpu.xml", 0);
2228 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
2229 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2230 51, "arm-neon.xml", 0);
2231 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
2232 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2233 35, "arm-vfp3.xml", 0);
2234 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
2235 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
2236 19, "arm-vfp.xml", 0);
2240 /* Sort alphabetically by type name, except for "any". */
2241 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
2243 ObjectClass *class_a = (ObjectClass *)a;
2244 ObjectClass *class_b = (ObjectClass *)b;
2245 const char *name_a, *name_b;
2247 name_a = object_class_get_name(class_a);
2248 name_b = object_class_get_name(class_b);
2249 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
2251 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
2254 return strcmp(name_a, name_b);
2258 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
2260 ObjectClass *oc = data;
2261 CPUListState *s = user_data;
2262 const char *typename;
2265 typename = object_class_get_name(oc);
2266 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
2267 (*s->cpu_fprintf)(s->file, " %s\n",
2272 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
2276 .cpu_fprintf = cpu_fprintf,
2280 list = object_class_get_list(TYPE_ARM_CPU, false);
2281 list = g_slist_sort(list, arm_cpu_list_compare);
2282 (*cpu_fprintf)(f, "Available CPUs:\n");
2283 g_slist_foreach(list, arm_cpu_list_entry, &s);
2286 /* The 'host' CPU type is dynamically registered only if KVM is
2287 * enabled, so we have to special-case it here:
2289 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
2293 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
2295 ObjectClass *oc = data;
2296 CpuDefinitionInfoList **cpu_list = user_data;
2297 CpuDefinitionInfoList *entry;
2298 CpuDefinitionInfo *info;
2299 const char *typename;
2301 typename = object_class_get_name(oc);
2302 info = g_malloc0(sizeof(*info));
2303 info->name = g_strndup(typename,
2304 strlen(typename) - strlen("-" TYPE_ARM_CPU));
2306 entry = g_malloc0(sizeof(*entry));
2307 entry->value = info;
2308 entry->next = *cpu_list;
2312 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
2314 CpuDefinitionInfoList *cpu_list = NULL;
2317 list = object_class_get_list(TYPE_ARM_CPU, false);
2318 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
2324 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
2325 void *opaque, int state,
2326 int crm, int opc1, int opc2)
2328 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2329 * add a single reginfo struct to the hash table.
2331 uint32_t *key = g_new(uint32_t, 1);
2332 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
2333 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
2334 if (r->state == ARM_CP_STATE_BOTH && state == ARM_CP_STATE_AA32) {
2335 /* The AArch32 view of a shared register sees the lower 32 bits
2336 * of a 64 bit backing field. It is not migratable as the AArch64
2337 * view handles that. AArch64 also handles reset.
2338 * We assume it is a cp15 register.
2341 r2->type |= ARM_CP_NO_MIGRATE;
2342 r2->resetfn = arm_cp_reset_ignore;
2343 #ifdef HOST_WORDS_BIGENDIAN
2344 if (r2->fieldoffset) {
2345 r2->fieldoffset += sizeof(uint32_t);
2349 if (state == ARM_CP_STATE_AA64) {
2350 /* To allow abbreviation of ARMCPRegInfo
2351 * definitions, we treat cp == 0 as equivalent to
2352 * the value for "standard guest-visible sysreg".
2355 r2->cp = CP_REG_ARM64_SYSREG_CP;
2357 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
2358 r2->opc0, opc1, opc2);
2360 *key = ENCODE_CP_REG(r2->cp, is64, r2->crn, crm, opc1, opc2);
2363 r2->opaque = opaque;
2365 /* reginfo passed to helpers is correct for the actual access,
2366 * and is never ARM_CP_STATE_BOTH:
2369 /* Make sure reginfo passed to helpers for wildcarded regs
2370 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2375 /* By convention, for wildcarded registers only the first
2376 * entry is used for migration; the others are marked as
2377 * NO_MIGRATE so we don't try to transfer the register
2378 * multiple times. Special registers (ie NOP/WFI) are
2381 if ((r->type & ARM_CP_SPECIAL) ||
2382 ((r->crm == CP_ANY) && crm != 0) ||
2383 ((r->opc1 == CP_ANY) && opc1 != 0) ||
2384 ((r->opc2 == CP_ANY) && opc2 != 0)) {
2385 r2->type |= ARM_CP_NO_MIGRATE;
2388 /* Overriding of an existing definition must be explicitly
2391 if (!(r->type & ARM_CP_OVERRIDE)) {
2392 ARMCPRegInfo *oldreg;
2393 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
2394 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
2395 fprintf(stderr, "Register redefined: cp=%d %d bit "
2396 "crn=%d crm=%d opc1=%d opc2=%d, "
2397 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
2398 r2->crn, r2->crm, r2->opc1, r2->opc2,
2399 oldreg->name, r2->name);
2400 g_assert_not_reached();
2403 g_hash_table_insert(cpu->cp_regs, key, r2);
2407 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2408 const ARMCPRegInfo *r, void *opaque)
2410 /* Define implementations of coprocessor registers.
2411 * We store these in a hashtable because typically
2412 * there are less than 150 registers in a space which
2413 * is 16*16*16*8*8 = 262144 in size.
2414 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2415 * If a register is defined twice then the second definition is
2416 * used, so this can be used to define some generic registers and
2417 * then override them with implementation specific variations.
2418 * At least one of the original and the second definition should
2419 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2420 * against accidental use.
2422 * The state field defines whether the register is to be
2423 * visible in the AArch32 or AArch64 execution state. If the
2424 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2425 * reginfo structure for the AArch32 view, which sees the lower
2426 * 32 bits of the 64 bit register.
2428 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2429 * be wildcarded. AArch64 registers are always considered to be 64
2430 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2431 * the register, if any.
2433 int crm, opc1, opc2, state;
2434 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
2435 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
2436 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
2437 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
2438 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
2439 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
2440 /* 64 bit registers have only CRm and Opc1 fields */
2441 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
2442 /* op0 only exists in the AArch64 encodings */
2443 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
2444 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2445 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
2446 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2447 * encodes a minimum access level for the register. We roll this
2448 * runtime check into our general permission check code, so check
2449 * here that the reginfo's specified permissions are strict enough
2450 * to encompass the generic architectural permission check.
2452 if (r->state != ARM_CP_STATE_AA32) {
2455 case 0: case 1: case 2:
2468 /* unallocated encoding, so not possible */
2476 /* min_EL EL1, secure mode only (we don't check the latter) */
2480 /* broken reginfo with out-of-range opc1 */
2484 /* assert our permissions are not too lax (stricter is fine) */
2485 assert((r->access & ~mask) == 0);
2488 /* Check that the register definition has enough info to handle
2489 * reads and writes if they are permitted.
2491 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
2492 if (r->access & PL3_R) {
2493 assert(r->fieldoffset || r->readfn);
2495 if (r->access & PL3_W) {
2496 assert(r->fieldoffset || r->writefn);
2499 /* Bad type field probably means missing sentinel at end of reg list */
2500 assert(cptype_valid(r->type));
2501 for (crm = crmmin; crm <= crmmax; crm++) {
2502 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
2503 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
2504 for (state = ARM_CP_STATE_AA32;
2505 state <= ARM_CP_STATE_AA64; state++) {
2506 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
2509 add_cpreg_to_hashtable(cpu, r, opaque, state,
2517 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2518 const ARMCPRegInfo *regs, void *opaque)
2520 /* Define a whole list of registers */
2521 const ARMCPRegInfo *r;
2522 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
2523 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
2527 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
2529 return g_hash_table_lookup(cpregs, &encoded_cp);
2532 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2535 /* Helper coprocessor write function for write-ignore registers */
2538 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
2540 /* Helper coprocessor write function for read-as-zero registers */
2544 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
2546 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2549 static int bad_mode_switch(CPUARMState *env, int mode)
2551 /* Return true if it is not valid for us to switch to
2552 * this CPU mode (ie all the UNPREDICTABLE cases in
2553 * the ARM ARM CPSRWriteByInstr pseudocode).
2556 case ARM_CPU_MODE_USR:
2557 case ARM_CPU_MODE_SYS:
2558 case ARM_CPU_MODE_SVC:
2559 case ARM_CPU_MODE_ABT:
2560 case ARM_CPU_MODE_UND:
2561 case ARM_CPU_MODE_IRQ:
2562 case ARM_CPU_MODE_FIQ:
2569 uint32_t cpsr_read(CPUARMState *env)
2572 ZF = (env->ZF == 0);
2573 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
2574 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
2575 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
2576 | ((env->condexec_bits & 0xfc) << 8)
2577 | (env->GE << 16) | (env->daif & CPSR_AIF);
2580 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
2582 if (mask & CPSR_NZCV) {
2583 env->ZF = (~val) & CPSR_Z;
2585 env->CF = (val >> 29) & 1;
2586 env->VF = (val << 3) & 0x80000000;
2589 env->QF = ((val & CPSR_Q) != 0);
2591 env->thumb = ((val & CPSR_T) != 0);
2592 if (mask & CPSR_IT_0_1) {
2593 env->condexec_bits &= ~3;
2594 env->condexec_bits |= (val >> 25) & 3;
2596 if (mask & CPSR_IT_2_7) {
2597 env->condexec_bits &= 3;
2598 env->condexec_bits |= (val >> 8) & 0xfc;
2600 if (mask & CPSR_GE) {
2601 env->GE = (val >> 16) & 0xf;
2604 env->daif &= ~(CPSR_AIF & mask);
2605 env->daif |= val & CPSR_AIF & mask;
2607 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
2608 if (bad_mode_switch(env, val & CPSR_M)) {
2609 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2610 * We choose to ignore the attempt and leave the CPSR M field
2615 switch_mode(env, val & CPSR_M);
2618 mask &= ~CACHED_CPSR_BITS;
2619 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
2622 /* Sign/zero extend */
2623 uint32_t HELPER(sxtb16)(uint32_t x)
2626 res = (uint16_t)(int8_t)x;
2627 res |= (uint32_t)(int8_t)(x >> 16) << 16;
2631 uint32_t HELPER(uxtb16)(uint32_t x)
2634 res = (uint16_t)(uint8_t)x;
2635 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
2639 uint32_t HELPER(clz)(uint32_t x)
2644 int32_t HELPER(sdiv)(int32_t num, int32_t den)
2648 if (num == INT_MIN && den == -1)
2653 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
2660 uint32_t HELPER(rbit)(uint32_t x)
2662 x = ((x & 0xff000000) >> 24)
2663 | ((x & 0x00ff0000) >> 8)
2664 | ((x & 0x0000ff00) << 8)
2665 | ((x & 0x000000ff) << 24);
2666 x = ((x & 0xf0f0f0f0) >> 4)
2667 | ((x & 0x0f0f0f0f) << 4);
2668 x = ((x & 0x88888888) >> 3)
2669 | ((x & 0x44444444) >> 1)
2670 | ((x & 0x22222222) << 1)
2671 | ((x & 0x11111111) << 3);
2675 #if defined(CONFIG_USER_ONLY)
2677 void arm_cpu_do_interrupt(CPUState *cs)
2679 cs->exception_index = -1;
2682 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
2685 ARMCPU *cpu = ARM_CPU(cs);
2686 CPUARMState *env = &cpu->env;
2689 cs->exception_index = EXCP_PREFETCH_ABORT;
2690 env->cp15.c6_insn = address;
2692 cs->exception_index = EXCP_DATA_ABORT;
2693 env->cp15.c6_data = address;
2698 /* These should probably raise undefined insn exceptions. */
2699 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2701 ARMCPU *cpu = arm_env_get_cpu(env);
2703 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
2706 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2708 ARMCPU *cpu = arm_env_get_cpu(env);
2710 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
2714 void switch_mode(CPUARMState *env, int mode)
2716 ARMCPU *cpu = arm_env_get_cpu(env);
2718 if (mode != ARM_CPU_MODE_USR) {
2719 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
2723 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2725 ARMCPU *cpu = arm_env_get_cpu(env);
2727 cpu_abort(CPU(cpu), "banked r13 write\n");
2730 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2732 ARMCPU *cpu = arm_env_get_cpu(env);
2734 cpu_abort(CPU(cpu), "banked r13 read\n");
2740 /* Map CPU modes onto saved register banks. */
2741 int bank_number(int mode)
2744 case ARM_CPU_MODE_USR:
2745 case ARM_CPU_MODE_SYS:
2747 case ARM_CPU_MODE_SVC:
2749 case ARM_CPU_MODE_ABT:
2751 case ARM_CPU_MODE_UND:
2753 case ARM_CPU_MODE_IRQ:
2755 case ARM_CPU_MODE_FIQ:
2758 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode);
2761 void switch_mode(CPUARMState *env, int mode)
2766 old_mode = env->uncached_cpsr & CPSR_M;
2767 if (mode == old_mode)
2770 if (old_mode == ARM_CPU_MODE_FIQ) {
2771 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
2772 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
2773 } else if (mode == ARM_CPU_MODE_FIQ) {
2774 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
2775 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
2778 i = bank_number(old_mode);
2779 env->banked_r13[i] = env->regs[13];
2780 env->banked_r14[i] = env->regs[14];
2781 env->banked_spsr[i] = env->spsr;
2783 i = bank_number(mode);
2784 env->regs[13] = env->banked_r13[i];
2785 env->regs[14] = env->banked_r14[i];
2786 env->spsr = env->banked_spsr[i];
2789 static void v7m_push(CPUARMState *env, uint32_t val)
2791 CPUState *cs = CPU(arm_env_get_cpu(env));
2794 stl_phys(cs->as, env->regs[13], val);
2797 static uint32_t v7m_pop(CPUARMState *env)
2799 CPUState *cs = CPU(arm_env_get_cpu(env));
2802 val = ldl_phys(cs->as, env->regs[13]);
2807 /* Switch to V7M main or process stack pointer. */
2808 static void switch_v7m_sp(CPUARMState *env, int process)
2811 if (env->v7m.current_sp != process) {
2812 tmp = env->v7m.other_sp;
2813 env->v7m.other_sp = env->regs[13];
2814 env->regs[13] = tmp;
2815 env->v7m.current_sp = process;
2819 static void do_v7m_exception_exit(CPUARMState *env)
2824 type = env->regs[15];
2825 if (env->v7m.exception != 0)
2826 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
2828 /* Switch to the target stack. */
2829 switch_v7m_sp(env, (type & 4) != 0);
2830 /* Pop registers. */
2831 env->regs[0] = v7m_pop(env);
2832 env->regs[1] = v7m_pop(env);
2833 env->regs[2] = v7m_pop(env);
2834 env->regs[3] = v7m_pop(env);
2835 env->regs[12] = v7m_pop(env);
2836 env->regs[14] = v7m_pop(env);
2837 env->regs[15] = v7m_pop(env);
2838 xpsr = v7m_pop(env);
2839 xpsr_write(env, xpsr, 0xfffffdff);
2840 /* Undo stack alignment. */
2843 /* ??? The exception return type specifies Thread/Handler mode. However
2844 this is also implied by the xPSR value. Not sure what to do
2845 if there is a mismatch. */
2846 /* ??? Likewise for mismatches between the CONTROL register and the stack
2850 /* Exception names for debug logging; note that not all of these
2851 * precisely correspond to architectural exceptions.
2853 static const char * const excnames[] = {
2854 [EXCP_UDEF] = "Undefined Instruction",
2856 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
2857 [EXCP_DATA_ABORT] = "Data Abort",
2860 [EXCP_BKPT] = "Breakpoint",
2861 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
2862 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
2863 [EXCP_STREX] = "QEMU intercept of STREX",
2866 static inline void arm_log_exception(int idx)
2868 if (qemu_loglevel_mask(CPU_LOG_INT)) {
2869 const char *exc = NULL;
2871 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
2872 exc = excnames[idx];
2877 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
2881 void arm_v7m_cpu_do_interrupt(CPUState *cs)
2883 ARMCPU *cpu = ARM_CPU(cs);
2884 CPUARMState *env = &cpu->env;
2885 uint32_t xpsr = xpsr_read(env);
2889 arm_log_exception(cs->exception_index);
2892 if (env->v7m.current_sp)
2894 if (env->v7m.exception == 0)
2897 /* For exceptions we just mark as pending on the NVIC, and let that
2899 /* TODO: Need to escalate if the current priority is higher than the
2900 one we're raising. */
2901 switch (cs->exception_index) {
2903 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
2906 /* The PC already points to the next instruction. */
2907 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
2909 case EXCP_PREFETCH_ABORT:
2910 case EXCP_DATA_ABORT:
2911 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
2914 if (semihosting_enabled) {
2916 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
2919 env->regs[0] = do_arm_semihosting(env);
2920 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
2924 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
2927 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
2929 case EXCP_EXCEPTION_EXIT:
2930 do_v7m_exception_exit(env);
2933 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
2934 return; /* Never happens. Keep compiler happy. */
2937 /* Align stack pointer. */
2938 /* ??? Should only do this if Configuration Control Register
2939 STACKALIGN bit is set. */
2940 if (env->regs[13] & 4) {
2944 /* Switch to the handler mode. */
2945 v7m_push(env, xpsr);
2946 v7m_push(env, env->regs[15]);
2947 v7m_push(env, env->regs[14]);
2948 v7m_push(env, env->regs[12]);
2949 v7m_push(env, env->regs[3]);
2950 v7m_push(env, env->regs[2]);
2951 v7m_push(env, env->regs[1]);
2952 v7m_push(env, env->regs[0]);
2953 switch_v7m_sp(env, 0);
2955 env->condexec_bits = 0;
2957 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
2958 env->regs[15] = addr & 0xfffffffe;
2959 env->thumb = addr & 1;
2962 /* Handle a CPU exception. */
2963 void arm_cpu_do_interrupt(CPUState *cs)
2965 ARMCPU *cpu = ARM_CPU(cs);
2966 CPUARMState *env = &cpu->env;
2974 arm_log_exception(cs->exception_index);
2976 /* TODO: Vectored interrupt controller. */
2977 switch (cs->exception_index) {
2979 new_mode = ARM_CPU_MODE_UND;
2988 if (semihosting_enabled) {
2989 /* Check for semihosting interrupt. */
2991 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
2994 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
2997 /* Only intercept calls from privileged modes, to provide some
2998 semblance of security. */
2999 if (((mask == 0x123456 && !env->thumb)
3000 || (mask == 0xab && env->thumb))
3001 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3002 env->regs[0] = do_arm_semihosting(env);
3003 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3007 new_mode = ARM_CPU_MODE_SVC;
3010 /* The PC already points to the next instruction. */
3014 /* See if this is a semihosting syscall. */
3015 if (env->thumb && semihosting_enabled) {
3016 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
3018 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
3020 env->regs[0] = do_arm_semihosting(env);
3021 qemu_log_mask(CPU_LOG_INT, "...handled as semihosting call\n");
3025 env->cp15.c5_insn = 2;
3026 /* Fall through to prefetch abort. */
3027 case EXCP_PREFETCH_ABORT:
3028 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
3029 env->cp15.c5_insn, env->cp15.c6_insn);
3030 new_mode = ARM_CPU_MODE_ABT;
3032 mask = CPSR_A | CPSR_I;
3035 case EXCP_DATA_ABORT:
3036 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
3037 env->cp15.c5_data, env->cp15.c6_data);
3038 new_mode = ARM_CPU_MODE_ABT;
3040 mask = CPSR_A | CPSR_I;
3044 new_mode = ARM_CPU_MODE_IRQ;
3046 /* Disable IRQ and imprecise data aborts. */
3047 mask = CPSR_A | CPSR_I;
3051 new_mode = ARM_CPU_MODE_FIQ;
3053 /* Disable FIQ, IRQ and imprecise data aborts. */
3054 mask = CPSR_A | CPSR_I | CPSR_F;
3058 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
3059 return; /* Never happens. Keep compiler happy. */
3062 if (env->cp15.c1_sys & SCTLR_V) {
3063 /* when enabled, base address cannot be remapped. */
3066 /* ARM v7 architectures provide a vector base address register to remap
3067 * the interrupt vector table.
3068 * This register is only followed in non-monitor mode, and has a secure
3069 * and un-secure copy. Since the cpu is always in a un-secure operation
3070 * and is never in monitor mode this feature is always active.
3071 * Note: only bits 31:5 are valid.
3073 addr += env->cp15.c12_vbar;
3075 switch_mode (env, new_mode);
3076 env->spsr = cpsr_read(env);
3077 /* Clear IT bits. */
3078 env->condexec_bits = 0;
3079 /* Switch to the new mode, and to the correct instruction set. */
3080 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
3082 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
3083 * and we should just guard the thumb mode on V4 */
3084 if (arm_feature(env, ARM_FEATURE_V4T)) {
3085 env->thumb = (env->cp15.c1_sys & SCTLR_TE) != 0;
3087 env->regs[14] = env->regs[15] + offset;
3088 env->regs[15] = addr;
3089 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
3092 /* Check section/page access permissions.
3093 Returns the page protection flags, or zero if the access is not
3095 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
3096 int access_type, int is_user)
3100 if (domain_prot == 3) {
3101 return PAGE_READ | PAGE_WRITE;
3104 if (access_type == 1)
3107 prot_ro = PAGE_READ;
3111 if (arm_feature(env, ARM_FEATURE_V7)) {
3114 if (access_type == 1)
3116 switch (env->cp15.c1_sys & (SCTLR_S | SCTLR_R)) {
3118 return is_user ? 0 : PAGE_READ;
3125 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
3130 return PAGE_READ | PAGE_WRITE;
3132 return PAGE_READ | PAGE_WRITE;
3133 case 4: /* Reserved. */
3136 return is_user ? 0 : prot_ro;
3140 if (!arm_feature (env, ARM_FEATURE_V6K))
3148 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
3152 if (address & env->cp15.c2_mask)
3153 table = env->cp15.ttbr1_el1 & 0xffffc000;
3155 table = env->cp15.ttbr0_el1 & env->cp15.c2_base_mask;
3157 table |= (address >> 18) & 0x3ffc;
3161 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
3162 int is_user, hwaddr *phys_ptr,
3163 int *prot, target_ulong *page_size)
3165 CPUState *cs = CPU(arm_env_get_cpu(env));
3175 /* Pagetable walk. */
3176 /* Lookup l1 descriptor. */
3177 table = get_level1_table_address(env, address);
3178 desc = ldl_phys(cs->as, table);
3180 domain = (desc >> 5) & 0x0f;
3181 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3183 /* Section translation fault. */
3187 if (domain_prot == 0 || domain_prot == 2) {
3189 code = 9; /* Section domain fault. */
3191 code = 11; /* Page domain fault. */
3196 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3197 ap = (desc >> 10) & 3;
3199 *page_size = 1024 * 1024;
3201 /* Lookup l2 entry. */
3203 /* Coarse pagetable. */
3204 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3206 /* Fine pagetable. */
3207 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
3209 desc = ldl_phys(cs->as, table);
3211 case 0: /* Page translation fault. */
3214 case 1: /* 64k page. */
3215 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3216 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
3217 *page_size = 0x10000;
3219 case 2: /* 4k page. */
3220 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3221 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
3222 *page_size = 0x1000;
3224 case 3: /* 1k page. */
3226 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
3227 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3229 /* Page translation fault. */
3234 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
3236 ap = (desc >> 4) & 3;
3240 /* Never happens, but compiler isn't smart enough to tell. */
3245 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3247 /* Access permission fault. */
3251 *phys_ptr = phys_addr;
3254 return code | (domain << 4);
3257 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
3258 int is_user, hwaddr *phys_ptr,
3259 int *prot, target_ulong *page_size)
3261 CPUState *cs = CPU(arm_env_get_cpu(env));
3273 /* Pagetable walk. */
3274 /* Lookup l1 descriptor. */
3275 table = get_level1_table_address(env, address);
3276 desc = ldl_phys(cs->as, table);
3278 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
3279 /* Section translation fault, or attempt to use the encoding
3280 * which is Reserved on implementations without PXN.
3285 if ((type == 1) || !(desc & (1 << 18))) {
3286 /* Page or Section. */
3287 domain = (desc >> 5) & 0x0f;
3289 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
3290 if (domain_prot == 0 || domain_prot == 2) {
3292 code = 9; /* Section domain fault. */
3294 code = 11; /* Page domain fault. */
3299 if (desc & (1 << 18)) {
3301 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
3302 *page_size = 0x1000000;
3305 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
3306 *page_size = 0x100000;
3308 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
3309 xn = desc & (1 << 4);
3313 if (arm_feature(env, ARM_FEATURE_PXN)) {
3314 pxn = (desc >> 2) & 1;
3316 /* Lookup l2 entry. */
3317 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
3318 desc = ldl_phys(cs->as, table);
3319 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
3321 case 0: /* Page translation fault. */
3324 case 1: /* 64k page. */
3325 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
3326 xn = desc & (1 << 15);
3327 *page_size = 0x10000;
3329 case 2: case 3: /* 4k page. */
3330 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
3332 *page_size = 0x1000;
3335 /* Never happens, but compiler isn't smart enough to tell. */
3340 if (domain_prot == 3) {
3341 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3343 if (pxn && !is_user) {
3346 if (xn && access_type == 2)
3349 /* The simplified model uses AP[0] as an access control bit. */
3350 if ((env->cp15.c1_sys & SCTLR_AFE) && (ap & 1) == 0) {
3351 /* Access flag fault. */
3352 code = (code == 15) ? 6 : 3;
3355 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
3357 /* Access permission fault. */
3364 *phys_ptr = phys_addr;
3367 return code | (domain << 4);
3370 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3371 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3374 translation_fault = 1,
3376 permission_fault = 3,
3379 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
3380 int access_type, int is_user,
3381 hwaddr *phys_ptr, int *prot,
3382 target_ulong *page_size_ptr)
3384 CPUState *cs = CPU(arm_env_get_cpu(env));
3385 /* Read an LPAE long-descriptor translation table. */
3386 MMUFaultType fault_type = translation_fault;
3394 uint32_t tableattrs;
3395 target_ulong page_size;
3398 /* Determine whether this address is in the region controlled by
3399 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3400 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3401 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3403 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
3404 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
3405 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
3406 /* there is a ttbr0 region and we are in it (high bits all zero) */
3408 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
3409 /* there is a ttbr1 region and we are in it (high bits all one) */
3412 /* ttbr0 region is "everything not in the ttbr1 region" */
3415 /* ttbr1 region is "everything not in the ttbr0 region" */
3418 /* in the gap between the two regions, this is a Translation fault */
3419 fault_type = translation_fault;
3423 /* Note that QEMU ignores shareability and cacheability attributes,
3424 * so we don't need to do anything with the SH, ORGN, IRGN fields
3425 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3426 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3427 * implement any ASID-like capability so we can ignore it (instead
3428 * we will always flush the TLB any time the ASID is changed).
3430 if (ttbr_select == 0) {
3431 ttbr = env->cp15.ttbr0_el1;
3432 epd = extract32(env->cp15.c2_control, 7, 1);
3435 ttbr = env->cp15.ttbr1_el1;
3436 epd = extract32(env->cp15.c2_control, 23, 1);
3441 /* Translation table walk disabled => Translation fault on TLB miss */
3445 /* If the region is small enough we will skip straight to a 2nd level
3446 * lookup. This affects the number of bits of the address used in
3447 * combination with the TTBR to find the first descriptor. ('n' here
3448 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3449 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3458 /* Clear the vaddr bits which aren't part of the within-region address,
3459 * so that we don't have to special case things when calculating the
3460 * first descriptor address.
3462 address &= (0xffffffffU >> tsz);
3464 /* Now we can extract the actual base address from the TTBR */
3465 descaddr = extract64(ttbr, 0, 40);
3466 descaddr &= ~((1ULL << n) - 1);
3470 uint64_t descriptor;
3472 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
3473 descriptor = ldq_phys(cs->as, descaddr);
3474 if (!(descriptor & 1) ||
3475 (!(descriptor & 2) && (level == 3))) {
3476 /* Invalid, or the Reserved level 3 encoding */
3479 descaddr = descriptor & 0xfffffff000ULL;
3481 if ((descriptor & 2) && (level < 3)) {
3482 /* Table entry. The top five bits are attributes which may
3483 * propagate down through lower levels of the table (and
3484 * which are all arranged so that 0 means "no effect", so
3485 * we can gather them up by ORing in the bits at each level).
3487 tableattrs |= extract64(descriptor, 59, 5);
3491 /* Block entry at level 1 or 2, or page entry at level 3.
3492 * These are basically the same thing, although the number
3493 * of bits we pull in from the vaddr varies.
3495 page_size = (1 << (39 - (9 * level)));
3496 descaddr |= (address & (page_size - 1));
3497 /* Extract attributes from the descriptor and merge with table attrs */
3498 attrs = extract64(descriptor, 2, 10)
3499 | (extract64(descriptor, 52, 12) << 10);
3500 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
3501 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
3502 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3503 * means "force PL1 access only", which means forcing AP[1] to 0.
3505 if (extract32(tableattrs, 2, 1)) {
3508 /* Since we're always in the Non-secure state, NSTable is ignored. */
3511 /* Here descaddr is the final physical address, and attributes
3514 fault_type = access_fault;
3515 if ((attrs & (1 << 8)) == 0) {
3519 fault_type = permission_fault;
3520 if (is_user && !(attrs & (1 << 4))) {
3521 /* Unprivileged access not enabled */
3524 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3525 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
3527 if (access_type == 2) {
3530 *prot &= ~PAGE_EXEC;
3532 if (attrs & (1 << 5)) {
3533 /* Write access forbidden */
3534 if (access_type == 1) {
3537 *prot &= ~PAGE_WRITE;
3540 *phys_ptr = descaddr;
3541 *page_size_ptr = page_size;
3545 /* Long-descriptor format IFSR/DFSR value */
3546 return (1 << 9) | (fault_type << 2) | level;
3549 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
3550 int access_type, int is_user,
3551 hwaddr *phys_ptr, int *prot)
3557 *phys_ptr = address;
3558 for (n = 7; n >= 0; n--) {
3559 base = env->cp15.c6_region[n];
3560 if ((base & 1) == 0)
3562 mask = 1 << ((base >> 1) & 0x1f);
3563 /* Keep this shift separate from the above to avoid an
3564 (undefined) << 32. */
3565 mask = (mask << 1) - 1;
3566 if (((base ^ address) & ~mask) == 0)
3572 if (access_type == 2) {
3573 mask = env->cp15.c5_insn;
3575 mask = env->cp15.c5_data;
3577 mask = (mask >> (n * 4)) & 0xf;
3584 *prot = PAGE_READ | PAGE_WRITE;
3589 *prot |= PAGE_WRITE;
3592 *prot = PAGE_READ | PAGE_WRITE;
3603 /* Bad permission. */
3610 /* get_phys_addr - get the physical address for this virtual address
3612 * Find the physical address corresponding to the given virtual address,
3613 * by doing a translation table walk on MMU based systems or using the
3614 * MPU state on MPU based systems.
3616 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3617 * prot and page_size are not filled in, and the return value provides
3618 * information on why the translation aborted, in the format of a
3619 * DFSR/IFSR fault register, with the following caveats:
3620 * * we honour the short vs long DFSR format differences.
3621 * * the WnR bit is never set (the caller must do this).
3622 * * for MPU based systems we don't bother to return a full FSR format
3626 * @address: virtual address to get physical address for
3627 * @access_type: 0 for read, 1 for write, 2 for execute
3628 * @is_user: 0 for privileged access, 1 for user
3629 * @phys_ptr: set to the physical address corresponding to the virtual address
3630 * @prot: set to the permissions for the page containing phys_ptr
3631 * @page_size: set to the size of the page containing phys_ptr
3633 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
3634 int access_type, int is_user,
3635 hwaddr *phys_ptr, int *prot,
3636 target_ulong *page_size)
3638 /* Fast Context Switch Extension. */
3639 if (address < 0x02000000)
3640 address += env->cp15.c13_fcse;
3642 if ((env->cp15.c1_sys & SCTLR_M) == 0) {
3643 /* MMU/MPU disabled. */
3644 *phys_ptr = address;
3645 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3646 *page_size = TARGET_PAGE_SIZE;
3648 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
3649 *page_size = TARGET_PAGE_SIZE;
3650 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
3652 } else if (extended_addresses_enabled(env)) {
3653 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
3655 } else if (env->cp15.c1_sys & SCTLR_XP) {
3656 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
3659 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
3664 int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
3665 int access_type, int mmu_idx)
3667 ARMCPU *cpu = ARM_CPU(cs);
3668 CPUARMState *env = &cpu->env;
3670 target_ulong page_size;
3674 is_user = mmu_idx == MMU_USER_IDX;
3675 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
3678 /* Map a single [sub]page. */
3679 phys_addr &= ~(hwaddr)0x3ff;
3680 address &= ~(uint32_t)0x3ff;
3681 tlb_set_page(cs, address, phys_addr, prot, mmu_idx, page_size);
3685 if (access_type == 2) {
3686 env->cp15.c5_insn = ret;
3687 env->cp15.c6_insn = address;
3688 cs->exception_index = EXCP_PREFETCH_ABORT;
3690 env->cp15.c5_data = ret;
3691 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
3692 env->cp15.c5_data |= (1 << 11);
3693 env->cp15.c6_data = address;
3694 cs->exception_index = EXCP_DATA_ABORT;
3699 hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
3701 ARMCPU *cpu = ARM_CPU(cs);
3703 target_ulong page_size;
3707 ret = get_phys_addr(&cpu->env, addr, 0, 0, &phys_addr, &prot, &page_size);
3716 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
3718 if ((env->uncached_cpsr & CPSR_M) == mode) {
3719 env->regs[13] = val;
3721 env->banked_r13[bank_number(mode)] = val;
3725 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
3727 if ((env->uncached_cpsr & CPSR_M) == mode) {
3728 return env->regs[13];
3730 return env->banked_r13[bank_number(mode)];
3734 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
3736 ARMCPU *cpu = arm_env_get_cpu(env);
3740 return xpsr_read(env) & 0xf8000000;
3742 return xpsr_read(env) & 0xf80001ff;
3744 return xpsr_read(env) & 0xff00fc00;
3746 return xpsr_read(env) & 0xff00fdff;
3748 return xpsr_read(env) & 0x000001ff;
3750 return xpsr_read(env) & 0x0700fc00;
3752 return xpsr_read(env) & 0x0700edff;
3754 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
3756 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
3757 case 16: /* PRIMASK */
3758 return (env->daif & PSTATE_I) != 0;
3759 case 17: /* BASEPRI */
3760 case 18: /* BASEPRI_MAX */
3761 return env->v7m.basepri;
3762 case 19: /* FAULTMASK */
3763 return (env->daif & PSTATE_F) != 0;
3764 case 20: /* CONTROL */
3765 return env->v7m.control;
3767 /* ??? For debugging only. */
3768 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
3773 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
3775 ARMCPU *cpu = arm_env_get_cpu(env);
3779 xpsr_write(env, val, 0xf8000000);
3782 xpsr_write(env, val, 0xf8000000);
3785 xpsr_write(env, val, 0xfe00fc00);
3788 xpsr_write(env, val, 0xfe00fc00);
3791 /* IPSR bits are readonly. */
3794 xpsr_write(env, val, 0x0600fc00);
3797 xpsr_write(env, val, 0x0600fc00);
3800 if (env->v7m.current_sp)
3801 env->v7m.other_sp = val;
3803 env->regs[13] = val;
3806 if (env->v7m.current_sp)
3807 env->regs[13] = val;
3809 env->v7m.other_sp = val;
3811 case 16: /* PRIMASK */
3813 env->daif |= PSTATE_I;
3815 env->daif &= ~PSTATE_I;
3818 case 17: /* BASEPRI */
3819 env->v7m.basepri = val & 0xff;
3821 case 18: /* BASEPRI_MAX */
3823 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
3824 env->v7m.basepri = val;
3826 case 19: /* FAULTMASK */
3828 env->daif |= PSTATE_F;
3830 env->daif &= ~PSTATE_F;
3833 case 20: /* CONTROL */
3834 env->v7m.control = val & 3;
3835 switch_v7m_sp(env, (val & 2) != 0);
3838 /* ??? For debugging only. */
3839 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
3846 /* Note that signed overflow is undefined in C. The following routines are
3847 careful to use unsigned types where modulo arithmetic is required.
3848 Failure to do so _will_ break on newer gcc. */
3850 /* Signed saturating arithmetic. */
3852 /* Perform 16-bit signed saturating addition. */
3853 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
3858 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
3867 /* Perform 8-bit signed saturating addition. */
3868 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
3873 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
3882 /* Perform 16-bit signed saturating subtraction. */
3883 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
3888 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
3897 /* Perform 8-bit signed saturating subtraction. */
3898 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
3903 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
3912 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3913 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3914 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3915 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3918 #include "op_addsub.h"
3920 /* Unsigned saturating arithmetic. */
3921 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
3930 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
3938 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
3947 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
3955 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3956 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3957 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3958 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3961 #include "op_addsub.h"
3963 /* Signed modulo arithmetic. */
3964 #define SARITH16(a, b, n, op) do { \
3966 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3967 RESULT(sum, n, 16); \
3969 ge |= 3 << (n * 2); \
3972 #define SARITH8(a, b, n, op) do { \
3974 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3975 RESULT(sum, n, 8); \
3981 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3982 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3983 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3984 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3988 #include "op_addsub.h"
3990 /* Unsigned modulo arithmetic. */
3991 #define ADD16(a, b, n) do { \
3993 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3994 RESULT(sum, n, 16); \
3995 if ((sum >> 16) == 1) \
3996 ge |= 3 << (n * 2); \
3999 #define ADD8(a, b, n) do { \
4001 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
4002 RESULT(sum, n, 8); \
4003 if ((sum >> 8) == 1) \
4007 #define SUB16(a, b, n) do { \
4009 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
4010 RESULT(sum, n, 16); \
4011 if ((sum >> 16) == 0) \
4012 ge |= 3 << (n * 2); \
4015 #define SUB8(a, b, n) do { \
4017 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
4018 RESULT(sum, n, 8); \
4019 if ((sum >> 8) == 0) \
4026 #include "op_addsub.h"
4028 /* Halved signed arithmetic. */
4029 #define ADD16(a, b, n) \
4030 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
4031 #define SUB16(a, b, n) \
4032 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
4033 #define ADD8(a, b, n) \
4034 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
4035 #define SUB8(a, b, n) \
4036 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
4039 #include "op_addsub.h"
4041 /* Halved unsigned arithmetic. */
4042 #define ADD16(a, b, n) \
4043 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4044 #define SUB16(a, b, n) \
4045 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
4046 #define ADD8(a, b, n) \
4047 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4048 #define SUB8(a, b, n) \
4049 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
4052 #include "op_addsub.h"
4054 static inline uint8_t do_usad(uint8_t a, uint8_t b)
4062 /* Unsigned sum of absolute byte differences. */
4063 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
4066 sum = do_usad(a, b);
4067 sum += do_usad(a >> 8, b >> 8);
4068 sum += do_usad(a >> 16, b >>16);
4069 sum += do_usad(a >> 24, b >> 24);
4073 /* For ARMv6 SEL instruction. */
4074 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
4087 return (a & mask) | (b & ~mask);
4090 /* VFP support. We follow the convention used for VFP instructions:
4091 Single precision routines have a "s" suffix, double precision a
4094 /* Convert host exception flags to vfp form. */
4095 static inline int vfp_exceptbits_from_host(int host_bits)
4097 int target_bits = 0;
4099 if (host_bits & float_flag_invalid)
4101 if (host_bits & float_flag_divbyzero)
4103 if (host_bits & float_flag_overflow)
4105 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
4107 if (host_bits & float_flag_inexact)
4108 target_bits |= 0x10;
4109 if (host_bits & float_flag_input_denormal)
4110 target_bits |= 0x80;
4114 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
4119 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
4120 | (env->vfp.vec_len << 16)
4121 | (env->vfp.vec_stride << 20);
4122 i = get_float_exception_flags(&env->vfp.fp_status);
4123 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
4124 fpscr |= vfp_exceptbits_from_host(i);
4128 uint32_t vfp_get_fpscr(CPUARMState *env)
4130 return HELPER(vfp_get_fpscr)(env);
4133 /* Convert vfp exception flags to target form. */
4134 static inline int vfp_exceptbits_to_host(int target_bits)
4138 if (target_bits & 1)
4139 host_bits |= float_flag_invalid;
4140 if (target_bits & 2)
4141 host_bits |= float_flag_divbyzero;
4142 if (target_bits & 4)
4143 host_bits |= float_flag_overflow;
4144 if (target_bits & 8)
4145 host_bits |= float_flag_underflow;
4146 if (target_bits & 0x10)
4147 host_bits |= float_flag_inexact;
4148 if (target_bits & 0x80)
4149 host_bits |= float_flag_input_denormal;
4153 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
4158 changed = env->vfp.xregs[ARM_VFP_FPSCR];
4159 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
4160 env->vfp.vec_len = (val >> 16) & 7;
4161 env->vfp.vec_stride = (val >> 20) & 3;
4164 if (changed & (3 << 22)) {
4165 i = (val >> 22) & 3;
4167 case FPROUNDING_TIEEVEN:
4168 i = float_round_nearest_even;
4170 case FPROUNDING_POSINF:
4173 case FPROUNDING_NEGINF:
4174 i = float_round_down;
4176 case FPROUNDING_ZERO:
4177 i = float_round_to_zero;
4180 set_float_rounding_mode(i, &env->vfp.fp_status);
4182 if (changed & (1 << 24)) {
4183 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4184 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
4186 if (changed & (1 << 25))
4187 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
4189 i = vfp_exceptbits_to_host(val);
4190 set_float_exception_flags(i, &env->vfp.fp_status);
4191 set_float_exception_flags(0, &env->vfp.standard_fp_status);
4194 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
4196 HELPER(vfp_set_fpscr)(env, val);
4199 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
4201 #define VFP_BINOP(name) \
4202 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
4204 float_status *fpst = fpstp; \
4205 return float32_ ## name(a, b, fpst); \
4207 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
4209 float_status *fpst = fpstp; \
4210 return float64_ ## name(a, b, fpst); \
4222 float32 VFP_HELPER(neg, s)(float32 a)
4224 return float32_chs(a);
4227 float64 VFP_HELPER(neg, d)(float64 a)
4229 return float64_chs(a);
4232 float32 VFP_HELPER(abs, s)(float32 a)
4234 return float32_abs(a);
4237 float64 VFP_HELPER(abs, d)(float64 a)
4239 return float64_abs(a);
4242 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
4244 return float32_sqrt(a, &env->vfp.fp_status);
4247 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
4249 return float64_sqrt(a, &env->vfp.fp_status);
4252 /* XXX: check quiet/signaling case */
4253 #define DO_VFP_cmp(p, type) \
4254 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
4257 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
4258 case 0: flags = 0x6; break; \
4259 case -1: flags = 0x8; break; \
4260 case 1: flags = 0x2; break; \
4261 default: case 2: flags = 0x3; break; \
4263 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4264 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4266 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
4269 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
4270 case 0: flags = 0x6; break; \
4271 case -1: flags = 0x8; break; \
4272 case 1: flags = 0x2; break; \
4273 default: case 2: flags = 0x3; break; \
4275 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
4276 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
4278 DO_VFP_cmp(s, float32)
4279 DO_VFP_cmp(d, float64)
4282 /* Integer to float and float to integer conversions */
4284 #define CONV_ITOF(name, fsz, sign) \
4285 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
4287 float_status *fpst = fpstp; \
4288 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
4291 #define CONV_FTOI(name, fsz, sign, round) \
4292 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
4294 float_status *fpst = fpstp; \
4295 if (float##fsz##_is_any_nan(x)) { \
4296 float_raise(float_flag_invalid, fpst); \
4299 return float##fsz##_to_##sign##int32##round(x, fpst); \
4302 #define FLOAT_CONVS(name, p, fsz, sign) \
4303 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
4304 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
4305 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
4307 FLOAT_CONVS(si, s, 32, )
4308 FLOAT_CONVS(si, d, 64, )
4309 FLOAT_CONVS(ui, s, 32, u)
4310 FLOAT_CONVS(ui, d, 64, u)
4316 /* floating point conversion */
4317 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
4319 float64 r = float32_to_float64(x, &env->vfp.fp_status);
4320 /* ARM requires that S<->D conversion of any kind of NaN generates
4321 * a quiet NaN by forcing the most significant frac bit to 1.
4323 return float64_maybe_silence_nan(r);
4326 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
4328 float32 r = float64_to_float32(x, &env->vfp.fp_status);
4329 /* ARM requires that S<->D conversion of any kind of NaN generates
4330 * a quiet NaN by forcing the most significant frac bit to 1.
4332 return float32_maybe_silence_nan(r);
4335 /* VFP3 fixed point conversion. */
4336 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4337 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
4340 float_status *fpst = fpstp; \
4342 tmp = itype##_to_##float##fsz(x, fpst); \
4343 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
4346 /* Notice that we want only input-denormal exception flags from the
4347 * scalbn operation: the other possible flags (overflow+inexact if
4348 * we overflow to infinity, output-denormal) aren't correct for the
4349 * complete scale-and-convert operation.
4351 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
4352 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
4356 float_status *fpst = fpstp; \
4357 int old_exc_flags = get_float_exception_flags(fpst); \
4359 if (float##fsz##_is_any_nan(x)) { \
4360 float_raise(float_flag_invalid, fpst); \
4363 tmp = float##fsz##_scalbn(x, shift, fpst); \
4364 old_exc_flags |= get_float_exception_flags(fpst) \
4365 & float_flag_input_denormal; \
4366 set_float_exception_flags(old_exc_flags, fpst); \
4367 return float##fsz##_to_##itype##round(tmp, fpst); \
4370 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
4371 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4372 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
4373 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4375 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
4376 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
4377 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
4379 VFP_CONV_FIX(sh, d, 64, 64, int16)
4380 VFP_CONV_FIX(sl, d, 64, 64, int32)
4381 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
4382 VFP_CONV_FIX(uh, d, 64, 64, uint16)
4383 VFP_CONV_FIX(ul, d, 64, 64, uint32)
4384 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
4385 VFP_CONV_FIX(sh, s, 32, 32, int16)
4386 VFP_CONV_FIX(sl, s, 32, 32, int32)
4387 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
4388 VFP_CONV_FIX(uh, s, 32, 32, uint16)
4389 VFP_CONV_FIX(ul, s, 32, 32, uint32)
4390 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
4392 #undef VFP_CONV_FIX_FLOAT
4393 #undef VFP_CONV_FLOAT_FIX_ROUND
4395 /* Set the current fp rounding mode and return the old one.
4396 * The argument is a softfloat float_round_ value.
4398 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
4400 float_status *fp_status = &env->vfp.fp_status;
4402 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4403 set_float_rounding_mode(rmode, fp_status);
4408 /* Set the current fp rounding mode in the standard fp status and return
4409 * the old one. This is for NEON instructions that need to change the
4410 * rounding mode but wish to use the standard FPSCR values for everything
4411 * else. Always set the rounding mode back to the correct value after
4413 * The argument is a softfloat float_round_ value.
4415 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
4417 float_status *fp_status = &env->vfp.standard_fp_status;
4419 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
4420 set_float_rounding_mode(rmode, fp_status);
4425 /* Half precision conversions. */
4426 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
4428 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4429 float32 r = float16_to_float32(make_float16(a), ieee, s);
4431 return float32_maybe_silence_nan(r);
4436 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
4438 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4439 float16 r = float32_to_float16(a, ieee, s);
4441 r = float16_maybe_silence_nan(r);
4443 return float16_val(r);
4446 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4448 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
4451 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4453 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
4456 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
4458 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
4461 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
4463 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
4466 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
4468 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4469 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
4471 return float64_maybe_silence_nan(r);
4476 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
4478 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
4479 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
4481 r = float16_maybe_silence_nan(r);
4483 return float16_val(r);
4486 #define float32_two make_float32(0x40000000)
4487 #define float32_three make_float32(0x40400000)
4488 #define float32_one_point_five make_float32(0x3fc00000)
4490 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
4492 float_status *s = &env->vfp.standard_fp_status;
4493 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4494 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4495 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4496 float_raise(float_flag_input_denormal, s);
4500 return float32_sub(float32_two, float32_mul(a, b, s), s);
4503 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
4505 float_status *s = &env->vfp.standard_fp_status;
4507 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
4508 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
4509 if (!(float32_is_zero(a) || float32_is_zero(b))) {
4510 float_raise(float_flag_input_denormal, s);
4512 return float32_one_point_five;
4514 product = float32_mul(a, b, s);
4515 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
4520 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4521 * int->float conversions at run-time. */
4522 #define float64_256 make_float64(0x4070000000000000LL)
4523 #define float64_512 make_float64(0x4080000000000000LL)
4524 #define float32_maxnorm make_float32(0x7f7fffff)
4525 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
4527 /* Reciprocal functions
4529 * The algorithm that must be used to calculate the estimate
4530 * is specified by the ARM ARM, see FPRecipEstimate()
4533 static float64 recip_estimate(float64 a, float_status *real_fp_status)
4535 /* These calculations mustn't set any fp exception flags,
4536 * so we use a local copy of the fp_status.
4538 float_status dummy_status = *real_fp_status;
4539 float_status *s = &dummy_status;
4540 /* q = (int)(a * 512.0) */
4541 float64 q = float64_mul(float64_512, a, s);
4542 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4544 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4545 q = int64_to_float64(q_int, s);
4546 q = float64_add(q, float64_half, s);
4547 q = float64_div(q, float64_512, s);
4548 q = float64_div(float64_one, q, s);
4550 /* s = (int)(256.0 * r + 0.5) */
4551 q = float64_mul(q, float64_256, s);
4552 q = float64_add(q, float64_half, s);
4553 q_int = float64_to_int64_round_to_zero(q, s);
4555 /* return (double)s / 256.0 */
4556 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4559 /* Common wrapper to call recip_estimate */
4560 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
4562 uint64_t val64 = float64_val(num);
4563 uint64_t frac = extract64(val64, 0, 52);
4564 int64_t exp = extract64(val64, 52, 11);
4566 float64 scaled, estimate;
4568 /* Generate the scaled number for the estimate function */
4570 if (extract64(frac, 51, 1) == 0) {
4572 frac = extract64(frac, 0, 50) << 2;
4574 frac = extract64(frac, 0, 51) << 1;
4578 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
4579 scaled = make_float64((0x3feULL << 52)
4580 | extract64(frac, 44, 8) << 44);
4582 estimate = recip_estimate(scaled, fpst);
4584 /* Build new result */
4585 val64 = float64_val(estimate);
4586 sbit = 0x8000000000000000ULL & val64;
4588 frac = extract64(val64, 0, 52);
4591 frac = 1ULL << 51 | extract64(frac, 1, 51);
4592 } else if (exp == -1) {
4593 frac = 1ULL << 50 | extract64(frac, 2, 50);
4597 return make_float64(sbit | (exp << 52) | frac);
4600 static bool round_to_inf(float_status *fpst, bool sign_bit)
4602 switch (fpst->float_rounding_mode) {
4603 case float_round_nearest_even: /* Round to Nearest */
4605 case float_round_up: /* Round to +Inf */
4607 case float_round_down: /* Round to -Inf */
4609 case float_round_to_zero: /* Round to Zero */
4613 g_assert_not_reached();
4616 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
4618 float_status *fpst = fpstp;
4619 float32 f32 = float32_squash_input_denormal(input, fpst);
4620 uint32_t f32_val = float32_val(f32);
4621 uint32_t f32_sbit = 0x80000000ULL & f32_val;
4622 int32_t f32_exp = extract32(f32_val, 23, 8);
4623 uint32_t f32_frac = extract32(f32_val, 0, 23);
4629 if (float32_is_any_nan(f32)) {
4631 if (float32_is_signaling_nan(f32)) {
4632 float_raise(float_flag_invalid, fpst);
4633 nan = float32_maybe_silence_nan(f32);
4635 if (fpst->default_nan_mode) {
4636 nan = float32_default_nan;
4639 } else if (float32_is_infinity(f32)) {
4640 return float32_set_sign(float32_zero, float32_is_neg(f32));
4641 } else if (float32_is_zero(f32)) {
4642 float_raise(float_flag_divbyzero, fpst);
4643 return float32_set_sign(float32_infinity, float32_is_neg(f32));
4644 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
4645 /* Abs(value) < 2.0^-128 */
4646 float_raise(float_flag_overflow | float_flag_inexact, fpst);
4647 if (round_to_inf(fpst, f32_sbit)) {
4648 return float32_set_sign(float32_infinity, float32_is_neg(f32));
4650 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
4652 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
4653 float_raise(float_flag_underflow, fpst);
4654 return float32_set_sign(float32_zero, float32_is_neg(f32));
4658 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
4659 r64 = call_recip_estimate(f64, 253, fpst);
4660 r64_val = float64_val(r64);
4661 r64_exp = extract64(r64_val, 52, 11);
4662 r64_frac = extract64(r64_val, 0, 52);
4664 /* result = sign : result_exp<7:0> : fraction<51:29>; */
4665 return make_float32(f32_sbit |
4666 (r64_exp & 0xff) << 23 |
4667 extract64(r64_frac, 29, 24));
4670 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
4672 float_status *fpst = fpstp;
4673 float64 f64 = float64_squash_input_denormal(input, fpst);
4674 uint64_t f64_val = float64_val(f64);
4675 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
4676 int64_t f64_exp = extract64(f64_val, 52, 11);
4682 /* Deal with any special cases */
4683 if (float64_is_any_nan(f64)) {
4685 if (float64_is_signaling_nan(f64)) {
4686 float_raise(float_flag_invalid, fpst);
4687 nan = float64_maybe_silence_nan(f64);
4689 if (fpst->default_nan_mode) {
4690 nan = float64_default_nan;
4693 } else if (float64_is_infinity(f64)) {
4694 return float64_set_sign(float64_zero, float64_is_neg(f64));
4695 } else if (float64_is_zero(f64)) {
4696 float_raise(float_flag_divbyzero, fpst);
4697 return float64_set_sign(float64_infinity, float64_is_neg(f64));
4698 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
4699 /* Abs(value) < 2.0^-1024 */
4700 float_raise(float_flag_overflow | float_flag_inexact, fpst);
4701 if (round_to_inf(fpst, f64_sbit)) {
4702 return float64_set_sign(float64_infinity, float64_is_neg(f64));
4704 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
4706 } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
4707 float_raise(float_flag_underflow, fpst);
4708 return float64_set_sign(float64_zero, float64_is_neg(f64));
4711 r64 = call_recip_estimate(f64, 2045, fpst);
4712 r64_val = float64_val(r64);
4713 r64_exp = extract64(r64_val, 52, 11);
4714 r64_frac = extract64(r64_val, 0, 52);
4716 /* result = sign : result_exp<10:0> : fraction<51:0> */
4717 return make_float64(f64_sbit |
4718 ((r64_exp & 0x7ff) << 52) |
4722 /* The algorithm that must be used to calculate the estimate
4723 * is specified by the ARM ARM.
4725 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
4727 /* These calculations mustn't set any fp exception flags,
4728 * so we use a local copy of the fp_status.
4730 float_status dummy_status = *real_fp_status;
4731 float_status *s = &dummy_status;
4735 if (float64_lt(a, float64_half, s)) {
4736 /* range 0.25 <= a < 0.5 */
4738 /* a in units of 1/512 rounded down */
4739 /* q0 = (int)(a * 512.0); */
4740 q = float64_mul(float64_512, a, s);
4741 q_int = float64_to_int64_round_to_zero(q, s);
4743 /* reciprocal root r */
4744 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4745 q = int64_to_float64(q_int, s);
4746 q = float64_add(q, float64_half, s);
4747 q = float64_div(q, float64_512, s);
4748 q = float64_sqrt(q, s);
4749 q = float64_div(float64_one, q, s);
4751 /* range 0.5 <= a < 1.0 */
4753 /* a in units of 1/256 rounded down */
4754 /* q1 = (int)(a * 256.0); */
4755 q = float64_mul(float64_256, a, s);
4756 int64_t q_int = float64_to_int64_round_to_zero(q, s);
4758 /* reciprocal root r */
4759 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4760 q = int64_to_float64(q_int, s);
4761 q = float64_add(q, float64_half, s);
4762 q = float64_div(q, float64_256, s);
4763 q = float64_sqrt(q, s);
4764 q = float64_div(float64_one, q, s);
4766 /* r in units of 1/256 rounded to nearest */
4767 /* s = (int)(256.0 * r + 0.5); */
4769 q = float64_mul(q, float64_256,s );
4770 q = float64_add(q, float64_half, s);
4771 q_int = float64_to_int64_round_to_zero(q, s);
4773 /* return (double)s / 256.0;*/
4774 return float64_div(int64_to_float64(q_int, s), float64_256, s);
4777 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
4779 float_status *s = fpstp;
4780 float32 f32 = float32_squash_input_denormal(input, s);
4781 uint32_t val = float32_val(f32);
4782 uint32_t f32_sbit = 0x80000000 & val;
4783 int32_t f32_exp = extract32(val, 23, 8);
4784 uint32_t f32_frac = extract32(val, 0, 23);
4790 if (float32_is_any_nan(f32)) {
4792 if (float32_is_signaling_nan(f32)) {
4793 float_raise(float_flag_invalid, s);
4794 nan = float32_maybe_silence_nan(f32);
4796 if (s->default_nan_mode) {
4797 nan = float32_default_nan;
4800 } else if (float32_is_zero(f32)) {
4801 float_raise(float_flag_divbyzero, s);
4802 return float32_set_sign(float32_infinity, float32_is_neg(f32));
4803 } else if (float32_is_neg(f32)) {
4804 float_raise(float_flag_invalid, s);
4805 return float32_default_nan;
4806 } else if (float32_is_infinity(f32)) {
4807 return float32_zero;
4810 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
4811 * preserving the parity of the exponent. */
4813 f64_frac = ((uint64_t) f32_frac) << 29;
4815 while (extract64(f64_frac, 51, 1) == 0) {
4816 f64_frac = f64_frac << 1;
4817 f32_exp = f32_exp-1;
4819 f64_frac = extract64(f64_frac, 0, 51) << 1;
4822 if (extract64(f32_exp, 0, 1) == 0) {
4823 f64 = make_float64(((uint64_t) f32_sbit) << 32
4827 f64 = make_float64(((uint64_t) f32_sbit) << 32
4832 result_exp = (380 - f32_exp) / 2;
4834 f64 = recip_sqrt_estimate(f64, s);
4836 val64 = float64_val(f64);
4838 val = ((result_exp & 0xff) << 23)
4839 | ((val64 >> 29) & 0x7fffff);
4840 return make_float32(val);
4843 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
4845 float_status *s = fpstp;
4846 float64 f64 = float64_squash_input_denormal(input, s);
4847 uint64_t val = float64_val(f64);
4848 uint64_t f64_sbit = 0x8000000000000000ULL & val;
4849 int64_t f64_exp = extract64(val, 52, 11);
4850 uint64_t f64_frac = extract64(val, 0, 52);
4852 uint64_t result_frac;
4854 if (float64_is_any_nan(f64)) {
4856 if (float64_is_signaling_nan(f64)) {
4857 float_raise(float_flag_invalid, s);
4858 nan = float64_maybe_silence_nan(f64);
4860 if (s->default_nan_mode) {
4861 nan = float64_default_nan;
4864 } else if (float64_is_zero(f64)) {
4865 float_raise(float_flag_divbyzero, s);
4866 return float64_set_sign(float64_infinity, float64_is_neg(f64));
4867 } else if (float64_is_neg(f64)) {
4868 float_raise(float_flag_invalid, s);
4869 return float64_default_nan;
4870 } else if (float64_is_infinity(f64)) {
4871 return float64_zero;
4874 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
4875 * preserving the parity of the exponent. */
4878 while (extract64(f64_frac, 51, 1) == 0) {
4879 f64_frac = f64_frac << 1;
4880 f64_exp = f64_exp - 1;
4882 f64_frac = extract64(f64_frac, 0, 51) << 1;
4885 if (extract64(f64_exp, 0, 1) == 0) {
4886 f64 = make_float64(f64_sbit
4890 f64 = make_float64(f64_sbit
4895 result_exp = (3068 - f64_exp) / 2;
4897 f64 = recip_sqrt_estimate(f64, s);
4899 result_frac = extract64(float64_val(f64), 0, 52);
4901 return make_float64(f64_sbit |
4902 ((result_exp & 0x7ff) << 52) |
4906 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
4908 float_status *s = fpstp;
4911 if ((a & 0x80000000) == 0) {
4915 f64 = make_float64((0x3feULL << 52)
4916 | ((int64_t)(a & 0x7fffffff) << 21));
4918 f64 = recip_estimate(f64, s);
4920 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4923 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
4925 float_status *fpst = fpstp;
4928 if ((a & 0xc0000000) == 0) {
4932 if (a & 0x80000000) {
4933 f64 = make_float64((0x3feULL << 52)
4934 | ((uint64_t)(a & 0x7fffffff) << 21));
4935 } else { /* bits 31-30 == '01' */
4936 f64 = make_float64((0x3fdULL << 52)
4937 | ((uint64_t)(a & 0x3fffffff) << 22));
4940 f64 = recip_sqrt_estimate(f64, fpst);
4942 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
4945 /* VFPv4 fused multiply-accumulate */
4946 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
4948 float_status *fpst = fpstp;
4949 return float32_muladd(a, b, c, 0, fpst);
4952 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
4954 float_status *fpst = fpstp;
4955 return float64_muladd(a, b, c, 0, fpst);
4958 /* ARMv8 round to integral */
4959 float32 HELPER(rints_exact)(float32 x, void *fp_status)
4961 return float32_round_to_int(x, fp_status);
4964 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
4966 return float64_round_to_int(x, fp_status);
4969 float32 HELPER(rints)(float32 x, void *fp_status)
4971 int old_flags = get_float_exception_flags(fp_status), new_flags;
4974 ret = float32_round_to_int(x, fp_status);
4976 /* Suppress any inexact exceptions the conversion produced */
4977 if (!(old_flags & float_flag_inexact)) {
4978 new_flags = get_float_exception_flags(fp_status);
4979 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
4985 float64 HELPER(rintd)(float64 x, void *fp_status)
4987 int old_flags = get_float_exception_flags(fp_status), new_flags;
4990 ret = float64_round_to_int(x, fp_status);
4992 new_flags = get_float_exception_flags(fp_status);
4994 /* Suppress any inexact exceptions the conversion produced */
4995 if (!(old_flags & float_flag_inexact)) {
4996 new_flags = get_float_exception_flags(fp_status);
4997 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
5003 /* Convert ARM rounding mode to softfloat */
5004 int arm_rmode_to_sf(int rmode)
5007 case FPROUNDING_TIEAWAY:
5008 rmode = float_round_ties_away;
5010 case FPROUNDING_ODD:
5011 /* FIXME: add support for TIEAWAY and ODD */
5012 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
5014 case FPROUNDING_TIEEVEN:
5016 rmode = float_round_nearest_even;
5018 case FPROUNDING_POSINF:
5019 rmode = float_round_up;
5021 case FPROUNDING_NEGINF:
5022 rmode = float_round_down;
5024 case FPROUNDING_ZERO:
5025 rmode = float_round_to_zero;
5031 static void crc_init_buffer(uint8_t *buf, uint32_t val, uint32_t bytes)
5036 buf[0] = val & 0xff;
5037 } else if (bytes == 2) {
5038 buf[0] = val & 0xff;
5039 buf[1] = (val >> 8) & 0xff;
5041 buf[0] = val & 0xff;
5042 buf[1] = (val >> 8) & 0xff;
5043 buf[2] = (val >> 16) & 0xff;
5044 buf[3] = (val >> 24) & 0xff;
5048 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
5052 crc_init_buffer(buf, val, bytes);
5054 /* zlib crc32 converts the accumulator and output to one's complement. */
5055 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
5058 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
5062 crc_init_buffer(buf, val, bytes);
5064 /* Linux crc32c converts the output to one's complement. */
5065 return crc32c(acc, buf, bytes) ^ 0xffffffff;