2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "hw/ppc/ppc.h"
26 #include "hw/ppc/ppc_e500.h"
27 #include "qemu/timer.h"
28 #include "sysemu/sysemu.h"
29 #include "sysemu/cpus.h"
30 #include "hw/timer/m48t59.h"
32 #include "qemu/error-report.h"
33 #include "hw/loader.h"
34 #include "sysemu/kvm.h"
38 //#define PPC_DEBUG_IRQ
39 //#define PPC_DEBUG_TB
42 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
44 # define LOG_IRQ(...) do { } while (0)
49 # define LOG_TB(...) qemu_log(__VA_ARGS__)
51 # define LOG_TB(...) do { } while (0)
54 #define NSEC_PER_SEC 1000000000LL
56 static void cpu_ppc_tb_stop (CPUPPCState *env);
57 static void cpu_ppc_tb_start (CPUPPCState *env);
59 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
61 CPUState *cs = CPU(cpu);
62 CPUPPCState *env = &cpu->env;
63 unsigned int old_pending = env->pending_interrupts;
66 env->pending_interrupts |= 1 << n_IRQ;
67 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
69 env->pending_interrupts &= ~(1 << n_IRQ);
70 if (env->pending_interrupts == 0) {
71 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
75 if (old_pending != env->pending_interrupts) {
77 kvmppc_set_interrupt(cpu, n_IRQ, level);
81 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
82 "req %08x\n", __func__, env, n_IRQ, level,
83 env->pending_interrupts, CPU(cpu)->interrupt_request);
86 /* PowerPC 6xx / 7xx internal IRQ controller */
87 static void ppc6xx_set_irq(void *opaque, int pin, int level)
89 PowerPCCPU *cpu = opaque;
90 CPUPPCState *env = &cpu->env;
93 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
95 cur_level = (env->irq_input_state >> pin) & 1;
96 /* Don't generate spurious events */
97 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
98 CPUState *cs = CPU(cpu);
101 case PPC6xx_INPUT_TBEN:
102 /* Level sensitive - active high */
103 LOG_IRQ("%s: %s the time base\n",
104 __func__, level ? "start" : "stop");
106 cpu_ppc_tb_start(env);
108 cpu_ppc_tb_stop(env);
110 case PPC6xx_INPUT_INT:
111 /* Level sensitive - active high */
112 LOG_IRQ("%s: set the external IRQ state to %d\n",
114 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
116 case PPC6xx_INPUT_SMI:
117 /* Level sensitive - active high */
118 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
120 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
122 case PPC6xx_INPUT_MCP:
123 /* Negative edge sensitive */
124 /* XXX: TODO: actual reaction may depends on HID0 status
125 * 603/604/740/750: check HID0[EMCP]
127 if (cur_level == 1 && level == 0) {
128 LOG_IRQ("%s: raise machine check state\n",
130 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
133 case PPC6xx_INPUT_CKSTP_IN:
134 /* Level sensitive - active low */
135 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
136 /* XXX: Note that the only way to restart the CPU is to reset it */
138 LOG_IRQ("%s: stop the CPU\n", __func__);
142 case PPC6xx_INPUT_HRESET:
143 /* Level sensitive - active low */
145 LOG_IRQ("%s: reset the CPU\n", __func__);
146 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
149 case PPC6xx_INPUT_SRESET:
150 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
152 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
155 /* Unknown pin - do nothing */
156 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
160 env->irq_input_state |= 1 << pin;
162 env->irq_input_state &= ~(1 << pin);
166 void ppc6xx_irq_init(CPUPPCState *env)
168 PowerPCCPU *cpu = ppc_env_get_cpu(env);
170 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
174 #if defined(TARGET_PPC64)
175 /* PowerPC 970 internal IRQ controller */
176 static void ppc970_set_irq(void *opaque, int pin, int level)
178 PowerPCCPU *cpu = opaque;
179 CPUPPCState *env = &cpu->env;
182 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
184 cur_level = (env->irq_input_state >> pin) & 1;
185 /* Don't generate spurious events */
186 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
187 CPUState *cs = CPU(cpu);
190 case PPC970_INPUT_INT:
191 /* Level sensitive - active high */
192 LOG_IRQ("%s: set the external IRQ state to %d\n",
194 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
196 case PPC970_INPUT_THINT:
197 /* Level sensitive - active high */
198 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
200 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
202 case PPC970_INPUT_MCP:
203 /* Negative edge sensitive */
204 /* XXX: TODO: actual reaction may depends on HID0 status
205 * 603/604/740/750: check HID0[EMCP]
207 if (cur_level == 1 && level == 0) {
208 LOG_IRQ("%s: raise machine check state\n",
210 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
213 case PPC970_INPUT_CKSTP:
214 /* Level sensitive - active low */
215 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
217 LOG_IRQ("%s: stop the CPU\n", __func__);
220 LOG_IRQ("%s: restart the CPU\n", __func__);
225 case PPC970_INPUT_HRESET:
226 /* Level sensitive - active low */
228 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
231 case PPC970_INPUT_SRESET:
232 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
234 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
236 case PPC970_INPUT_TBEN:
237 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
242 /* Unknown pin - do nothing */
243 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
247 env->irq_input_state |= 1 << pin;
249 env->irq_input_state &= ~(1 << pin);
253 void ppc970_irq_init(CPUPPCState *env)
255 PowerPCCPU *cpu = ppc_env_get_cpu(env);
257 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
261 /* POWER7 internal IRQ controller */
262 static void power7_set_irq(void *opaque, int pin, int level)
264 PowerPCCPU *cpu = opaque;
265 CPUPPCState *env = &cpu->env;
267 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
271 case POWER7_INPUT_INT:
272 /* Level sensitive - active high */
273 LOG_IRQ("%s: set the external IRQ state to %d\n",
275 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
278 /* Unknown pin - do nothing */
279 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
283 env->irq_input_state |= 1 << pin;
285 env->irq_input_state &= ~(1 << pin);
289 void ppcPOWER7_irq_init(CPUPPCState *env)
291 PowerPCCPU *cpu = ppc_env_get_cpu(env);
293 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
296 #endif /* defined(TARGET_PPC64) */
298 /* PowerPC 40x internal IRQ controller */
299 static void ppc40x_set_irq(void *opaque, int pin, int level)
301 PowerPCCPU *cpu = opaque;
302 CPUPPCState *env = &cpu->env;
305 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
307 cur_level = (env->irq_input_state >> pin) & 1;
308 /* Don't generate spurious events */
309 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
310 CPUState *cs = CPU(cpu);
313 case PPC40x_INPUT_RESET_SYS:
315 LOG_IRQ("%s: reset the PowerPC system\n",
317 ppc40x_system_reset(cpu);
320 case PPC40x_INPUT_RESET_CHIP:
322 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
323 ppc40x_chip_reset(cpu);
326 case PPC40x_INPUT_RESET_CORE:
327 /* XXX: TODO: update DBSR[MRR] */
329 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
330 ppc40x_core_reset(cpu);
333 case PPC40x_INPUT_CINT:
334 /* Level sensitive - active high */
335 LOG_IRQ("%s: set the critical IRQ state to %d\n",
337 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
339 case PPC40x_INPUT_INT:
340 /* Level sensitive - active high */
341 LOG_IRQ("%s: set the external IRQ state to %d\n",
343 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
345 case PPC40x_INPUT_HALT:
346 /* Level sensitive - active low */
348 LOG_IRQ("%s: stop the CPU\n", __func__);
351 LOG_IRQ("%s: restart the CPU\n", __func__);
356 case PPC40x_INPUT_DEBUG:
357 /* Level sensitive - active high */
358 LOG_IRQ("%s: set the debug pin state to %d\n",
360 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
363 /* Unknown pin - do nothing */
364 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
368 env->irq_input_state |= 1 << pin;
370 env->irq_input_state &= ~(1 << pin);
374 void ppc40x_irq_init(CPUPPCState *env)
376 PowerPCCPU *cpu = ppc_env_get_cpu(env);
378 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
379 cpu, PPC40x_INPUT_NB);
382 /* PowerPC E500 internal IRQ controller */
383 static void ppce500_set_irq(void *opaque, int pin, int level)
385 PowerPCCPU *cpu = opaque;
386 CPUPPCState *env = &cpu->env;
389 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
391 cur_level = (env->irq_input_state >> pin) & 1;
392 /* Don't generate spurious events */
393 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
395 case PPCE500_INPUT_MCK:
397 LOG_IRQ("%s: reset the PowerPC system\n",
399 qemu_system_reset_request();
402 case PPCE500_INPUT_RESET_CORE:
404 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
405 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
408 case PPCE500_INPUT_CINT:
409 /* Level sensitive - active high */
410 LOG_IRQ("%s: set the critical IRQ state to %d\n",
412 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
414 case PPCE500_INPUT_INT:
415 /* Level sensitive - active high */
416 LOG_IRQ("%s: set the core IRQ state to %d\n",
418 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
420 case PPCE500_INPUT_DEBUG:
421 /* Level sensitive - active high */
422 LOG_IRQ("%s: set the debug pin state to %d\n",
424 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
427 /* Unknown pin - do nothing */
428 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
432 env->irq_input_state |= 1 << pin;
434 env->irq_input_state &= ~(1 << pin);
438 void ppce500_irq_init(CPUPPCState *env)
440 PowerPCCPU *cpu = ppc_env_get_cpu(env);
442 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
443 cpu, PPCE500_INPUT_NB);
446 /* Enable or Disable the E500 EPR capability */
447 void ppce500_set_mpic_proxy(bool enabled)
452 PowerPCCPU *cpu = POWERPC_CPU(cs);
454 cpu->env.mpic_proxy = enabled;
456 kvmppc_set_mpic_proxy(cpu, enabled);
461 /*****************************************************************************/
462 /* PowerPC time base and decrementer emulation */
464 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
466 /* TB time in tb periods */
467 return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
470 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
472 ppc_tb_t *tb_env = env->tb_env;
476 return env->spr[SPR_TBL];
479 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
480 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
485 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
487 ppc_tb_t *tb_env = env->tb_env;
490 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
491 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
496 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
499 return env->spr[SPR_TBU];
502 return _cpu_ppc_load_tbu(env);
505 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
506 int64_t *tb_offsetp, uint64_t value)
508 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
509 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
510 __func__, value, *tb_offsetp);
513 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
515 ppc_tb_t *tb_env = env->tb_env;
518 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
519 tb &= 0xFFFFFFFF00000000ULL;
520 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
521 &tb_env->tb_offset, tb | (uint64_t)value);
524 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
526 ppc_tb_t *tb_env = env->tb_env;
529 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
530 tb &= 0x00000000FFFFFFFFULL;
531 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
532 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
535 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
537 _cpu_ppc_store_tbu(env, value);
540 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
542 ppc_tb_t *tb_env = env->tb_env;
545 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
546 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
551 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
553 ppc_tb_t *tb_env = env->tb_env;
556 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
557 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
562 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
564 ppc_tb_t *tb_env = env->tb_env;
567 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
568 tb &= 0xFFFFFFFF00000000ULL;
569 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
570 &tb_env->atb_offset, tb | (uint64_t)value);
573 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
575 ppc_tb_t *tb_env = env->tb_env;
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
579 tb &= 0x00000000FFFFFFFFULL;
580 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
581 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
584 static void cpu_ppc_tb_stop (CPUPPCState *env)
586 ppc_tb_t *tb_env = env->tb_env;
587 uint64_t tb, atb, vmclk;
589 /* If the time base is already frozen, do nothing */
590 if (tb_env->tb_freq != 0) {
591 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
592 /* Get the time base */
593 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
594 /* Get the alternate time base */
595 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
596 /* Store the time base value (ie compute the current offset) */
597 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
598 /* Store the alternate time base value (compute the current offset) */
599 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
600 /* Set the time base frequency to zero */
602 /* Now, the time bases are frozen to tb_offset / atb_offset value */
606 static void cpu_ppc_tb_start (CPUPPCState *env)
608 ppc_tb_t *tb_env = env->tb_env;
609 uint64_t tb, atb, vmclk;
611 /* If the time base is not frozen, do nothing */
612 if (tb_env->tb_freq == 0) {
613 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
614 /* Get the time base from tb_offset */
615 tb = tb_env->tb_offset;
616 /* Get the alternate time base from atb_offset */
617 atb = tb_env->atb_offset;
618 /* Restore the tb frequency from the decrementer frequency */
619 tb_env->tb_freq = tb_env->decr_freq;
620 /* Store the time base value */
621 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
622 /* Store the alternate time base value */
623 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
627 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
629 ppc_tb_t *tb_env = env->tb_env;
630 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
631 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
634 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
636 ppc_tb_t *tb_env = env->tb_env;
640 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
642 decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
643 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
646 decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
648 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
653 uint32_t cpu_ppc_load_decr (CPUPPCState *env)
655 ppc_tb_t *tb_env = env->tb_env;
658 return env->spr[SPR_DECR];
661 return _cpu_ppc_load_decr(env, tb_env->decr_next);
664 uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
666 ppc_tb_t *tb_env = env->tb_env;
668 return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
671 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
673 ppc_tb_t *tb_env = env->tb_env;
676 diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
678 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
681 /* When decrementer expires,
682 * all we need to do is generate or queue a CPU exception
684 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
687 LOG_TB("raise decrementer exception\n");
688 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
691 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
693 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
696 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
699 LOG_TB("raise decrementer exception\n");
700 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
703 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
705 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
708 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
710 void (*raise_excp)(void *),
711 void (*lower_excp)(PowerPCCPU *),
712 uint32_t decr, uint32_t value)
714 CPUPPCState *env = &cpu->env;
715 ppc_tb_t *tb_env = env->tb_env;
718 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
722 /* KVM handles decrementer exceptions, we don't need our own timer */
727 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
730 * If we get a really small DEC value, we can assume that by the time we
731 * handled it we should inject an interrupt already.
733 * On MSB level based DEC implementations the MSB always means the interrupt
734 * is pending, so raise it on those.
736 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
737 * an edge interrupt, so raise it here too.
740 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
741 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
742 && !(decr & 0x80000000))) {
747 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
748 if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
752 /* Calculate the next timer event */
753 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
754 next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
758 timer_mod(timer, next);
761 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
764 ppc_tb_t *tb_env = cpu->env.tb_env;
766 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
767 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
771 void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
773 PowerPCCPU *cpu = ppc_env_get_cpu(env);
775 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
778 static void cpu_ppc_decr_cb(void *opaque)
780 PowerPCCPU *cpu = opaque;
782 cpu_ppc_decr_excp(cpu);
785 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
788 ppc_tb_t *tb_env = cpu->env.tb_env;
790 if (tb_env->hdecr_timer != NULL) {
791 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
792 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
797 void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
799 PowerPCCPU *cpu = ppc_env_get_cpu(env);
801 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
804 static void cpu_ppc_hdecr_cb(void *opaque)
806 PowerPCCPU *cpu = opaque;
808 cpu_ppc_hdecr_excp(cpu);
811 static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
813 ppc_tb_t *tb_env = cpu->env.tb_env;
815 tb_env->purr_load = value;
816 tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
819 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
821 CPUPPCState *env = opaque;
822 PowerPCCPU *cpu = ppc_env_get_cpu(env);
823 ppc_tb_t *tb_env = env->tb_env;
825 tb_env->tb_freq = freq;
826 tb_env->decr_freq = freq;
827 /* There is a bug in Linux 2.4 kernels:
828 * if a decrementer exception is pending when it enables msr_ee at startup,
829 * it's not ready to handle it...
831 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
832 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
833 cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
836 static void timebase_pre_save(void *opaque)
838 PPCTimebase *tb = opaque;
839 uint64_t ticks = cpu_get_real_ticks();
840 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
842 if (!first_ppc_cpu->env.tb_env) {
843 error_report("No timebase object");
847 tb->time_of_the_day_ns = get_clock_realtime();
849 * tb_offset is only expected to be changed by migration so
850 * there is no need to update it from KVM here
852 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
855 static int timebase_post_load(void *opaque, int version_id)
857 PPCTimebase *tb_remote = opaque;
859 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
860 int64_t tb_off_adj, tb_off, ns_diff;
861 int64_t migration_duration_ns, migration_duration_tb, guest_tb, host_ns;
864 if (!first_ppc_cpu->env.tb_env) {
865 error_report("No timebase object");
869 freq = first_ppc_cpu->env.tb_env->tb_freq;
871 * Calculate timebase on the destination side of migration.
872 * The destination timebase must be not less than the source timebase.
873 * We try to adjust timebase by downtime if host clocks are not
874 * too much out of sync (1 second for now).
876 host_ns = get_clock_realtime();
877 ns_diff = MAX(0, host_ns - tb_remote->time_of_the_day_ns);
878 migration_duration_ns = MIN(NSEC_PER_SEC, ns_diff);
879 migration_duration_tb = muldiv64(migration_duration_ns, freq, NSEC_PER_SEC);
880 guest_tb = tb_remote->guest_timebase + MIN(0, migration_duration_tb);
882 tb_off_adj = guest_tb - cpu_get_real_ticks();
884 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
885 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
886 (tb_off_adj - tb_off) / freq);
888 /* Set new offset to all CPUs */
890 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
891 pcpu->env.tb_env->tb_offset = tb_off_adj;
897 const VMStateDescription vmstate_ppc_timebase = {
900 .minimum_version_id = 1,
901 .minimum_version_id_old = 1,
902 .pre_save = timebase_pre_save,
903 .post_load = timebase_post_load,
904 .fields = (VMStateField []) {
905 VMSTATE_UINT64(guest_timebase, PPCTimebase),
906 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
907 VMSTATE_END_OF_LIST()
911 /* Set up (once) timebase frequency (in Hz) */
912 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
914 PowerPCCPU *cpu = ppc_env_get_cpu(env);
917 tb_env = g_malloc0(sizeof(ppc_tb_t));
918 env->tb_env = tb_env;
919 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
920 if (env->insns_flags & PPC_SEGMENT_64B) {
921 /* All Book3S 64bit CPUs implement level based DEC logic */
922 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
924 /* Create new timer */
925 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
927 /* XXX: find a suitable condition to enable the hypervisor decrementer
929 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
932 tb_env->hdecr_timer = NULL;
934 cpu_ppc_set_tb_clk(env, freq);
936 return &cpu_ppc_set_tb_clk;
939 /* Specific helpers for POWER & PowerPC 601 RTC */
941 static clk_setup_cb cpu_ppc601_rtc_init (CPUPPCState *env)
943 return cpu_ppc_tb_init(env, 7812500);
947 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
949 _cpu_ppc_store_tbu(env, value);
952 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
954 return _cpu_ppc_load_tbu(env);
957 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
959 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
962 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
964 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
967 /*****************************************************************************/
968 /* PowerPC 40x timers */
971 typedef struct ppc40x_timer_t ppc40x_timer_t;
972 struct ppc40x_timer_t {
973 uint64_t pit_reload; /* PIT auto-reload value */
974 uint64_t fit_next; /* Tick for next FIT interrupt */
975 QEMUTimer *fit_timer;
976 uint64_t wdt_next; /* Tick for next WDT interrupt */
977 QEMUTimer *wdt_timer;
979 /* 405 have the PIT, 440 have a DECR. */
980 unsigned int decr_excp;
983 /* Fixed interval timer */
984 static void cpu_4xx_fit_cb (void *opaque)
989 ppc40x_timer_t *ppc40x_timer;
993 cpu = ppc_env_get_cpu(env);
994 tb_env = env->tb_env;
995 ppc40x_timer = tb_env->opaque;
996 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
997 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1011 /* Cannot occur, but makes gcc happy */
1014 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
1017 timer_mod(ppc40x_timer->fit_timer, next);
1018 env->spr[SPR_40x_TSR] |= 1 << 26;
1019 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1020 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1022 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1023 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1024 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1027 /* Programmable interval timer */
1028 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1030 ppc40x_timer_t *ppc40x_timer;
1033 ppc40x_timer = tb_env->opaque;
1034 if (ppc40x_timer->pit_reload <= 1 ||
1035 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1036 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1038 LOG_TB("%s: stop PIT\n", __func__);
1039 timer_del(tb_env->decr_timer);
1041 LOG_TB("%s: start PIT %016" PRIx64 "\n",
1042 __func__, ppc40x_timer->pit_reload);
1043 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1044 next = now + muldiv64(ppc40x_timer->pit_reload,
1045 get_ticks_per_sec(), tb_env->decr_freq);
1047 next += tb_env->decr_next - now;
1050 timer_mod(tb_env->decr_timer, next);
1051 tb_env->decr_next = next;
1055 static void cpu_4xx_pit_cb (void *opaque)
1060 ppc40x_timer_t *ppc40x_timer;
1063 cpu = ppc_env_get_cpu(env);
1064 tb_env = env->tb_env;
1065 ppc40x_timer = tb_env->opaque;
1066 env->spr[SPR_40x_TSR] |= 1 << 27;
1067 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1068 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1070 start_stop_pit(env, tb_env, 1);
1071 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1072 "%016" PRIx64 "\n", __func__,
1073 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1074 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1075 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1076 ppc40x_timer->pit_reload);
1079 /* Watchdog timer */
1080 static void cpu_4xx_wdt_cb (void *opaque)
1085 ppc40x_timer_t *ppc40x_timer;
1089 cpu = ppc_env_get_cpu(env);
1090 tb_env = env->tb_env;
1091 ppc40x_timer = tb_env->opaque;
1092 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1093 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1107 /* Cannot occur, but makes gcc happy */
1110 next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
1113 LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1114 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1115 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1118 timer_mod(ppc40x_timer->wdt_timer, next);
1119 ppc40x_timer->wdt_next = next;
1120 env->spr[SPR_40x_TSR] |= 1U << 31;
1123 timer_mod(ppc40x_timer->wdt_timer, next);
1124 ppc40x_timer->wdt_next = next;
1125 env->spr[SPR_40x_TSR] |= 1 << 30;
1126 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1127 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1131 env->spr[SPR_40x_TSR] &= ~0x30000000;
1132 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1133 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1137 case 0x1: /* Core reset */
1138 ppc40x_core_reset(cpu);
1140 case 0x2: /* Chip reset */
1141 ppc40x_chip_reset(cpu);
1143 case 0x3: /* System reset */
1144 ppc40x_system_reset(cpu);
1150 void store_40x_pit (CPUPPCState *env, target_ulong val)
1153 ppc40x_timer_t *ppc40x_timer;
1155 tb_env = env->tb_env;
1156 ppc40x_timer = tb_env->opaque;
1157 LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1158 ppc40x_timer->pit_reload = val;
1159 start_stop_pit(env, tb_env, 0);
1162 target_ulong load_40x_pit (CPUPPCState *env)
1164 return cpu_ppc_load_decr(env);
1167 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1169 CPUPPCState *env = opaque;
1170 ppc_tb_t *tb_env = env->tb_env;
1172 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1174 tb_env->tb_freq = freq;
1175 tb_env->decr_freq = freq;
1176 /* XXX: we should also update all timers */
1179 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1180 unsigned int decr_excp)
1183 ppc40x_timer_t *ppc40x_timer;
1185 tb_env = g_malloc0(sizeof(ppc_tb_t));
1186 env->tb_env = tb_env;
1187 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1188 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1189 tb_env->tb_freq = freq;
1190 tb_env->decr_freq = freq;
1191 tb_env->opaque = ppc40x_timer;
1192 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1193 if (ppc40x_timer != NULL) {
1194 /* We use decr timer for PIT */
1195 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1196 ppc40x_timer->fit_timer =
1197 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1198 ppc40x_timer->wdt_timer =
1199 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1200 ppc40x_timer->decr_excp = decr_excp;
1203 return &ppc_40x_set_tb_clk;
1206 /*****************************************************************************/
1207 /* Embedded PowerPC Device Control Registers */
1208 typedef struct ppc_dcrn_t ppc_dcrn_t;
1210 dcr_read_cb dcr_read;
1211 dcr_write_cb dcr_write;
1215 /* XXX: on 460, DCR addresses are 32 bits wide,
1216 * using DCRIPR to get the 22 upper bits of the DCR address
1218 #define DCRN_NB 1024
1220 ppc_dcrn_t dcrn[DCRN_NB];
1221 int (*read_error)(int dcrn);
1222 int (*write_error)(int dcrn);
1225 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1229 if (dcrn < 0 || dcrn >= DCRN_NB)
1231 dcr = &dcr_env->dcrn[dcrn];
1232 if (dcr->dcr_read == NULL)
1234 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1239 if (dcr_env->read_error != NULL)
1240 return (*dcr_env->read_error)(dcrn);
1245 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1249 if (dcrn < 0 || dcrn >= DCRN_NB)
1251 dcr = &dcr_env->dcrn[dcrn];
1252 if (dcr->dcr_write == NULL)
1254 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1259 if (dcr_env->write_error != NULL)
1260 return (*dcr_env->write_error)(dcrn);
1265 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1266 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1271 dcr_env = env->dcr_env;
1272 if (dcr_env == NULL)
1274 if (dcrn < 0 || dcrn >= DCRN_NB)
1276 dcr = &dcr_env->dcrn[dcrn];
1277 if (dcr->opaque != NULL ||
1278 dcr->dcr_read != NULL ||
1279 dcr->dcr_write != NULL)
1281 dcr->opaque = opaque;
1282 dcr->dcr_read = dcr_read;
1283 dcr->dcr_write = dcr_write;
1288 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1289 int (*write_error)(int dcrn))
1293 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1294 dcr_env->read_error = read_error;
1295 dcr_env->write_error = write_error;
1296 env->dcr_env = dcr_env;
1301 /*****************************************************************************/
1303 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1315 printf("Set loglevel to %04" PRIx32 "\n", val);
1316 qemu_set_log(val | 0x100);
1321 /*****************************************************************************/
1323 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1325 return (*nvram->read_fn)(nvram->opaque, addr);
1328 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1330 (*nvram->write_fn)(nvram->opaque, addr, val);
1333 static void NVRAM_set_byte(nvram_t *nvram, uint32_t addr, uint8_t value)
1335 nvram_write(nvram, addr, value);
1338 static uint8_t NVRAM_get_byte(nvram_t *nvram, uint32_t addr)
1340 return nvram_read(nvram, addr);
1343 static void NVRAM_set_word(nvram_t *nvram, uint32_t addr, uint16_t value)
1345 nvram_write(nvram, addr, value >> 8);
1346 nvram_write(nvram, addr + 1, value & 0xFF);
1349 static uint16_t NVRAM_get_word(nvram_t *nvram, uint32_t addr)
1353 tmp = nvram_read(nvram, addr) << 8;
1354 tmp |= nvram_read(nvram, addr + 1);
1359 static void NVRAM_set_lword(nvram_t *nvram, uint32_t addr, uint32_t value)
1361 nvram_write(nvram, addr, value >> 24);
1362 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1363 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1364 nvram_write(nvram, addr + 3, value & 0xFF);
1367 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1371 tmp = nvram_read(nvram, addr) << 24;
1372 tmp |= nvram_read(nvram, addr + 1) << 16;
1373 tmp |= nvram_read(nvram, addr + 2) << 8;
1374 tmp |= nvram_read(nvram, addr + 3);
1379 static void NVRAM_set_string(nvram_t *nvram, uint32_t addr, const char *str,
1384 for (i = 0; i < max && str[i] != '\0'; i++) {
1385 nvram_write(nvram, addr + i, str[i]);
1387 nvram_write(nvram, addr + i, str[i]);
1388 nvram_write(nvram, addr + max - 1, '\0');
1391 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1395 memset(dst, 0, max);
1396 for (i = 0; i < max; i++) {
1397 dst[i] = NVRAM_get_byte(nvram, addr + i);
1405 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1408 uint16_t pd, pd1, pd2;
1413 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1414 tmp ^= (pd1 << 3) | (pd1 << 8);
1415 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1420 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1423 uint16_t crc = 0xFFFF;
1428 for (i = 0; i != count; i++) {
1429 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1432 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1438 #define CMDLINE_ADDR 0x017ff000
1440 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1442 uint32_t RAM_size, int boot_device,
1443 uint32_t kernel_image, uint32_t kernel_size,
1444 const char *cmdline,
1445 uint32_t initrd_image, uint32_t initrd_size,
1446 uint32_t NVRAM_image,
1447 int width, int height, int depth)
1451 /* Set parameters for Open Hack'Ware BIOS */
1452 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1453 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1454 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1455 NVRAM_set_string(nvram, 0x20, arch, 16);
1456 NVRAM_set_lword(nvram, 0x30, RAM_size);
1457 NVRAM_set_byte(nvram, 0x34, boot_device);
1458 NVRAM_set_lword(nvram, 0x38, kernel_image);
1459 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1461 /* XXX: put the cmdline in NVRAM too ? */
1462 pstrcpy_targphys("cmdline", CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
1463 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1464 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1466 NVRAM_set_lword(nvram, 0x40, 0);
1467 NVRAM_set_lword(nvram, 0x44, 0);
1469 NVRAM_set_lword(nvram, 0x48, initrd_image);
1470 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1471 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1473 NVRAM_set_word(nvram, 0x54, width);
1474 NVRAM_set_word(nvram, 0x56, height);
1475 NVRAM_set_word(nvram, 0x58, depth);
1476 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1477 NVRAM_set_word(nvram, 0xFC, crc);
1482 /* CPU device-tree ID helpers */
1483 int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
1485 return cpu->cpu_dt_id;
1488 PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
1493 PowerPCCPU *cpu = POWERPC_CPU(cs);
1495 if (cpu->cpu_dt_id == cpu_dt_id) {