1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27 unsigned int attrs:8; /* as in the MAIR register encoding */
28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32 MMUAccessType access_type, ARMMMUIdx mmu_idx,
33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34 target_ulong *page_size,
35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38 MMUAccessType access_type, ARMMMUIdx mmu_idx,
39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40 target_ulong *page_size_ptr,
41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56 V8M_SAttributes *sattrs);
59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
63 /* VFP data registers are always little-endian. */
64 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66 stq_le_p(buf, *aa32_vfp_dreg(env, reg));
69 if (arm_feature(env, ARM_FEATURE_NEON)) {
70 /* Aliases for Q regs. */
73 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
75 stq_le_p(buf + 8, q[1]);
79 switch (reg - nregs) {
80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
93 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
96 if (arm_feature(env, ARM_FEATURE_NEON)) {
99 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
100 q[0] = ldq_le_p(buf);
101 q[1] = ldq_le_p(buf + 8);
105 switch (reg - nregs) {
106 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
107 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
108 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
117 /* 128 bit FP register */
119 uint64_t *q = aa64_vfp_qreg(env, reg);
121 stq_le_p(buf + 8, q[1]);
126 stl_p(buf, vfp_get_fpsr(env));
130 stl_p(buf, vfp_get_fpcr(env));
137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
141 /* 128 bit FP register */
143 uint64_t *q = aa64_vfp_qreg(env, reg);
144 q[0] = ldq_le_p(buf);
145 q[1] = ldq_le_p(buf + 8);
150 vfp_set_fpsr(env, ldl_p(buf));
154 vfp_set_fpcr(env, ldl_p(buf));
161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
163 assert(ri->fieldoffset);
164 if (cpreg_field_is_64bit(ri)) {
165 return CPREG_FIELD64(env, ri);
167 return CPREG_FIELD32(env, ri);
171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
174 assert(ri->fieldoffset);
175 if (cpreg_field_is_64bit(ri)) {
176 CPREG_FIELD64(env, ri) = value;
178 CPREG_FIELD32(env, ri) = value;
182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
184 return (char *)env + ri->fieldoffset;
187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
189 /* Raw read of a coprocessor register (as needed for migration, etc). */
190 if (ri->type & ARM_CP_CONST) {
191 return ri->resetvalue;
192 } else if (ri->raw_readfn) {
193 return ri->raw_readfn(env, ri);
194 } else if (ri->readfn) {
195 return ri->readfn(env, ri);
197 return raw_read(env, ri);
201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
204 /* Raw write of a coprocessor register (as needed for migration, etc).
205 * Note that constant registers are treated as write-ignored; the
206 * caller should check for success by whether a readback gives the
209 if (ri->type & ARM_CP_CONST) {
211 } else if (ri->raw_writefn) {
212 ri->raw_writefn(env, ri, v);
213 } else if (ri->writefn) {
214 ri->writefn(env, ri, v);
216 raw_write(env, ri, v);
220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
222 ARMCPU *cpu = arm_env_get_cpu(env);
223 const ARMCPRegInfo *ri;
226 key = cpu->dyn_xml.cpregs_keys[reg];
227 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
229 if (cpreg_field_is_64bit(ri)) {
230 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
232 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
245 /* Return true if the regdef would cause an assertion if you called
246 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
247 * program bug for it not to have the NO_RAW flag).
248 * NB that returning false here doesn't necessarily mean that calling
249 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
250 * read/write access functions which are safe for raw use" from "has
251 * read/write access functions which have side effects but has forgotten
252 * to provide raw access functions".
253 * The tests here line up with the conditions in read/write_raw_cp_reg()
254 * and assertions in raw_read()/raw_write().
256 if ((ri->type & ARM_CP_CONST) ||
258 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
264 bool write_cpustate_to_list(ARMCPU *cpu)
266 /* Write the coprocessor state from cpu->env to the (index,value) list. */
270 for (i = 0; i < cpu->cpreg_array_len; i++) {
271 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272 const ARMCPRegInfo *ri;
274 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
279 if (ri->type & ARM_CP_NO_RAW) {
282 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
287 bool write_list_to_cpustate(ARMCPU *cpu)
292 for (i = 0; i < cpu->cpreg_array_len; i++) {
293 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
294 uint64_t v = cpu->cpreg_values[i];
295 const ARMCPRegInfo *ri;
297 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
302 if (ri->type & ARM_CP_NO_RAW) {
305 /* Write value and confirm it reads back as written
306 * (to catch read-only registers and partially read-only
307 * registers where the incoming migration value doesn't match)
309 write_raw_cp_reg(&cpu->env, ri, v);
310 if (read_raw_cp_reg(&cpu->env, ri) != v) {
317 static void add_cpreg_to_list(gpointer key, gpointer opaque)
319 ARMCPU *cpu = opaque;
321 const ARMCPRegInfo *ri;
323 regidx = *(uint32_t *)key;
324 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
326 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
327 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
328 /* The value array need not be initialized at this point */
329 cpu->cpreg_array_len++;
333 static void count_cpreg(gpointer key, gpointer opaque)
335 ARMCPU *cpu = opaque;
337 const ARMCPRegInfo *ri;
339 regidx = *(uint32_t *)key;
340 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
342 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
343 cpu->cpreg_array_len++;
347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
349 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
350 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
361 void init_cpreg_list(ARMCPU *cpu)
363 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
364 * Note that we require cpreg_tuples[] to be sorted by key ID.
369 keys = g_hash_table_get_keys(cpu->cp_regs);
370 keys = g_list_sort(keys, cpreg_key_compare);
372 cpu->cpreg_array_len = 0;
374 g_list_foreach(keys, count_cpreg, cpu);
376 arraylen = cpu->cpreg_array_len;
377 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
378 cpu->cpreg_values = g_new(uint64_t, arraylen);
379 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
380 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
381 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
382 cpu->cpreg_array_len = 0;
384 g_list_foreach(keys, add_cpreg_to_list, cpu);
386 assert(cpu->cpreg_array_len == arraylen);
392 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
393 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
395 * access_el3_aa32ns: Used to check AArch32 register views.
396 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
398 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
399 const ARMCPRegInfo *ri,
402 bool secure = arm_is_secure_below_el3(env);
404 assert(!arm_el_is_aa64(env, 3));
406 return CP_ACCESS_TRAP_UNCATEGORIZED;
411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
412 const ARMCPRegInfo *ri,
415 if (!arm_el_is_aa64(env, 3)) {
416 return access_el3_aa32ns(env, ri, isread);
421 /* Some secure-only AArch32 registers trap to EL3 if used from
422 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
423 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
424 * We assume that the .access field is set to PL1_RW.
426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
427 const ARMCPRegInfo *ri,
430 if (arm_current_el(env) == 3) {
433 if (arm_is_secure_below_el3(env)) {
434 return CP_ACCESS_TRAP_EL3;
436 /* This will be EL1 NS and EL2 NS, which just UNDEF */
437 return CP_ACCESS_TRAP_UNCATEGORIZED;
440 /* Check for traps to "powerdown debug" registers, which are controlled
443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
446 int el = arm_current_el(env);
447 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
448 (env->cp15.mdcr_el2 & MDCR_TDE) ||
449 (env->cp15.hcr_el2 & HCR_TGE);
451 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
452 return CP_ACCESS_TRAP_EL2;
454 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
455 return CP_ACCESS_TRAP_EL3;
460 /* Check for traps to "debug ROM" registers, which are controlled
461 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
466 int el = arm_current_el(env);
467 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
468 (env->cp15.mdcr_el2 & MDCR_TDE) ||
469 (env->cp15.hcr_el2 & HCR_TGE);
471 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
472 return CP_ACCESS_TRAP_EL2;
474 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
475 return CP_ACCESS_TRAP_EL3;
480 /* Check for traps to general debug registers, which are controlled
481 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
486 int el = arm_current_el(env);
487 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
488 (env->cp15.mdcr_el2 & MDCR_TDE) ||
489 (env->cp15.hcr_el2 & HCR_TGE);
491 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
492 return CP_ACCESS_TRAP_EL2;
494 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
495 return CP_ACCESS_TRAP_EL3;
500 /* Check for traps to performance monitor registers, which are controlled
501 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
506 int el = arm_current_el(env);
508 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
509 && !arm_is_secure_below_el3(env)) {
510 return CP_ACCESS_TRAP_EL2;
512 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
513 return CP_ACCESS_TRAP_EL3;
518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
520 ARMCPU *cpu = arm_env_get_cpu(env);
522 raw_write(env, ri, value);
523 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
528 ARMCPU *cpu = arm_env_get_cpu(env);
530 if (raw_read(env, ri) != value) {
531 /* Unlike real hardware the qemu TLB uses virtual addresses,
532 * not modified virtual addresses, so this causes a TLB flush.
535 raw_write(env, ri, value);
539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
542 ARMCPU *cpu = arm_env_get_cpu(env);
544 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
545 && !extended_addresses_enabled(env)) {
546 /* For VMSA (when not using the LPAE long descriptor page table
547 * format) this register includes the ASID, so do a TLB flush.
548 * For PMSA it is purely a process ID and no action is needed.
552 raw_write(env, ri, value);
555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
558 /* Invalidate all (TLBIALL) */
559 ARMCPU *cpu = arm_env_get_cpu(env);
564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
567 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
568 ARMCPU *cpu = arm_env_get_cpu(env);
570 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
576 /* Invalidate by ASID (TLBIASID) */
577 ARMCPU *cpu = arm_env_get_cpu(env);
582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
586 ARMCPU *cpu = arm_env_get_cpu(env);
588 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
591 /* IS variants of TLB operations must affect all cores */
592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
595 CPUState *cs = ENV_GET_CPU(env);
597 tlb_flush_all_cpus_synced(cs);
600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
603 CPUState *cs = ENV_GET_CPU(env);
605 tlb_flush_all_cpus_synced(cs);
608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
611 CPUState *cs = ENV_GET_CPU(env);
613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
619 CPUState *cs = ENV_GET_CPU(env);
621 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
627 CPUState *cs = ENV_GET_CPU(env);
629 tlb_flush_by_mmuidx(cs,
630 ARMMMUIdxBit_S12NSE1 |
631 ARMMMUIdxBit_S12NSE0 |
635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
638 CPUState *cs = ENV_GET_CPU(env);
640 tlb_flush_by_mmuidx_all_cpus_synced(cs,
641 ARMMMUIdxBit_S12NSE1 |
642 ARMMMUIdxBit_S12NSE0 |
646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
649 /* Invalidate by IPA. This has to invalidate any structures that
650 * contain only stage 2 translation information, but does not need
651 * to apply to structures that contain combined stage 1 and stage 2
652 * translation information.
653 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
655 CPUState *cs = ENV_GET_CPU(env);
658 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
662 pageaddr = sextract64(value << 12, 0, 40);
664 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
670 CPUState *cs = ENV_GET_CPU(env);
673 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
677 pageaddr = sextract64(value << 12, 0, 40);
679 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
686 CPUState *cs = ENV_GET_CPU(env);
688 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 CPUState *cs = ENV_GET_CPU(env);
696 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
702 CPUState *cs = ENV_GET_CPU(env);
703 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
705 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
711 CPUState *cs = ENV_GET_CPU(env);
712 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
714 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
718 static const ARMCPRegInfo cp_reginfo[] = {
719 /* Define the secure and non-secure FCSE identifier CP registers
720 * separately because there is no secure bank in V8 (no _EL3). This allows
721 * the secure register to be properly reset and migrated. There is also no
722 * v8 EL1 version of the register so the non-secure instance stands alone.
725 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
726 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
727 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
728 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
729 { .name = "FCSEIDR_S",
730 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
731 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
732 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
733 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
734 /* Define the secure and non-secure context identifier CP registers
735 * separately because there is no secure bank in V8 (no _EL3). This allows
736 * the secure register to be properly reset and migrated. In the
737 * non-secure case, the 32-bit register will have reset and migration
738 * disabled during registration as it is handled by the 64-bit instance.
740 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
741 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
742 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
743 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
744 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
745 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
746 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
747 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
748 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
749 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
753 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
754 /* NB: Some of these registers exist in v8 but with more precise
755 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
757 /* MMU Domain access control / MPU write buffer control */
759 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
760 .access = PL1_RW, .resetvalue = 0,
761 .writefn = dacr_write, .raw_writefn = raw_write,
762 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
763 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
764 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
765 * For v6 and v5, these mappings are overly broad.
767 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
768 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
769 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
770 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
771 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
772 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
773 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
774 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
775 /* Cache maintenance ops; some of this space may be overridden later. */
776 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
777 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
778 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
782 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
783 /* Not all pre-v6 cores implemented this WFI, so this is slightly
786 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
787 .access = PL1_W, .type = ARM_CP_WFI },
791 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
792 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
793 * is UNPREDICTABLE; we choose to NOP as most implementations do).
795 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
796 .access = PL1_W, .type = ARM_CP_WFI },
797 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
798 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
799 * OMAPCP will override this space.
801 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
802 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
804 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
807 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
808 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
809 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
811 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
812 * implementing it as RAZ means the "debug architecture version" bits
813 * will read as a reserved value, which should cause Linux to not try
814 * to use the debug hardware.
816 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
817 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
818 /* MMU TLB control. Note that the wildcarding means we cover not just
819 * the unified TLB ops but also the dside/iside/inner-shareable variants.
821 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
822 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
823 .type = ARM_CP_NO_RAW },
824 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
825 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
826 .type = ARM_CP_NO_RAW },
827 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
828 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
829 .type = ARM_CP_NO_RAW },
830 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
831 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
832 .type = ARM_CP_NO_RAW },
833 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
834 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
835 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
836 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
846 if (!arm_feature(env, ARM_FEATURE_V8)) {
847 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
848 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
849 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
851 if (arm_feature(env, ARM_FEATURE_VFP)) {
852 /* VFP coprocessor: cp10 & cp11 [23:20] */
853 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
855 if (!arm_feature(env, ARM_FEATURE_NEON)) {
856 /* ASEDIS [31] bit is RAO/WI */
860 /* VFPv3 and upwards with NEON implement 32 double precision
861 * registers (D0-D31).
863 if (!arm_feature(env, ARM_FEATURE_NEON) ||
864 !arm_feature(env, ARM_FEATURE_VFP3)) {
865 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
871 env->cp15.cpacr_el1 = value;
874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
876 /* Call cpacr_write() so that we reset with the correct RAO bits set
877 * for our CPU features.
879 cpacr_write(env, ri, 0);
882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
885 if (arm_feature(env, ARM_FEATURE_V8)) {
886 /* Check if CPACR accesses are to be trapped to EL2 */
887 if (arm_current_el(env) == 1 &&
888 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
889 return CP_ACCESS_TRAP_EL2;
890 /* Check if CPACR accesses are to be trapped to EL3 */
891 } else if (arm_current_el(env) < 3 &&
892 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
893 return CP_ACCESS_TRAP_EL3;
900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
903 /* Check if CPTR accesses are set to trap to EL3 */
904 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
905 return CP_ACCESS_TRAP_EL3;
911 static const ARMCPRegInfo v6_cp_reginfo[] = {
912 /* prefetch by MVA in v6, NOP in v7 */
913 { .name = "MVA_prefetch",
914 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
915 .access = PL1_W, .type = ARM_CP_NOP },
916 /* We need to break the TB after ISB to execute self-modifying code
917 * correctly and also to take any pending interrupts immediately.
918 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
920 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
921 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
922 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
923 .access = PL0_W, .type = ARM_CP_NOP },
924 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
925 .access = PL0_W, .type = ARM_CP_NOP },
926 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
928 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
929 offsetof(CPUARMState, cp15.ifar_ns) },
931 /* Watchpoint Fault Address Register : should actually only be present
932 * for 1136, 1176, 11MPCore.
934 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
935 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
936 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
937 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
938 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
939 .resetfn = cpacr_reset, .writefn = cpacr_write },
943 /* Definitions for the PMU registers */
944 #define PMCRN_MASK 0xf800
945 #define PMCRN_SHIFT 11
950 static inline uint32_t pmu_num_counters(CPUARMState *env)
952 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
956 static inline uint64_t pmu_counter_mask(CPUARMState *env)
958 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
964 /* Performance monitor registers user accessibility is controlled
965 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
966 * trapping to EL2 or EL3 for other accesses.
968 int el = arm_current_el(env);
970 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
971 return CP_ACCESS_TRAP;
973 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
974 && !arm_is_secure_below_el3(env)) {
975 return CP_ACCESS_TRAP_EL2;
977 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
978 return CP_ACCESS_TRAP_EL3;
984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
985 const ARMCPRegInfo *ri,
988 /* ER: event counter read trap control */
989 if (arm_feature(env, ARM_FEATURE_V8)
990 && arm_current_el(env) == 0
991 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
996 return pmreg_access(env, ri, isread);
999 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1000 const ARMCPRegInfo *ri,
1003 /* SW: software increment write trap control */
1004 if (arm_feature(env, ARM_FEATURE_V8)
1005 && arm_current_el(env) == 0
1006 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1008 return CP_ACCESS_OK;
1011 return pmreg_access(env, ri, isread);
1014 #ifndef CONFIG_USER_ONLY
1016 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1017 const ARMCPRegInfo *ri,
1020 /* ER: event counter read trap control */
1021 if (arm_feature(env, ARM_FEATURE_V8)
1022 && arm_current_el(env) == 0
1023 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1024 return CP_ACCESS_OK;
1027 return pmreg_access(env, ri, isread);
1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1031 const ARMCPRegInfo *ri,
1034 /* CR: cycle counter read trap control */
1035 if (arm_feature(env, ARM_FEATURE_V8)
1036 && arm_current_el(env) == 0
1037 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1039 return CP_ACCESS_OK;
1042 return pmreg_access(env, ri, isread);
1045 static inline bool arm_ccnt_enabled(CPUARMState *env)
1047 /* This does not support checking PMCCFILTR_EL0 register */
1049 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1056 void pmccntr_sync(CPUARMState *env)
1058 uint64_t temp_ticks;
1060 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1063 if (env->cp15.c9_pmcr & PMCRD) {
1064 /* Increment once every 64 processor clock cycles */
1068 if (arm_ccnt_enabled(env)) {
1069 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1078 if (value & PMCRC) {
1079 /* The counter has been reset */
1080 env->cp15.c15_ccnt = 0;
1083 /* only the DP, X, D and E bits are writable */
1084 env->cp15.c9_pmcr &= ~0x39;
1085 env->cp15.c9_pmcr |= (value & 0x39);
1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1092 uint64_t total_ticks;
1094 if (!arm_ccnt_enabled(env)) {
1095 /* Counter is disabled, do not change value */
1096 return env->cp15.c15_ccnt;
1099 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1100 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1102 if (env->cp15.c9_pmcr & PMCRD) {
1103 /* Increment once every 64 processor clock cycles */
1106 return total_ticks - env->cp15.c15_ccnt;
1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1112 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1113 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1114 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1117 env->cp15.c9_pmselr = value & 0x1f;
1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1123 uint64_t total_ticks;
1125 if (!arm_ccnt_enabled(env)) {
1126 /* Counter is disabled, set the absolute value */
1127 env->cp15.c15_ccnt = value;
1131 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1132 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1134 if (env->cp15.c9_pmcr & PMCRD) {
1135 /* Increment once every 64 processor clock cycles */
1138 env->cp15.c15_ccnt = total_ticks - value;
1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1144 uint64_t cur_val = pmccntr_read(env, NULL);
1146 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1149 #else /* CONFIG_USER_ONLY */
1151 void pmccntr_sync(CPUARMState *env)
1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1161 env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1168 value &= pmu_counter_mask(env);
1169 env->cp15.c9_pmcnten |= value;
1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1175 value &= pmu_counter_mask(env);
1176 env->cp15.c9_pmcnten &= ~value;
1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1182 env->cp15.c9_pmovsr &= ~value;
1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1188 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1189 * PMSELR value is equal to or greater than the number of implemented
1190 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1192 if (env->cp15.c9_pmselr == 0x1f) {
1193 pmccfiltr_write(env, ri, value);
1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1199 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1200 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1202 if (env->cp15.c9_pmselr == 0x1f) {
1203 return env->cp15.pmccfiltr_el0;
1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1212 if (arm_feature(env, ARM_FEATURE_V8)) {
1213 env->cp15.c9_pmuserenr = value & 0xf;
1215 env->cp15.c9_pmuserenr = value & 1;
1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1222 /* We have no event counters so only the C bit can be changed */
1223 value &= pmu_counter_mask(env);
1224 env->cp15.c9_pminten |= value;
1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1230 value &= pmu_counter_mask(env);
1231 env->cp15.c9_pminten &= ~value;
1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1237 /* Note that even though the AArch64 view of this register has bits
1238 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1239 * architectural requirements for bits which are RES0 only in some
1240 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1241 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1243 raw_write(env, ri, value & ~0x1FULL);
1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1248 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1249 * For bits that vary between AArch32/64, code needs to check the
1250 * current execution mode before directly using the feature bit.
1252 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1254 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1255 valid_mask &= ~SCR_HCE;
1257 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1258 * supported if EL2 exists. The bit is UNK/SBZP when
1259 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1260 * when EL2 is unavailable.
1261 * On ARMv8, this bit is always available.
1263 if (arm_feature(env, ARM_FEATURE_V7) &&
1264 !arm_feature(env, ARM_FEATURE_V8)) {
1265 valid_mask &= ~SCR_SMD;
1269 /* Clear all-context RES0 bits. */
1270 value &= valid_mask;
1271 raw_write(env, ri, value);
1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1276 ARMCPU *cpu = arm_env_get_cpu(env);
1278 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1281 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1282 ri->secure & ARM_CP_SECSTATE_S);
1284 return cpu->ccsidr[index];
1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1290 raw_write(env, ri, value & 0xf);
1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1295 CPUState *cs = ENV_GET_CPU(env);
1298 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1301 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1304 /* External aborts are not possible in QEMU so A bit is always clear */
1308 static const ARMCPRegInfo v7_cp_reginfo[] = {
1309 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1310 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1311 .access = PL1_W, .type = ARM_CP_NOP },
1312 /* Performance monitors are implementation defined in v7,
1313 * but with an ARM recommended set of registers, which we
1314 * follow (although we don't actually implement any counters)
1316 * Performance registers fall into three categories:
1317 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1318 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1319 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1320 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1321 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1323 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1324 .access = PL0_RW, .type = ARM_CP_ALIAS,
1325 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1326 .writefn = pmcntenset_write,
1327 .accessfn = pmreg_access,
1328 .raw_writefn = raw_write },
1329 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1331 .access = PL0_RW, .accessfn = pmreg_access,
1332 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1333 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1334 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1336 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1337 .accessfn = pmreg_access,
1338 .writefn = pmcntenclr_write,
1339 .type = ARM_CP_ALIAS },
1340 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1341 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1342 .access = PL0_RW, .accessfn = pmreg_access,
1343 .type = ARM_CP_ALIAS,
1344 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1345 .writefn = pmcntenclr_write },
1346 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1348 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1349 .accessfn = pmreg_access,
1350 .writefn = pmovsr_write,
1351 .raw_writefn = raw_write },
1352 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1354 .access = PL0_RW, .accessfn = pmreg_access,
1355 .type = ARM_CP_ALIAS,
1356 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1357 .writefn = pmovsr_write,
1358 .raw_writefn = raw_write },
1359 /* Unimplemented so WI. */
1360 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1361 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1362 #ifndef CONFIG_USER_ONLY
1363 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1364 .access = PL0_RW, .type = ARM_CP_ALIAS,
1365 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1366 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1367 .raw_writefn = raw_write},
1368 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1369 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1370 .access = PL0_RW, .accessfn = pmreg_access_selr,
1371 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1372 .writefn = pmselr_write, .raw_writefn = raw_write, },
1373 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1374 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1375 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1376 .accessfn = pmreg_access_ccntr },
1377 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1379 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1381 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1383 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1384 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1385 .writefn = pmccfiltr_write,
1386 .access = PL0_RW, .accessfn = pmreg_access,
1388 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1390 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1391 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1392 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1393 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1394 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1395 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1396 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1397 /* Unimplemented, RAZ/WI. */
1398 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1399 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1400 .accessfn = pmreg_access_xevcntr },
1401 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1402 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1403 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1405 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1406 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1407 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1408 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1409 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1411 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1412 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1413 .access = PL1_RW, .accessfn = access_tpm,
1414 .type = ARM_CP_ALIAS | ARM_CP_IO,
1415 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1417 .writefn = pmintenset_write, .raw_writefn = raw_write },
1418 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1419 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1420 .access = PL1_RW, .accessfn = access_tpm,
1422 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1423 .writefn = pmintenset_write, .raw_writefn = raw_write,
1424 .resetvalue = 0x0 },
1425 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1426 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1427 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1428 .writefn = pmintenclr_write, },
1429 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1430 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1431 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1432 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1433 .writefn = pmintenclr_write },
1434 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1435 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1436 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1437 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1438 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1439 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1441 offsetof(CPUARMState, cp15.csselr_ns) } },
1442 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1443 * just RAZ for all cores:
1445 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1446 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1447 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1448 /* Auxiliary fault status registers: these also are IMPDEF, and we
1449 * choose to RAZ/WI for all cores.
1451 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1452 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1453 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1454 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1455 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1456 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1457 /* MAIR can just read-as-written because we don't implement caches
1458 * and so don't need to care about memory attributes.
1460 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1461 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1462 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1464 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1465 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1466 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1468 /* For non-long-descriptor page tables these are PRRR and NMRR;
1469 * regardless they still act as reads-as-written for QEMU.
1471 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1472 * allows them to assign the correct fieldoffset based on the endianness
1473 * handled in the field definitions.
1475 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1476 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1477 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1478 offsetof(CPUARMState, cp15.mair0_ns) },
1479 .resetfn = arm_cp_reset_ignore },
1480 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1481 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1482 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1483 offsetof(CPUARMState, cp15.mair1_ns) },
1484 .resetfn = arm_cp_reset_ignore },
1485 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1486 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1487 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1488 /* 32 bit ITLB invalidates */
1489 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1491 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1493 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1495 /* 32 bit DTLB invalidates */
1496 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1497 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1498 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1499 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1500 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1502 /* 32 bit TLB invalidates */
1503 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1504 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1505 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1506 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1507 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1508 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1509 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1510 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1515 /* 32 bit TLB invalidates, Inner Shareable */
1516 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1517 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1518 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1519 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1520 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1521 .type = ARM_CP_NO_RAW, .access = PL1_W,
1522 .writefn = tlbiasid_is_write },
1523 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1524 .type = ARM_CP_NO_RAW, .access = PL1_W,
1525 .writefn = tlbimvaa_is_write },
1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1539 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1540 return CP_ACCESS_TRAP;
1542 return CP_ACCESS_OK;
1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1546 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1547 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1549 .writefn = teecr_write },
1550 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1551 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1552 .accessfn = teehbr_access, .resetvalue = 0 },
1556 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1557 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1558 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1560 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1561 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1563 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1564 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1565 .resetfn = arm_cp_reset_ignore },
1566 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1567 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1568 .access = PL0_R|PL1_W,
1569 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1571 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1572 .access = PL0_R|PL1_W,
1573 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1574 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1575 .resetfn = arm_cp_reset_ignore },
1576 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1577 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1579 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1580 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1582 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1583 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1588 #ifndef CONFIG_USER_ONLY
1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1593 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1594 * Writable only at the highest implemented exception level.
1596 int el = arm_current_el(env);
1600 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1601 return CP_ACCESS_TRAP;
1605 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1606 arm_is_secure_below_el3(env)) {
1607 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1608 return CP_ACCESS_TRAP_UNCATEGORIZED;
1616 if (!isread && el < arm_highest_el(env)) {
1617 return CP_ACCESS_TRAP_UNCATEGORIZED;
1620 return CP_ACCESS_OK;
1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1626 unsigned int cur_el = arm_current_el(env);
1627 bool secure = arm_is_secure(env);
1629 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1631 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1632 return CP_ACCESS_TRAP;
1635 if (arm_feature(env, ARM_FEATURE_EL2) &&
1636 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1637 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1638 return CP_ACCESS_TRAP_EL2;
1640 return CP_ACCESS_OK;
1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1646 unsigned int cur_el = arm_current_el(env);
1647 bool secure = arm_is_secure(env);
1649 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1650 * EL0[PV]TEN is zero.
1653 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1654 return CP_ACCESS_TRAP;
1657 if (arm_feature(env, ARM_FEATURE_EL2) &&
1658 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1659 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1660 return CP_ACCESS_TRAP_EL2;
1662 return CP_ACCESS_OK;
1665 static CPAccessResult gt_pct_access(CPUARMState *env,
1666 const ARMCPRegInfo *ri,
1669 return gt_counter_access(env, GTIMER_PHYS, isread);
1672 static CPAccessResult gt_vct_access(CPUARMState *env,
1673 const ARMCPRegInfo *ri,
1676 return gt_counter_access(env, GTIMER_VIRT, isread);
1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1682 return gt_timer_access(env, GTIMER_PHYS, isread);
1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1688 return gt_timer_access(env, GTIMER_VIRT, isread);
1691 static CPAccessResult gt_stimer_access(CPUARMState *env,
1692 const ARMCPRegInfo *ri,
1695 /* The AArch64 register view of the secure physical timer is
1696 * always accessible from EL3, and configurably accessible from
1699 switch (arm_current_el(env)) {
1701 if (!arm_is_secure(env)) {
1702 return CP_ACCESS_TRAP;
1704 if (!(env->cp15.scr_el3 & SCR_ST)) {
1705 return CP_ACCESS_TRAP_EL3;
1707 return CP_ACCESS_OK;
1710 return CP_ACCESS_TRAP;
1712 return CP_ACCESS_OK;
1714 g_assert_not_reached();
1718 static uint64_t gt_get_countervalue(CPUARMState *env)
1720 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1725 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1728 /* Timer enabled: calculate and set current ISTATUS, irq, and
1729 * reset timer to when ISTATUS next has to change
1731 uint64_t offset = timeridx == GTIMER_VIRT ?
1732 cpu->env.cp15.cntvoff_el2 : 0;
1733 uint64_t count = gt_get_countervalue(&cpu->env);
1734 /* Note that this must be unsigned 64 bit arithmetic: */
1735 int istatus = count - offset >= gt->cval;
1739 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1741 irqstate = (istatus && !(gt->ctl & 2));
1742 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1745 /* Next transition is when count rolls back over to zero */
1746 nexttick = UINT64_MAX;
1748 /* Next transition is when we hit cval */
1749 nexttick = gt->cval + offset;
1751 /* Note that the desired next expiry time might be beyond the
1752 * signed-64-bit range of a QEMUTimer -- in this case we just
1753 * set the timer for as far in the future as possible. When the
1754 * timer expires we will reset the timer for any remaining period.
1756 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1757 nexttick = INT64_MAX / GTIMER_SCALE;
1759 timer_mod(cpu->gt_timer[timeridx], nexttick);
1760 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1762 /* Timer disabled: ISTATUS and timer output always clear */
1764 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1765 timer_del(cpu->gt_timer[timeridx]);
1766 trace_arm_gt_recalc_disabled(timeridx);
1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1773 ARMCPU *cpu = arm_env_get_cpu(env);
1775 timer_del(cpu->gt_timer[timeridx]);
1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1780 return gt_get_countervalue(env);
1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1785 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792 trace_arm_gt_cval_write(timeridx, value);
1793 env->cp15.c14_timer[timeridx].cval = value;
1794 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1800 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1802 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1803 (gt_get_countervalue(env) - offset));
1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1810 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1812 trace_arm_gt_tval_write(timeridx, value);
1813 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1814 sextract64(value, 0, 32);
1815 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1822 ARMCPU *cpu = arm_env_get_cpu(env);
1823 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1825 trace_arm_gt_ctl_write(timeridx, value);
1826 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1827 if ((oldval ^ value) & 1) {
1828 /* Enable toggled */
1829 gt_recalc_timer(cpu, timeridx);
1830 } else if ((oldval ^ value) & 2) {
1831 /* IMASK toggled: don't need to recalculate,
1832 * just set the interrupt line based on ISTATUS
1834 int irqstate = (oldval & 4) && !(value & 2);
1836 trace_arm_gt_imask_toggle(timeridx, irqstate);
1837 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1843 gt_timer_reset(env, ri, GTIMER_PHYS);
1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1849 gt_cval_write(env, ri, GTIMER_PHYS, value);
1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1854 return gt_tval_read(env, ri, GTIMER_PHYS);
1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1860 gt_tval_write(env, ri, GTIMER_PHYS, value);
1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1866 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1871 gt_timer_reset(env, ri, GTIMER_VIRT);
1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1877 gt_cval_write(env, ri, GTIMER_VIRT, value);
1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1882 return gt_tval_read(env, ri, GTIMER_VIRT);
1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1888 gt_tval_write(env, ri, GTIMER_VIRT, value);
1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1894 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1900 ARMCPU *cpu = arm_env_get_cpu(env);
1902 trace_arm_gt_cntvoff_write(value);
1903 raw_write(env, ri, value);
1904 gt_recalc_timer(cpu, GTIMER_VIRT);
1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1909 gt_timer_reset(env, ri, GTIMER_HYP);
1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1915 gt_cval_write(env, ri, GTIMER_HYP, value);
1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1920 return gt_tval_read(env, ri, GTIMER_HYP);
1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1926 gt_tval_write(env, ri, GTIMER_HYP, value);
1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1932 gt_ctl_write(env, ri, GTIMER_HYP, value);
1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1937 gt_timer_reset(env, ri, GTIMER_SEC);
1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1943 gt_cval_write(env, ri, GTIMER_SEC, value);
1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1948 return gt_tval_read(env, ri, GTIMER_SEC);
1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1954 gt_tval_write(env, ri, GTIMER_SEC, value);
1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1960 gt_ctl_write(env, ri, GTIMER_SEC, value);
1963 void arm_gt_ptimer_cb(void *opaque)
1965 ARMCPU *cpu = opaque;
1967 gt_recalc_timer(cpu, GTIMER_PHYS);
1970 void arm_gt_vtimer_cb(void *opaque)
1972 ARMCPU *cpu = opaque;
1974 gt_recalc_timer(cpu, GTIMER_VIRT);
1977 void arm_gt_htimer_cb(void *opaque)
1979 ARMCPU *cpu = opaque;
1981 gt_recalc_timer(cpu, GTIMER_HYP);
1984 void arm_gt_stimer_cb(void *opaque)
1986 ARMCPU *cpu = opaque;
1988 gt_recalc_timer(cpu, GTIMER_SEC);
1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1992 /* Note that CNTFRQ is purely reads-as-written for the benefit
1993 * of software; writing it doesn't actually change the timer frequency.
1994 * Our reset value matches the fixed frequency we implement the timer at.
1996 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1997 .type = ARM_CP_ALIAS,
1998 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1999 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2001 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2003 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2004 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2005 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2007 /* overall control: mostly access permissions */
2008 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2009 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2011 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2014 /* per-timer control */
2015 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2016 .secure = ARM_CP_SECSTATE_NS,
2017 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2018 .accessfn = gt_ptimer_access,
2019 .fieldoffset = offsetoflow32(CPUARMState,
2020 cp15.c14_timer[GTIMER_PHYS].ctl),
2021 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2023 { .name = "CNTP_CTL_S",
2024 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2025 .secure = ARM_CP_SECSTATE_S,
2026 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2027 .accessfn = gt_ptimer_access,
2028 .fieldoffset = offsetoflow32(CPUARMState,
2029 cp15.c14_timer[GTIMER_SEC].ctl),
2030 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2032 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2033 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2034 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2035 .accessfn = gt_ptimer_access,
2036 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2038 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2040 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2041 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2042 .accessfn = gt_vtimer_access,
2043 .fieldoffset = offsetoflow32(CPUARMState,
2044 cp15.c14_timer[GTIMER_VIRT].ctl),
2045 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2047 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2049 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2050 .accessfn = gt_vtimer_access,
2051 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2053 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2055 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2056 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2057 .secure = ARM_CP_SECSTATE_NS,
2058 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2059 .accessfn = gt_ptimer_access,
2060 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2062 { .name = "CNTP_TVAL_S",
2063 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2064 .secure = ARM_CP_SECSTATE_S,
2065 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2066 .accessfn = gt_ptimer_access,
2067 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2069 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2070 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2071 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2072 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2073 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2075 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2076 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2077 .accessfn = gt_vtimer_access,
2078 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2080 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2081 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2082 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2083 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2084 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2086 /* The counter itself */
2087 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2088 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2089 .accessfn = gt_pct_access,
2090 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2092 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2093 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2094 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2095 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2097 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2098 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2099 .accessfn = gt_vct_access,
2100 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2102 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2103 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2104 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2107 /* Comparison value, indicating when the timer goes off */
2108 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2109 .secure = ARM_CP_SECSTATE_NS,
2110 .access = PL1_RW | PL0_R,
2111 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2113 .accessfn = gt_ptimer_access,
2114 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2116 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2117 .secure = ARM_CP_SECSTATE_S,
2118 .access = PL1_RW | PL0_R,
2119 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2120 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2121 .accessfn = gt_ptimer_access,
2122 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2124 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2126 .access = PL1_RW | PL0_R,
2128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2129 .resetvalue = 0, .accessfn = gt_ptimer_access,
2130 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2132 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2133 .access = PL1_RW | PL0_R,
2134 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2135 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136 .accessfn = gt_vtimer_access,
2137 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2139 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2141 .access = PL1_RW | PL0_R,
2143 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2144 .resetvalue = 0, .accessfn = gt_vtimer_access,
2145 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2147 /* Secure timer -- this is actually restricted to only EL3
2148 * and configurably Secure-EL1 via the accessfn.
2150 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2152 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2153 .accessfn = gt_stimer_access,
2154 .readfn = gt_sec_tval_read,
2155 .writefn = gt_sec_tval_write,
2156 .resetfn = gt_sec_timer_reset,
2158 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2159 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2160 .type = ARM_CP_IO, .access = PL1_RW,
2161 .accessfn = gt_stimer_access,
2162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2164 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2166 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2167 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2168 .type = ARM_CP_IO, .access = PL1_RW,
2169 .accessfn = gt_stimer_access,
2170 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2178 /* In user-mode most of the generic timer registers are inaccessible
2179 * however modern kernels (4.12+) allow access to cntvct_el0
2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2184 /* Currently we have no support for QEMUTimer in linux-user so we
2185 * can't call gt_get_countervalue(env), instead we directly
2186 * call the lower level functions.
2188 return cpu_get_clock() / GTIMER_SCALE;
2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2192 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2193 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2194 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2195 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2196 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2198 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2200 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201 .readfn = gt_virt_cnt_read,
2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2210 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2211 raw_write(env, ri, value);
2212 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2213 raw_write(env, ri, value & 0xfffff6ff);
2215 raw_write(env, ri, value & 0xfffff1ff);
2219 #ifndef CONFIG_USER_ONLY
2220 /* get_phys_addr() isn't present for user-mode-only targets */
2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2226 /* The ATS12NSO* operations must trap to EL3 if executed in
2227 * Secure EL1 (which can only happen if EL3 is AArch64).
2228 * They are simply UNDEF if executed from NS EL1.
2229 * They function normally from EL2 or EL3.
2231 if (arm_current_el(env) == 1) {
2232 if (arm_is_secure_below_el3(env)) {
2233 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2235 return CP_ACCESS_TRAP_UNCATEGORIZED;
2238 return CP_ACCESS_OK;
2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2242 MMUAccessType access_type, ARMMMUIdx mmu_idx)
2245 target_ulong page_size;
2249 bool format64 = false;
2250 MemTxAttrs attrs = {};
2251 ARMMMUFaultInfo fi = {};
2252 ARMCacheAttrs cacheattrs = {};
2254 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2255 &prot, &page_size, &fi, &cacheattrs);
2259 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2262 * * TTBCR.EAE determines whether the result is returned using the
2263 * 32-bit or the 64-bit PAR format
2264 * * Instructions executed in Hyp mode always use the 64bit format
2266 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2267 * * The Non-secure TTBCR.EAE bit is set to 1
2268 * * The implementation includes EL2, and the value of HCR.VM is 1
2270 * ATS1Hx always uses the 64bit format (not supported yet).
2272 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2274 if (arm_feature(env, ARM_FEATURE_EL2)) {
2275 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2276 format64 |= env->cp15.hcr_el2 & HCR_VM;
2278 format64 |= arm_current_el(env) == 2;
2284 /* Create a 64-bit PAR */
2285 par64 = (1 << 11); /* LPAE bit always set */
2287 par64 |= phys_addr & ~0xfffULL;
2288 if (!attrs.secure) {
2289 par64 |= (1 << 9); /* NS */
2291 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2292 par64 |= cacheattrs.shareability << 7; /* SH */
2294 uint32_t fsr = arm_fi_to_lfsc(&fi);
2297 par64 |= (fsr & 0x3f) << 1; /* FS */
2298 /* Note that S2WLK and FSTAGE are always zero, because we don't
2299 * implement virtualization and therefore there can't be a stage 2
2304 /* fsr is a DFSR/IFSR value for the short descriptor
2305 * translation table format (with WnR always clear).
2306 * Convert it to a 32-bit PAR.
2309 /* We do not set any attribute bits in the PAR */
2310 if (page_size == (1 << 24)
2311 && arm_feature(env, ARM_FEATURE_V7)) {
2312 par64 = (phys_addr & 0xff000000) | (1 << 1);
2314 par64 = phys_addr & 0xfffff000;
2316 if (!attrs.secure) {
2317 par64 |= (1 << 9); /* NS */
2320 uint32_t fsr = arm_fi_to_sfsc(&fi);
2322 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2323 ((fsr & 0xf) << 1) | 1;
2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2331 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2334 int el = arm_current_el(env);
2335 bool secure = arm_is_secure_below_el3(env);
2337 switch (ri->opc2 & 6) {
2339 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2342 mmu_idx = ARMMMUIdx_S1E3;
2345 mmu_idx = ARMMMUIdx_S1NSE1;
2348 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2351 g_assert_not_reached();
2355 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2358 mmu_idx = ARMMMUIdx_S1SE0;
2361 mmu_idx = ARMMMUIdx_S1NSE0;
2364 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2367 g_assert_not_reached();
2371 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2372 mmu_idx = ARMMMUIdx_S12NSE1;
2375 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2376 mmu_idx = ARMMMUIdx_S12NSE0;
2379 g_assert_not_reached();
2382 par64 = do_ats_write(env, value, access_type, mmu_idx);
2384 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2390 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2393 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2395 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2401 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2402 return CP_ACCESS_TRAP;
2404 return CP_ACCESS_OK;
2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2410 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2412 int secure = arm_is_secure_below_el3(env);
2414 switch (ri->opc2 & 6) {
2417 case 0: /* AT S1E1R, AT S1E1W */
2418 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2420 case 4: /* AT S1E2R, AT S1E2W */
2421 mmu_idx = ARMMMUIdx_S1E2;
2423 case 6: /* AT S1E3R, AT S1E3W */
2424 mmu_idx = ARMMMUIdx_S1E3;
2427 g_assert_not_reached();
2430 case 2: /* AT S1E0R, AT S1E0W */
2431 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2433 case 4: /* AT S12E1R, AT S12E1W */
2434 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2436 case 6: /* AT S12E0R, AT S12E0W */
2437 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2440 g_assert_not_reached();
2443 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2447 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2448 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2449 .access = PL1_RW, .resetvalue = 0,
2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2451 offsetoflow32(CPUARMState, cp15.par_ns) },
2452 .writefn = par_write },
2453 #ifndef CONFIG_USER_ONLY
2454 /* This underdecoding is safe because the reginfo is NO_RAW. */
2455 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2456 .access = PL1_W, .accessfn = ats_access,
2457 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2462 /* Return basic MPU access permission bits. */
2463 static uint32_t simple_mpu_ap_bits(uint32_t val)
2470 for (i = 0; i < 16; i += 2) {
2471 ret |= (val >> i) & mask;
2477 /* Pad basic MPU access permission bits to extended format. */
2478 static uint32_t extended_mpu_ap_bits(uint32_t val)
2485 for (i = 0; i < 16; i += 2) {
2486 ret |= (val & mask) << i;
2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2495 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2500 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2506 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2511 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2516 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2522 u32p += env->pmsav7.rnr[M_REG_NS];
2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2529 ARMCPU *cpu = arm_env_get_cpu(env);
2530 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2536 u32p += env->pmsav7.rnr[M_REG_NS];
2537 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2544 ARMCPU *cpu = arm_env_get_cpu(env);
2545 uint32_t nrgs = cpu->pmsav7_dregion;
2547 if (value >= nrgs) {
2548 qemu_log_mask(LOG_GUEST_ERROR,
2549 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2550 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2554 raw_write(env, ri, value);
2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2558 /* Reset for all these registers is handled in arm_cpu_reset(),
2559 * because the PMSAv7 is also used by M-profile CPUs, which do
2560 * not register cpregs but still need the state to be reset.
2562 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2563 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2564 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2565 .readfn = pmsav7_read, .writefn = pmsav7_write,
2566 .resetfn = arm_cp_reset_ignore },
2567 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2568 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2569 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2570 .readfn = pmsav7_read, .writefn = pmsav7_write,
2571 .resetfn = arm_cp_reset_ignore },
2572 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2573 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2574 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2575 .readfn = pmsav7_read, .writefn = pmsav7_write,
2576 .resetfn = arm_cp_reset_ignore },
2577 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2579 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2580 .writefn = pmsav7_rgnr_write,
2581 .resetfn = arm_cp_reset_ignore },
2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2586 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2587 .access = PL1_RW, .type = ARM_CP_ALIAS,
2588 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2589 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2590 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2591 .access = PL1_RW, .type = ARM_CP_ALIAS,
2592 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2593 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2594 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2596 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2598 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2600 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2602 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2604 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2605 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2607 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2608 /* Protection region base and size registers */
2609 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2610 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2611 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2612 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2613 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2614 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2615 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2616 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2617 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2618 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2619 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2620 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2621 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2622 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2623 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2624 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2625 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2626 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2627 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2628 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2629 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2630 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2631 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2632 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2639 TCR *tcr = raw_ptr(env, ri);
2640 int maskshift = extract32(value, 0, 3);
2642 if (!arm_feature(env, ARM_FEATURE_V8)) {
2643 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2644 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2645 * using Long-desciptor translation table format */
2646 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2647 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2648 /* In an implementation that includes the Security Extensions
2649 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2650 * Short-descriptor translation table format.
2652 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2658 /* Update the masks corresponding to the TCR bank being written
2659 * Note that we always calculate mask and base_mask, but
2660 * they are only used for short-descriptor tables (ie if EAE is 0);
2661 * for long-descriptor tables the TCR fields are used differently
2662 * and the mask and base_mask values are meaningless.
2664 tcr->raw_tcr = value;
2665 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2666 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2672 ARMCPU *cpu = arm_env_get_cpu(env);
2674 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2675 /* With LPAE the TTBCR could result in a change of ASID
2676 * via the TTBCR.A1 bit, so do a TLB flush.
2678 tlb_flush(CPU(cpu));
2680 vmsa_ttbcr_raw_write(env, ri, value);
2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2685 TCR *tcr = raw_ptr(env, ri);
2687 /* Reset both the TCR as well as the masks corresponding to the bank of
2688 * the TCR being reset.
2692 tcr->base_mask = 0xffffc000u;
2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2698 ARMCPU *cpu = arm_env_get_cpu(env);
2699 TCR *tcr = raw_ptr(env, ri);
2701 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2702 tlb_flush(CPU(cpu));
2703 tcr->raw_tcr = value;
2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2709 /* 64 bit accesses to the TTBRs can change the ASID and so we
2710 * must flush the TLB.
2712 if (cpreg_field_is_64bit(ri)) {
2713 ARMCPU *cpu = arm_env_get_cpu(env);
2715 tlb_flush(CPU(cpu));
2717 raw_write(env, ri, value);
2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723 ARMCPU *cpu = arm_env_get_cpu(env);
2724 CPUState *cs = CPU(cpu);
2726 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2727 if (raw_read(env, ri) != value) {
2728 tlb_flush_by_mmuidx(cs,
2729 ARMMMUIdxBit_S12NSE1 |
2730 ARMMMUIdxBit_S12NSE0 |
2732 raw_write(env, ri, value);
2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2737 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2738 .access = PL1_RW, .type = ARM_CP_ALIAS,
2739 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2740 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2741 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2742 .access = PL1_RW, .resetvalue = 0,
2743 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2744 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2745 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2746 .access = PL1_RW, .resetvalue = 0,
2747 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2748 offsetof(CPUARMState, cp15.dfar_ns) } },
2749 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2750 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2751 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2757 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2758 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2760 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2761 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2762 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2763 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2764 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2765 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2766 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2768 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2769 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2770 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2771 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2772 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2773 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2774 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2775 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2776 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2777 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2778 .raw_writefn = vmsa_ttbcr_raw_write,
2779 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2780 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787 env->cp15.c15_ticonfig = value & 0xe7;
2788 /* The OS_TYPE bit in this register changes the reported CPUID! */
2789 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2790 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2796 env->cp15.c15_threadid = value & 0xffff;
2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2802 /* Wait-for-interrupt (deprecated) */
2803 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809 /* On OMAP there are registers indicating the max/min index of dcache lines
2810 * containing a dirty line; cache flush operations have to reset these.
2812 env->cp15.c15_i_max = 0x000;
2813 env->cp15.c15_i_min = 0xff0;
2816 static const ARMCPRegInfo omap_cp_reginfo[] = {
2817 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2818 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2819 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2821 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2822 .access = PL1_RW, .type = ARM_CP_NOP },
2823 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2825 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2826 .writefn = omap_ticonfig_write },
2827 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2829 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2830 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2831 .access = PL1_RW, .resetvalue = 0xff0,
2832 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2833 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2835 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2836 .writefn = omap_threadid_write },
2837 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2838 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2839 .type = ARM_CP_NO_RAW,
2840 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2841 /* TODO: Peripheral port remap register:
2842 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2843 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2846 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2847 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2848 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2849 .writefn = omap_cachemaint_write },
2850 { .name = "C9", .cp = 15, .crn = 9,
2851 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2852 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2859 env->cp15.c15_cpar = value & 0x3fff;
2862 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2863 { .name = "XSCALE_CPAR",
2864 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2865 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2866 .writefn = xscale_cpar_write, },
2867 { .name = "XSCALE_AUXCR",
2868 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2869 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2871 /* XScale specific cache-lockdown: since we have no cache we NOP these
2872 * and hope the guest does not really rely on cache behaviour.
2874 { .name = "XSCALE_LOCK_ICACHE_LINE",
2875 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2876 .access = PL1_W, .type = ARM_CP_NOP },
2877 { .name = "XSCALE_UNLOCK_ICACHE",
2878 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2879 .access = PL1_W, .type = ARM_CP_NOP },
2880 { .name = "XSCALE_DCACHE_LOCK",
2881 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2882 .access = PL1_RW, .type = ARM_CP_NOP },
2883 { .name = "XSCALE_UNLOCK_DCACHE",
2884 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2885 .access = PL1_W, .type = ARM_CP_NOP },
2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2890 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2891 * implementation of this implementation-defined space.
2892 * Ideally this should eventually disappear in favour of actually
2893 * implementing the correct behaviour for all cores.
2895 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2898 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2904 /* Cache status: RAZ because we have no cache so it's always clean */
2905 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2906 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2912 /* We never have a a block transfer operation in progress */
2913 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2914 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2916 /* The cache ops themselves: these all NOP for QEMU */
2917 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2918 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2919 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2920 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2921 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2922 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2923 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2924 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2925 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2926 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2927 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2928 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2933 /* The cache test-and-clean instructions always return (1 << 30)
2934 * to indicate that there are no dirty cache lines.
2936 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2937 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2938 .resetvalue = (1 << 30) },
2939 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2940 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2941 .resetvalue = (1 << 30) },
2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2946 /* Ignore ReadBuffer accesses */
2947 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2948 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2949 .access = PL1_RW, .resetvalue = 0,
2950 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2956 ARMCPU *cpu = arm_env_get_cpu(env);
2957 unsigned int cur_el = arm_current_el(env);
2958 bool secure = arm_is_secure(env);
2960 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961 return env->cp15.vpidr_el2;
2963 return raw_read(env, ri);
2966 static uint64_t mpidr_read_val(CPUARMState *env)
2968 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2969 uint64_t mpidr = cpu->mp_affinity;
2971 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2972 mpidr |= (1U << 31);
2973 /* Cores which are uniprocessor (non-coherent)
2974 * but still implement the MP extensions set
2975 * bit 30. (For instance, Cortex-R5).
2977 if (cpu->mp_is_up) {
2978 mpidr |= (1u << 30);
2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2986 unsigned int cur_el = arm_current_el(env);
2987 bool secure = arm_is_secure(env);
2989 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2990 return env->cp15.vmpidr_el2;
2992 return mpidr_read_val(env);
2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2996 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2997 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2998 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
3002 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3004 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3005 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3006 .access = PL1_RW, .type = ARM_CP_CONST,
3008 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3009 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3010 .access = PL1_RW, .type = ARM_CP_CONST,
3012 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3013 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3014 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3015 offsetof(CPUARMState, cp15.par_ns)} },
3016 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3017 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3018 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3019 offsetof(CPUARMState, cp15.ttbr0_ns) },
3020 .writefn = vmsa_ttbr_write, },
3021 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3022 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3023 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3024 offsetof(CPUARMState, cp15.ttbr1_ns) },
3025 .writefn = vmsa_ttbr_write, },
3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3031 return vfp_get_fpcr(env);
3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3037 vfp_set_fpcr(env, value);
3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3042 return vfp_get_fpsr(env);
3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 vfp_set_fpsr(env, value);
3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3054 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3055 return CP_ACCESS_TRAP;
3057 return CP_ACCESS_OK;
3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3063 env->daif = value & PSTATE_DAIF;
3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3067 const ARMCPRegInfo *ri,
3070 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3071 * SCTLR_EL1.UCI is set.
3073 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3074 return CP_ACCESS_TRAP;
3076 return CP_ACCESS_OK;
3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3080 * Page D4-1736 (DDI0487A.b)
3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086 CPUState *cs = ENV_GET_CPU(env);
3088 if (arm_is_secure_below_el3(env)) {
3089 tlb_flush_by_mmuidx(cs,
3090 ARMMMUIdxBit_S1SE1 |
3091 ARMMMUIdxBit_S1SE0);
3093 tlb_flush_by_mmuidx(cs,
3094 ARMMMUIdxBit_S12NSE1 |
3095 ARMMMUIdxBit_S12NSE0);
3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3102 CPUState *cs = ENV_GET_CPU(env);
3103 bool sec = arm_is_secure_below_el3(env);
3106 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3107 ARMMMUIdxBit_S1SE1 |
3108 ARMMMUIdxBit_S1SE0);
3110 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3111 ARMMMUIdxBit_S12NSE1 |
3112 ARMMMUIdxBit_S12NSE0);
3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3119 /* Note that the 'ALL' scope must invalidate both stage 1 and
3120 * stage 2 translations, whereas most other scopes only invalidate
3121 * stage 1 translations.
3123 ARMCPU *cpu = arm_env_get_cpu(env);
3124 CPUState *cs = CPU(cpu);
3126 if (arm_is_secure_below_el3(env)) {
3127 tlb_flush_by_mmuidx(cs,
3128 ARMMMUIdxBit_S1SE1 |
3129 ARMMMUIdxBit_S1SE0);
3131 if (arm_feature(env, ARM_FEATURE_EL2)) {
3132 tlb_flush_by_mmuidx(cs,
3133 ARMMMUIdxBit_S12NSE1 |
3134 ARMMMUIdxBit_S12NSE0 |
3137 tlb_flush_by_mmuidx(cs,
3138 ARMMMUIdxBit_S12NSE1 |
3139 ARMMMUIdxBit_S12NSE0);
3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3147 ARMCPU *cpu = arm_env_get_cpu(env);
3148 CPUState *cs = CPU(cpu);
3150 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3156 ARMCPU *cpu = arm_env_get_cpu(env);
3157 CPUState *cs = CPU(cpu);
3159 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3165 /* Note that the 'ALL' scope must invalidate both stage 1 and
3166 * stage 2 translations, whereas most other scopes only invalidate
3167 * stage 1 translations.
3169 CPUState *cs = ENV_GET_CPU(env);
3170 bool sec = arm_is_secure_below_el3(env);
3171 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3174 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3175 ARMMMUIdxBit_S1SE1 |
3176 ARMMMUIdxBit_S1SE0);
3177 } else if (has_el2) {
3178 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3179 ARMMMUIdxBit_S12NSE1 |
3180 ARMMMUIdxBit_S12NSE0 |
3183 tlb_flush_by_mmuidx_all_cpus_synced(cs,
3184 ARMMMUIdxBit_S12NSE1 |
3185 ARMMMUIdxBit_S12NSE0);
3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3192 CPUState *cs = ENV_GET_CPU(env);
3194 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200 CPUState *cs = ENV_GET_CPU(env);
3202 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3208 /* Invalidate by VA, EL1&0 (AArch64 version).
3209 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3210 * since we don't support flush-for-specific-ASID-only or
3211 * flush-last-level-only.
3213 ARMCPU *cpu = arm_env_get_cpu(env);
3214 CPUState *cs = CPU(cpu);
3215 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3217 if (arm_is_secure_below_el3(env)) {
3218 tlb_flush_page_by_mmuidx(cs, pageaddr,
3219 ARMMMUIdxBit_S1SE1 |
3220 ARMMMUIdxBit_S1SE0);
3222 tlb_flush_page_by_mmuidx(cs, pageaddr,
3223 ARMMMUIdxBit_S12NSE1 |
3224 ARMMMUIdxBit_S12NSE0);
3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3231 /* Invalidate by VA, EL2
3232 * Currently handles both VAE2 and VALE2, since we don't support
3233 * flush-last-level-only.
3235 ARMCPU *cpu = arm_env_get_cpu(env);
3236 CPUState *cs = CPU(cpu);
3237 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3239 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3245 /* Invalidate by VA, EL3
3246 * Currently handles both VAE3 and VALE3, since we don't support
3247 * flush-last-level-only.
3249 ARMCPU *cpu = arm_env_get_cpu(env);
3250 CPUState *cs = CPU(cpu);
3251 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3253 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3259 ARMCPU *cpu = arm_env_get_cpu(env);
3260 CPUState *cs = CPU(cpu);
3261 bool sec = arm_is_secure_below_el3(env);
3262 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3265 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3266 ARMMMUIdxBit_S1SE1 |
3267 ARMMMUIdxBit_S1SE0);
3269 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3270 ARMMMUIdxBit_S12NSE1 |
3271 ARMMMUIdxBit_S12NSE0);
3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3278 CPUState *cs = ENV_GET_CPU(env);
3279 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3281 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3288 CPUState *cs = ENV_GET_CPU(env);
3289 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3291 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3298 /* Invalidate by IPA. This has to invalidate any structures that
3299 * contain only stage 2 translation information, but does not need
3300 * to apply to structures that contain combined stage 1 and stage 2
3301 * translation information.
3302 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3304 ARMCPU *cpu = arm_env_get_cpu(env);
3305 CPUState *cs = CPU(cpu);
3308 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3312 pageaddr = sextract64(value << 12, 0, 48);
3314 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3320 CPUState *cs = ENV_GET_CPU(env);
3323 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3327 pageaddr = sextract64(value << 12, 0, 48);
3329 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3336 /* We don't implement EL2, so the only control on DC ZVA is the
3337 * bit in the SCTLR which can prohibit access for EL0.
3339 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3340 return CP_ACCESS_TRAP;
3342 return CP_ACCESS_OK;
3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3347 ARMCPU *cpu = arm_env_get_cpu(env);
3348 int dzp_bit = 1 << 4;
3350 /* DZP indicates whether DC ZVA access is allowed */
3351 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3354 return cpu->dcz_blocksize | dzp_bit;
3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3360 if (!(env->pstate & PSTATE_SP)) {
3361 /* Access to SP_EL0 is undefined if it's being used as
3362 * the stack pointer.
3364 return CP_ACCESS_TRAP_UNCATEGORIZED;
3366 return CP_ACCESS_OK;
3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3371 return env->pstate & PSTATE_SP;
3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3376 update_spsel(env, val);
3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3382 ARMCPU *cpu = arm_env_get_cpu(env);
3384 if (raw_read(env, ri) == value) {
3385 /* Skip the TLB flush if nothing actually changed; Linux likes
3386 * to do a lot of pointless SCTLR writes.
3391 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3392 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3396 raw_write(env, ri, value);
3397 /* ??? Lots of these bits are not implemented. */
3398 /* This may enable/disable the MMU, so do a TLB flush. */
3399 tlb_flush(CPU(cpu));
3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3405 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3406 return CP_ACCESS_TRAP_FP_EL2;
3408 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3409 return CP_ACCESS_TRAP_FP_EL3;
3411 return CP_ACCESS_OK;
3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3417 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3420 static const ARMCPRegInfo v8_cp_reginfo[] = {
3421 /* Minimal set of EL0-visible registers. This will need to be expanded
3422 * significantly for system emulation of AArch64 CPUs.
3424 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3425 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3426 .access = PL0_RW, .type = ARM_CP_NZCV },
3427 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3428 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3429 .type = ARM_CP_NO_RAW,
3430 .access = PL0_RW, .accessfn = aa64_daif_access,
3431 .fieldoffset = offsetof(CPUARMState, daif),
3432 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3433 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3434 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3435 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3436 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3437 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3438 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3439 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3440 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3441 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3442 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3443 .access = PL0_R, .type = ARM_CP_NO_RAW,
3444 .readfn = aa64_dczid_read },
3445 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3446 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3447 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3448 #ifndef CONFIG_USER_ONLY
3449 /* Avoid overhead of an access check that always passes in user-mode */
3450 .accessfn = aa64_zva_access,
3453 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3454 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3455 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3456 /* Cache ops: all NOPs since we don't emulate caches */
3457 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3458 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3459 .access = PL1_W, .type = ARM_CP_NOP },
3460 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3462 .access = PL1_W, .type = ARM_CP_NOP },
3463 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3464 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3465 .access = PL0_W, .type = ARM_CP_NOP,
3466 .accessfn = aa64_cacheop_access },
3467 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3468 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3469 .access = PL1_W, .type = ARM_CP_NOP },
3470 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3471 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3472 .access = PL1_W, .type = ARM_CP_NOP },
3473 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3474 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3475 .access = PL0_W, .type = ARM_CP_NOP,
3476 .accessfn = aa64_cacheop_access },
3477 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3478 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3479 .access = PL1_W, .type = ARM_CP_NOP },
3480 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3481 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3482 .access = PL0_W, .type = ARM_CP_NOP,
3483 .accessfn = aa64_cacheop_access },
3484 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3485 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3486 .access = PL0_W, .type = ARM_CP_NOP,
3487 .accessfn = aa64_cacheop_access },
3488 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3489 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3490 .access = PL1_W, .type = ARM_CP_NOP },
3491 /* TLBI operations */
3492 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3493 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3494 .access = PL1_W, .type = ARM_CP_NO_RAW,
3495 .writefn = tlbi_aa64_vmalle1is_write },
3496 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3497 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3498 .access = PL1_W, .type = ARM_CP_NO_RAW,
3499 .writefn = tlbi_aa64_vae1is_write },
3500 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3501 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3502 .access = PL1_W, .type = ARM_CP_NO_RAW,
3503 .writefn = tlbi_aa64_vmalle1is_write },
3504 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3505 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3506 .access = PL1_W, .type = ARM_CP_NO_RAW,
3507 .writefn = tlbi_aa64_vae1is_write },
3508 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3509 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3510 .access = PL1_W, .type = ARM_CP_NO_RAW,
3511 .writefn = tlbi_aa64_vae1is_write },
3512 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3513 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3514 .access = PL1_W, .type = ARM_CP_NO_RAW,
3515 .writefn = tlbi_aa64_vae1is_write },
3516 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3517 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3518 .access = PL1_W, .type = ARM_CP_NO_RAW,
3519 .writefn = tlbi_aa64_vmalle1_write },
3520 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3521 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3522 .access = PL1_W, .type = ARM_CP_NO_RAW,
3523 .writefn = tlbi_aa64_vae1_write },
3524 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3525 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3526 .access = PL1_W, .type = ARM_CP_NO_RAW,
3527 .writefn = tlbi_aa64_vmalle1_write },
3528 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3529 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3530 .access = PL1_W, .type = ARM_CP_NO_RAW,
3531 .writefn = tlbi_aa64_vae1_write },
3532 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3533 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3534 .access = PL1_W, .type = ARM_CP_NO_RAW,
3535 .writefn = tlbi_aa64_vae1_write },
3536 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3537 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3538 .access = PL1_W, .type = ARM_CP_NO_RAW,
3539 .writefn = tlbi_aa64_vae1_write },
3540 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3541 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3542 .access = PL2_W, .type = ARM_CP_NO_RAW,
3543 .writefn = tlbi_aa64_ipas2e1is_write },
3544 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3545 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3546 .access = PL2_W, .type = ARM_CP_NO_RAW,
3547 .writefn = tlbi_aa64_ipas2e1is_write },
3548 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3549 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3550 .access = PL2_W, .type = ARM_CP_NO_RAW,
3551 .writefn = tlbi_aa64_alle1is_write },
3552 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3553 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3554 .access = PL2_W, .type = ARM_CP_NO_RAW,
3555 .writefn = tlbi_aa64_alle1is_write },
3556 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3557 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3558 .access = PL2_W, .type = ARM_CP_NO_RAW,
3559 .writefn = tlbi_aa64_ipas2e1_write },
3560 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3561 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3562 .access = PL2_W, .type = ARM_CP_NO_RAW,
3563 .writefn = tlbi_aa64_ipas2e1_write },
3564 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3565 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3566 .access = PL2_W, .type = ARM_CP_NO_RAW,
3567 .writefn = tlbi_aa64_alle1_write },
3568 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3569 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3570 .access = PL2_W, .type = ARM_CP_NO_RAW,
3571 .writefn = tlbi_aa64_alle1is_write },
3572 #ifndef CONFIG_USER_ONLY
3573 /* 64 bit address translation operations */
3574 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3575 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3576 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3577 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3578 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3579 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3580 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3581 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3582 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3583 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3584 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3585 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3586 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3587 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3588 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3589 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3590 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3591 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3592 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3593 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3594 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3595 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3596 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3597 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3598 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3599 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3600 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3601 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3602 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3603 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3604 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3605 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3606 .type = ARM_CP_ALIAS,
3607 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3608 .access = PL1_RW, .resetvalue = 0,
3609 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3610 .writefn = par_write },
3612 /* TLB invalidate last level of translation table walk */
3613 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3614 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3615 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3616 .type = ARM_CP_NO_RAW, .access = PL1_W,
3617 .writefn = tlbimvaa_is_write },
3618 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3619 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3620 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3621 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3622 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3623 .type = ARM_CP_NO_RAW, .access = PL2_W,
3624 .writefn = tlbimva_hyp_write },
3625 { .name = "TLBIMVALHIS",
3626 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3627 .type = ARM_CP_NO_RAW, .access = PL2_W,
3628 .writefn = tlbimva_hyp_is_write },
3629 { .name = "TLBIIPAS2",
3630 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3631 .type = ARM_CP_NO_RAW, .access = PL2_W,
3632 .writefn = tlbiipas2_write },
3633 { .name = "TLBIIPAS2IS",
3634 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3635 .type = ARM_CP_NO_RAW, .access = PL2_W,
3636 .writefn = tlbiipas2_is_write },
3637 { .name = "TLBIIPAS2L",
3638 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3639 .type = ARM_CP_NO_RAW, .access = PL2_W,
3640 .writefn = tlbiipas2_write },
3641 { .name = "TLBIIPAS2LIS",
3642 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3643 .type = ARM_CP_NO_RAW, .access = PL2_W,
3644 .writefn = tlbiipas2_is_write },
3645 /* 32 bit cache operations */
3646 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3647 .type = ARM_CP_NOP, .access = PL1_W },
3648 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3649 .type = ARM_CP_NOP, .access = PL1_W },
3650 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3651 .type = ARM_CP_NOP, .access = PL1_W },
3652 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3653 .type = ARM_CP_NOP, .access = PL1_W },
3654 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3655 .type = ARM_CP_NOP, .access = PL1_W },
3656 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3657 .type = ARM_CP_NOP, .access = PL1_W },
3658 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3659 .type = ARM_CP_NOP, .access = PL1_W },
3660 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3661 .type = ARM_CP_NOP, .access = PL1_W },
3662 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3663 .type = ARM_CP_NOP, .access = PL1_W },
3664 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3665 .type = ARM_CP_NOP, .access = PL1_W },
3666 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3667 .type = ARM_CP_NOP, .access = PL1_W },
3668 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3669 .type = ARM_CP_NOP, .access = PL1_W },
3670 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3671 .type = ARM_CP_NOP, .access = PL1_W },
3672 /* MMU Domain access control / MPU write buffer control */
3673 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3674 .access = PL1_RW, .resetvalue = 0,
3675 .writefn = dacr_write, .raw_writefn = raw_write,
3676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3677 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3678 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3679 .type = ARM_CP_ALIAS,
3680 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3682 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3683 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3684 .type = ARM_CP_ALIAS,
3685 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3687 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3688 /* We rely on the access checks not allowing the guest to write to the
3689 * state field when SPSel indicates that it's being used as the stack
3692 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3693 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3694 .access = PL1_RW, .accessfn = sp_el0_access,
3695 .type = ARM_CP_ALIAS,
3696 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3697 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3698 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3699 .access = PL2_RW, .type = ARM_CP_ALIAS,
3700 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3701 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3702 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3703 .type = ARM_CP_NO_RAW,
3704 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3705 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3706 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3707 .type = ARM_CP_ALIAS,
3708 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3709 .access = PL2_RW, .accessfn = fpexc32_access },
3710 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3711 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3712 .access = PL2_RW, .resetvalue = 0,
3713 .writefn = dacr_write, .raw_writefn = raw_write,
3714 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3715 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3716 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3717 .access = PL2_RW, .resetvalue = 0,
3718 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3719 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3720 .type = ARM_CP_ALIAS,
3721 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3723 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3724 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3725 .type = ARM_CP_ALIAS,
3726 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3728 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3729 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3730 .type = ARM_CP_ALIAS,
3731 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3733 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3734 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3735 .type = ARM_CP_ALIAS,
3736 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3738 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3739 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3740 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3742 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3743 { .name = "SDCR", .type = ARM_CP_ALIAS,
3744 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3745 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3746 .writefn = sdcr_write,
3747 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3753 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3754 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3756 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3757 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3758 .type = ARM_CP_NO_RAW,
3759 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3761 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3762 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3763 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3764 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3765 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3766 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3767 .access = PL2_RW, .type = ARM_CP_CONST,
3769 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3770 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3771 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3772 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3773 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3774 .access = PL2_RW, .type = ARM_CP_CONST,
3776 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3777 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3778 .access = PL2_RW, .type = ARM_CP_CONST,
3780 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3781 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3782 .access = PL2_RW, .type = ARM_CP_CONST,
3784 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3785 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3786 .access = PL2_RW, .type = ARM_CP_CONST,
3788 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3789 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3790 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3791 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3792 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3793 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3794 .type = ARM_CP_CONST, .resetvalue = 0 },
3795 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3796 .cp = 15, .opc1 = 6, .crm = 2,
3797 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3798 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3799 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3800 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3801 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3802 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3803 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3804 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3805 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3806 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3807 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3808 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3809 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3810 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3811 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3812 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3814 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3815 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3816 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3817 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3818 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3819 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3820 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3821 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3823 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3824 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3825 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3826 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3827 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3829 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3830 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3831 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3832 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3833 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3834 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3835 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3836 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3837 .access = PL2_RW, .accessfn = access_tda,
3838 .type = ARM_CP_CONST, .resetvalue = 0 },
3839 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3840 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3841 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3842 .type = ARM_CP_CONST, .resetvalue = 0 },
3843 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3844 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3845 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3846 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3847 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3848 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3849 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3850 .type = ARM_CP_CONST,
3851 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3852 .access = PL2_RW, .resetvalue = 0 },
3856 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3858 ARMCPU *cpu = arm_env_get_cpu(env);
3859 uint64_t valid_mask = HCR_MASK;
3861 if (arm_feature(env, ARM_FEATURE_EL3)) {
3862 valid_mask &= ~HCR_HCD;
3863 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3864 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3865 * However, if we're using the SMC PSCI conduit then QEMU is
3866 * effectively acting like EL3 firmware and so the guest at
3867 * EL2 should retain the ability to prevent EL1 from being
3868 * able to make SMC calls into the ersatz firmware, so in
3869 * that case HCR.TSC should be read/write.
3871 valid_mask &= ~HCR_TSC;
3874 /* Clear RES0 bits. */
3875 value &= valid_mask;
3877 /* These bits change the MMU setup:
3878 * HCR_VM enables stage 2 translation
3879 * HCR_PTW forbids certain page-table setups
3880 * HCR_DC Disables stage1 and enables stage2 translation
3882 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3883 tlb_flush(CPU(cpu));
3885 raw_write(env, ri, value);
3888 static const ARMCPRegInfo el2_cp_reginfo[] = {
3889 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3890 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3891 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3892 .writefn = hcr_write },
3893 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3894 .type = ARM_CP_ALIAS,
3895 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3897 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3898 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3899 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3900 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3901 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3902 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3903 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3904 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3905 .type = ARM_CP_ALIAS,
3906 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3908 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
3909 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3910 .type = ARM_CP_ALIAS,
3911 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3913 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3914 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3915 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3916 .access = PL2_RW, .writefn = vbar_write,
3917 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3919 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3920 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3921 .access = PL3_RW, .type = ARM_CP_ALIAS,
3922 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3923 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3924 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3925 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3926 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3927 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3928 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3929 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3931 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3932 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3933 .access = PL2_RW, .type = ARM_CP_ALIAS,
3934 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3935 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3936 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3937 .access = PL2_RW, .type = ARM_CP_CONST,
3939 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3940 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3941 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3942 .access = PL2_RW, .type = ARM_CP_CONST,
3944 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3945 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3946 .access = PL2_RW, .type = ARM_CP_CONST,
3948 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3949 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3950 .access = PL2_RW, .type = ARM_CP_CONST,
3952 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3953 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3955 /* no .writefn needed as this can't cause an ASID change;
3956 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3958 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3959 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3960 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3961 .type = ARM_CP_ALIAS,
3962 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3963 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3964 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3965 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3967 /* no .writefn needed as this can't cause an ASID change;
3968 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3970 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3971 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3972 .cp = 15, .opc1 = 6, .crm = 2,
3973 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3974 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3975 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3976 .writefn = vttbr_write },
3977 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3978 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3979 .access = PL2_RW, .writefn = vttbr_write,
3980 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3981 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3982 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3983 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3984 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3985 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3986 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3987 .access = PL2_RW, .resetvalue = 0,
3988 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3989 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3990 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3991 .access = PL2_RW, .resetvalue = 0,
3992 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3993 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3994 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3995 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3996 { .name = "TLBIALLNSNH",
3997 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3998 .type = ARM_CP_NO_RAW, .access = PL2_W,
3999 .writefn = tlbiall_nsnh_write },
4000 { .name = "TLBIALLNSNHIS",
4001 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4002 .type = ARM_CP_NO_RAW, .access = PL2_W,
4003 .writefn = tlbiall_nsnh_is_write },
4004 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4005 .type = ARM_CP_NO_RAW, .access = PL2_W,
4006 .writefn = tlbiall_hyp_write },
4007 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4008 .type = ARM_CP_NO_RAW, .access = PL2_W,
4009 .writefn = tlbiall_hyp_is_write },
4010 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4011 .type = ARM_CP_NO_RAW, .access = PL2_W,
4012 .writefn = tlbimva_hyp_write },
4013 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4014 .type = ARM_CP_NO_RAW, .access = PL2_W,
4015 .writefn = tlbimva_hyp_is_write },
4016 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4018 .type = ARM_CP_NO_RAW, .access = PL2_W,
4019 .writefn = tlbi_aa64_alle2_write },
4020 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4021 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4022 .type = ARM_CP_NO_RAW, .access = PL2_W,
4023 .writefn = tlbi_aa64_vae2_write },
4024 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4025 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4026 .access = PL2_W, .type = ARM_CP_NO_RAW,
4027 .writefn = tlbi_aa64_vae2_write },
4028 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4029 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4030 .access = PL2_W, .type = ARM_CP_NO_RAW,
4031 .writefn = tlbi_aa64_alle2is_write },
4032 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4034 .type = ARM_CP_NO_RAW, .access = PL2_W,
4035 .writefn = tlbi_aa64_vae2is_write },
4036 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4037 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4038 .access = PL2_W, .type = ARM_CP_NO_RAW,
4039 .writefn = tlbi_aa64_vae2is_write },
4040 #ifndef CONFIG_USER_ONLY
4041 /* Unlike the other EL2-related AT operations, these must
4042 * UNDEF from EL3 if EL2 is not implemented, which is why we
4043 * define them here rather than with the rest of the AT ops.
4045 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4046 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4047 .access = PL2_W, .accessfn = at_s1e2_access,
4048 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4049 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4050 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4051 .access = PL2_W, .accessfn = at_s1e2_access,
4052 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4053 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4054 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4055 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4056 * to behave as if SCR.NS was 1.
4058 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4060 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4061 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4063 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4064 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4065 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4066 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4067 * reset values as IMPDEF. We choose to reset to 3 to comply with
4068 * both ARMv7 and ARMv8.
4070 .access = PL2_RW, .resetvalue = 3,
4071 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4072 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4073 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4074 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4075 .writefn = gt_cntvoff_write,
4076 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4077 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4078 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4079 .writefn = gt_cntvoff_write,
4080 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4081 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4082 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4084 .type = ARM_CP_IO, .access = PL2_RW,
4085 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4086 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4087 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4088 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4089 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4090 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4091 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4092 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4093 .resetfn = gt_hyp_timer_reset,
4094 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4095 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4097 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4101 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4103 /* The only field of MDCR_EL2 that has a defined architectural reset value
4104 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4105 * don't impelment any PMU event counters, so using zero as a reset
4106 * value for MDCR_EL2 is okay
4108 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4109 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4110 .access = PL2_RW, .resetvalue = 0,
4111 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4112 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4113 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4114 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4115 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4116 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4117 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4119 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4120 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4121 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4123 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4127 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4130 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4131 * At Secure EL1 it traps to EL3.
4133 if (arm_current_el(env) == 3) {
4134 return CP_ACCESS_OK;
4136 if (arm_is_secure_below_el3(env)) {
4137 return CP_ACCESS_TRAP_EL3;
4139 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4141 return CP_ACCESS_OK;
4143 return CP_ACCESS_TRAP_UNCATEGORIZED;
4146 static const ARMCPRegInfo el3_cp_reginfo[] = {
4147 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4148 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4149 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4150 .resetvalue = 0, .writefn = scr_write },
4151 { .name = "SCR", .type = ARM_CP_ALIAS,
4152 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4153 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4154 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4155 .writefn = scr_write },
4156 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4157 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4158 .access = PL3_RW, .resetvalue = 0,
4159 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4161 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4162 .access = PL3_RW, .resetvalue = 0,
4163 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4164 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4165 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4166 .writefn = vbar_write, .resetvalue = 0,
4167 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4168 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4169 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4170 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4171 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4172 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4173 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4175 /* no .writefn needed as this can't cause an ASID change;
4176 * we must provide a .raw_writefn and .resetfn because we handle
4177 * reset and migration for the AArch32 TTBCR(S), which might be
4178 * using mask and base_mask.
4180 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4181 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4182 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4183 .type = ARM_CP_ALIAS,
4184 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4186 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4187 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4188 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4189 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4190 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4191 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4192 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4193 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4194 .type = ARM_CP_ALIAS,
4195 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4197 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4198 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4199 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4200 .access = PL3_RW, .writefn = vbar_write,
4201 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4203 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4204 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4205 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4206 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4207 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4208 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4209 .access = PL3_RW, .resetvalue = 0,
4210 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4211 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4212 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4213 .access = PL3_RW, .type = ARM_CP_CONST,
4215 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4216 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4217 .access = PL3_RW, .type = ARM_CP_CONST,
4219 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4220 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4221 .access = PL3_RW, .type = ARM_CP_CONST,
4223 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4224 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4225 .access = PL3_W, .type = ARM_CP_NO_RAW,
4226 .writefn = tlbi_aa64_alle3is_write },
4227 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4228 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4229 .access = PL3_W, .type = ARM_CP_NO_RAW,
4230 .writefn = tlbi_aa64_vae3is_write },
4231 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4232 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4233 .access = PL3_W, .type = ARM_CP_NO_RAW,
4234 .writefn = tlbi_aa64_vae3is_write },
4235 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4236 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4237 .access = PL3_W, .type = ARM_CP_NO_RAW,
4238 .writefn = tlbi_aa64_alle3_write },
4239 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4240 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4241 .access = PL3_W, .type = ARM_CP_NO_RAW,
4242 .writefn = tlbi_aa64_vae3_write },
4243 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4244 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4245 .access = PL3_W, .type = ARM_CP_NO_RAW,
4246 .writefn = tlbi_aa64_vae3_write },
4250 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4253 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4254 * but the AArch32 CTR has its own reginfo struct)
4256 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4257 return CP_ACCESS_TRAP;
4259 return CP_ACCESS_OK;
4262 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4265 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4266 * read via a bit in OSLSR_EL1.
4270 if (ri->state == ARM_CP_STATE_AA32) {
4271 oslock = (value == 0xC5ACCE55);
4276 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4279 static const ARMCPRegInfo debug_cp_reginfo[] = {
4280 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4281 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4282 * unlike DBGDRAR it is never accessible from EL0.
4283 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4286 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4287 .access = PL0_R, .accessfn = access_tdra,
4288 .type = ARM_CP_CONST, .resetvalue = 0 },
4289 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4290 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4291 .access = PL1_R, .accessfn = access_tdra,
4292 .type = ARM_CP_CONST, .resetvalue = 0 },
4293 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4294 .access = PL0_R, .accessfn = access_tdra,
4295 .type = ARM_CP_CONST, .resetvalue = 0 },
4296 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4297 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4298 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4299 .access = PL1_RW, .accessfn = access_tda,
4300 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4302 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4303 * We don't implement the configurable EL0 access.
4305 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4306 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4307 .type = ARM_CP_ALIAS,
4308 .access = PL1_R, .accessfn = access_tda,
4309 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4310 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4311 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4312 .access = PL1_W, .type = ARM_CP_NO_RAW,
4313 .accessfn = access_tdosa,
4314 .writefn = oslar_write },
4315 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4316 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4317 .access = PL1_R, .resetvalue = 10,
4318 .accessfn = access_tdosa,
4319 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4320 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4321 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4322 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4323 .access = PL1_RW, .accessfn = access_tdosa,
4324 .type = ARM_CP_NOP },
4325 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4326 * implement vector catch debug events yet.
4329 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4330 .access = PL1_RW, .accessfn = access_tda,
4331 .type = ARM_CP_NOP },
4332 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4333 * to save and restore a 32-bit guest's DBGVCR)
4335 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4336 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4337 .access = PL2_RW, .accessfn = access_tda,
4338 .type = ARM_CP_NOP },
4339 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4340 * Channel but Linux may try to access this register. The 32-bit
4341 * alias is DBGDCCINT.
4343 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4344 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4345 .access = PL1_RW, .accessfn = access_tda,
4346 .type = ARM_CP_NOP },
4350 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4351 /* 64 bit access versions of the (dummy) debug registers */
4352 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4353 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4354 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4355 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4359 /* Return the exception level to which SVE-disabled exceptions should
4360 * be taken, or 0 if SVE is enabled.
4362 static int sve_exception_el(CPUARMState *env)
4364 #ifndef CONFIG_USER_ONLY
4365 unsigned current_el = arm_current_el(env);
4367 /* The CPACR.ZEN controls traps to EL1:
4368 * 0, 2 : trap EL0 and EL1 accesses
4369 * 1 : trap only EL0 accesses
4370 * 3 : trap no accesses
4372 switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4374 if (current_el <= 1) {
4375 /* Trap to PL1, which might be EL1 or EL3 */
4376 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4383 if (current_el == 0) {
4391 /* Similarly for CPACR.FPEN, after having checked ZEN. */
4392 switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4394 if (current_el <= 1) {
4395 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4402 if (current_el == 0) {
4410 /* CPTR_EL2. Check both TZ and TFP. */
4412 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4413 && !arm_is_secure_below_el3(env)) {
4417 /* CPTR_EL3. Check both EZ and TFP. */
4418 if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4419 || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4426 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4429 /* Bits other than [3:0] are RAZ/WI. */
4430 raw_write(env, ri, value & 0xf);
4433 static const ARMCPRegInfo zcr_el1_reginfo = {
4434 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4435 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4436 .access = PL1_RW, .type = ARM_CP_SVE,
4437 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4438 .writefn = zcr_write, .raw_writefn = raw_write
4441 static const ARMCPRegInfo zcr_el2_reginfo = {
4442 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4443 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4444 .access = PL2_RW, .type = ARM_CP_SVE,
4445 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4446 .writefn = zcr_write, .raw_writefn = raw_write
4449 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4450 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4451 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4452 .access = PL2_RW, .type = ARM_CP_SVE,
4453 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4456 static const ARMCPRegInfo zcr_el3_reginfo = {
4457 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4458 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4459 .access = PL3_RW, .type = ARM_CP_SVE,
4460 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4461 .writefn = zcr_write, .raw_writefn = raw_write
4464 void hw_watchpoint_update(ARMCPU *cpu, int n)
4466 CPUARMState *env = &cpu->env;
4468 vaddr wvr = env->cp15.dbgwvr[n];
4469 uint64_t wcr = env->cp15.dbgwcr[n];
4471 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4473 if (env->cpu_watchpoint[n]) {
4474 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4475 env->cpu_watchpoint[n] = NULL;
4478 if (!extract64(wcr, 0, 1)) {
4479 /* E bit clear : watchpoint disabled */
4483 switch (extract64(wcr, 3, 2)) {
4485 /* LSC 00 is reserved and must behave as if the wp is disabled */
4488 flags |= BP_MEM_READ;
4491 flags |= BP_MEM_WRITE;
4494 flags |= BP_MEM_ACCESS;
4498 /* Attempts to use both MASK and BAS fields simultaneously are
4499 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4500 * thus generating a watchpoint for every byte in the masked region.
4502 mask = extract64(wcr, 24, 4);
4503 if (mask == 1 || mask == 2) {
4504 /* Reserved values of MASK; we must act as if the mask value was
4505 * some non-reserved value, or as if the watchpoint were disabled.
4506 * We choose the latter.
4510 /* Watchpoint covers an aligned area up to 2GB in size */
4512 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4513 * whether the watchpoint fires when the unmasked bits match; we opt
4514 * to generate the exceptions.
4518 /* Watchpoint covers bytes defined by the byte address select bits */
4519 int bas = extract64(wcr, 5, 8);
4523 /* This must act as if the watchpoint is disabled */
4527 if (extract64(wvr, 2, 1)) {
4528 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4529 * ignored, and BAS[3:0] define which bytes to watch.
4533 /* The BAS bits are supposed to be programmed to indicate a contiguous
4534 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4535 * we fire for each byte in the word/doubleword addressed by the WVR.
4536 * We choose to ignore any non-zero bits after the first range of 1s.
4538 basstart = ctz32(bas);
4539 len = cto32(bas >> basstart);
4543 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4544 &env->cpu_watchpoint[n]);
4547 void hw_watchpoint_update_all(ARMCPU *cpu)
4550 CPUARMState *env = &cpu->env;
4552 /* Completely clear out existing QEMU watchpoints and our array, to
4553 * avoid possible stale entries following migration load.
4555 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4556 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4558 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4559 hw_watchpoint_update(cpu, i);
4563 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4566 ARMCPU *cpu = arm_env_get_cpu(env);
4569 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4570 * register reads and behaves as if values written are sign extended.
4571 * Bits [1:0] are RES0.
4573 value = sextract64(value, 0, 49) & ~3ULL;
4575 raw_write(env, ri, value);
4576 hw_watchpoint_update(cpu, i);
4579 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4582 ARMCPU *cpu = arm_env_get_cpu(env);
4585 raw_write(env, ri, value);
4586 hw_watchpoint_update(cpu, i);
4589 void hw_breakpoint_update(ARMCPU *cpu, int n)
4591 CPUARMState *env = &cpu->env;
4592 uint64_t bvr = env->cp15.dbgbvr[n];
4593 uint64_t bcr = env->cp15.dbgbcr[n];
4598 if (env->cpu_breakpoint[n]) {
4599 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4600 env->cpu_breakpoint[n] = NULL;
4603 if (!extract64(bcr, 0, 1)) {
4604 /* E bit clear : watchpoint disabled */
4608 bt = extract64(bcr, 20, 4);
4611 case 4: /* unlinked address mismatch (reserved if AArch64) */
4612 case 5: /* linked address mismatch (reserved if AArch64) */
4613 qemu_log_mask(LOG_UNIMP,
4614 "arm: address mismatch breakpoint types not implemented\n");
4616 case 0: /* unlinked address match */
4617 case 1: /* linked address match */
4619 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4620 * we behave as if the register was sign extended. Bits [1:0] are
4621 * RES0. The BAS field is used to allow setting breakpoints on 16
4622 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4623 * a bp will fire if the addresses covered by the bp and the addresses
4624 * covered by the insn overlap but the insn doesn't start at the
4625 * start of the bp address range. We choose to require the insn and
4626 * the bp to have the same address. The constraints on writing to
4627 * BAS enforced in dbgbcr_write mean we have only four cases:
4628 * 0b0000 => no breakpoint
4629 * 0b0011 => breakpoint on addr
4630 * 0b1100 => breakpoint on addr + 2
4631 * 0b1111 => breakpoint on addr
4632 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4634 int bas = extract64(bcr, 5, 4);
4635 addr = sextract64(bvr, 0, 49) & ~3ULL;
4644 case 2: /* unlinked context ID match */
4645 case 8: /* unlinked VMID match (reserved if no EL2) */
4646 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4647 qemu_log_mask(LOG_UNIMP,
4648 "arm: unlinked context breakpoint types not implemented\n");
4650 case 9: /* linked VMID match (reserved if no EL2) */
4651 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4652 case 3: /* linked context ID match */
4654 /* We must generate no events for Linked context matches (unless
4655 * they are linked to by some other bp/wp, which is handled in
4656 * updates for the linking bp/wp). We choose to also generate no events
4657 * for reserved values.
4662 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4665 void hw_breakpoint_update_all(ARMCPU *cpu)
4668 CPUARMState *env = &cpu->env;
4670 /* Completely clear out existing QEMU breakpoints and our array, to
4671 * avoid possible stale entries following migration load.
4673 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4674 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4676 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4677 hw_breakpoint_update(cpu, i);
4681 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4684 ARMCPU *cpu = arm_env_get_cpu(env);
4687 raw_write(env, ri, value);
4688 hw_breakpoint_update(cpu, i);
4691 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4694 ARMCPU *cpu = arm_env_get_cpu(env);
4697 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4700 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4701 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4703 raw_write(env, ri, value);
4704 hw_breakpoint_update(cpu, i);
4707 static void define_debug_regs(ARMCPU *cpu)
4709 /* Define v7 and v8 architectural debug registers.
4710 * These are just dummy implementations for now.
4713 int wrps, brps, ctx_cmps;
4714 ARMCPRegInfo dbgdidr = {
4715 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4716 .access = PL0_R, .accessfn = access_tda,
4717 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4720 /* Note that all these register fields hold "number of Xs minus 1". */
4721 brps = extract32(cpu->dbgdidr, 24, 4);
4722 wrps = extract32(cpu->dbgdidr, 28, 4);
4723 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4725 assert(ctx_cmps <= brps);
4727 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4728 * of the debug registers such as number of breakpoints;
4729 * check that if they both exist then they agree.
4731 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4732 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4733 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4734 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4737 define_one_arm_cp_reg(cpu, &dbgdidr);
4738 define_arm_cp_regs(cpu, debug_cp_reginfo);
4740 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4741 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4744 for (i = 0; i < brps + 1; i++) {
4745 ARMCPRegInfo dbgregs[] = {
4746 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4747 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4748 .access = PL1_RW, .accessfn = access_tda,
4749 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4750 .writefn = dbgbvr_write, .raw_writefn = raw_write
4752 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4753 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4754 .access = PL1_RW, .accessfn = access_tda,
4755 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4756 .writefn = dbgbcr_write, .raw_writefn = raw_write
4760 define_arm_cp_regs(cpu, dbgregs);
4763 for (i = 0; i < wrps + 1; i++) {
4764 ARMCPRegInfo dbgregs[] = {
4765 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4766 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4767 .access = PL1_RW, .accessfn = access_tda,
4768 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4769 .writefn = dbgwvr_write, .raw_writefn = raw_write
4771 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4772 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4773 .access = PL1_RW, .accessfn = access_tda,
4774 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4775 .writefn = dbgwcr_write, .raw_writefn = raw_write
4779 define_arm_cp_regs(cpu, dbgregs);
4783 /* We don't know until after realize whether there's a GICv3
4784 * attached, and that is what registers the gicv3 sysregs.
4785 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4788 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4790 ARMCPU *cpu = arm_env_get_cpu(env);
4791 uint64_t pfr1 = cpu->id_pfr1;
4793 if (env->gicv3state) {
4799 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4801 ARMCPU *cpu = arm_env_get_cpu(env);
4802 uint64_t pfr0 = cpu->id_aa64pfr0;
4804 if (env->gicv3state) {
4810 void register_cp_regs_for_features(ARMCPU *cpu)
4812 /* Register all the coprocessor registers based on feature bits */
4813 CPUARMState *env = &cpu->env;
4814 if (arm_feature(env, ARM_FEATURE_M)) {
4815 /* M profile has no coprocessor registers */
4819 define_arm_cp_regs(cpu, cp_reginfo);
4820 if (!arm_feature(env, ARM_FEATURE_V8)) {
4821 /* Must go early as it is full of wildcards that may be
4822 * overridden by later definitions.
4824 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4827 if (arm_feature(env, ARM_FEATURE_V6)) {
4828 /* The ID registers all have impdef reset values */
4829 ARMCPRegInfo v6_idregs[] = {
4830 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4832 .access = PL1_R, .type = ARM_CP_CONST,
4833 .resetvalue = cpu->id_pfr0 },
4834 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4835 * the value of the GIC field until after we define these regs.
4837 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4839 .access = PL1_R, .type = ARM_CP_NO_RAW,
4840 .readfn = id_pfr1_read,
4841 .writefn = arm_cp_write_ignore },
4842 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4843 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4844 .access = PL1_R, .type = ARM_CP_CONST,
4845 .resetvalue = cpu->id_dfr0 },
4846 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4848 .access = PL1_R, .type = ARM_CP_CONST,
4849 .resetvalue = cpu->id_afr0 },
4850 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4852 .access = PL1_R, .type = ARM_CP_CONST,
4853 .resetvalue = cpu->id_mmfr0 },
4854 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4856 .access = PL1_R, .type = ARM_CP_CONST,
4857 .resetvalue = cpu->id_mmfr1 },
4858 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4859 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4860 .access = PL1_R, .type = ARM_CP_CONST,
4861 .resetvalue = cpu->id_mmfr2 },
4862 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4863 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4864 .access = PL1_R, .type = ARM_CP_CONST,
4865 .resetvalue = cpu->id_mmfr3 },
4866 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4867 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4868 .access = PL1_R, .type = ARM_CP_CONST,
4869 .resetvalue = cpu->id_isar0 },
4870 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4872 .access = PL1_R, .type = ARM_CP_CONST,
4873 .resetvalue = cpu->id_isar1 },
4874 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4876 .access = PL1_R, .type = ARM_CP_CONST,
4877 .resetvalue = cpu->id_isar2 },
4878 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4879 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4880 .access = PL1_R, .type = ARM_CP_CONST,
4881 .resetvalue = cpu->id_isar3 },
4882 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4883 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4884 .access = PL1_R, .type = ARM_CP_CONST,
4885 .resetvalue = cpu->id_isar4 },
4886 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4888 .access = PL1_R, .type = ARM_CP_CONST,
4889 .resetvalue = cpu->id_isar5 },
4890 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4892 .access = PL1_R, .type = ARM_CP_CONST,
4893 .resetvalue = cpu->id_mmfr4 },
4894 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
4895 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4896 .access = PL1_R, .type = ARM_CP_CONST,
4897 .resetvalue = cpu->id_isar6 },
4900 define_arm_cp_regs(cpu, v6_idregs);
4901 define_arm_cp_regs(cpu, v6_cp_reginfo);
4903 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4905 if (arm_feature(env, ARM_FEATURE_V6K)) {
4906 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4908 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4909 !arm_feature(env, ARM_FEATURE_PMSA)) {
4910 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4912 if (arm_feature(env, ARM_FEATURE_V7)) {
4913 /* v7 performance monitor control register: same implementor
4914 * field as main ID register, and we implement only the cycle
4917 #ifndef CONFIG_USER_ONLY
4918 ARMCPRegInfo pmcr = {
4919 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4921 .type = ARM_CP_IO | ARM_CP_ALIAS,
4922 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4923 .accessfn = pmreg_access, .writefn = pmcr_write,
4924 .raw_writefn = raw_write,
4926 ARMCPRegInfo pmcr64 = {
4927 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4929 .access = PL0_RW, .accessfn = pmreg_access,
4931 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4932 .resetvalue = cpu->midr & 0xff000000,
4933 .writefn = pmcr_write, .raw_writefn = raw_write,
4935 define_one_arm_cp_reg(cpu, &pmcr);
4936 define_one_arm_cp_reg(cpu, &pmcr64);
4938 ARMCPRegInfo clidr = {
4939 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4940 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4941 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4943 define_one_arm_cp_reg(cpu, &clidr);
4944 define_arm_cp_regs(cpu, v7_cp_reginfo);
4945 define_debug_regs(cpu);
4947 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4949 if (arm_feature(env, ARM_FEATURE_V8)) {
4950 /* AArch64 ID registers, which all have impdef reset values.
4951 * Note that within the ID register ranges the unused slots
4952 * must all RAZ, not UNDEF; future architecture versions may
4953 * define new registers here.
4955 ARMCPRegInfo v8_idregs[] = {
4956 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4957 * know the right value for the GIC field until after we
4958 * define these regs.
4960 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4962 .access = PL1_R, .type = ARM_CP_NO_RAW,
4963 .readfn = id_aa64pfr0_read,
4964 .writefn = arm_cp_write_ignore },
4965 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4967 .access = PL1_R, .type = ARM_CP_CONST,
4968 .resetvalue = cpu->id_aa64pfr1},
4969 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4971 .access = PL1_R, .type = ARM_CP_CONST,
4973 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4975 .access = PL1_R, .type = ARM_CP_CONST,
4977 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4979 .access = PL1_R, .type = ARM_CP_CONST,
4981 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4983 .access = PL1_R, .type = ARM_CP_CONST,
4985 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4987 .access = PL1_R, .type = ARM_CP_CONST,
4989 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4991 .access = PL1_R, .type = ARM_CP_CONST,
4993 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4995 .access = PL1_R, .type = ARM_CP_CONST,
4996 .resetvalue = cpu->id_aa64dfr0 },
4997 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4999 .access = PL1_R, .type = ARM_CP_CONST,
5000 .resetvalue = cpu->id_aa64dfr1 },
5001 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5003 .access = PL1_R, .type = ARM_CP_CONST,
5005 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5007 .access = PL1_R, .type = ARM_CP_CONST,
5009 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5011 .access = PL1_R, .type = ARM_CP_CONST,
5012 .resetvalue = cpu->id_aa64afr0 },
5013 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5015 .access = PL1_R, .type = ARM_CP_CONST,
5016 .resetvalue = cpu->id_aa64afr1 },
5017 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5019 .access = PL1_R, .type = ARM_CP_CONST,
5021 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5023 .access = PL1_R, .type = ARM_CP_CONST,
5025 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5027 .access = PL1_R, .type = ARM_CP_CONST,
5028 .resetvalue = cpu->id_aa64isar0 },
5029 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5031 .access = PL1_R, .type = ARM_CP_CONST,
5032 .resetvalue = cpu->id_aa64isar1 },
5033 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5035 .access = PL1_R, .type = ARM_CP_CONST,
5037 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5039 .access = PL1_R, .type = ARM_CP_CONST,
5041 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5043 .access = PL1_R, .type = ARM_CP_CONST,
5045 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5047 .access = PL1_R, .type = ARM_CP_CONST,
5049 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5051 .access = PL1_R, .type = ARM_CP_CONST,
5053 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5055 .access = PL1_R, .type = ARM_CP_CONST,
5057 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5059 .access = PL1_R, .type = ARM_CP_CONST,
5060 .resetvalue = cpu->id_aa64mmfr0 },
5061 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5063 .access = PL1_R, .type = ARM_CP_CONST,
5064 .resetvalue = cpu->id_aa64mmfr1 },
5065 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5067 .access = PL1_R, .type = ARM_CP_CONST,
5069 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5071 .access = PL1_R, .type = ARM_CP_CONST,
5073 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5075 .access = PL1_R, .type = ARM_CP_CONST,
5077 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5078 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5079 .access = PL1_R, .type = ARM_CP_CONST,
5081 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5082 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5083 .access = PL1_R, .type = ARM_CP_CONST,
5085 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5086 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5087 .access = PL1_R, .type = ARM_CP_CONST,
5089 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5091 .access = PL1_R, .type = ARM_CP_CONST,
5092 .resetvalue = cpu->mvfr0 },
5093 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5095 .access = PL1_R, .type = ARM_CP_CONST,
5096 .resetvalue = cpu->mvfr1 },
5097 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5098 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5099 .access = PL1_R, .type = ARM_CP_CONST,
5100 .resetvalue = cpu->mvfr2 },
5101 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5103 .access = PL1_R, .type = ARM_CP_CONST,
5105 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5106 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5107 .access = PL1_R, .type = ARM_CP_CONST,
5109 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5110 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5111 .access = PL1_R, .type = ARM_CP_CONST,
5113 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5114 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5115 .access = PL1_R, .type = ARM_CP_CONST,
5117 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5118 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5119 .access = PL1_R, .type = ARM_CP_CONST,
5121 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5122 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5123 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5124 .resetvalue = cpu->pmceid0 },
5125 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5126 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5127 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5128 .resetvalue = cpu->pmceid0 },
5129 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5130 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5131 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5132 .resetvalue = cpu->pmceid1 },
5133 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5134 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5135 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5136 .resetvalue = cpu->pmceid1 },
5139 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5140 if (!arm_feature(env, ARM_FEATURE_EL3) &&
5141 !arm_feature(env, ARM_FEATURE_EL2)) {
5142 ARMCPRegInfo rvbar = {
5143 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5144 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5145 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5147 define_one_arm_cp_reg(cpu, &rvbar);
5149 define_arm_cp_regs(cpu, v8_idregs);
5150 define_arm_cp_regs(cpu, v8_cp_reginfo);
5152 if (arm_feature(env, ARM_FEATURE_EL2)) {
5153 uint64_t vmpidr_def = mpidr_read_val(env);
5154 ARMCPRegInfo vpidr_regs[] = {
5155 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5156 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5157 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5158 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5159 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5160 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5161 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5162 .access = PL2_RW, .resetvalue = cpu->midr,
5163 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5164 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5165 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5166 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5167 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5168 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5169 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5170 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5172 .resetvalue = vmpidr_def,
5173 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5176 define_arm_cp_regs(cpu, vpidr_regs);
5177 define_arm_cp_regs(cpu, el2_cp_reginfo);
5178 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5179 if (!arm_feature(env, ARM_FEATURE_EL3)) {
5180 ARMCPRegInfo rvbar = {
5181 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5182 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5183 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5185 define_one_arm_cp_reg(cpu, &rvbar);
5188 /* If EL2 is missing but higher ELs are enabled, we need to
5189 * register the no_el2 reginfos.
5191 if (arm_feature(env, ARM_FEATURE_EL3)) {
5192 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5193 * of MIDR_EL1 and MPIDR_EL1.
5195 ARMCPRegInfo vpidr_regs[] = {
5196 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5197 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5198 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5199 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5200 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5201 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5202 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5203 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5204 .type = ARM_CP_NO_RAW,
5205 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5208 define_arm_cp_regs(cpu, vpidr_regs);
5209 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5212 if (arm_feature(env, ARM_FEATURE_EL3)) {
5213 define_arm_cp_regs(cpu, el3_cp_reginfo);
5214 ARMCPRegInfo el3_regs[] = {
5215 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5216 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5217 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5218 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5219 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5221 .raw_writefn = raw_write, .writefn = sctlr_write,
5222 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5223 .resetvalue = cpu->reset_sctlr },
5227 define_arm_cp_regs(cpu, el3_regs);
5229 /* The behaviour of NSACR is sufficiently various that we don't
5230 * try to describe it in a single reginfo:
5231 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5232 * reads as constant 0xc00 from NS EL1 and NS EL2
5233 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5234 * if v7 without EL3, register doesn't exist
5235 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5237 if (arm_feature(env, ARM_FEATURE_EL3)) {
5238 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5239 ARMCPRegInfo nsacr = {
5240 .name = "NSACR", .type = ARM_CP_CONST,
5241 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5242 .access = PL1_RW, .accessfn = nsacr_access,
5245 define_one_arm_cp_reg(cpu, &nsacr);
5247 ARMCPRegInfo nsacr = {
5249 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5250 .access = PL3_RW | PL1_R,
5252 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5254 define_one_arm_cp_reg(cpu, &nsacr);
5257 if (arm_feature(env, ARM_FEATURE_V8)) {
5258 ARMCPRegInfo nsacr = {
5259 .name = "NSACR", .type = ARM_CP_CONST,
5260 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5264 define_one_arm_cp_reg(cpu, &nsacr);
5268 if (arm_feature(env, ARM_FEATURE_PMSA)) {
5269 if (arm_feature(env, ARM_FEATURE_V6)) {
5270 /* PMSAv6 not implemented */
5271 assert(arm_feature(env, ARM_FEATURE_V7));
5272 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5273 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5275 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5278 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5279 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5281 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5282 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5284 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5285 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5287 if (arm_feature(env, ARM_FEATURE_VAPA)) {
5288 define_arm_cp_regs(cpu, vapa_cp_reginfo);
5290 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5291 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5293 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5294 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5296 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5297 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5299 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5300 define_arm_cp_regs(cpu, omap_cp_reginfo);
5302 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5303 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5305 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5306 define_arm_cp_regs(cpu, xscale_cp_reginfo);
5308 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5309 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5311 if (arm_feature(env, ARM_FEATURE_LPAE)) {
5312 define_arm_cp_regs(cpu, lpae_cp_reginfo);
5314 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5315 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5316 * be read-only (ie write causes UNDEF exception).
5319 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5320 /* Pre-v8 MIDR space.
5321 * Note that the MIDR isn't a simple constant register because
5322 * of the TI925 behaviour where writes to another register can
5323 * cause the MIDR value to change.
5325 * Unimplemented registers in the c15 0 0 0 space default to
5326 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5327 * and friends override accordingly.
5330 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5331 .access = PL1_R, .resetvalue = cpu->midr,
5332 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5333 .readfn = midr_read,
5334 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5335 .type = ARM_CP_OVERRIDE },
5336 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5338 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5339 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5341 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5342 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5344 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5345 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5347 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5348 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5350 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5351 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5354 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5355 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5356 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5357 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5358 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5359 .readfn = midr_read },
5360 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5361 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5362 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5363 .access = PL1_R, .resetvalue = cpu->midr },
5364 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5365 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5366 .access = PL1_R, .resetvalue = cpu->midr },
5367 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5368 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5369 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5372 ARMCPRegInfo id_cp_reginfo[] = {
5373 /* These are common to v8 and pre-v8 */
5375 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5376 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5377 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5378 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5379 .access = PL0_R, .accessfn = ctr_el0_access,
5380 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5381 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5383 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5387 /* TLBTR is specific to VMSA */
5388 ARMCPRegInfo id_tlbtr_reginfo = {
5390 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5391 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5393 /* MPUIR is specific to PMSA V6+ */
5394 ARMCPRegInfo id_mpuir_reginfo = {
5396 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5397 .access = PL1_R, .type = ARM_CP_CONST,
5398 .resetvalue = cpu->pmsav7_dregion << 8
5400 ARMCPRegInfo crn0_wi_reginfo = {
5401 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5402 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5403 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5405 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5406 arm_feature(env, ARM_FEATURE_STRONGARM)) {
5408 /* Register the blanket "writes ignored" value first to cover the
5409 * whole space. Then update the specific ID registers to allow write
5410 * access, so that they ignore writes rather than causing them to
5413 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5414 for (r = id_pre_v8_midr_cp_reginfo;
5415 r->type != ARM_CP_SENTINEL; r++) {
5418 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5421 id_mpuir_reginfo.access = PL1_RW;
5422 id_tlbtr_reginfo.access = PL1_RW;
5424 if (arm_feature(env, ARM_FEATURE_V8)) {
5425 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5427 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5429 define_arm_cp_regs(cpu, id_cp_reginfo);
5430 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5431 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5432 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5433 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5437 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5438 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5441 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5442 ARMCPRegInfo auxcr_reginfo[] = {
5443 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5444 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5445 .access = PL1_RW, .type = ARM_CP_CONST,
5446 .resetvalue = cpu->reset_auxcr },
5447 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5448 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5449 .access = PL2_RW, .type = ARM_CP_CONST,
5451 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5452 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5453 .access = PL3_RW, .type = ARM_CP_CONST,
5457 define_arm_cp_regs(cpu, auxcr_reginfo);
5460 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5461 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5462 /* 32 bit view is [31:18] 0...0 [43:32]. */
5463 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5464 | extract64(cpu->reset_cbar, 32, 12);
5465 ARMCPRegInfo cbar_reginfo[] = {
5467 .type = ARM_CP_CONST,
5468 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5469 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5470 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5471 .type = ARM_CP_CONST,
5472 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5473 .access = PL1_R, .resetvalue = cbar32 },
5476 /* We don't implement a r/w 64 bit CBAR currently */
5477 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5478 define_arm_cp_regs(cpu, cbar_reginfo);
5480 ARMCPRegInfo cbar = {
5482 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5483 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5484 .fieldoffset = offsetof(CPUARMState,
5485 cp15.c15_config_base_address)
5487 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5488 cbar.access = PL1_R;
5489 cbar.fieldoffset = 0;
5490 cbar.type = ARM_CP_CONST;
5492 define_one_arm_cp_reg(cpu, &cbar);
5496 if (arm_feature(env, ARM_FEATURE_VBAR)) {
5497 ARMCPRegInfo vbar_cp_reginfo[] = {
5498 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5499 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5500 .access = PL1_RW, .writefn = vbar_write,
5501 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5502 offsetof(CPUARMState, cp15.vbar_ns) },
5506 define_arm_cp_regs(cpu, vbar_cp_reginfo);
5509 /* Generic registers whose values depend on the implementation */
5511 ARMCPRegInfo sctlr = {
5512 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5513 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5515 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5516 offsetof(CPUARMState, cp15.sctlr_ns) },
5517 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5518 .raw_writefn = raw_write,
5520 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5521 /* Normally we would always end the TB on an SCTLR write, but Linux
5522 * arch/arm/mach-pxa/sleep.S expects two instructions following
5523 * an MMU enable to execute from cache. Imitate this behaviour.
5525 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5527 define_one_arm_cp_reg(cpu, &sctlr);
5530 if (arm_feature(env, ARM_FEATURE_SVE)) {
5531 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5532 if (arm_feature(env, ARM_FEATURE_EL2)) {
5533 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5535 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5537 if (arm_feature(env, ARM_FEATURE_EL3)) {
5538 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5543 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5545 CPUState *cs = CPU(cpu);
5546 CPUARMState *env = &cpu->env;
5548 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5549 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5550 aarch64_fpu_gdb_set_reg,
5551 34, "aarch64-fpu.xml", 0);
5552 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5553 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5554 51, "arm-neon.xml", 0);
5555 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5556 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5557 35, "arm-vfp3.xml", 0);
5558 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5559 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5560 19, "arm-vfp.xml", 0);
5562 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5563 arm_gen_dynamic_xml(cs),
5564 "system-registers.xml", 0);
5567 /* Sort alphabetically by type name, except for "any". */
5568 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5570 ObjectClass *class_a = (ObjectClass *)a;
5571 ObjectClass *class_b = (ObjectClass *)b;
5572 const char *name_a, *name_b;
5574 name_a = object_class_get_name(class_a);
5575 name_b = object_class_get_name(class_b);
5576 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5578 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5581 return strcmp(name_a, name_b);
5585 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5587 ObjectClass *oc = data;
5588 CPUListState *s = user_data;
5589 const char *typename;
5592 typename = object_class_get_name(oc);
5593 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5594 (*s->cpu_fprintf)(s->file, " %s\n",
5599 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5603 .cpu_fprintf = cpu_fprintf,
5607 list = object_class_get_list(TYPE_ARM_CPU, false);
5608 list = g_slist_sort(list, arm_cpu_list_compare);
5609 (*cpu_fprintf)(f, "Available CPUs:\n");
5610 g_slist_foreach(list, arm_cpu_list_entry, &s);
5614 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5616 ObjectClass *oc = data;
5617 CpuDefinitionInfoList **cpu_list = user_data;
5618 CpuDefinitionInfoList *entry;
5619 CpuDefinitionInfo *info;
5620 const char *typename;
5622 typename = object_class_get_name(oc);
5623 info = g_malloc0(sizeof(*info));
5624 info->name = g_strndup(typename,
5625 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5626 info->q_typename = g_strdup(typename);
5628 entry = g_malloc0(sizeof(*entry));
5629 entry->value = info;
5630 entry->next = *cpu_list;
5634 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5636 CpuDefinitionInfoList *cpu_list = NULL;
5639 list = object_class_get_list(TYPE_ARM_CPU, false);
5640 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5646 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5647 void *opaque, int state, int secstate,
5648 int crm, int opc1, int opc2,
5651 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5652 * add a single reginfo struct to the hash table.
5654 uint32_t *key = g_new(uint32_t, 1);
5655 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5656 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5657 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5659 r2->name = g_strdup(name);
5660 /* Reset the secure state to the specific incoming state. This is
5661 * necessary as the register may have been defined with both states.
5663 r2->secure = secstate;
5665 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5666 /* Register is banked (using both entries in array).
5667 * Overwriting fieldoffset as the array is only used to define
5668 * banked registers but later only fieldoffset is used.
5670 r2->fieldoffset = r->bank_fieldoffsets[ns];
5673 if (state == ARM_CP_STATE_AA32) {
5674 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5675 /* If the register is banked then we don't need to migrate or
5676 * reset the 32-bit instance in certain cases:
5678 * 1) If the register has both 32-bit and 64-bit instances then we
5679 * can count on the 64-bit instance taking care of the
5681 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5682 * taking care of the secure bank. This requires that separate
5683 * 32 and 64-bit definitions are provided.
5685 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5686 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5687 r2->type |= ARM_CP_ALIAS;
5689 } else if ((secstate != r->secure) && !ns) {
5690 /* The register is not banked so we only want to allow migration of
5691 * the non-secure instance.
5693 r2->type |= ARM_CP_ALIAS;
5696 if (r->state == ARM_CP_STATE_BOTH) {
5697 /* We assume it is a cp15 register if the .cp field is left unset.
5703 #ifdef HOST_WORDS_BIGENDIAN
5704 if (r2->fieldoffset) {
5705 r2->fieldoffset += sizeof(uint32_t);
5710 if (state == ARM_CP_STATE_AA64) {
5711 /* To allow abbreviation of ARMCPRegInfo
5712 * definitions, we treat cp == 0 as equivalent to
5713 * the value for "standard guest-visible sysreg".
5714 * STATE_BOTH definitions are also always "standard
5715 * sysreg" in their AArch64 view (the .cp value may
5716 * be non-zero for the benefit of the AArch32 view).
5718 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5719 r2->cp = CP_REG_ARM64_SYSREG_CP;
5721 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5722 r2->opc0, opc1, opc2);
5724 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5727 r2->opaque = opaque;
5729 /* reginfo passed to helpers is correct for the actual access,
5730 * and is never ARM_CP_STATE_BOTH:
5733 /* Make sure reginfo passed to helpers for wildcarded regs
5734 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5739 /* By convention, for wildcarded registers only the first
5740 * entry is used for migration; the others are marked as
5741 * ALIAS so we don't try to transfer the register
5742 * multiple times. Special registers (ie NOP/WFI) are
5743 * never migratable and not even raw-accessible.
5745 if ((r->type & ARM_CP_SPECIAL)) {
5746 r2->type |= ARM_CP_NO_RAW;
5748 if (((r->crm == CP_ANY) && crm != 0) ||
5749 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5750 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5751 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5754 /* Check that raw accesses are either forbidden or handled. Note that
5755 * we can't assert this earlier because the setup of fieldoffset for
5756 * banked registers has to be done first.
5758 if (!(r2->type & ARM_CP_NO_RAW)) {
5759 assert(!raw_accessors_invalid(r2));
5762 /* Overriding of an existing definition must be explicitly
5765 if (!(r->type & ARM_CP_OVERRIDE)) {
5766 ARMCPRegInfo *oldreg;
5767 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5768 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5769 fprintf(stderr, "Register redefined: cp=%d %d bit "
5770 "crn=%d crm=%d opc1=%d opc2=%d, "
5771 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5772 r2->crn, r2->crm, r2->opc1, r2->opc2,
5773 oldreg->name, r2->name);
5774 g_assert_not_reached();
5777 g_hash_table_insert(cpu->cp_regs, key, r2);
5781 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5782 const ARMCPRegInfo *r, void *opaque)
5784 /* Define implementations of coprocessor registers.
5785 * We store these in a hashtable because typically
5786 * there are less than 150 registers in a space which
5787 * is 16*16*16*8*8 = 262144 in size.
5788 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5789 * If a register is defined twice then the second definition is
5790 * used, so this can be used to define some generic registers and
5791 * then override them with implementation specific variations.
5792 * At least one of the original and the second definition should
5793 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5794 * against accidental use.
5796 * The state field defines whether the register is to be
5797 * visible in the AArch32 or AArch64 execution state. If the
5798 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5799 * reginfo structure for the AArch32 view, which sees the lower
5800 * 32 bits of the 64 bit register.
5802 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5803 * be wildcarded. AArch64 registers are always considered to be 64
5804 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5805 * the register, if any.
5807 int crm, opc1, opc2, state;
5808 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5809 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5810 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5811 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5812 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5813 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5814 /* 64 bit registers have only CRm and Opc1 fields */
5815 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5816 /* op0 only exists in the AArch64 encodings */
5817 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5818 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5819 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5820 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5821 * encodes a minimum access level for the register. We roll this
5822 * runtime check into our general permission check code, so check
5823 * here that the reginfo's specified permissions are strict enough
5824 * to encompass the generic architectural permission check.
5826 if (r->state != ARM_CP_STATE_AA32) {
5829 case 0: case 1: case 2:
5842 /* unallocated encoding, so not possible */
5850 /* min_EL EL1, secure mode only (we don't check the latter) */
5854 /* broken reginfo with out-of-range opc1 */
5858 /* assert our permissions are not too lax (stricter is fine) */
5859 assert((r->access & ~mask) == 0);
5862 /* Check that the register definition has enough info to handle
5863 * reads and writes if they are permitted.
5865 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5866 if (r->access & PL3_R) {
5867 assert((r->fieldoffset ||
5868 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5871 if (r->access & PL3_W) {
5872 assert((r->fieldoffset ||
5873 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5877 /* Bad type field probably means missing sentinel at end of reg list */
5878 assert(cptype_valid(r->type));
5879 for (crm = crmmin; crm <= crmmax; crm++) {
5880 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5881 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5882 for (state = ARM_CP_STATE_AA32;
5883 state <= ARM_CP_STATE_AA64; state++) {
5884 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5887 if (state == ARM_CP_STATE_AA32) {
5888 /* Under AArch32 CP registers can be common
5889 * (same for secure and non-secure world) or banked.
5893 switch (r->secure) {
5894 case ARM_CP_SECSTATE_S:
5895 case ARM_CP_SECSTATE_NS:
5896 add_cpreg_to_hashtable(cpu, r, opaque, state,
5897 r->secure, crm, opc1, opc2,
5901 name = g_strdup_printf("%s_S", r->name);
5902 add_cpreg_to_hashtable(cpu, r, opaque, state,
5904 crm, opc1, opc2, name);
5906 add_cpreg_to_hashtable(cpu, r, opaque, state,
5908 crm, opc1, opc2, r->name);
5912 /* AArch64 registers get mapped to non-secure instance
5914 add_cpreg_to_hashtable(cpu, r, opaque, state,
5916 crm, opc1, opc2, r->name);
5924 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5925 const ARMCPRegInfo *regs, void *opaque)
5927 /* Define a whole list of registers */
5928 const ARMCPRegInfo *r;
5929 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5930 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5934 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5936 return g_hash_table_lookup(cpregs, &encoded_cp);
5939 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5942 /* Helper coprocessor write function for write-ignore registers */
5945 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5947 /* Helper coprocessor write function for read-as-zero registers */
5951 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5953 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5956 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5958 /* Return true if it is not valid for us to switch to
5959 * this CPU mode (ie all the UNPREDICTABLE cases in
5960 * the ARM ARM CPSRWriteByInstr pseudocode).
5963 /* Changes to or from Hyp via MSR and CPS are illegal. */
5964 if (write_type == CPSRWriteByInstr &&
5965 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5966 mode == ARM_CPU_MODE_HYP)) {
5971 case ARM_CPU_MODE_USR:
5973 case ARM_CPU_MODE_SYS:
5974 case ARM_CPU_MODE_SVC:
5975 case ARM_CPU_MODE_ABT:
5976 case ARM_CPU_MODE_UND:
5977 case ARM_CPU_MODE_IRQ:
5978 case ARM_CPU_MODE_FIQ:
5979 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5980 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5982 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5983 * and CPS are treated as illegal mode changes.
5985 if (write_type == CPSRWriteByInstr &&
5986 (env->cp15.hcr_el2 & HCR_TGE) &&
5987 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5988 !arm_is_secure_below_el3(env)) {
5992 case ARM_CPU_MODE_HYP:
5993 return !arm_feature(env, ARM_FEATURE_EL2)
5994 || arm_current_el(env) < 2 || arm_is_secure(env);
5995 case ARM_CPU_MODE_MON:
5996 return arm_current_el(env) < 3;
6002 uint32_t cpsr_read(CPUARMState *env)
6005 ZF = (env->ZF == 0);
6006 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
6007 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6008 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6009 | ((env->condexec_bits & 0xfc) << 8)
6010 | (env->GE << 16) | (env->daif & CPSR_AIF);
6013 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6014 CPSRWriteType write_type)
6016 uint32_t changed_daif;
6018 if (mask & CPSR_NZCV) {
6019 env->ZF = (~val) & CPSR_Z;
6021 env->CF = (val >> 29) & 1;
6022 env->VF = (val << 3) & 0x80000000;
6025 env->QF = ((val & CPSR_Q) != 0);
6027 env->thumb = ((val & CPSR_T) != 0);
6028 if (mask & CPSR_IT_0_1) {
6029 env->condexec_bits &= ~3;
6030 env->condexec_bits |= (val >> 25) & 3;
6032 if (mask & CPSR_IT_2_7) {
6033 env->condexec_bits &= 3;
6034 env->condexec_bits |= (val >> 8) & 0xfc;
6036 if (mask & CPSR_GE) {
6037 env->GE = (val >> 16) & 0xf;
6040 /* In a V7 implementation that includes the security extensions but does
6041 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6042 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6043 * bits respectively.
6045 * In a V8 implementation, it is permitted for privileged software to
6046 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6048 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6049 arm_feature(env, ARM_FEATURE_EL3) &&
6050 !arm_feature(env, ARM_FEATURE_EL2) &&
6051 !arm_is_secure(env)) {
6053 changed_daif = (env->daif ^ val) & mask;
6055 if (changed_daif & CPSR_A) {
6056 /* Check to see if we are allowed to change the masking of async
6057 * abort exceptions from a non-secure state.
6059 if (!(env->cp15.scr_el3 & SCR_AW)) {
6060 qemu_log_mask(LOG_GUEST_ERROR,
6061 "Ignoring attempt to switch CPSR_A flag from "
6062 "non-secure world with SCR.AW bit clear\n");
6067 if (changed_daif & CPSR_F) {
6068 /* Check to see if we are allowed to change the masking of FIQ
6069 * exceptions from a non-secure state.
6071 if (!(env->cp15.scr_el3 & SCR_FW)) {
6072 qemu_log_mask(LOG_GUEST_ERROR,
6073 "Ignoring attempt to switch CPSR_F flag from "
6074 "non-secure world with SCR.FW bit clear\n");
6078 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6079 * If this bit is set software is not allowed to mask
6080 * FIQs, but is allowed to set CPSR_F to 0.
6082 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6084 qemu_log_mask(LOG_GUEST_ERROR,
6085 "Ignoring attempt to enable CPSR_F flag "
6086 "(non-maskable FIQ [NMFI] support enabled)\n");
6092 env->daif &= ~(CPSR_AIF & mask);
6093 env->daif |= val & CPSR_AIF & mask;
6095 if (write_type != CPSRWriteRaw &&
6096 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6097 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6098 /* Note that we can only get here in USR mode if this is a
6099 * gdb stub write; for this case we follow the architectural
6100 * behaviour for guest writes in USR mode of ignoring an attempt
6101 * to switch mode. (Those are caught by translate.c for writes
6102 * triggered by guest instructions.)
6105 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6106 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6107 * v7, and has defined behaviour in v8:
6108 * + leave CPSR.M untouched
6109 * + allow changes to the other CPSR fields
6111 * For user changes via the GDB stub, we don't set PSTATE.IL,
6112 * as this would be unnecessarily harsh for a user error.
6115 if (write_type != CPSRWriteByGDBStub &&
6116 arm_feature(env, ARM_FEATURE_V8)) {
6121 switch_mode(env, val & CPSR_M);
6124 mask &= ~CACHED_CPSR_BITS;
6125 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6128 /* Sign/zero extend */
6129 uint32_t HELPER(sxtb16)(uint32_t x)
6132 res = (uint16_t)(int8_t)x;
6133 res |= (uint32_t)(int8_t)(x >> 16) << 16;
6137 uint32_t HELPER(uxtb16)(uint32_t x)
6140 res = (uint16_t)(uint8_t)x;
6141 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6145 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6149 if (num == INT_MIN && den == -1)
6154 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6161 uint32_t HELPER(rbit)(uint32_t x)
6166 #if defined(CONFIG_USER_ONLY)
6168 /* These should probably raise undefined insn exceptions. */
6169 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6171 ARMCPU *cpu = arm_env_get_cpu(env);
6173 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6176 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6178 ARMCPU *cpu = arm_env_get_cpu(env);
6180 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6184 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6186 /* translate.c should never generate calls here in user-only mode */
6187 g_assert_not_reached();
6190 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6192 /* translate.c should never generate calls here in user-only mode */
6193 g_assert_not_reached();
6196 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6198 /* The TT instructions can be used by unprivileged code, but in
6199 * user-only emulation we don't have the MPU.
6200 * Luckily since we know we are NonSecure unprivileged (and that in
6201 * turn means that the A flag wasn't specified), all the bits in the
6202 * register must be zero:
6203 * IREGION: 0 because IRVALID is 0
6204 * IRVALID: 0 because NS
6206 * NSRW: 0 because NS
6208 * RW: 0 because unpriv and A flag not set
6209 * R: 0 because unpriv and A flag not set
6210 * SRVALID: 0 because NS
6211 * MRVALID: 0 because unpriv and A flag not set
6212 * SREGION: 0 becaus SRVALID is 0
6213 * MREGION: 0 because MRVALID is 0
6218 void switch_mode(CPUARMState *env, int mode)
6220 ARMCPU *cpu = arm_env_get_cpu(env);
6222 if (mode != ARM_CPU_MODE_USR) {
6223 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6227 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6228 uint32_t cur_el, bool secure)
6233 void aarch64_sync_64_to_32(CPUARMState *env)
6235 g_assert_not_reached();
6240 void switch_mode(CPUARMState *env, int mode)
6245 old_mode = env->uncached_cpsr & CPSR_M;
6246 if (mode == old_mode)
6249 if (old_mode == ARM_CPU_MODE_FIQ) {
6250 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6251 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6252 } else if (mode == ARM_CPU_MODE_FIQ) {
6253 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6254 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6257 i = bank_number(old_mode);
6258 env->banked_r13[i] = env->regs[13];
6259 env->banked_r14[i] = env->regs[14];
6260 env->banked_spsr[i] = env->spsr;
6262 i = bank_number(mode);
6263 env->regs[13] = env->banked_r13[i];
6264 env->regs[14] = env->banked_r14[i];
6265 env->spsr = env->banked_spsr[i];
6268 /* Physical Interrupt Target EL Lookup Table
6270 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6272 * The below multi-dimensional table is used for looking up the target
6273 * exception level given numerous condition criteria. Specifically, the
6274 * target EL is based on SCR and HCR routing controls as well as the
6275 * currently executing EL and secure state.
6278 * target_el_table[2][2][2][2][2][4]
6279 * | | | | | +--- Current EL
6280 * | | | | +------ Non-secure(0)/Secure(1)
6281 * | | | +--------- HCR mask override
6282 * | | +------------ SCR exec state control
6283 * | +--------------- SCR mask override
6284 * +------------------ 32-bit(0)/64-bit(1) EL3
6286 * The table values are as such:
6290 * The ARM ARM target EL table includes entries indicating that an "exception
6291 * is not taken". The two cases where this is applicable are:
6292 * 1) An exception is taken from EL3 but the SCR does not have the exception
6294 * 2) An exception is taken from EL2 but the HCR does not have the exception
6296 * In these two cases, the below table contain a target of EL1. This value is
6297 * returned as it is expected that the consumer of the table data will check
6298 * for "target EL >= current EL" to ensure the exception is not taken.
6302 * BIT IRQ IMO Non-secure Secure
6303 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6305 static const int8_t target_el_table[2][2][2][2][2][4] = {
6306 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6307 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6308 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6309 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6310 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6311 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6312 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6313 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6314 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6315 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6316 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6317 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6318 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6319 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6320 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6321 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6325 * Determine the target EL for physical exceptions
6327 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6328 uint32_t cur_el, bool secure)
6330 CPUARMState *env = cs->env_ptr;
6335 /* Is the highest EL AArch64? */
6336 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6338 if (arm_feature(env, ARM_FEATURE_EL3)) {
6339 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6341 /* Either EL2 is the highest EL (and so the EL2 register width
6342 * is given by is64); or there is no EL2 or EL3, in which case
6343 * the value of 'rw' does not affect the table lookup anyway.
6350 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6351 hcr = arm_hcr_el2_imo(env);
6354 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6355 hcr = arm_hcr_el2_fmo(env);
6358 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6359 hcr = arm_hcr_el2_amo(env);
6363 /* If HCR.TGE is set then HCR is treated as being 1 */
6364 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6366 /* Perform a table-lookup for the target EL given the current state */
6367 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6369 assert(target_el > 0);
6374 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6375 ARMMMUIdx mmu_idx, bool ignfault)
6377 CPUState *cs = CPU(cpu);
6378 CPUARMState *env = &cpu->env;
6379 MemTxAttrs attrs = {};
6381 target_ulong page_size;
6385 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6389 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6390 &attrs, &prot, &page_size, &fi, NULL)) {
6391 /* MPU/SAU lookup failed */
6392 if (fi.type == ARMFault_QEMU_SFault) {
6393 qemu_log_mask(CPU_LOG_INT,
6394 "...SecureFault with SFSR.AUVIOL during stacking\n");
6395 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6396 env->v7m.sfar = addr;
6397 exc = ARMV7M_EXCP_SECURE;
6400 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6401 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6402 exc = ARMV7M_EXCP_MEM;
6403 exc_secure = secure;
6407 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6409 if (txres != MEMTX_OK) {
6410 /* BusFault trying to write the data */
6411 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6412 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6413 exc = ARMV7M_EXCP_BUS;
6420 /* By pending the exception at this point we are making
6421 * the IMPDEF choice "overridden exceptions pended" (see the
6422 * MergeExcInfo() pseudocode). The other choice would be to not
6423 * pend them now and then make a choice about which to throw away
6424 * later if we have two derived exceptions.
6425 * The only case when we must not pend the exception but instead
6426 * throw it away is if we are doing the push of the callee registers
6427 * and we've already generated a derived exception. Even in this
6428 * case we will still update the fault status registers.
6431 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6436 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6439 CPUState *cs = CPU(cpu);
6440 CPUARMState *env = &cpu->env;
6441 MemTxAttrs attrs = {};
6443 target_ulong page_size;
6447 bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6452 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6453 &attrs, &prot, &page_size, &fi, NULL)) {
6454 /* MPU/SAU lookup failed */
6455 if (fi.type == ARMFault_QEMU_SFault) {
6456 qemu_log_mask(CPU_LOG_INT,
6457 "...SecureFault with SFSR.AUVIOL during unstack\n");
6458 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6459 env->v7m.sfar = addr;
6460 exc = ARMV7M_EXCP_SECURE;
6463 qemu_log_mask(CPU_LOG_INT,
6464 "...MemManageFault with CFSR.MUNSTKERR\n");
6465 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6466 exc = ARMV7M_EXCP_MEM;
6467 exc_secure = secure;
6472 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6474 if (txres != MEMTX_OK) {
6475 /* BusFault trying to read the data */
6476 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6477 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6478 exc = ARMV7M_EXCP_BUS;
6487 /* By pending the exception at this point we are making
6488 * the IMPDEF choice "overridden exceptions pended" (see the
6489 * MergeExcInfo() pseudocode). The other choice would be to not
6490 * pend them now and then make a choice about which to throw away
6491 * later if we have two derived exceptions.
6493 armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6497 /* Return true if we're using the process stack pointer (not the MSP) */
6498 static bool v7m_using_psp(CPUARMState *env)
6500 /* Handler mode always uses the main stack; for thread mode
6501 * the CONTROL.SPSEL bit determines the answer.
6502 * Note that in v7M it is not possible to be in Handler mode with
6503 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6505 return !arm_v7m_is_handler_mode(env) &&
6506 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6509 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6510 * This may change the current stack pointer between Main and Process
6511 * stack pointers if it is done for the CONTROL register for the current
6514 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6518 bool old_is_psp = v7m_using_psp(env);
6520 env->v7m.control[secstate] =
6521 deposit32(env->v7m.control[secstate],
6522 R_V7M_CONTROL_SPSEL_SHIFT,
6523 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6525 if (secstate == env->v7m.secure) {
6526 bool new_is_psp = v7m_using_psp(env);
6529 if (old_is_psp != new_is_psp) {
6530 tmp = env->v7m.other_sp;
6531 env->v7m.other_sp = env->regs[13];
6532 env->regs[13] = tmp;
6537 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6538 * stack pointer between Main and Process stack pointers.
6540 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6542 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6545 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6547 /* Write a new value to v7m.exception, thus transitioning into or out
6548 * of Handler mode; this may result in a change of active stack pointer.
6550 bool new_is_psp, old_is_psp = v7m_using_psp(env);
6553 env->v7m.exception = new_exc;
6555 new_is_psp = v7m_using_psp(env);
6557 if (old_is_psp != new_is_psp) {
6558 tmp = env->v7m.other_sp;
6559 env->v7m.other_sp = env->regs[13];
6560 env->regs[13] = tmp;
6564 /* Switch M profile security state between NS and S */
6565 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6567 uint32_t new_ss_msp, new_ss_psp;
6569 if (env->v7m.secure == new_secstate) {
6573 /* All the banked state is accessed by looking at env->v7m.secure
6574 * except for the stack pointer; rearrange the SP appropriately.
6576 new_ss_msp = env->v7m.other_ss_msp;
6577 new_ss_psp = env->v7m.other_ss_psp;
6579 if (v7m_using_psp(env)) {
6580 env->v7m.other_ss_psp = env->regs[13];
6581 env->v7m.other_ss_msp = env->v7m.other_sp;
6583 env->v7m.other_ss_msp = env->regs[13];
6584 env->v7m.other_ss_psp = env->v7m.other_sp;
6587 env->v7m.secure = new_secstate;
6589 if (v7m_using_psp(env)) {
6590 env->regs[13] = new_ss_psp;
6591 env->v7m.other_sp = new_ss_msp;
6593 env->regs[13] = new_ss_msp;
6594 env->v7m.other_sp = new_ss_psp;
6598 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6601 * - if the return value is a magic value, do exception return (like BX)
6602 * - otherwise bit 0 of the return value is the target security state
6606 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6607 /* Covers FNC_RETURN and EXC_RETURN magic */
6608 min_magic = FNC_RETURN_MIN_MAGIC;
6610 /* EXC_RETURN magic only */
6611 min_magic = EXC_RETURN_MIN_MAGIC;
6614 if (dest >= min_magic) {
6615 /* This is an exception return magic value; put it where
6616 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6617 * Note that if we ever add gen_ss_advance() singlestep support to
6618 * M profile this should count as an "instruction execution complete"
6619 * event (compare gen_bx_excret_final_code()).
6621 env->regs[15] = dest & ~1;
6622 env->thumb = dest & 1;
6623 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6627 /* translate.c should have made BXNS UNDEF unless we're secure */
6628 assert(env->v7m.secure);
6630 switch_v7m_security_state(env, dest & 1);
6632 env->regs[15] = dest & ~1;
6635 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6637 /* Handle v7M BLXNS:
6638 * - bit 0 of the destination address is the target security state
6641 /* At this point regs[15] is the address just after the BLXNS */
6642 uint32_t nextinst = env->regs[15] | 1;
6643 uint32_t sp = env->regs[13] - 8;
6646 /* translate.c will have made BLXNS UNDEF unless we're secure */
6647 assert(env->v7m.secure);
6650 /* target is Secure, so this is just a normal BLX,
6651 * except that the low bit doesn't indicate Thumb/not.
6653 env->regs[14] = nextinst;
6655 env->regs[15] = dest & ~1;
6659 /* Target is non-secure: first push a stack frame */
6660 if (!QEMU_IS_ALIGNED(sp, 8)) {
6661 qemu_log_mask(LOG_GUEST_ERROR,
6662 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6665 saved_psr = env->v7m.exception;
6666 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6667 saved_psr |= XPSR_SFPA;
6670 /* Note that these stores can throw exceptions on MPU faults */
6671 cpu_stl_data(env, sp, nextinst);
6672 cpu_stl_data(env, sp + 4, saved_psr);
6675 env->regs[14] = 0xfeffffff;
6676 if (arm_v7m_is_handler_mode(env)) {
6677 /* Write a dummy value to IPSR, to avoid leaking the current secure
6678 * exception number to non-secure code. This is guaranteed not
6679 * to cause write_v7m_exception() to actually change stacks.
6681 write_v7m_exception(env, 1);
6683 switch_v7m_security_state(env, 0);
6685 env->regs[15] = dest;
6688 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6691 /* Return a pointer to the location where we currently store the
6692 * stack pointer for the requested security state and thread mode.
6693 * This pointer will become invalid if the CPU state is updated
6694 * such that the stack pointers are switched around (eg changing
6695 * the SPSEL control bit).
6696 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6697 * Unlike that pseudocode, we require the caller to pass us in the
6698 * SPSEL control bit value; this is because we also use this
6699 * function in handling of pushing of the callee-saves registers
6700 * part of the v8M stack frame (pseudocode PushCalleeStack()),
6701 * and in the tailchain codepath the SPSEL bit comes from the exception
6702 * return magic LR value from the previous exception. The pseudocode
6703 * opencodes the stack-selection in PushCalleeStack(), but we prefer
6704 * to make this utility function generic enough to do the job.
6706 bool want_psp = threadmode && spsel;
6708 if (secure == env->v7m.secure) {
6709 if (want_psp == v7m_using_psp(env)) {
6710 return &env->regs[13];
6712 return &env->v7m.other_sp;
6716 return &env->v7m.other_ss_psp;
6718 return &env->v7m.other_ss_msp;
6723 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6726 CPUState *cs = CPU(cpu);
6727 CPUARMState *env = &cpu->env;
6729 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6730 uint32_t vector_entry;
6731 MemTxAttrs attrs = {};
6735 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6737 /* We don't do a get_phys_addr() here because the rules for vector
6738 * loads are special: they always use the default memory map, and
6739 * the default memory map permits reads from all addresses.
6740 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6741 * that we want this special case which would always say "yes",
6742 * we just do the SAU lookup here followed by a direct physical load.
6744 attrs.secure = targets_secure;
6747 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6748 V8M_SAttributes sattrs = {};
6750 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6752 attrs.secure = false;
6753 } else if (!targets_secure) {
6754 /* NS access to S memory */
6759 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6761 if (result != MEMTX_OK) {
6764 *pvec = vector_entry;
6768 /* All vector table fetch fails are reported as HardFault, with
6769 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6770 * technically the underlying exception is a MemManage or BusFault
6771 * that is escalated to HardFault.) This is a terminal exception,
6772 * so we will either take the HardFault immediately or else enter
6773 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6775 exc_secure = targets_secure ||
6776 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6777 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6778 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6782 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6785 /* For v8M, push the callee-saves register part of the stack frame.
6786 * Compare the v8M pseudocode PushCalleeStack().
6787 * In the tailchaining case this may not be the current stack.
6789 CPUARMState *env = &cpu->env;
6790 uint32_t *frame_sp_p;
6796 bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6797 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6800 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6801 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6802 lr & R_V7M_EXCRET_SPSEL_MASK);
6804 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6805 frame_sp_p = &env->regs[13];
6808 frameptr = *frame_sp_p - 0x28;
6810 /* Write as much of the stack frame as we can. A write failure may
6811 * cause us to pend a derived exception.
6814 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6815 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6817 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6819 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6821 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6823 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6825 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6827 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6829 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6832 /* Update SP regardless of whether any of the stack accesses failed.
6833 * When we implement v8M stack limit checking then this attempt to
6834 * update SP might also fail and result in a derived exception.
6836 *frame_sp_p = frameptr;
6841 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6842 bool ignore_stackfaults)
6844 /* Do the "take the exception" parts of exception entry,
6845 * but not the pushing of state to the stack. This is
6846 * similar to the pseudocode ExceptionTaken() function.
6848 CPUARMState *env = &cpu->env;
6850 bool targets_secure;
6852 bool push_failed = false;
6854 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6855 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
6856 targets_secure ? "secure" : "nonsecure", exc);
6858 if (arm_feature(env, ARM_FEATURE_V8)) {
6859 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6860 (lr & R_V7M_EXCRET_S_MASK)) {
6861 /* The background code (the owner of the registers in the
6862 * exception frame) is Secure. This means it may either already
6863 * have or now needs to push callee-saves registers.
6865 if (targets_secure) {
6866 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6867 /* We took an exception from Secure to NonSecure
6868 * (which means the callee-saved registers got stacked)
6869 * and are now tailchaining to a Secure exception.
6870 * Clear DCRS so eventual return from this Secure
6871 * exception unstacks the callee-saved registers.
6873 lr &= ~R_V7M_EXCRET_DCRS_MASK;
6876 /* We're going to a non-secure exception; push the
6877 * callee-saves registers to the stack now, if they're
6878 * not already saved.
6880 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6881 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6882 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6883 ignore_stackfaults);
6885 lr |= R_V7M_EXCRET_DCRS_MASK;
6889 lr &= ~R_V7M_EXCRET_ES_MASK;
6890 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6891 lr |= R_V7M_EXCRET_ES_MASK;
6893 lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6894 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6895 lr |= R_V7M_EXCRET_SPSEL_MASK;
6898 /* Clear registers if necessary to prevent non-secure exception
6899 * code being able to see register values from secure code.
6900 * Where register values become architecturally UNKNOWN we leave
6901 * them with their previous values.
6903 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6904 if (!targets_secure) {
6905 /* Always clear the caller-saved registers (they have been
6906 * pushed to the stack earlier in v7m_push_stack()).
6907 * Clear callee-saved registers if the background code is
6908 * Secure (in which case these regs were saved in
6909 * v7m_push_callee_stack()).
6913 for (i = 0; i < 13; i++) {
6914 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6915 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6920 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6925 if (push_failed && !ignore_stackfaults) {
6926 /* Derived exception on callee-saves register stacking:
6927 * we might now want to take a different exception which
6928 * targets a different security state, so try again from the top.
6930 qemu_log_mask(CPU_LOG_INT,
6931 "...derived exception on callee-saves register stacking");
6932 v7m_exception_taken(cpu, lr, true, true);
6936 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6937 /* Vector load failed: derived exception */
6938 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
6939 v7m_exception_taken(cpu, lr, true, true);
6943 /* Now we've done everything that might cause a derived exception
6944 * we can go ahead and activate whichever exception we're going to
6945 * take (which might now be the derived exception).
6947 armv7m_nvic_acknowledge_irq(env->nvic);
6949 /* Switch to target security state -- must do this before writing SPSEL */
6950 switch_v7m_security_state(env, targets_secure);
6951 write_v7m_control_spsel(env, 0);
6952 arm_clear_exclusive(env);
6954 env->condexec_bits = 0;
6956 env->regs[15] = addr & 0xfffffffe;
6957 env->thumb = addr & 1;
6960 static bool v7m_push_stack(ARMCPU *cpu)
6962 /* Do the "set up stack frame" part of exception entry,
6963 * similar to pseudocode PushStack().
6964 * Return true if we generate a derived exception (and so
6965 * should ignore further stack faults trying to process
6966 * that derived exception.)
6969 CPUARMState *env = &cpu->env;
6970 uint32_t xpsr = xpsr_read(env);
6971 uint32_t frameptr = env->regs[13];
6972 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6974 /* Align stack pointer if the guest wants that */
6975 if ((frameptr & 4) &&
6976 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6978 xpsr |= XPSR_SPREALIGN;
6983 /* Write as much of the stack frame as we can. If we fail a stack
6984 * write this will result in a derived exception being pended
6985 * (which may be taken in preference to the one we started with
6986 * if it has higher priority).
6989 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6990 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6991 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6992 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6993 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6994 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6995 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6996 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6998 /* Update SP regardless of whether any of the stack accesses failed.
6999 * When we implement v8M stack limit checking then this attempt to
7000 * update SP might also fail and result in a derived exception.
7002 env->regs[13] = frameptr;
7007 static void do_v7m_exception_exit(ARMCPU *cpu)
7009 CPUARMState *env = &cpu->env;
7012 bool ufault = false;
7013 bool sfault = false;
7014 bool return_to_sp_process;
7015 bool return_to_handler;
7016 bool rettobase = false;
7017 bool exc_secure = false;
7018 bool return_to_secure;
7020 /* If we're not in Handler mode then jumps to magic exception-exit
7021 * addresses don't have magic behaviour. However for the v8M
7022 * security extensions the magic secure-function-return has to
7023 * work in thread mode too, so to avoid doing an extra check in
7024 * the generated code we allow exception-exit magic to also cause the
7025 * internal exception and bring us here in thread mode. Correct code
7026 * will never try to do this (the following insn fetch will always
7027 * fault) so we the overhead of having taken an unnecessary exception
7030 if (!arm_v7m_is_handler_mode(env)) {
7034 /* In the spec pseudocode ExceptionReturn() is called directly
7035 * from BXWritePC() and gets the full target PC value including
7036 * bit zero. In QEMU's implementation we treat it as a normal
7037 * jump-to-register (which is then caught later on), and so split
7038 * the target value up between env->regs[15] and env->thumb in
7039 * gen_bx(). Reconstitute it.
7041 excret = env->regs[15];
7046 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7047 " previous exception %d\n",
7048 excret, env->v7m.exception);
7050 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7051 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7052 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7056 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7057 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7058 * we pick which FAULTMASK to clear.
7060 if (!env->v7m.secure &&
7061 ((excret & R_V7M_EXCRET_ES_MASK) ||
7062 !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7064 /* For all other purposes, treat ES as 0 (R_HXSR) */
7065 excret &= ~R_V7M_EXCRET_ES_MASK;
7067 exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7070 if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7071 /* Auto-clear FAULTMASK on return from other than NMI.
7072 * If the security extension is implemented then this only
7073 * happens if the raw execution priority is >= 0; the
7074 * value of the ES bit in the exception return value indicates
7075 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7077 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7078 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7079 env->v7m.faultmask[exc_secure] = 0;
7082 env->v7m.faultmask[M_REG_NS] = 0;
7086 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7089 /* attempt to exit an exception that isn't active */
7093 /* still an irq active now */
7096 /* we returned to base exception level, no nesting.
7097 * (In the pseudocode this is written using "NestedActivation != 1"
7098 * where we have 'rettobase == false'.)
7103 g_assert_not_reached();
7106 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7107 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7108 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7109 (excret & R_V7M_EXCRET_S_MASK);
7111 if (arm_feature(env, ARM_FEATURE_V8)) {
7112 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7113 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7114 * we choose to take the UsageFault.
7116 if ((excret & R_V7M_EXCRET_S_MASK) ||
7117 (excret & R_V7M_EXCRET_ES_MASK) ||
7118 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7122 if (excret & R_V7M_EXCRET_RES0_MASK) {
7126 /* For v7M we only recognize certain combinations of the low bits */
7127 switch (excret & 0xf) {
7128 case 1: /* Return to Handler */
7130 case 13: /* Return to Thread using Process stack */
7131 case 9: /* Return to Thread using Main stack */
7132 /* We only need to check NONBASETHRDENA for v7M, because in
7133 * v8M this bit does not exist (it is RES1).
7136 !(env->v7m.ccr[env->v7m.secure] &
7137 R_V7M_CCR_NONBASETHRDENA_MASK)) {
7147 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7148 * Handler mode (and will be until we write the new XPSR.Interrupt
7149 * field) this does not switch around the current stack pointer.
7150 * We must do this before we do any kind of tailchaining, including
7151 * for the derived exceptions on integrity check failures, or we will
7152 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7154 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7157 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7158 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7159 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7160 "stackframe: failed EXC_RETURN.ES validity check\n");
7161 v7m_exception_taken(cpu, excret, true, false);
7166 /* Bad exception return: instead of popping the exception
7167 * stack, directly take a usage fault on the current stack.
7169 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7170 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7171 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7172 "stackframe: failed exception return integrity check\n");
7173 v7m_exception_taken(cpu, excret, true, false);
7178 * Tailchaining: if there is currently a pending exception that
7179 * is high enough priority to preempt execution at the level we're
7180 * about to return to, then just directly take that exception now,
7181 * avoiding an unstack-and-then-stack. Note that now we have
7182 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7183 * our current execution priority is already the execution priority we are
7184 * returning to -- none of the state we would unstack or set based on
7185 * the EXCRET value affects it.
7187 if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7188 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7189 v7m_exception_taken(cpu, excret, true, false);
7193 switch_v7m_security_state(env, return_to_secure);
7196 /* The stack pointer we should be reading the exception frame from
7197 * depends on bits in the magic exception return type value (and
7198 * for v8M isn't necessarily the stack pointer we will eventually
7199 * end up resuming execution with). Get a pointer to the location
7200 * in the CPU state struct where the SP we need is currently being
7201 * stored; we will use and modify it in place.
7202 * We use this limited C variable scope so we don't accidentally
7203 * use 'frame_sp_p' after we do something that makes it invalid.
7205 uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7208 return_to_sp_process);
7209 uint32_t frameptr = *frame_sp_p;
7212 bool return_to_priv = return_to_handler ||
7213 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7215 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7218 if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7219 arm_feature(env, ARM_FEATURE_V8)) {
7220 qemu_log_mask(LOG_GUEST_ERROR,
7221 "M profile exception return with non-8-aligned SP "
7222 "for destination state is UNPREDICTABLE\n");
7225 /* Do we need to pop callee-saved registers? */
7226 if (return_to_secure &&
7227 ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7228 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7229 uint32_t expected_sig = 0xfefa125b;
7230 uint32_t actual_sig;
7232 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7234 if (pop_ok && expected_sig != actual_sig) {
7235 /* Take a SecureFault on the current stack */
7236 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7237 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7238 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7239 "stackframe: failed exception return integrity "
7240 "signature check\n");
7241 v7m_exception_taken(cpu, excret, true, false);
7246 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7247 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7248 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7249 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7250 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7251 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7252 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7253 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7254 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7261 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7262 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7263 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7264 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7265 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7266 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7267 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7268 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7271 /* v7m_stack_read() pended a fault, so take it (as a tail
7272 * chained exception on the same stack frame)
7274 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7275 v7m_exception_taken(cpu, excret, true, false);
7279 /* Returning from an exception with a PC with bit 0 set is defined
7280 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7281 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7282 * the lsbit, and there are several RTOSes out there which incorrectly
7283 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7284 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7285 * complain about the badly behaved guest.
7287 if (env->regs[15] & 1) {
7288 env->regs[15] &= ~1U;
7289 if (!arm_feature(env, ARM_FEATURE_V8)) {
7290 qemu_log_mask(LOG_GUEST_ERROR,
7291 "M profile return from interrupt with misaligned "
7292 "PC is UNPREDICTABLE on v7M\n");
7296 if (arm_feature(env, ARM_FEATURE_V8)) {
7297 /* For v8M we have to check whether the xPSR exception field
7298 * matches the EXCRET value for return to handler/thread
7299 * before we commit to changing the SP and xPSR.
7301 bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7302 if (return_to_handler != will_be_handler) {
7303 /* Take an INVPC UsageFault on the current stack.
7304 * By this point we will have switched to the security state
7305 * for the background state, so this UsageFault will target
7308 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7310 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7311 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7312 "stackframe: failed exception return integrity "
7314 v7m_exception_taken(cpu, excret, true, false);
7319 /* Commit to consuming the stack frame */
7321 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7322 * pre-exception SP was not 8-aligned and we added a padding word to
7323 * align it, so we undo this by ORing in the bit that increases it
7324 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7325 * would work too but a logical OR is how the pseudocode specifies it.)
7327 if (xpsr & XPSR_SPREALIGN) {
7330 *frame_sp_p = frameptr;
7332 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7333 xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7335 /* The restored xPSR exception field will be zero if we're
7336 * resuming in Thread mode. If that doesn't match what the
7337 * exception return excret specified then this is a UsageFault.
7338 * v7M requires we make this check here; v8M did it earlier.
7340 if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7341 /* Take an INVPC UsageFault by pushing the stack again;
7342 * we know we're v7M so this is never a Secure UsageFault.
7344 bool ignore_stackfaults;
7346 assert(!arm_feature(env, ARM_FEATURE_V8));
7347 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7348 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7349 ignore_stackfaults = v7m_push_stack(cpu);
7350 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7351 "failed exception return integrity check\n");
7352 v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7356 /* Otherwise, we have a successful exception exit. */
7357 arm_clear_exclusive(env);
7358 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7361 static bool do_v7m_function_return(ARMCPU *cpu)
7363 /* v8M security extensions magic function return.
7365 * (1) throw an exception (longjump)
7366 * (2) return true if we successfully handled the function return
7367 * (3) return false if we failed a consistency check and have
7368 * pended a UsageFault that needs to be taken now
7370 * At this point the magic return value is split between env->regs[15]
7371 * and env->thumb. We don't bother to reconstitute it because we don't
7372 * need it (all values are handled the same way).
7374 CPUARMState *env = &cpu->env;
7375 uint32_t newpc, newpsr, newpsr_exc;
7377 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7380 bool threadmode, spsel;
7383 uint32_t *frame_sp_p;
7386 /* Pull the return address and IPSR from the Secure stack */
7387 threadmode = !arm_v7m_is_handler_mode(env);
7388 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7390 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7391 frameptr = *frame_sp_p;
7393 /* These loads may throw an exception (for MPU faults). We want to
7394 * do them as secure, so work out what MMU index that is.
7396 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7397 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7398 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7399 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7401 /* Consistency checks on new IPSR */
7402 newpsr_exc = newpsr & XPSR_EXCP;
7403 if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7404 (env->v7m.exception == 1 && newpsr_exc != 0))) {
7405 /* Pend the fault and tell our caller to take it */
7406 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7407 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7409 qemu_log_mask(CPU_LOG_INT,
7410 "...taking INVPC UsageFault: "
7411 "IPSR consistency check failed\n");
7415 *frame_sp_p = frameptr + 8;
7418 /* This invalidates frame_sp_p */
7419 switch_v7m_security_state(env, true);
7420 env->v7m.exception = newpsr_exc;
7421 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7422 if (newpsr & XPSR_SFPA) {
7423 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7425 xpsr_write(env, 0, XPSR_IT);
7426 env->thumb = newpc & 1;
7427 env->regs[15] = newpc & ~1;
7429 qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7433 static void arm_log_exception(int idx)
7435 if (qemu_loglevel_mask(CPU_LOG_INT)) {
7436 const char *exc = NULL;
7437 static const char * const excnames[] = {
7438 [EXCP_UDEF] = "Undefined Instruction",
7440 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7441 [EXCP_DATA_ABORT] = "Data Abort",
7444 [EXCP_BKPT] = "Breakpoint",
7445 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7446 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7447 [EXCP_HVC] = "Hypervisor Call",
7448 [EXCP_HYP_TRAP] = "Hypervisor Trap",
7449 [EXCP_SMC] = "Secure Monitor Call",
7450 [EXCP_VIRQ] = "Virtual IRQ",
7451 [EXCP_VFIQ] = "Virtual FIQ",
7452 [EXCP_SEMIHOST] = "Semihosting call",
7453 [EXCP_NOCP] = "v7M NOCP UsageFault",
7454 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7457 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7458 exc = excnames[idx];
7463 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7467 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7468 uint32_t addr, uint16_t *insn)
7470 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7471 * or false on failure (in which case we will have pended the appropriate
7473 * We need to do the instruction fetch's MPU and SAU checks
7474 * like this because there is no MMU index that would allow
7475 * doing the load with a single function call. Instead we must
7476 * first check that the security attributes permit the load
7477 * and that they don't mismatch on the two halves of the instruction,
7478 * and then we do the load as a secure load (ie using the security
7479 * attributes of the address, not the CPU, as architecturally required).
7481 CPUState *cs = CPU(cpu);
7482 CPUARMState *env = &cpu->env;
7483 V8M_SAttributes sattrs = {};
7484 MemTxAttrs attrs = {};
7485 ARMMMUFaultInfo fi = {};
7487 target_ulong page_size;
7491 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7492 if (!sattrs.nsc || sattrs.ns) {
7493 /* This must be the second half of the insn, and it straddles a
7494 * region boundary with the second half not being S&NSC.
7496 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7497 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7498 qemu_log_mask(CPU_LOG_INT,
7499 "...really SecureFault with SFSR.INVEP\n");
7502 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7503 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7504 /* the MPU lookup failed */
7505 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7506 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7507 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7510 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7512 if (txres != MEMTX_OK) {
7513 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7514 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7515 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7521 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7523 /* Check whether this attempt to execute code in a Secure & NS-Callable
7524 * memory region is for an SG instruction; if so, then emulate the
7525 * effect of the SG instruction and return true. Otherwise pend
7526 * the correct kind of exception and return false.
7528 CPUARMState *env = &cpu->env;
7532 /* We should never get here unless get_phys_addr_pmsav8() caused
7533 * an exception for NS executing in S&NSC memory.
7535 assert(!env->v7m.secure);
7536 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7538 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7539 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7541 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7549 if (insn != 0xe97f) {
7550 /* Not an SG instruction first half (we choose the IMPDEF
7551 * early-SG-check option).
7556 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7560 if (insn != 0xe97f) {
7561 /* Not an SG instruction second half (yes, both halves of the SG
7562 * insn have the same hex value)
7567 /* OK, we have confirmed that we really have an SG instruction.
7568 * We know we're NS in S memory so don't need to repeat those checks.
7570 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7571 ", executing it\n", env->regs[15]);
7572 env->regs[14] &= ~1;
7573 switch_v7m_security_state(env, true);
7574 xpsr_write(env, 0, XPSR_IT);
7579 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7580 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7581 qemu_log_mask(CPU_LOG_INT,
7582 "...really SecureFault with SFSR.INVEP\n");
7586 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7588 ARMCPU *cpu = ARM_CPU(cs);
7589 CPUARMState *env = &cpu->env;
7591 bool ignore_stackfaults;
7593 arm_log_exception(cs->exception_index);
7595 /* For exceptions we just mark as pending on the NVIC, and let that
7597 switch (cs->exception_index) {
7599 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7600 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7603 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7604 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7607 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7608 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7611 /* The PC already points to the next instruction. */
7612 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7614 case EXCP_PREFETCH_ABORT:
7615 case EXCP_DATA_ABORT:
7616 /* Note that for M profile we don't have a guest facing FSR, but
7617 * the env->exception.fsr will be populated by the code that
7618 * raises the fault, in the A profile short-descriptor format.
7620 switch (env->exception.fsr & 0xf) {
7621 case M_FAKE_FSR_NSC_EXEC:
7622 /* Exception generated when we try to execute code at an address
7623 * which is marked as Secure & Non-Secure Callable and the CPU
7624 * is in the Non-Secure state. The only instruction which can
7625 * be executed like this is SG (and that only if both halves of
7626 * the SG instruction have the same security attributes.)
7627 * Everything else must generate an INVEP SecureFault, so we
7628 * emulate the SG instruction here.
7630 if (v7m_handle_execute_nsc(cpu)) {
7634 case M_FAKE_FSR_SFAULT:
7635 /* Various flavours of SecureFault for attempts to execute or
7636 * access data in the wrong security state.
7638 switch (cs->exception_index) {
7639 case EXCP_PREFETCH_ABORT:
7640 if (env->v7m.secure) {
7641 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7642 qemu_log_mask(CPU_LOG_INT,
7643 "...really SecureFault with SFSR.INVTRAN\n");
7645 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7646 qemu_log_mask(CPU_LOG_INT,
7647 "...really SecureFault with SFSR.INVEP\n");
7650 case EXCP_DATA_ABORT:
7651 /* This must be an NS access to S memory */
7652 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7653 qemu_log_mask(CPU_LOG_INT,
7654 "...really SecureFault with SFSR.AUVIOL\n");
7657 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7659 case 0x8: /* External Abort */
7660 switch (cs->exception_index) {
7661 case EXCP_PREFETCH_ABORT:
7662 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7663 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7665 case EXCP_DATA_ABORT:
7666 env->v7m.cfsr[M_REG_NS] |=
7667 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7668 env->v7m.bfar = env->exception.vaddress;
7669 qemu_log_mask(CPU_LOG_INT,
7670 "...with CFSR.PRECISERR and BFAR 0x%x\n",
7674 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7677 /* All other FSR values are either MPU faults or "can't happen
7678 * for M profile" cases.
7680 switch (cs->exception_index) {
7681 case EXCP_PREFETCH_ABORT:
7682 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7683 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7685 case EXCP_DATA_ABORT:
7686 env->v7m.cfsr[env->v7m.secure] |=
7687 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7688 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7689 qemu_log_mask(CPU_LOG_INT,
7690 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7691 env->v7m.mmfar[env->v7m.secure]);
7694 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7700 if (semihosting_enabled()) {
7702 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7705 qemu_log_mask(CPU_LOG_INT,
7706 "...handling as semihosting call 0x%x\n",
7708 env->regs[0] = do_arm_semihosting(env);
7712 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7716 case EXCP_EXCEPTION_EXIT:
7717 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7718 /* Must be v8M security extension function return */
7719 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7720 assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7721 if (do_v7m_function_return(cpu)) {
7725 do_v7m_exception_exit(cpu);
7730 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7731 return; /* Never happens. Keep compiler happy. */
7734 if (arm_feature(env, ARM_FEATURE_V8)) {
7735 lr = R_V7M_EXCRET_RES1_MASK |
7736 R_V7M_EXCRET_DCRS_MASK |
7737 R_V7M_EXCRET_FTYPE_MASK;
7738 /* The S bit indicates whether we should return to Secure
7739 * or NonSecure (ie our current state).
7740 * The ES bit indicates whether we're taking this exception
7741 * to Secure or NonSecure (ie our target state). We set it
7742 * later, in v7m_exception_taken().
7743 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7744 * This corresponds to the ARM ARM pseudocode for v8M setting
7745 * some LR bits in PushStack() and some in ExceptionTaken();
7746 * the distinction matters for the tailchain cases where we
7747 * can take an exception without pushing the stack.
7749 if (env->v7m.secure) {
7750 lr |= R_V7M_EXCRET_S_MASK;
7753 lr = R_V7M_EXCRET_RES1_MASK |
7754 R_V7M_EXCRET_S_MASK |
7755 R_V7M_EXCRET_DCRS_MASK |
7756 R_V7M_EXCRET_FTYPE_MASK |
7757 R_V7M_EXCRET_ES_MASK;
7758 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7759 lr |= R_V7M_EXCRET_SPSEL_MASK;
7762 if (!arm_v7m_is_handler_mode(env)) {
7763 lr |= R_V7M_EXCRET_MODE_MASK;
7766 ignore_stackfaults = v7m_push_stack(cpu);
7767 v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7770 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7771 * register set. This is necessary when switching between AArch32 and AArch64
7774 void aarch64_sync_32_to_64(CPUARMState *env)
7777 uint32_t mode = env->uncached_cpsr & CPSR_M;
7779 /* We can blanket copy R[0:7] to X[0:7] */
7780 for (i = 0; i < 8; i++) {
7781 env->xregs[i] = env->regs[i];
7784 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7785 * Otherwise, they come from the banked user regs.
7787 if (mode == ARM_CPU_MODE_FIQ) {
7788 for (i = 8; i < 13; i++) {
7789 env->xregs[i] = env->usr_regs[i - 8];
7792 for (i = 8; i < 13; i++) {
7793 env->xregs[i] = env->regs[i];
7797 /* Registers x13-x23 are the various mode SP and FP registers. Registers
7798 * r13 and r14 are only copied if we are in that mode, otherwise we copy
7799 * from the mode banked register.
7801 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7802 env->xregs[13] = env->regs[13];
7803 env->xregs[14] = env->regs[14];
7805 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7806 /* HYP is an exception in that it is copied from r14 */
7807 if (mode == ARM_CPU_MODE_HYP) {
7808 env->xregs[14] = env->regs[14];
7810 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7814 if (mode == ARM_CPU_MODE_HYP) {
7815 env->xregs[15] = env->regs[13];
7817 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7820 if (mode == ARM_CPU_MODE_IRQ) {
7821 env->xregs[16] = env->regs[14];
7822 env->xregs[17] = env->regs[13];
7824 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7825 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7828 if (mode == ARM_CPU_MODE_SVC) {
7829 env->xregs[18] = env->regs[14];
7830 env->xregs[19] = env->regs[13];
7832 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7833 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7836 if (mode == ARM_CPU_MODE_ABT) {
7837 env->xregs[20] = env->regs[14];
7838 env->xregs[21] = env->regs[13];
7840 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7841 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7844 if (mode == ARM_CPU_MODE_UND) {
7845 env->xregs[22] = env->regs[14];
7846 env->xregs[23] = env->regs[13];
7848 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7849 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7852 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7853 * mode, then we can copy from r8-r14. Otherwise, we copy from the
7854 * FIQ bank for r8-r14.
7856 if (mode == ARM_CPU_MODE_FIQ) {
7857 for (i = 24; i < 31; i++) {
7858 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
7861 for (i = 24; i < 29; i++) {
7862 env->xregs[i] = env->fiq_regs[i - 24];
7864 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7865 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7868 env->pc = env->regs[15];
7871 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7872 * register set. This is necessary when switching between AArch32 and AArch64
7875 void aarch64_sync_64_to_32(CPUARMState *env)
7878 uint32_t mode = env->uncached_cpsr & CPSR_M;
7880 /* We can blanket copy X[0:7] to R[0:7] */
7881 for (i = 0; i < 8; i++) {
7882 env->regs[i] = env->xregs[i];
7885 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7886 * Otherwise, we copy x8-x12 into the banked user regs.
7888 if (mode == ARM_CPU_MODE_FIQ) {
7889 for (i = 8; i < 13; i++) {
7890 env->usr_regs[i - 8] = env->xregs[i];
7893 for (i = 8; i < 13; i++) {
7894 env->regs[i] = env->xregs[i];
7898 /* Registers r13 & r14 depend on the current mode.
7899 * If we are in a given mode, we copy the corresponding x registers to r13
7900 * and r14. Otherwise, we copy the x register to the banked r13 and r14
7903 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7904 env->regs[13] = env->xregs[13];
7905 env->regs[14] = env->xregs[14];
7907 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7909 /* HYP is an exception in that it does not have its own banked r14 but
7910 * shares the USR r14
7912 if (mode == ARM_CPU_MODE_HYP) {
7913 env->regs[14] = env->xregs[14];
7915 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7919 if (mode == ARM_CPU_MODE_HYP) {
7920 env->regs[13] = env->xregs[15];
7922 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7925 if (mode == ARM_CPU_MODE_IRQ) {
7926 env->regs[14] = env->xregs[16];
7927 env->regs[13] = env->xregs[17];
7929 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7930 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7933 if (mode == ARM_CPU_MODE_SVC) {
7934 env->regs[14] = env->xregs[18];
7935 env->regs[13] = env->xregs[19];
7937 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7938 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7941 if (mode == ARM_CPU_MODE_ABT) {
7942 env->regs[14] = env->xregs[20];
7943 env->regs[13] = env->xregs[21];
7945 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7946 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7949 if (mode == ARM_CPU_MODE_UND) {
7950 env->regs[14] = env->xregs[22];
7951 env->regs[13] = env->xregs[23];
7953 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7954 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7957 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
7958 * mode, then we can copy to r8-r14. Otherwise, we copy to the
7959 * FIQ bank for r8-r14.
7961 if (mode == ARM_CPU_MODE_FIQ) {
7962 for (i = 24; i < 31; i++) {
7963 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
7966 for (i = 24; i < 29; i++) {
7967 env->fiq_regs[i - 24] = env->xregs[i];
7969 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7970 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7973 env->regs[15] = env->pc;
7976 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7978 ARMCPU *cpu = ARM_CPU(cs);
7979 CPUARMState *env = &cpu->env;
7986 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7987 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7989 case EC_BREAKPOINT_SAME_EL:
7993 case EC_WATCHPOINT_SAME_EL:
7999 case EC_VECTORCATCH:
8008 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8011 /* TODO: Vectored interrupt controller. */
8012 switch (cs->exception_index) {
8014 new_mode = ARM_CPU_MODE_UND;
8023 new_mode = ARM_CPU_MODE_SVC;
8026 /* The PC already points to the next instruction. */
8030 /* Fall through to prefetch abort. */
8031 case EXCP_PREFETCH_ABORT:
8032 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8033 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8034 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8035 env->exception.fsr, (uint32_t)env->exception.vaddress);
8036 new_mode = ARM_CPU_MODE_ABT;
8038 mask = CPSR_A | CPSR_I;
8041 case EXCP_DATA_ABORT:
8042 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8043 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8044 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8046 (uint32_t)env->exception.vaddress);
8047 new_mode = ARM_CPU_MODE_ABT;
8049 mask = CPSR_A | CPSR_I;
8053 new_mode = ARM_CPU_MODE_IRQ;
8055 /* Disable IRQ and imprecise data aborts. */
8056 mask = CPSR_A | CPSR_I;
8058 if (env->cp15.scr_el3 & SCR_IRQ) {
8059 /* IRQ routed to monitor mode */
8060 new_mode = ARM_CPU_MODE_MON;
8065 new_mode = ARM_CPU_MODE_FIQ;
8067 /* Disable FIQ, IRQ and imprecise data aborts. */
8068 mask = CPSR_A | CPSR_I | CPSR_F;
8069 if (env->cp15.scr_el3 & SCR_FIQ) {
8070 /* FIQ routed to monitor mode */
8071 new_mode = ARM_CPU_MODE_MON;
8076 new_mode = ARM_CPU_MODE_IRQ;
8078 /* Disable IRQ and imprecise data aborts. */
8079 mask = CPSR_A | CPSR_I;
8083 new_mode = ARM_CPU_MODE_FIQ;
8085 /* Disable FIQ, IRQ and imprecise data aborts. */
8086 mask = CPSR_A | CPSR_I | CPSR_F;
8090 new_mode = ARM_CPU_MODE_MON;
8092 mask = CPSR_A | CPSR_I | CPSR_F;
8096 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8097 return; /* Never happens. Keep compiler happy. */
8100 if (new_mode == ARM_CPU_MODE_MON) {
8101 addr += env->cp15.mvbar;
8102 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8103 /* High vectors. When enabled, base address cannot be remapped. */
8106 /* ARM v7 architectures provide a vector base address register to remap
8107 * the interrupt vector table.
8108 * This register is only followed in non-monitor mode, and is banked.
8109 * Note: only bits 31:5 are valid.
8111 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8114 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8115 env->cp15.scr_el3 &= ~SCR_NS;
8118 switch_mode (env, new_mode);
8119 /* For exceptions taken to AArch32 we must clear the SS bit in both
8120 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8122 env->uncached_cpsr &= ~PSTATE_SS;
8123 env->spsr = cpsr_read(env);
8124 /* Clear IT bits. */
8125 env->condexec_bits = 0;
8126 /* Switch to the new mode, and to the correct instruction set. */
8127 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8128 /* Set new mode endianness */
8129 env->uncached_cpsr &= ~CPSR_E;
8130 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8131 env->uncached_cpsr |= CPSR_E;
8134 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8135 * and we should just guard the thumb mode on V4 */
8136 if (arm_feature(env, ARM_FEATURE_V4T)) {
8137 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8139 env->regs[14] = env->regs[15] + offset;
8140 env->regs[15] = addr;
8143 /* Handle exception entry to a target EL which is using AArch64 */
8144 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8146 ARMCPU *cpu = ARM_CPU(cs);
8147 CPUARMState *env = &cpu->env;
8148 unsigned int new_el = env->exception.target_el;
8149 target_ulong addr = env->cp15.vbar_el[new_el];
8150 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8152 if (arm_current_el(env) < new_el) {
8153 /* Entry vector offset depends on whether the implemented EL
8154 * immediately lower than the target level is using AArch32 or AArch64
8160 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8163 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8166 is_aa64 = is_a64(env);
8169 g_assert_not_reached();
8177 } else if (pstate_read(env) & PSTATE_SP) {
8181 switch (cs->exception_index) {
8182 case EXCP_PREFETCH_ABORT:
8183 case EXCP_DATA_ABORT:
8184 env->cp15.far_el[new_el] = env->exception.vaddress;
8185 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8186 env->cp15.far_el[new_el]);
8194 env->cp15.esr_el[new_el] = env->exception.syndrome;
8205 qemu_log_mask(CPU_LOG_INT,
8206 "...handling as semihosting call 0x%" PRIx64 "\n",
8208 env->xregs[0] = do_arm_semihosting(env);
8211 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8215 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8216 aarch64_save_sp(env, arm_current_el(env));
8217 env->elr_el[new_el] = env->pc;
8219 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8220 env->elr_el[new_el] = env->regs[15];
8222 aarch64_sync_32_to_64(env);
8224 env->condexec_bits = 0;
8226 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8227 env->elr_el[new_el]);
8229 pstate_write(env, PSTATE_DAIF | new_mode);
8231 aarch64_restore_sp(env, new_el);
8235 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8236 new_el, env->pc, pstate_read(env));
8239 static inline bool check_for_semihosting(CPUState *cs)
8241 /* Check whether this exception is a semihosting call; if so
8242 * then handle it and return true; otherwise return false.
8244 ARMCPU *cpu = ARM_CPU(cs);
8245 CPUARMState *env = &cpu->env;
8248 if (cs->exception_index == EXCP_SEMIHOST) {
8249 /* This is always the 64-bit semihosting exception.
8250 * The "is this usermode" and "is semihosting enabled"
8251 * checks have been done at translate time.
8253 qemu_log_mask(CPU_LOG_INT,
8254 "...handling as semihosting call 0x%" PRIx64 "\n",
8256 env->xregs[0] = do_arm_semihosting(env);
8263 /* Only intercept calls from privileged modes, to provide some
8264 * semblance of security.
8266 if (cs->exception_index != EXCP_SEMIHOST &&
8267 (!semihosting_enabled() ||
8268 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8272 switch (cs->exception_index) {
8274 /* This is always a semihosting call; the "is this usermode"
8275 * and "is semihosting enabled" checks have been done at
8280 /* Check for semihosting interrupt. */
8282 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8288 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8290 if (imm == 0x123456) {
8296 /* See if this is a semihosting syscall. */
8298 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8310 qemu_log_mask(CPU_LOG_INT,
8311 "...handling as semihosting call 0x%x\n",
8313 env->regs[0] = do_arm_semihosting(env);
8318 /* Handle a CPU exception for A and R profile CPUs.
8319 * Do any appropriate logging, handle PSCI calls, and then hand off
8320 * to the AArch64-entry or AArch32-entry function depending on the
8321 * target exception level's register width.
8323 void arm_cpu_do_interrupt(CPUState *cs)
8325 ARMCPU *cpu = ARM_CPU(cs);
8326 CPUARMState *env = &cpu->env;
8327 unsigned int new_el = env->exception.target_el;
8329 assert(!arm_feature(env, ARM_FEATURE_M));
8331 arm_log_exception(cs->exception_index);
8332 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8334 if (qemu_loglevel_mask(CPU_LOG_INT)
8335 && !excp_is_internal(cs->exception_index)) {
8336 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8337 env->exception.syndrome >> ARM_EL_EC_SHIFT,
8338 env->exception.syndrome);
8341 if (arm_is_psci_call(cpu, cs->exception_index)) {
8342 arm_handle_psci_call(cpu);
8343 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8347 /* Semihosting semantics depend on the register width of the
8348 * code that caused the exception, not the target exception level,
8349 * so must be handled here.
8351 if (check_for_semihosting(cs)) {
8355 /* Hooks may change global state so BQL should be held, also the
8356 * BQL needs to be held for any modification of
8357 * cs->interrupt_request.
8359 g_assert(qemu_mutex_iothread_locked());
8361 arm_call_pre_el_change_hook(cpu);
8363 assert(!excp_is_internal(cs->exception_index));
8364 if (arm_el_is_aa64(env, new_el)) {
8365 arm_cpu_do_interrupt_aarch64(cs);
8367 arm_cpu_do_interrupt_aarch32(cs);
8370 arm_call_el_change_hook(cpu);
8372 if (!kvm_enabled()) {
8373 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8377 /* Return the exception level which controls this address translation regime */
8378 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8381 case ARMMMUIdx_S2NS:
8382 case ARMMMUIdx_S1E2:
8384 case ARMMMUIdx_S1E3:
8386 case ARMMMUIdx_S1SE0:
8387 return arm_el_is_aa64(env, 3) ? 1 : 3;
8388 case ARMMMUIdx_S1SE1:
8389 case ARMMMUIdx_S1NSE0:
8390 case ARMMMUIdx_S1NSE1:
8391 case ARMMMUIdx_MPrivNegPri:
8392 case ARMMMUIdx_MUserNegPri:
8393 case ARMMMUIdx_MPriv:
8394 case ARMMMUIdx_MUser:
8395 case ARMMMUIdx_MSPrivNegPri:
8396 case ARMMMUIdx_MSUserNegPri:
8397 case ARMMMUIdx_MSPriv:
8398 case ARMMMUIdx_MSUser:
8401 g_assert_not_reached();
8405 /* Return the SCTLR value which controls this address translation regime */
8406 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8408 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8411 /* Return true if the specified stage of address translation is disabled */
8412 static inline bool regime_translation_disabled(CPUARMState *env,
8415 if (arm_feature(env, ARM_FEATURE_M)) {
8416 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8417 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8418 case R_V7M_MPU_CTRL_ENABLE_MASK:
8419 /* Enabled, but not for HardFault and NMI */
8420 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8421 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8422 /* Enabled for all cases */
8426 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8427 * we warned about that in armv7m_nvic.c when the guest set it.
8433 if (mmu_idx == ARMMMUIdx_S2NS) {
8434 return (env->cp15.hcr_el2 & HCR_VM) == 0;
8437 if (env->cp15.hcr_el2 & HCR_TGE) {
8438 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8439 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8444 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8447 static inline bool regime_translation_big_endian(CPUARMState *env,
8450 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8453 /* Return the TCR controlling this translation regime */
8454 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8456 if (mmu_idx == ARMMMUIdx_S2NS) {
8457 return &env->cp15.vtcr_el2;
8459 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8462 /* Convert a possible stage1+2 MMU index into the appropriate
8465 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8467 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8468 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8473 /* Returns TBI0 value for current regime el */
8474 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8479 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8480 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8482 mmu_idx = stage_1_mmu_idx(mmu_idx);
8484 tcr = regime_tcr(env, mmu_idx);
8485 el = regime_el(env, mmu_idx);
8488 return extract64(tcr->raw_tcr, 20, 1);
8490 return extract64(tcr->raw_tcr, 37, 1);
8494 /* Returns TBI1 value for current regime el */
8495 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8500 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8501 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8503 mmu_idx = stage_1_mmu_idx(mmu_idx);
8505 tcr = regime_tcr(env, mmu_idx);
8506 el = regime_el(env, mmu_idx);
8511 return extract64(tcr->raw_tcr, 38, 1);
8515 /* Return the TTBR associated with this translation regime */
8516 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8519 if (mmu_idx == ARMMMUIdx_S2NS) {
8520 return env->cp15.vttbr_el2;
8523 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8525 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8529 /* Return true if the translation regime is using LPAE format page tables */
8530 static inline bool regime_using_lpae_format(CPUARMState *env,
8533 int el = regime_el(env, mmu_idx);
8534 if (el == 2 || arm_el_is_aa64(env, el)) {
8537 if (arm_feature(env, ARM_FEATURE_LPAE)
8538 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8544 /* Returns true if the stage 1 translation regime is using LPAE format page
8545 * tables. Used when raising alignment exceptions, whose FSR changes depending
8546 * on whether the long or short descriptor format is in use. */
8547 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8549 mmu_idx = stage_1_mmu_idx(mmu_idx);
8551 return regime_using_lpae_format(env, mmu_idx);
8554 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8557 case ARMMMUIdx_S1SE0:
8558 case ARMMMUIdx_S1NSE0:
8559 case ARMMMUIdx_MUser:
8560 case ARMMMUIdx_MSUser:
8561 case ARMMMUIdx_MUserNegPri:
8562 case ARMMMUIdx_MSUserNegPri:
8566 case ARMMMUIdx_S12NSE0:
8567 case ARMMMUIdx_S12NSE1:
8568 g_assert_not_reached();
8572 /* Translate section/page access permissions to page
8573 * R/W protection flags
8576 * @mmu_idx: MMU index indicating required translation regime
8577 * @ap: The 3-bit access permissions (AP[2:0])
8578 * @domain_prot: The 2-bit domain access permissions
8580 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8581 int ap, int domain_prot)
8583 bool is_user = regime_is_user(env, mmu_idx);
8585 if (domain_prot == 3) {
8586 return PAGE_READ | PAGE_WRITE;
8591 if (arm_feature(env, ARM_FEATURE_V7)) {
8594 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8596 return is_user ? 0 : PAGE_READ;
8603 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8608 return PAGE_READ | PAGE_WRITE;
8611 return PAGE_READ | PAGE_WRITE;
8612 case 4: /* Reserved. */
8615 return is_user ? 0 : PAGE_READ;
8619 if (!arm_feature(env, ARM_FEATURE_V6K)) {
8624 g_assert_not_reached();
8628 /* Translate section/page access permissions to page
8629 * R/W protection flags.
8631 * @ap: The 2-bit simple AP (AP[2:1])
8632 * @is_user: TRUE if accessing from PL0
8634 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8638 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8640 return PAGE_READ | PAGE_WRITE;
8642 return is_user ? 0 : PAGE_READ;
8646 g_assert_not_reached();
8651 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8653 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8656 /* Translate S2 section/page access permissions to protection flags
8659 * @s2ap: The 2-bit stage2 access permissions (S2AP)
8660 * @xn: XN (execute-never) bit
8662 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8673 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8680 /* Translate section/page access permissions to protection flags
8683 * @mmu_idx: MMU index indicating required translation regime
8684 * @is_aa64: TRUE if AArch64
8685 * @ap: The 2-bit simple AP (AP[2:1])
8686 * @ns: NS (non-secure) bit
8687 * @xn: XN (execute-never) bit
8688 * @pxn: PXN (privileged execute-never) bit
8690 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8691 int ap, int ns, int xn, int pxn)
8693 bool is_user = regime_is_user(env, mmu_idx);
8694 int prot_rw, user_rw;
8698 assert(mmu_idx != ARMMMUIdx_S2NS);
8700 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8704 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8707 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8711 /* TODO have_wxn should be replaced with
8712 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8713 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8714 * compatible processors have EL2, which is required for [U]WXN.
8716 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8719 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8723 switch (regime_el(env, mmu_idx)) {
8726 xn = pxn || (user_rw & PAGE_WRITE);
8733 } else if (arm_feature(env, ARM_FEATURE_V7)) {
8734 switch (regime_el(env, mmu_idx)) {
8738 xn = xn || !(user_rw & PAGE_READ);
8742 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8744 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8745 (uwxn && (user_rw & PAGE_WRITE));
8755 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8758 return prot_rw | PAGE_EXEC;
8761 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8762 uint32_t *table, uint32_t address)
8764 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8765 TCR *tcr = regime_tcr(env, mmu_idx);
8767 if (address & tcr->mask) {
8768 if (tcr->raw_tcr & TTBCR_PD1) {
8769 /* Translation table walk disabled for TTBR1 */
8772 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8774 if (tcr->raw_tcr & TTBCR_PD0) {
8775 /* Translation table walk disabled for TTBR0 */
8778 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8780 *table |= (address >> 18) & 0x3ffc;
8784 /* Translate a S1 pagetable walk through S2 if needed. */
8785 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8786 hwaddr addr, MemTxAttrs txattrs,
8787 ARMMMUFaultInfo *fi)
8789 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8790 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8791 target_ulong s2size;
8796 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8797 &txattrs, &s2prot, &s2size, fi, NULL);
8799 assert(fi->type != ARMFault_None);
8810 /* All loads done in the course of a page table walk go through here. */
8811 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8812 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8814 ARMCPU *cpu = ARM_CPU(cs);
8815 CPUARMState *env = &cpu->env;
8816 MemTxAttrs attrs = {};
8817 MemTxResult result = MEMTX_OK;
8821 attrs.secure = is_secure;
8822 as = arm_addressspace(cs, attrs);
8823 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8827 if (regime_translation_big_endian(env, mmu_idx)) {
8828 data = address_space_ldl_be(as, addr, attrs, &result);
8830 data = address_space_ldl_le(as, addr, attrs, &result);
8832 if (result == MEMTX_OK) {
8835 fi->type = ARMFault_SyncExternalOnWalk;
8836 fi->ea = arm_extabort_type(result);
8840 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8841 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8843 ARMCPU *cpu = ARM_CPU(cs);
8844 CPUARMState *env = &cpu->env;
8845 MemTxAttrs attrs = {};
8846 MemTxResult result = MEMTX_OK;
8850 attrs.secure = is_secure;
8851 as = arm_addressspace(cs, attrs);
8852 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8856 if (regime_translation_big_endian(env, mmu_idx)) {
8857 data = address_space_ldq_be(as, addr, attrs, &result);
8859 data = address_space_ldq_le(as, addr, attrs, &result);
8861 if (result == MEMTX_OK) {
8864 fi->type = ARMFault_SyncExternalOnWalk;
8865 fi->ea = arm_extabort_type(result);
8869 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8870 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8871 hwaddr *phys_ptr, int *prot,
8872 target_ulong *page_size,
8873 ARMMMUFaultInfo *fi)
8875 CPUState *cs = CPU(arm_env_get_cpu(env));
8886 /* Pagetable walk. */
8887 /* Lookup l1 descriptor. */
8888 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8889 /* Section translation fault if page walk is disabled by PD0 or PD1 */
8890 fi->type = ARMFault_Translation;
8893 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8895 if (fi->type != ARMFault_None) {
8899 domain = (desc >> 5) & 0x0f;
8900 if (regime_el(env, mmu_idx) == 1) {
8901 dacr = env->cp15.dacr_ns;
8903 dacr = env->cp15.dacr_s;
8905 domain_prot = (dacr >> (domain * 2)) & 3;
8907 /* Section translation fault. */
8908 fi->type = ARMFault_Translation;
8914 if (domain_prot == 0 || domain_prot == 2) {
8915 fi->type = ARMFault_Domain;
8920 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8921 ap = (desc >> 10) & 3;
8922 *page_size = 1024 * 1024;
8924 /* Lookup l2 entry. */
8926 /* Coarse pagetable. */
8927 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8929 /* Fine pagetable. */
8930 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8932 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8934 if (fi->type != ARMFault_None) {
8938 case 0: /* Page translation fault. */
8939 fi->type = ARMFault_Translation;
8941 case 1: /* 64k page. */
8942 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8943 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8944 *page_size = 0x10000;
8946 case 2: /* 4k page. */
8947 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8948 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8949 *page_size = 0x1000;
8951 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8953 /* ARMv6/XScale extended small page format */
8954 if (arm_feature(env, ARM_FEATURE_XSCALE)
8955 || arm_feature(env, ARM_FEATURE_V6)) {
8956 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8957 *page_size = 0x1000;
8959 /* UNPREDICTABLE in ARMv5; we choose to take a
8960 * page translation fault.
8962 fi->type = ARMFault_Translation;
8966 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8969 ap = (desc >> 4) & 3;
8972 /* Never happens, but compiler isn't smart enough to tell. */
8976 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8977 *prot |= *prot ? PAGE_EXEC : 0;
8978 if (!(*prot & (1 << access_type))) {
8979 /* Access permission fault. */
8980 fi->type = ARMFault_Permission;
8983 *phys_ptr = phys_addr;
8986 fi->domain = domain;
8991 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8992 MMUAccessType access_type, ARMMMUIdx mmu_idx,
8993 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8994 target_ulong *page_size, ARMMMUFaultInfo *fi)
8996 CPUState *cs = CPU(arm_env_get_cpu(env));
9010 /* Pagetable walk. */
9011 /* Lookup l1 descriptor. */
9012 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9013 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9014 fi->type = ARMFault_Translation;
9017 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9019 if (fi->type != ARMFault_None) {
9023 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9024 /* Section translation fault, or attempt to use the encoding
9025 * which is Reserved on implementations without PXN.
9027 fi->type = ARMFault_Translation;
9030 if ((type == 1) || !(desc & (1 << 18))) {
9031 /* Page or Section. */
9032 domain = (desc >> 5) & 0x0f;
9034 if (regime_el(env, mmu_idx) == 1) {
9035 dacr = env->cp15.dacr_ns;
9037 dacr = env->cp15.dacr_s;
9042 domain_prot = (dacr >> (domain * 2)) & 3;
9043 if (domain_prot == 0 || domain_prot == 2) {
9044 /* Section or Page domain fault */
9045 fi->type = ARMFault_Domain;
9049 if (desc & (1 << 18)) {
9051 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9052 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9053 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9054 *page_size = 0x1000000;
9057 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9058 *page_size = 0x100000;
9060 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9061 xn = desc & (1 << 4);
9063 ns = extract32(desc, 19, 1);
9065 if (arm_feature(env, ARM_FEATURE_PXN)) {
9066 pxn = (desc >> 2) & 1;
9068 ns = extract32(desc, 3, 1);
9069 /* Lookup l2 entry. */
9070 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9071 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9073 if (fi->type != ARMFault_None) {
9076 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9078 case 0: /* Page translation fault. */
9079 fi->type = ARMFault_Translation;
9081 case 1: /* 64k page. */
9082 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9083 xn = desc & (1 << 15);
9084 *page_size = 0x10000;
9086 case 2: case 3: /* 4k page. */
9087 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9089 *page_size = 0x1000;
9092 /* Never happens, but compiler isn't smart enough to tell. */
9096 if (domain_prot == 3) {
9097 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9099 if (pxn && !regime_is_user(env, mmu_idx)) {
9102 if (xn && access_type == MMU_INST_FETCH) {
9103 fi->type = ARMFault_Permission;
9107 if (arm_feature(env, ARM_FEATURE_V6K) &&
9108 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9109 /* The simplified model uses AP[0] as an access control bit. */
9110 if ((ap & 1) == 0) {
9111 /* Access flag fault. */
9112 fi->type = ARMFault_AccessFlag;
9115 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9117 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9122 if (!(*prot & (1 << access_type))) {
9123 /* Access permission fault. */
9124 fi->type = ARMFault_Permission;
9129 /* The NS bit will (as required by the architecture) have no effect if
9130 * the CPU doesn't support TZ or this is a non-secure translation
9131 * regime, because the attribute will already be non-secure.
9133 attrs->secure = false;
9135 *phys_ptr = phys_addr;
9138 fi->domain = domain;
9144 * check_s2_mmu_setup
9146 * @is_aa64: True if the translation regime is in AArch64 state
9147 * @startlevel: Suggested starting level
9148 * @inputsize: Bitsize of IPAs
9149 * @stride: Page-table stride (See the ARM ARM)
9151 * Returns true if the suggested S2 translation parameters are OK and
9154 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9155 int inputsize, int stride)
9157 const int grainsize = stride + 3;
9160 /* Negative levels are never allowed. */
9165 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9166 if (startsizecheck < 1 || startsizecheck > stride + 4) {
9171 CPUARMState *env = &cpu->env;
9172 unsigned int pamax = arm_pamax(cpu);
9175 case 13: /* 64KB Pages. */
9176 if (level == 0 || (level == 1 && pamax <= 42)) {
9180 case 11: /* 16KB Pages. */
9181 if (level == 0 || (level == 1 && pamax <= 40)) {
9185 case 9: /* 4KB Pages. */
9186 if (level == 0 && pamax <= 42) {
9191 g_assert_not_reached();
9194 /* Inputsize checks. */
9195 if (inputsize > pamax &&
9196 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9197 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9201 /* AArch32 only supports 4KB pages. Assert on that. */
9202 assert(stride == 9);
9211 /* Translate from the 4-bit stage 2 representation of
9212 * memory attributes (without cache-allocation hints) to
9213 * the 8-bit representation of the stage 1 MAIR registers
9214 * (which includes allocation hints).
9216 * ref: shared/translation/attrs/S2AttrDecode()
9217 * .../S2ConvertAttrsHints()
9219 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9221 uint8_t hiattr = extract32(s2attrs, 2, 2);
9222 uint8_t loattr = extract32(s2attrs, 0, 2);
9223 uint8_t hihint = 0, lohint = 0;
9225 if (hiattr != 0) { /* normal memory */
9226 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9227 hiattr = loattr = 1; /* non-cacheable */
9229 if (hiattr != 1) { /* Write-through or write-back */
9230 hihint = 3; /* RW allocate */
9232 if (loattr != 1) { /* Write-through or write-back */
9233 lohint = 3; /* RW allocate */
9238 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9241 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9242 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9243 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9244 target_ulong *page_size_ptr,
9245 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9247 ARMCPU *cpu = arm_env_get_cpu(env);
9248 CPUState *cs = CPU(cpu);
9249 /* Read an LPAE long-descriptor translation table. */
9250 ARMFaultType fault_type = ARMFault_Translation;
9257 hwaddr descaddr, indexmask, indexmask_grainsize;
9258 uint32_t tableattrs;
9259 target_ulong page_size;
9265 TCR *tcr = regime_tcr(env, mmu_idx);
9266 int ap, ns, xn, pxn;
9267 uint32_t el = regime_el(env, mmu_idx);
9268 bool ttbr1_valid = true;
9269 uint64_t descaddrmask;
9270 bool aarch64 = arm_el_is_aa64(env, el);
9273 * This code does not handle the different format TCR for VTCR_EL2.
9274 * This code also does not support shareability levels.
9275 * Attribute and permission bit handling should also be checked when adding
9276 * support for those page table walks.
9282 if (mmu_idx != ARMMMUIdx_S2NS) {
9283 tbi = extract64(tcr->raw_tcr, 20, 1);
9286 if (extract64(address, 55, 1)) {
9287 tbi = extract64(tcr->raw_tcr, 38, 1);
9289 tbi = extract64(tcr->raw_tcr, 37, 1);
9294 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9298 ttbr1_valid = false;
9303 /* There is no TTBR1 for EL2 */
9305 ttbr1_valid = false;
9309 /* Determine whether this address is in the region controlled by
9310 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9311 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9312 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9315 /* AArch64 translation. */
9316 t0sz = extract32(tcr->raw_tcr, 0, 6);
9317 t0sz = MIN(t0sz, 39);
9318 t0sz = MAX(t0sz, 16);
9319 } else if (mmu_idx != ARMMMUIdx_S2NS) {
9320 /* AArch32 stage 1 translation. */
9321 t0sz = extract32(tcr->raw_tcr, 0, 3);
9323 /* AArch32 stage 2 translation. */
9324 bool sext = extract32(tcr->raw_tcr, 4, 1);
9325 bool sign = extract32(tcr->raw_tcr, 3, 1);
9326 /* Address size is 40-bit for a stage 2 translation,
9327 * and t0sz can be negative (from -8 to 7),
9328 * so we need to adjust it to use the TTBR selecting logic below.
9331 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9333 /* If the sign-extend bit is not the same as t0sz[3], the result
9334 * is unpredictable. Flag this as a guest error. */
9336 qemu_log_mask(LOG_GUEST_ERROR,
9337 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9340 t1sz = extract32(tcr->raw_tcr, 16, 6);
9342 t1sz = MIN(t1sz, 39);
9343 t1sz = MAX(t1sz, 16);
9345 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9346 /* there is a ttbr0 region and we are in it (high bits all zero) */
9348 } else if (ttbr1_valid && t1sz &&
9349 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9350 /* there is a ttbr1 region and we are in it (high bits all one) */
9353 /* ttbr0 region is "everything not in the ttbr1 region" */
9355 } else if (!t1sz && ttbr1_valid) {
9356 /* ttbr1 region is "everything not in the ttbr0 region" */
9359 /* in the gap between the two regions, this is a Translation fault */
9360 fault_type = ARMFault_Translation;
9364 /* Note that QEMU ignores shareability and cacheability attributes,
9365 * so we don't need to do anything with the SH, ORGN, IRGN fields
9366 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9367 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9368 * implement any ASID-like capability so we can ignore it (instead
9369 * we will always flush the TLB any time the ASID is changed).
9371 if (ttbr_select == 0) {
9372 ttbr = regime_ttbr(env, mmu_idx, 0);
9374 epd = extract32(tcr->raw_tcr, 7, 1);
9376 inputsize = addrsize - t0sz;
9378 tg = extract32(tcr->raw_tcr, 14, 2);
9379 if (tg == 1) { /* 64KB pages */
9382 if (tg == 2) { /* 16KB pages */
9386 /* We should only be here if TTBR1 is valid */
9387 assert(ttbr1_valid);
9389 ttbr = regime_ttbr(env, mmu_idx, 1);
9390 epd = extract32(tcr->raw_tcr, 23, 1);
9391 inputsize = addrsize - t1sz;
9393 tg = extract32(tcr->raw_tcr, 30, 2);
9394 if (tg == 3) { /* 64KB pages */
9397 if (tg == 1) { /* 16KB pages */
9402 /* Here we should have set up all the parameters for the translation:
9403 * inputsize, ttbr, epd, stride, tbi
9407 /* Translation table walk disabled => Translation fault on TLB miss
9408 * Note: This is always 0 on 64-bit EL2 and EL3.
9413 if (mmu_idx != ARMMMUIdx_S2NS) {
9414 /* The starting level depends on the virtual address size (which can
9415 * be up to 48 bits) and the translation granule size. It indicates
9416 * the number of strides (stride bits at a time) needed to
9417 * consume the bits of the input address. In the pseudocode this is:
9418 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9419 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9420 * our 'stride + 3' and 'stride' is our 'stride'.
9421 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9422 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9423 * = 4 - (inputsize - 4) / stride;
9425 level = 4 - (inputsize - 4) / stride;
9427 /* For stage 2 translations the starting level is specified by the
9428 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9430 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9431 uint32_t startlevel;
9434 if (!aarch64 || stride == 9) {
9435 /* AArch32 or 4KB pages */
9436 startlevel = 2 - sl0;
9438 /* 16KB or 64KB pages */
9439 startlevel = 3 - sl0;
9442 /* Check that the starting level is valid. */
9443 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9446 fault_type = ARMFault_Translation;
9452 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9453 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9455 /* Now we can extract the actual base address from the TTBR */
9456 descaddr = extract64(ttbr, 0, 48);
9457 descaddr &= ~indexmask;
9459 /* The address field in the descriptor goes up to bit 39 for ARMv7
9460 * but up to bit 47 for ARMv8, but we use the descaddrmask
9461 * up to bit 39 for AArch32, because we don't need other bits in that case
9462 * to construct next descriptor address (anyway they should be all zeroes).
9464 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9465 ~indexmask_grainsize;
9467 /* Secure accesses start with the page table in secure memory and
9468 * can be downgraded to non-secure at any step. Non-secure accesses
9469 * remain non-secure. We implement this by just ORing in the NSTable/NS
9470 * bits at each step.
9472 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9474 uint64_t descriptor;
9477 descaddr |= (address >> (stride * (4 - level))) & indexmask;
9479 nstable = extract32(tableattrs, 4, 1);
9480 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9481 if (fi->type != ARMFault_None) {
9485 if (!(descriptor & 1) ||
9486 (!(descriptor & 2) && (level == 3))) {
9487 /* Invalid, or the Reserved level 3 encoding */
9490 descaddr = descriptor & descaddrmask;
9492 if ((descriptor & 2) && (level < 3)) {
9493 /* Table entry. The top five bits are attributes which may
9494 * propagate down through lower levels of the table (and
9495 * which are all arranged so that 0 means "no effect", so
9496 * we can gather them up by ORing in the bits at each level).
9498 tableattrs |= extract64(descriptor, 59, 5);
9500 indexmask = indexmask_grainsize;
9503 /* Block entry at level 1 or 2, or page entry at level 3.
9504 * These are basically the same thing, although the number
9505 * of bits we pull in from the vaddr varies.
9507 page_size = (1ULL << ((stride * (4 - level)) + 3));
9508 descaddr |= (address & (page_size - 1));
9509 /* Extract attributes from the descriptor */
9510 attrs = extract64(descriptor, 2, 10)
9511 | (extract64(descriptor, 52, 12) << 10);
9513 if (mmu_idx == ARMMMUIdx_S2NS) {
9514 /* Stage 2 table descriptors do not include any attribute fields */
9517 /* Merge in attributes from table descriptors */
9518 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9519 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9520 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9521 * means "force PL1 access only", which means forcing AP[1] to 0.
9523 if (extract32(tableattrs, 2, 1)) {
9526 attrs |= nstable << 3; /* NS */
9529 /* Here descaddr is the final physical address, and attributes
9532 fault_type = ARMFault_AccessFlag;
9533 if ((attrs & (1 << 8)) == 0) {
9538 ap = extract32(attrs, 4, 2);
9539 xn = extract32(attrs, 12, 1);
9541 if (mmu_idx == ARMMMUIdx_S2NS) {
9543 *prot = get_S2prot(env, ap, xn);
9545 ns = extract32(attrs, 3, 1);
9546 pxn = extract32(attrs, 11, 1);
9547 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9550 fault_type = ARMFault_Permission;
9551 if (!(*prot & (1 << access_type))) {
9556 /* The NS bit will (as required by the architecture) have no effect if
9557 * the CPU doesn't support TZ or this is a non-secure translation
9558 * regime, because the attribute will already be non-secure.
9560 txattrs->secure = false;
9563 if (cacheattrs != NULL) {
9564 if (mmu_idx == ARMMMUIdx_S2NS) {
9565 cacheattrs->attrs = convert_stage2_attrs(env,
9566 extract32(attrs, 0, 4));
9568 /* Index into MAIR registers for cache attributes */
9569 uint8_t attrindx = extract32(attrs, 0, 3);
9570 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9571 assert(attrindx <= 7);
9572 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9574 cacheattrs->shareability = extract32(attrs, 6, 2);
9577 *phys_ptr = descaddr;
9578 *page_size_ptr = page_size;
9582 fi->type = fault_type;
9584 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
9585 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9589 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9591 int32_t address, int *prot)
9593 if (!arm_feature(env, ARM_FEATURE_M)) {
9594 *prot = PAGE_READ | PAGE_WRITE;
9596 case 0xF0000000 ... 0xFFFFFFFF:
9597 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9598 /* hivecs execing is ok */
9602 case 0x00000000 ... 0x7FFFFFFF:
9607 /* Default system address map for M profile cores.
9608 * The architecture specifies which regions are execute-never;
9609 * at the MPU level no other checks are defined.
9612 case 0x00000000 ... 0x1fffffff: /* ROM */
9613 case 0x20000000 ... 0x3fffffff: /* SRAM */
9614 case 0x60000000 ... 0x7fffffff: /* RAM */
9615 case 0x80000000 ... 0x9fffffff: /* RAM */
9616 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9618 case 0x40000000 ... 0x5fffffff: /* Peripheral */
9619 case 0xa0000000 ... 0xbfffffff: /* Device */
9620 case 0xc0000000 ... 0xdfffffff: /* Device */
9621 case 0xe0000000 ... 0xffffffff: /* System */
9622 *prot = PAGE_READ | PAGE_WRITE;
9625 g_assert_not_reached();
9630 static bool pmsav7_use_background_region(ARMCPU *cpu,
9631 ARMMMUIdx mmu_idx, bool is_user)
9633 /* Return true if we should use the default memory map as a
9634 * "background" region if there are no hits against any MPU regions.
9636 CPUARMState *env = &cpu->env;
9642 if (arm_feature(env, ARM_FEATURE_M)) {
9643 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9644 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9646 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9650 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9652 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9653 return arm_feature(env, ARM_FEATURE_M) &&
9654 extract32(address, 20, 12) == 0xe00;
9657 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9659 /* True if address is in the M profile system region
9660 * 0xe0000000 - 0xffffffff
9662 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9665 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9666 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9667 hwaddr *phys_ptr, int *prot,
9668 target_ulong *page_size,
9669 ARMMMUFaultInfo *fi)
9671 ARMCPU *cpu = arm_env_get_cpu(env);
9673 bool is_user = regime_is_user(env, mmu_idx);
9675 *phys_ptr = address;
9676 *page_size = TARGET_PAGE_SIZE;
9679 if (regime_translation_disabled(env, mmu_idx) ||
9680 m_is_ppb_region(env, address)) {
9681 /* MPU disabled or M profile PPB access: use default memory map.
9682 * The other case which uses the default memory map in the
9683 * v7M ARM ARM pseudocode is exception vector reads from the vector
9684 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9685 * which always does a direct read using address_space_ldl(), rather
9686 * than going via this function, so we don't need to check that here.
9688 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9689 } else { /* MPU enabled */
9690 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9692 uint32_t base = env->pmsav7.drbar[n];
9693 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9697 if (!(env->pmsav7.drsr[n] & 0x1)) {
9702 qemu_log_mask(LOG_GUEST_ERROR,
9703 "DRSR[%d]: Rsize field cannot be 0\n", n);
9707 rmask = (1ull << rsize) - 1;
9710 qemu_log_mask(LOG_GUEST_ERROR,
9711 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9712 "to DRSR region size, mask = 0x%" PRIx32 "\n",
9717 if (address < base || address > base + rmask) {
9719 * Address not in this region. We must check whether the
9720 * region covers addresses in the same page as our address.
9721 * In that case we must not report a size that covers the
9722 * whole page for a subsequent hit against a different MPU
9723 * region or the background region, because it would result in
9724 * incorrect TLB hits for subsequent accesses to addresses that
9725 * are in this MPU region.
9727 if (ranges_overlap(base, rmask,
9728 address & TARGET_PAGE_MASK,
9729 TARGET_PAGE_SIZE)) {
9735 /* Region matched */
9737 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9739 uint32_t srdis_mask;
9741 rsize -= 3; /* sub region size (power of 2) */
9742 snd = ((address - base) >> rsize) & 0x7;
9743 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9745 srdis_mask = srdis ? 0x3 : 0x0;
9746 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9747 /* This will check in groups of 2, 4 and then 8, whether
9748 * the subregion bits are consistent. rsize is incremented
9749 * back up to give the region size, considering consistent
9750 * adjacent subregions as one region. Stop testing if rsize
9751 * is already big enough for an entire QEMU page.
9753 int snd_rounded = snd & ~(i - 1);
9754 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9755 snd_rounded + 8, i);
9756 if (srdis_mask ^ srdis_multi) {
9759 srdis_mask = (srdis_mask << i) | srdis_mask;
9766 if (rsize < TARGET_PAGE_BITS) {
9767 *page_size = 1 << rsize;
9772 if (n == -1) { /* no hits */
9773 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9774 /* background fault */
9775 fi->type = ARMFault_Background;
9778 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9779 } else { /* a MPU hit! */
9780 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9781 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9783 if (m_is_system_region(env, address)) {
9784 /* System space is always execute never */
9788 if (is_user) { /* User mode AP bit decoding */
9793 break; /* no access */
9795 *prot |= PAGE_WRITE;
9799 *prot |= PAGE_READ | PAGE_EXEC;
9802 /* for v7M, same as 6; for R profile a reserved value */
9803 if (arm_feature(env, ARM_FEATURE_M)) {
9804 *prot |= PAGE_READ | PAGE_EXEC;
9809 qemu_log_mask(LOG_GUEST_ERROR,
9810 "DRACR[%d]: Bad value for AP bits: 0x%"
9811 PRIx32 "\n", n, ap);
9813 } else { /* Priv. mode AP bits decoding */
9816 break; /* no access */
9820 *prot |= PAGE_WRITE;
9824 *prot |= PAGE_READ | PAGE_EXEC;
9827 /* for v7M, same as 6; for R profile a reserved value */
9828 if (arm_feature(env, ARM_FEATURE_M)) {
9829 *prot |= PAGE_READ | PAGE_EXEC;
9834 qemu_log_mask(LOG_GUEST_ERROR,
9835 "DRACR[%d]: Bad value for AP bits: 0x%"
9836 PRIx32 "\n", n, ap);
9842 *prot &= ~PAGE_EXEC;
9847 fi->type = ARMFault_Permission;
9849 return !(*prot & (1 << access_type));
9852 static bool v8m_is_sau_exempt(CPUARMState *env,
9853 uint32_t address, MMUAccessType access_type)
9855 /* The architecture specifies that certain address ranges are
9856 * exempt from v8M SAU/IDAU checks.
9859 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9860 (address >= 0xe0000000 && address <= 0xe0002fff) ||
9861 (address >= 0xe000e000 && address <= 0xe000efff) ||
9862 (address >= 0xe002e000 && address <= 0xe002efff) ||
9863 (address >= 0xe0040000 && address <= 0xe0041fff) ||
9864 (address >= 0xe00ff000 && address <= 0xe00fffff);
9867 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9868 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9869 V8M_SAttributes *sattrs)
9871 /* Look up the security attributes for this address. Compare the
9872 * pseudocode SecurityCheck() function.
9873 * We assume the caller has zero-initialized *sattrs.
9875 ARMCPU *cpu = arm_env_get_cpu(env);
9877 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9878 int idau_region = IREGION_NOTVALID;
9879 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9880 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9883 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9884 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9886 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9890 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9891 /* 0xf0000000..0xffffffff is always S for insn fetches */
9895 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9896 sattrs->ns = !regime_is_secure(env, mmu_idx);
9900 if (idau_region != IREGION_NOTVALID) {
9901 sattrs->irvalid = true;
9902 sattrs->iregion = idau_region;
9905 switch (env->sau.ctrl & 3) {
9906 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9908 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9911 default: /* SAU.ENABLE == 1 */
9912 for (r = 0; r < cpu->sau_sregion; r++) {
9913 if (env->sau.rlar[r] & 1) {
9914 uint32_t base = env->sau.rbar[r] & ~0x1f;
9915 uint32_t limit = env->sau.rlar[r] | 0x1f;
9917 if (base <= address && limit >= address) {
9918 if (base > addr_page_base || limit < addr_page_limit) {
9919 sattrs->subpage = true;
9921 if (sattrs->srvalid) {
9922 /* If we hit in more than one region then we must report
9923 * as Secure, not NS-Callable, with no valid region
9927 sattrs->nsc = false;
9928 sattrs->sregion = 0;
9929 sattrs->srvalid = false;
9932 if (env->sau.rlar[r] & 2) {
9937 sattrs->srvalid = true;
9938 sattrs->sregion = r;
9942 * Address not in this region. We must check whether the
9943 * region covers addresses in the same page as our address.
9944 * In that case we must not report a size that covers the
9945 * whole page for a subsequent hit against a different MPU
9946 * region or the background region, because it would result
9947 * in incorrect TLB hits for subsequent accesses to
9948 * addresses that are in this MPU region.
9950 if (limit >= base &&
9951 ranges_overlap(base, limit - base + 1,
9953 TARGET_PAGE_SIZE)) {
9954 sattrs->subpage = true;
9960 /* The IDAU will override the SAU lookup results if it specifies
9961 * higher security than the SAU does.
9964 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9966 sattrs->nsc = idau_nsc;
9973 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9974 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9975 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9976 int *prot, bool *is_subpage,
9977 ARMMMUFaultInfo *fi, uint32_t *mregion)
9979 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9980 * that a full phys-to-virt translation does).
9981 * mregion is (if not NULL) set to the region number which matched,
9982 * or -1 if no region number is returned (MPU off, address did not
9983 * hit a region, address hit in multiple regions).
9984 * We set is_subpage to true if the region hit doesn't cover the
9985 * entire TARGET_PAGE the address is within.
9987 ARMCPU *cpu = arm_env_get_cpu(env);
9988 bool is_user = regime_is_user(env, mmu_idx);
9989 uint32_t secure = regime_is_secure(env, mmu_idx);
9991 int matchregion = -1;
9993 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9994 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9996 *is_subpage = false;
9997 *phys_ptr = address;
10003 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10004 * was an exception vector read from the vector table (which is always
10005 * done using the default system address map), because those accesses
10006 * are done in arm_v7m_load_vector(), which always does a direct
10007 * read using address_space_ldl(), rather than going via this function.
10009 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10011 } else if (m_is_ppb_region(env, address)) {
10013 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10016 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10017 /* region search */
10018 /* Note that the base address is bits [31:5] from the register
10019 * with bits [4:0] all zeroes, but the limit address is bits
10020 * [31:5] from the register with bits [4:0] all ones.
10022 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10023 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10025 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10026 /* Region disabled */
10030 if (address < base || address > limit) {
10032 * Address not in this region. We must check whether the
10033 * region covers addresses in the same page as our address.
10034 * In that case we must not report a size that covers the
10035 * whole page for a subsequent hit against a different MPU
10036 * region or the background region, because it would result in
10037 * incorrect TLB hits for subsequent accesses to addresses that
10038 * are in this MPU region.
10040 if (limit >= base &&
10041 ranges_overlap(base, limit - base + 1,
10043 TARGET_PAGE_SIZE)) {
10044 *is_subpage = true;
10049 if (base > addr_page_base || limit < addr_page_limit) {
10050 *is_subpage = true;
10054 /* Multiple regions match -- always a failure (unlike
10055 * PMSAv7 where highest-numbered-region wins)
10057 fi->type = ARMFault_Permission;
10068 /* background fault */
10069 fi->type = ARMFault_Background;
10073 if (matchregion == -1) {
10074 /* hit using the background region */
10075 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10077 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10078 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10080 if (m_is_system_region(env, address)) {
10081 /* System space is always execute never */
10085 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10086 if (*prot && !xn) {
10087 *prot |= PAGE_EXEC;
10089 /* We don't need to look the attribute up in the MAIR0/MAIR1
10090 * registers because that only tells us about cacheability.
10093 *mregion = matchregion;
10097 fi->type = ARMFault_Permission;
10099 return !(*prot & (1 << access_type));
10103 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10104 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10105 hwaddr *phys_ptr, MemTxAttrs *txattrs,
10106 int *prot, target_ulong *page_size,
10107 ARMMMUFaultInfo *fi)
10109 uint32_t secure = regime_is_secure(env, mmu_idx);
10110 V8M_SAttributes sattrs = {};
10112 bool mpu_is_subpage;
10114 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10115 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10116 if (access_type == MMU_INST_FETCH) {
10117 /* Instruction fetches always use the MMU bank and the
10118 * transaction attribute determined by the fetch address,
10119 * regardless of CPU state. This is painful for QEMU
10120 * to handle, because it would mean we need to encode
10121 * into the mmu_idx not just the (user, negpri) information
10122 * for the current security state but also that for the
10123 * other security state, which would balloon the number
10124 * of mmu_idx values needed alarmingly.
10125 * Fortunately we can avoid this because it's not actually
10126 * possible to arbitrarily execute code from memory with
10127 * the wrong security attribute: it will always generate
10128 * an exception of some kind or another, apart from the
10129 * special case of an NS CPU executing an SG instruction
10130 * in S&NSC memory. So we always just fail the translation
10131 * here and sort things out in the exception handler
10132 * (including possibly emulating an SG instruction).
10134 if (sattrs.ns != !secure) {
10136 fi->type = ARMFault_QEMU_NSCExec;
10138 fi->type = ARMFault_QEMU_SFault;
10140 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10141 *phys_ptr = address;
10146 /* For data accesses we always use the MMU bank indicated
10147 * by the current CPU state, but the security attributes
10148 * might downgrade a secure access to nonsecure.
10151 txattrs->secure = false;
10152 } else if (!secure) {
10153 /* NS access to S memory must fault.
10154 * Architecturally we should first check whether the
10155 * MPU information for this address indicates that we
10156 * are doing an unaligned access to Device memory, which
10157 * should generate a UsageFault instead. QEMU does not
10158 * currently check for that kind of unaligned access though.
10159 * If we added it we would need to do so as a special case
10160 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10162 fi->type = ARMFault_QEMU_SFault;
10163 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10164 *phys_ptr = address;
10171 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10172 txattrs, prot, &mpu_is_subpage, fi, NULL);
10174 * TODO: this is a temporary hack to ignore the fact that the SAU region
10175 * is smaller than a page if this is an executable region. We never
10176 * supported small MPU regions, but we did (accidentally) allow small
10177 * SAU regions, and if we now made small SAU regions not be executable
10178 * then this would break previously working guest code. We can't
10179 * remove this until/unless we implement support for execution from
10182 if (*prot & PAGE_EXEC) {
10183 sattrs.subpage = false;
10185 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10189 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10190 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10191 hwaddr *phys_ptr, int *prot,
10192 ARMMMUFaultInfo *fi)
10197 bool is_user = regime_is_user(env, mmu_idx);
10199 if (regime_translation_disabled(env, mmu_idx)) {
10200 /* MPU disabled. */
10201 *phys_ptr = address;
10202 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10206 *phys_ptr = address;
10207 for (n = 7; n >= 0; n--) {
10208 base = env->cp15.c6_region[n];
10209 if ((base & 1) == 0) {
10212 mask = 1 << ((base >> 1) & 0x1f);
10213 /* Keep this shift separate from the above to avoid an
10214 (undefined) << 32. */
10215 mask = (mask << 1) - 1;
10216 if (((base ^ address) & ~mask) == 0) {
10221 fi->type = ARMFault_Background;
10225 if (access_type == MMU_INST_FETCH) {
10226 mask = env->cp15.pmsav5_insn_ap;
10228 mask = env->cp15.pmsav5_data_ap;
10230 mask = (mask >> (n * 4)) & 0xf;
10233 fi->type = ARMFault_Permission;
10238 fi->type = ARMFault_Permission;
10242 *prot = PAGE_READ | PAGE_WRITE;
10247 *prot |= PAGE_WRITE;
10251 *prot = PAGE_READ | PAGE_WRITE;
10255 fi->type = ARMFault_Permission;
10265 /* Bad permission. */
10266 fi->type = ARMFault_Permission;
10270 *prot |= PAGE_EXEC;
10274 /* Combine either inner or outer cacheability attributes for normal
10275 * memory, according to table D4-42 and pseudocode procedure
10276 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10278 * NB: only stage 1 includes allocation hints (RW bits), leading to
10281 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10283 if (s1 == 4 || s2 == 4) {
10284 /* non-cacheable has precedence */
10286 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10287 /* stage 1 write-through takes precedence */
10289 } else if (extract32(s2, 2, 2) == 2) {
10290 /* stage 2 write-through takes precedence, but the allocation hint
10291 * is still taken from stage 1
10293 return (2 << 2) | extract32(s1, 0, 2);
10294 } else { /* write-back */
10299 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10300 * and CombineS1S2Desc()
10302 * @s1: Attributes from stage 1 walk
10303 * @s2: Attributes from stage 2 walk
10305 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10307 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10308 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10311 /* Combine shareability attributes (table D4-43) */
10312 if (s1.shareability == 2 || s2.shareability == 2) {
10313 /* if either are outer-shareable, the result is outer-shareable */
10314 ret.shareability = 2;
10315 } else if (s1.shareability == 3 || s2.shareability == 3) {
10316 /* if either are inner-shareable, the result is inner-shareable */
10317 ret.shareability = 3;
10319 /* both non-shareable */
10320 ret.shareability = 0;
10323 /* Combine memory type and cacheability attributes */
10324 if (s1hi == 0 || s2hi == 0) {
10325 /* Device has precedence over normal */
10326 if (s1lo == 0 || s2lo == 0) {
10327 /* nGnRnE has precedence over anything */
10329 } else if (s1lo == 4 || s2lo == 4) {
10330 /* non-Reordering has precedence over Reordering */
10331 ret.attrs = 4; /* nGnRE */
10332 } else if (s1lo == 8 || s2lo == 8) {
10333 /* non-Gathering has precedence over Gathering */
10334 ret.attrs = 8; /* nGRE */
10336 ret.attrs = 0xc; /* GRE */
10339 /* Any location for which the resultant memory type is any
10340 * type of Device memory is always treated as Outer Shareable.
10342 ret.shareability = 2;
10343 } else { /* Normal memory */
10344 /* Outer/inner cacheability combine independently */
10345 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10346 | combine_cacheattr_nibble(s1lo, s2lo);
10348 if (ret.attrs == 0x44) {
10349 /* Any location for which the resultant memory type is Normal
10350 * Inner Non-cacheable, Outer Non-cacheable is always treated
10351 * as Outer Shareable.
10353 ret.shareability = 2;
10361 /* get_phys_addr - get the physical address for this virtual address
10363 * Find the physical address corresponding to the given virtual address,
10364 * by doing a translation table walk on MMU based systems or using the
10365 * MPU state on MPU based systems.
10367 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10368 * prot and page_size may not be filled in, and the populated fsr value provides
10369 * information on why the translation aborted, in the format of a
10370 * DFSR/IFSR fault register, with the following caveats:
10371 * * we honour the short vs long DFSR format differences.
10372 * * the WnR bit is never set (the caller must do this).
10373 * * for PSMAv5 based systems we don't bother to return a full FSR format
10376 * @env: CPUARMState
10377 * @address: virtual address to get physical address for
10378 * @access_type: 0 for read, 1 for write, 2 for execute
10379 * @mmu_idx: MMU index indicating required translation regime
10380 * @phys_ptr: set to the physical address corresponding to the virtual address
10381 * @attrs: set to the memory transaction attributes to use
10382 * @prot: set to the permissions for the page containing phys_ptr
10383 * @page_size: set to the size of the page containing phys_ptr
10384 * @fi: set to fault info if the translation fails
10385 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10387 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10388 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10389 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10390 target_ulong *page_size,
10391 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10393 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10394 /* Call ourselves recursively to do the stage 1 and then stage 2
10397 if (arm_feature(env, ARM_FEATURE_EL2)) {
10401 ARMCacheAttrs cacheattrs2 = {};
10403 ret = get_phys_addr(env, address, access_type,
10404 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10405 prot, page_size, fi, cacheattrs);
10407 /* If S1 fails or S2 is disabled, return early. */
10408 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10413 /* S1 is done. Now do S2 translation. */
10414 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10415 phys_ptr, attrs, &s2_prot,
10417 cacheattrs != NULL ? &cacheattrs2 : NULL);
10419 /* Combine the S1 and S2 perms. */
10422 /* Combine the S1 and S2 cache attributes, if needed */
10423 if (!ret && cacheattrs != NULL) {
10424 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10430 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10432 mmu_idx = stage_1_mmu_idx(mmu_idx);
10436 /* The page table entries may downgrade secure to non-secure, but
10437 * cannot upgrade an non-secure translation regime's attributes
10440 attrs->secure = regime_is_secure(env, mmu_idx);
10441 attrs->user = regime_is_user(env, mmu_idx);
10443 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10444 * In v7 and earlier it affects all stage 1 translations.
10446 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10447 && !arm_feature(env, ARM_FEATURE_V8)) {
10448 if (regime_el(env, mmu_idx) == 3) {
10449 address += env->cp15.fcseidr_s;
10451 address += env->cp15.fcseidr_ns;
10455 if (arm_feature(env, ARM_FEATURE_PMSA)) {
10457 *page_size = TARGET_PAGE_SIZE;
10459 if (arm_feature(env, ARM_FEATURE_V8)) {
10461 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10462 phys_ptr, attrs, prot, page_size, fi);
10463 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10465 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10466 phys_ptr, prot, page_size, fi);
10469 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10470 phys_ptr, prot, fi);
10472 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10473 " mmu_idx %u -> %s (prot %c%c%c)\n",
10474 access_type == MMU_DATA_LOAD ? "reading" :
10475 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10476 (uint32_t)address, mmu_idx,
10477 ret ? "Miss" : "Hit",
10478 *prot & PAGE_READ ? 'r' : '-',
10479 *prot & PAGE_WRITE ? 'w' : '-',
10480 *prot & PAGE_EXEC ? 'x' : '-');
10485 /* Definitely a real MMU, not an MPU */
10487 if (regime_translation_disabled(env, mmu_idx)) {
10488 /* MMU disabled. */
10489 *phys_ptr = address;
10490 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10491 *page_size = TARGET_PAGE_SIZE;
10495 if (regime_using_lpae_format(env, mmu_idx)) {
10496 return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10497 phys_ptr, attrs, prot, page_size,
10499 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10500 return get_phys_addr_v6(env, address, access_type, mmu_idx,
10501 phys_ptr, attrs, prot, page_size, fi);
10503 return get_phys_addr_v5(env, address, access_type, mmu_idx,
10504 phys_ptr, prot, page_size, fi);
10508 /* Walk the page table and (if the mapping exists) add the page
10509 * to the TLB. Return false on success, or true on failure. Populate
10510 * fsr with ARM DFSR/IFSR fault register format value on failure.
10512 bool arm_tlb_fill(CPUState *cs, vaddr address,
10513 MMUAccessType access_type, int mmu_idx,
10514 ARMMMUFaultInfo *fi)
10516 ARMCPU *cpu = ARM_CPU(cs);
10517 CPUARMState *env = &cpu->env;
10519 target_ulong page_size;
10522 MemTxAttrs attrs = {};
10524 ret = get_phys_addr(env, address, access_type,
10525 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10526 &attrs, &prot, &page_size, fi, NULL);
10529 * Map a single [sub]page. Regions smaller than our declared
10530 * target page size are handled specially, so for those we
10531 * pass in the exact addresses.
10533 if (page_size >= TARGET_PAGE_SIZE) {
10534 phys_addr &= TARGET_PAGE_MASK;
10535 address &= TARGET_PAGE_MASK;
10537 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10538 prot, mmu_idx, page_size);
10545 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10548 ARMCPU *cpu = ARM_CPU(cs);
10549 CPUARMState *env = &cpu->env;
10551 target_ulong page_size;
10554 ARMMMUFaultInfo fi = {};
10555 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10557 *attrs = (MemTxAttrs) {};
10559 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10560 attrs, &prot, &page_size, &fi, NULL);
10568 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10571 unsigned el = arm_current_el(env);
10573 /* First handle registers which unprivileged can read */
10576 case 0 ... 7: /* xPSR sub-fields */
10578 if ((reg & 1) && el) {
10579 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10582 mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10584 /* EPSR reads as zero */
10585 return xpsr_read(env) & mask;
10587 case 20: /* CONTROL */
10588 return env->v7m.control[env->v7m.secure];
10589 case 0x94: /* CONTROL_NS */
10590 /* We have to handle this here because unprivileged Secure code
10591 * can read the NS CONTROL register.
10593 if (!env->v7m.secure) {
10596 return env->v7m.control[M_REG_NS];
10600 return 0; /* unprivileged reads others as zero */
10603 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10605 case 0x88: /* MSP_NS */
10606 if (!env->v7m.secure) {
10609 return env->v7m.other_ss_msp;
10610 case 0x89: /* PSP_NS */
10611 if (!env->v7m.secure) {
10614 return env->v7m.other_ss_psp;
10615 case 0x8a: /* MSPLIM_NS */
10616 if (!env->v7m.secure) {
10619 return env->v7m.msplim[M_REG_NS];
10620 case 0x8b: /* PSPLIM_NS */
10621 if (!env->v7m.secure) {
10624 return env->v7m.psplim[M_REG_NS];
10625 case 0x90: /* PRIMASK_NS */
10626 if (!env->v7m.secure) {
10629 return env->v7m.primask[M_REG_NS];
10630 case 0x91: /* BASEPRI_NS */
10631 if (!env->v7m.secure) {
10634 return env->v7m.basepri[M_REG_NS];
10635 case 0x93: /* FAULTMASK_NS */
10636 if (!env->v7m.secure) {
10639 return env->v7m.faultmask[M_REG_NS];
10640 case 0x98: /* SP_NS */
10642 /* This gives the non-secure SP selected based on whether we're
10643 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10645 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10647 if (!env->v7m.secure) {
10650 if (!arm_v7m_is_handler_mode(env) && spsel) {
10651 return env->v7m.other_ss_psp;
10653 return env->v7m.other_ss_msp;
10663 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10665 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10666 case 10: /* MSPLIM */
10667 if (!arm_feature(env, ARM_FEATURE_V8)) {
10670 return env->v7m.msplim[env->v7m.secure];
10671 case 11: /* PSPLIM */
10672 if (!arm_feature(env, ARM_FEATURE_V8)) {
10675 return env->v7m.psplim[env->v7m.secure];
10676 case 16: /* PRIMASK */
10677 return env->v7m.primask[env->v7m.secure];
10678 case 17: /* BASEPRI */
10679 case 18: /* BASEPRI_MAX */
10680 return env->v7m.basepri[env->v7m.secure];
10681 case 19: /* FAULTMASK */
10682 return env->v7m.faultmask[env->v7m.secure];
10685 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10686 " register %d\n", reg);
10691 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10693 /* We're passed bits [11..0] of the instruction; extract
10694 * SYSm and the mask bits.
10695 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10696 * we choose to treat them as if the mask bits were valid.
10697 * NB that the pseudocode 'mask' variable is bits [11..10],
10698 * whereas ours is [11..8].
10700 uint32_t mask = extract32(maskreg, 8, 4);
10701 uint32_t reg = extract32(maskreg, 0, 8);
10703 if (arm_current_el(env) == 0 && reg > 7) {
10704 /* only xPSR sub-fields may be written by unprivileged */
10708 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10710 case 0x88: /* MSP_NS */
10711 if (!env->v7m.secure) {
10714 env->v7m.other_ss_msp = val;
10716 case 0x89: /* PSP_NS */
10717 if (!env->v7m.secure) {
10720 env->v7m.other_ss_psp = val;
10722 case 0x8a: /* MSPLIM_NS */
10723 if (!env->v7m.secure) {
10726 env->v7m.msplim[M_REG_NS] = val & ~7;
10728 case 0x8b: /* PSPLIM_NS */
10729 if (!env->v7m.secure) {
10732 env->v7m.psplim[M_REG_NS] = val & ~7;
10734 case 0x90: /* PRIMASK_NS */
10735 if (!env->v7m.secure) {
10738 env->v7m.primask[M_REG_NS] = val & 1;
10740 case 0x91: /* BASEPRI_NS */
10741 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10744 env->v7m.basepri[M_REG_NS] = val & 0xff;
10746 case 0x93: /* FAULTMASK_NS */
10747 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10750 env->v7m.faultmask[M_REG_NS] = val & 1;
10752 case 0x94: /* CONTROL_NS */
10753 if (!env->v7m.secure) {
10756 write_v7m_control_spsel_for_secstate(env,
10757 val & R_V7M_CONTROL_SPSEL_MASK,
10759 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10760 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10761 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10764 case 0x98: /* SP_NS */
10766 /* This gives the non-secure SP selected based on whether we're
10767 * currently in handler mode or not, using the NS CONTROL.SPSEL.
10769 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10771 if (!env->v7m.secure) {
10774 if (!arm_v7m_is_handler_mode(env) && spsel) {
10775 env->v7m.other_ss_psp = val;
10777 env->v7m.other_ss_msp = val;
10787 case 0 ... 7: /* xPSR sub-fields */
10788 /* only APSR is actually writable */
10790 uint32_t apsrmask = 0;
10793 apsrmask |= XPSR_NZCV | XPSR_Q;
10795 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10796 apsrmask |= XPSR_GE;
10798 xpsr_write(env, val, apsrmask);
10802 if (v7m_using_psp(env)) {
10803 env->v7m.other_sp = val;
10805 env->regs[13] = val;
10809 if (v7m_using_psp(env)) {
10810 env->regs[13] = val;
10812 env->v7m.other_sp = val;
10815 case 10: /* MSPLIM */
10816 if (!arm_feature(env, ARM_FEATURE_V8)) {
10819 env->v7m.msplim[env->v7m.secure] = val & ~7;
10821 case 11: /* PSPLIM */
10822 if (!arm_feature(env, ARM_FEATURE_V8)) {
10825 env->v7m.psplim[env->v7m.secure] = val & ~7;
10827 case 16: /* PRIMASK */
10828 env->v7m.primask[env->v7m.secure] = val & 1;
10830 case 17: /* BASEPRI */
10831 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10834 env->v7m.basepri[env->v7m.secure] = val & 0xff;
10836 case 18: /* BASEPRI_MAX */
10837 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10841 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10842 || env->v7m.basepri[env->v7m.secure] == 0)) {
10843 env->v7m.basepri[env->v7m.secure] = val;
10846 case 19: /* FAULTMASK */
10847 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10850 env->v7m.faultmask[env->v7m.secure] = val & 1;
10852 case 20: /* CONTROL */
10853 /* Writing to the SPSEL bit only has an effect if we are in
10854 * thread mode; other bits can be updated by any privileged code.
10855 * write_v7m_control_spsel() deals with updating the SPSEL bit in
10856 * env->v7m.control, so we only need update the others.
10857 * For v7M, we must just ignore explicit writes to SPSEL in handler
10858 * mode; for v8M the write is permitted but will have no effect.
10860 if (arm_feature(env, ARM_FEATURE_V8) ||
10861 !arm_v7m_is_handler_mode(env)) {
10862 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10864 if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10865 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10866 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10871 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10872 " register %d\n", reg);
10877 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10879 /* Implement the TT instruction. op is bits [7:6] of the insn. */
10880 bool forceunpriv = op & 1;
10882 V8M_SAttributes sattrs = {};
10884 bool r, rw, nsr, nsrw, mrvalid;
10886 ARMMMUFaultInfo fi = {};
10887 MemTxAttrs attrs = {};
10892 bool targetsec = env->v7m.secure;
10895 /* Work out what the security state and privilege level we're
10896 * interested in is...
10899 targetsec = !targetsec;
10903 targetpriv = false;
10905 targetpriv = arm_v7m_is_handler_mode(env) ||
10906 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10909 /* ...and then figure out which MMU index this is */
10910 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10912 /* We know that the MPU and SAU don't care about the access type
10913 * for our purposes beyond that we don't want to claim to be
10914 * an insn fetch, so we arbitrarily call this a read.
10917 /* MPU region info only available for privileged or if
10918 * inspecting the other MPU state.
10920 if (arm_current_el(env) != 0 || alt) {
10921 /* We can ignore the return value as prot is always set */
10922 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10923 &phys_addr, &attrs, &prot, &is_subpage,
10925 if (mregion == -1) {
10931 r = prot & PAGE_READ;
10932 rw = prot & PAGE_WRITE;
10940 if (env->v7m.secure) {
10941 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10942 nsr = sattrs.ns && r;
10943 nsrw = sattrs.ns && rw;
10950 tt_resp = (sattrs.iregion << 24) |
10951 (sattrs.irvalid << 23) |
10952 ((!sattrs.ns) << 22) |
10957 (sattrs.srvalid << 17) |
10959 (sattrs.sregion << 8) |
10967 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10969 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10970 * Note that we do not implement the (architecturally mandated)
10971 * alignment fault for attempts to use this on Device memory
10972 * (which matches the usual QEMU behaviour of not implementing either
10973 * alignment faults or any memory attribute handling).
10976 ARMCPU *cpu = arm_env_get_cpu(env);
10977 uint64_t blocklen = 4 << cpu->dcz_blocksize;
10978 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10980 #ifndef CONFIG_USER_ONLY
10982 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10983 * the block size so we might have to do more than one TLB lookup.
10984 * We know that in fact for any v8 CPU the page size is at least 4K
10985 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10986 * 1K as an artefact of legacy v5 subpage support being present in the
10987 * same QEMU executable.
10989 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10990 void *hostaddr[maxidx];
10992 unsigned mmu_idx = cpu_mmu_index(env, false);
10993 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10995 for (try = 0; try < 2; try++) {
10997 for (i = 0; i < maxidx; i++) {
10998 hostaddr[i] = tlb_vaddr_to_host(env,
10999 vaddr + TARGET_PAGE_SIZE * i,
11001 if (!hostaddr[i]) {
11006 /* If it's all in the TLB it's fair game for just writing to;
11007 * we know we don't need to update dirty status, etc.
11009 for (i = 0; i < maxidx - 1; i++) {
11010 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11012 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11015 /* OK, try a store and see if we can populate the tlb. This
11016 * might cause an exception if the memory isn't writable,
11017 * in which case we will longjmp out of here. We must for
11018 * this purpose use the actual register value passed to us
11019 * so that we get the fault address right.
11021 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11022 /* Now we can populate the other TLB entries, if any */
11023 for (i = 0; i < maxidx; i++) {
11024 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11025 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11026 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11031 /* Slow path (probably attempt to do this to an I/O device or
11032 * similar, or clearing of a block of code we have translations
11033 * cached for). Just do a series of byte writes as the architecture
11034 * demands. It's not worth trying to use a cpu_physical_memory_map(),
11035 * memset(), unmap() sequence here because:
11036 * + we'd need to account for the blocksize being larger than a page
11037 * + the direct-RAM access case is almost always going to be dealt
11038 * with in the fastpath code above, so there's no speed benefit
11039 * + we would have to deal with the map returning NULL because the
11040 * bounce buffer was in use
11042 for (i = 0; i < blocklen; i++) {
11043 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11047 memset(g2h(vaddr), 0, blocklen);
11051 /* Note that signed overflow is undefined in C. The following routines are
11052 careful to use unsigned types where modulo arithmetic is required.
11053 Failure to do so _will_ break on newer gcc. */
11055 /* Signed saturating arithmetic. */
11057 /* Perform 16-bit signed saturating addition. */
11058 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11063 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11072 /* Perform 8-bit signed saturating addition. */
11073 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11078 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11087 /* Perform 16-bit signed saturating subtraction. */
11088 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11093 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11102 /* Perform 8-bit signed saturating subtraction. */
11103 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11108 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11117 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11118 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11119 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11120 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11123 #include "op_addsub.h"
11125 /* Unsigned saturating arithmetic. */
11126 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11135 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11143 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11152 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11160 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11161 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11162 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11163 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11166 #include "op_addsub.h"
11168 /* Signed modulo arithmetic. */
11169 #define SARITH16(a, b, n, op) do { \
11171 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11172 RESULT(sum, n, 16); \
11174 ge |= 3 << (n * 2); \
11177 #define SARITH8(a, b, n, op) do { \
11179 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11180 RESULT(sum, n, 8); \
11186 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11187 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11188 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11189 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11193 #include "op_addsub.h"
11195 /* Unsigned modulo arithmetic. */
11196 #define ADD16(a, b, n) do { \
11198 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11199 RESULT(sum, n, 16); \
11200 if ((sum >> 16) == 1) \
11201 ge |= 3 << (n * 2); \
11204 #define ADD8(a, b, n) do { \
11206 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11207 RESULT(sum, n, 8); \
11208 if ((sum >> 8) == 1) \
11212 #define SUB16(a, b, n) do { \
11214 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11215 RESULT(sum, n, 16); \
11216 if ((sum >> 16) == 0) \
11217 ge |= 3 << (n * 2); \
11220 #define SUB8(a, b, n) do { \
11222 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11223 RESULT(sum, n, 8); \
11224 if ((sum >> 8) == 0) \
11231 #include "op_addsub.h"
11233 /* Halved signed arithmetic. */
11234 #define ADD16(a, b, n) \
11235 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11236 #define SUB16(a, b, n) \
11237 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11238 #define ADD8(a, b, n) \
11239 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11240 #define SUB8(a, b, n) \
11241 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11244 #include "op_addsub.h"
11246 /* Halved unsigned arithmetic. */
11247 #define ADD16(a, b, n) \
11248 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11249 #define SUB16(a, b, n) \
11250 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11251 #define ADD8(a, b, n) \
11252 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11253 #define SUB8(a, b, n) \
11254 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11257 #include "op_addsub.h"
11259 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11267 /* Unsigned sum of absolute byte differences. */
11268 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11271 sum = do_usad(a, b);
11272 sum += do_usad(a >> 8, b >> 8);
11273 sum += do_usad(a >> 16, b >>16);
11274 sum += do_usad(a >> 24, b >> 24);
11278 /* For ARMv6 SEL instruction. */
11279 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11291 mask |= 0xff000000;
11292 return (a & mask) | (b & ~mask);
11295 /* VFP support. We follow the convention used for VFP instructions:
11296 Single precision routines have a "s" suffix, double precision a
11299 /* Convert host exception flags to vfp form. */
11300 static inline int vfp_exceptbits_from_host(int host_bits)
11302 int target_bits = 0;
11304 if (host_bits & float_flag_invalid)
11306 if (host_bits & float_flag_divbyzero)
11308 if (host_bits & float_flag_overflow)
11310 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11312 if (host_bits & float_flag_inexact)
11313 target_bits |= 0x10;
11314 if (host_bits & float_flag_input_denormal)
11315 target_bits |= 0x80;
11316 return target_bits;
11319 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11324 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11325 | (env->vfp.vec_len << 16)
11326 | (env->vfp.vec_stride << 20);
11328 i = get_float_exception_flags(&env->vfp.fp_status);
11329 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11330 /* FZ16 does not generate an input denormal exception. */
11331 i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11332 & ~float_flag_input_denormal);
11334 fpscr |= vfp_exceptbits_from_host(i);
11338 uint32_t vfp_get_fpscr(CPUARMState *env)
11340 return HELPER(vfp_get_fpscr)(env);
11343 /* Convert vfp exception flags to target form. */
11344 static inline int vfp_exceptbits_to_host(int target_bits)
11348 if (target_bits & 1)
11349 host_bits |= float_flag_invalid;
11350 if (target_bits & 2)
11351 host_bits |= float_flag_divbyzero;
11352 if (target_bits & 4)
11353 host_bits |= float_flag_overflow;
11354 if (target_bits & 8)
11355 host_bits |= float_flag_underflow;
11356 if (target_bits & 0x10)
11357 host_bits |= float_flag_inexact;
11358 if (target_bits & 0x80)
11359 host_bits |= float_flag_input_denormal;
11363 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11368 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
11369 if (!arm_feature(env, ARM_FEATURE_V8_FP16)) {
11373 changed = env->vfp.xregs[ARM_VFP_FPSCR];
11374 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11375 env->vfp.vec_len = (val >> 16) & 7;
11376 env->vfp.vec_stride = (val >> 20) & 3;
11379 if (changed & (3 << 22)) {
11380 i = (val >> 22) & 3;
11382 case FPROUNDING_TIEEVEN:
11383 i = float_round_nearest_even;
11385 case FPROUNDING_POSINF:
11386 i = float_round_up;
11388 case FPROUNDING_NEGINF:
11389 i = float_round_down;
11391 case FPROUNDING_ZERO:
11392 i = float_round_to_zero;
11395 set_float_rounding_mode(i, &env->vfp.fp_status);
11396 set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11398 if (changed & FPCR_FZ16) {
11399 bool ftz_enabled = val & FPCR_FZ16;
11400 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11401 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11403 if (changed & FPCR_FZ) {
11404 bool ftz_enabled = val & FPCR_FZ;
11405 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11406 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11408 if (changed & FPCR_DN) {
11409 bool dnan_enabled = val & FPCR_DN;
11410 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11411 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11414 /* The exception flags are ORed together when we read fpscr so we
11415 * only need to preserve the current state in one of our
11416 * float_status values.
11418 i = vfp_exceptbits_to_host(val);
11419 set_float_exception_flags(i, &env->vfp.fp_status);
11420 set_float_exception_flags(0, &env->vfp.fp_status_f16);
11421 set_float_exception_flags(0, &env->vfp.standard_fp_status);
11424 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11426 HELPER(vfp_set_fpscr)(env, val);
11429 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11431 #define VFP_BINOP(name) \
11432 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11434 float_status *fpst = fpstp; \
11435 return float32_ ## name(a, b, fpst); \
11437 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11439 float_status *fpst = fpstp; \
11440 return float64_ ## name(a, b, fpst); \
11452 float32 VFP_HELPER(neg, s)(float32 a)
11454 return float32_chs(a);
11457 float64 VFP_HELPER(neg, d)(float64 a)
11459 return float64_chs(a);
11462 float32 VFP_HELPER(abs, s)(float32 a)
11464 return float32_abs(a);
11467 float64 VFP_HELPER(abs, d)(float64 a)
11469 return float64_abs(a);
11472 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11474 return float32_sqrt(a, &env->vfp.fp_status);
11477 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11479 return float64_sqrt(a, &env->vfp.fp_status);
11482 /* XXX: check quiet/signaling case */
11483 #define DO_VFP_cmp(p, type) \
11484 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
11487 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11488 case 0: flags = 0x6; break; \
11489 case -1: flags = 0x8; break; \
11490 case 1: flags = 0x2; break; \
11491 default: case 2: flags = 0x3; break; \
11493 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11494 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11496 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11499 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11500 case 0: flags = 0x6; break; \
11501 case -1: flags = 0x8; break; \
11502 case 1: flags = 0x2; break; \
11503 default: case 2: flags = 0x3; break; \
11505 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11506 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11508 DO_VFP_cmp(s, float32)
11509 DO_VFP_cmp(d, float64)
11512 /* Integer to float and float to integer conversions */
11514 #define CONV_ITOF(name, ftype, fsz, sign) \
11515 ftype HELPER(name)(uint32_t x, void *fpstp) \
11517 float_status *fpst = fpstp; \
11518 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
11521 #define CONV_FTOI(name, ftype, fsz, sign, round) \
11522 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
11524 float_status *fpst = fpstp; \
11525 if (float##fsz##_is_any_nan(x)) { \
11526 float_raise(float_flag_invalid, fpst); \
11529 return float##fsz##_to_##sign##int32##round(x, fpst); \
11532 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
11533 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
11534 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
11535 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11537 FLOAT_CONVS(si, h, uint32_t, 16, )
11538 FLOAT_CONVS(si, s, float32, 32, )
11539 FLOAT_CONVS(si, d, float64, 64, )
11540 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11541 FLOAT_CONVS(ui, s, float32, 32, u)
11542 FLOAT_CONVS(ui, d, float64, 64, u)
11548 /* floating point conversion */
11549 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11551 return float32_to_float64(x, &env->vfp.fp_status);
11554 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11556 return float64_to_float32(x, &env->vfp.fp_status);
11559 /* VFP3 fixed point conversion. */
11560 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11561 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
11564 float_status *fpst = fpstp; \
11566 tmp = itype##_to_##float##fsz(x, fpst); \
11567 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11570 /* Notice that we want only input-denormal exception flags from the
11571 * scalbn operation: the other possible flags (overflow+inexact if
11572 * we overflow to infinity, output-denormal) aren't correct for the
11573 * complete scale-and-convert operation.
11575 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11576 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11580 float_status *fpst = fpstp; \
11581 int old_exc_flags = get_float_exception_flags(fpst); \
11583 if (float##fsz##_is_any_nan(x)) { \
11584 float_raise(float_flag_invalid, fpst); \
11587 tmp = float##fsz##_scalbn(x, shift, fpst); \
11588 old_exc_flags |= get_float_exception_flags(fpst) \
11589 & float_flag_input_denormal; \
11590 set_float_exception_flags(old_exc_flags, fpst); \
11591 return float##fsz##_to_##itype##round(tmp, fpst); \
11594 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
11595 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11596 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11597 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11599 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
11600 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11601 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11603 VFP_CONV_FIX(sh, d, 64, 64, int16)
11604 VFP_CONV_FIX(sl, d, 64, 64, int32)
11605 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11606 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11607 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11608 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11609 VFP_CONV_FIX(sh, s, 32, 32, int16)
11610 VFP_CONV_FIX(sl, s, 32, 32, int32)
11611 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11612 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11613 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11614 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11616 #undef VFP_CONV_FIX
11617 #undef VFP_CONV_FIX_FLOAT
11618 #undef VFP_CONV_FLOAT_FIX_ROUND
11619 #undef VFP_CONV_FIX_A64
11621 /* Conversion to/from f16 can overflow to infinity before/after scaling.
11622 * Therefore we convert to f64, scale, and then convert f64 to f16; or
11623 * vice versa for conversion to integer.
11625 * For 16- and 32-bit integers, the conversion to f64 never rounds.
11626 * For 64-bit integers, any integer that would cause rounding will also
11627 * overflow to f16 infinity, so there is no double rounding problem.
11630 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
11632 return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
11635 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11637 return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
11640 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11642 return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
11645 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11647 return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
11650 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11652 return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
11655 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
11657 if (unlikely(float16_is_any_nan(f))) {
11658 float_raise(float_flag_invalid, fpst);
11661 int old_exc_flags = get_float_exception_flags(fpst);
11664 ret = float16_to_float64(f, true, fpst);
11665 ret = float64_scalbn(ret, shift, fpst);
11666 old_exc_flags |= get_float_exception_flags(fpst)
11667 & float_flag_input_denormal;
11668 set_float_exception_flags(old_exc_flags, fpst);
11674 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11676 return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
11679 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11681 return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
11684 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11686 return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
11689 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11691 return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
11694 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11696 return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
11699 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11701 return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
11704 /* Set the current fp rounding mode and return the old one.
11705 * The argument is a softfloat float_round_ value.
11707 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11709 float_status *fp_status = fpstp;
11711 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11712 set_float_rounding_mode(rmode, fp_status);
11717 /* Set the current fp rounding mode in the standard fp status and return
11718 * the old one. This is for NEON instructions that need to change the
11719 * rounding mode but wish to use the standard FPSCR values for everything
11720 * else. Always set the rounding mode back to the correct value after
11722 * The argument is a softfloat float_round_ value.
11724 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11726 float_status *fp_status = &env->vfp.standard_fp_status;
11728 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11729 set_float_rounding_mode(rmode, fp_status);
11734 /* Half precision conversions. */
11735 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11737 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11738 * it would affect flushing input denormals.
11740 float_status *fpst = fpstp;
11741 flag save = get_flush_inputs_to_zero(fpst);
11742 set_flush_inputs_to_zero(false, fpst);
11743 float32 r = float16_to_float32(a, !ahp_mode, fpst);
11744 set_flush_inputs_to_zero(save, fpst);
11748 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11750 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11751 * it would affect flushing output denormals.
11753 float_status *fpst = fpstp;
11754 flag save = get_flush_to_zero(fpst);
11755 set_flush_to_zero(false, fpst);
11756 float16 r = float32_to_float16(a, !ahp_mode, fpst);
11757 set_flush_to_zero(save, fpst);
11761 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11763 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11764 * it would affect flushing input denormals.
11766 float_status *fpst = fpstp;
11767 flag save = get_flush_inputs_to_zero(fpst);
11768 set_flush_inputs_to_zero(false, fpst);
11769 float64 r = float16_to_float64(a, !ahp_mode, fpst);
11770 set_flush_inputs_to_zero(save, fpst);
11774 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11776 /* Squash FZ16 to 0 for the duration of conversion. In this case,
11777 * it would affect flushing output denormals.
11779 float_status *fpst = fpstp;
11780 flag save = get_flush_to_zero(fpst);
11781 set_flush_to_zero(false, fpst);
11782 float16 r = float64_to_float16(a, !ahp_mode, fpst);
11783 set_flush_to_zero(save, fpst);
11787 #define float32_two make_float32(0x40000000)
11788 #define float32_three make_float32(0x40400000)
11789 #define float32_one_point_five make_float32(0x3fc00000)
11791 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11793 float_status *s = &env->vfp.standard_fp_status;
11794 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11795 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11796 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11797 float_raise(float_flag_input_denormal, s);
11799 return float32_two;
11801 return float32_sub(float32_two, float32_mul(a, b, s), s);
11804 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11806 float_status *s = &env->vfp.standard_fp_status;
11808 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11809 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11810 if (!(float32_is_zero(a) || float32_is_zero(b))) {
11811 float_raise(float_flag_input_denormal, s);
11813 return float32_one_point_five;
11815 product = float32_mul(a, b, s);
11816 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11819 /* NEON helpers. */
11821 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11822 * int->float conversions at run-time. */
11823 #define float64_256 make_float64(0x4070000000000000LL)
11824 #define float64_512 make_float64(0x4080000000000000LL)
11825 #define float16_maxnorm make_float16(0x7bff)
11826 #define float32_maxnorm make_float32(0x7f7fffff)
11827 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11829 /* Reciprocal functions
11831 * The algorithm that must be used to calculate the estimate
11832 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11835 /* See RecipEstimate()
11837 * input is a 9 bit fixed point number
11838 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11839 * result range 256 .. 511 for a number from 1.0 to 511/256.
11842 static int recip_estimate(int input)
11845 assert(256 <= input && input < 512);
11846 a = (input * 2) + 1;
11849 assert(256 <= r && r < 512);
11854 * Common wrapper to call recip_estimate
11856 * The parameters are exponent and 64 bit fraction (without implicit
11857 * bit) where the binary point is nominally at bit 52. Returns a
11858 * float64 which can then be rounded to the appropriate size by the
11862 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11864 uint32_t scaled, estimate;
11865 uint64_t result_frac;
11868 /* Handle sub-normals */
11870 if (extract64(frac, 51, 1) == 0) {
11878 /* scaled = UInt('1':fraction<51:44>) */
11879 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11880 estimate = recip_estimate(scaled);
11882 result_exp = exp_off - *exp;
11883 result_frac = deposit64(0, 44, 8, estimate);
11884 if (result_exp == 0) {
11885 result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11886 } else if (result_exp == -1) {
11887 result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11893 return result_frac;
11896 static bool round_to_inf(float_status *fpst, bool sign_bit)
11898 switch (fpst->float_rounding_mode) {
11899 case float_round_nearest_even: /* Round to Nearest */
11901 case float_round_up: /* Round to +Inf */
11903 case float_round_down: /* Round to -Inf */
11905 case float_round_to_zero: /* Round to Zero */
11909 g_assert_not_reached();
11912 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11914 float_status *fpst = fpstp;
11915 float16 f16 = float16_squash_input_denormal(input, fpst);
11916 uint32_t f16_val = float16_val(f16);
11917 uint32_t f16_sign = float16_is_neg(f16);
11918 int f16_exp = extract32(f16_val, 10, 5);
11919 uint32_t f16_frac = extract32(f16_val, 0, 10);
11922 if (float16_is_any_nan(f16)) {
11924 if (float16_is_signaling_nan(f16, fpst)) {
11925 float_raise(float_flag_invalid, fpst);
11926 nan = float16_silence_nan(f16, fpst);
11928 if (fpst->default_nan_mode) {
11929 nan = float16_default_nan(fpst);
11932 } else if (float16_is_infinity(f16)) {
11933 return float16_set_sign(float16_zero, float16_is_neg(f16));
11934 } else if (float16_is_zero(f16)) {
11935 float_raise(float_flag_divbyzero, fpst);
11936 return float16_set_sign(float16_infinity, float16_is_neg(f16));
11937 } else if (float16_abs(f16) < (1 << 8)) {
11938 /* Abs(value) < 2.0^-16 */
11939 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11940 if (round_to_inf(fpst, f16_sign)) {
11941 return float16_set_sign(float16_infinity, f16_sign);
11943 return float16_set_sign(float16_maxnorm, f16_sign);
11945 } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11946 float_raise(float_flag_underflow, fpst);
11947 return float16_set_sign(float16_zero, float16_is_neg(f16));
11950 f64_frac = call_recip_estimate(&f16_exp, 29,
11951 ((uint64_t) f16_frac) << (52 - 10));
11953 /* result = sign : result_exp<4:0> : fraction<51:42> */
11954 f16_val = deposit32(0, 15, 1, f16_sign);
11955 f16_val = deposit32(f16_val, 10, 5, f16_exp);
11956 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11957 return make_float16(f16_val);
11960 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11962 float_status *fpst = fpstp;
11963 float32 f32 = float32_squash_input_denormal(input, fpst);
11964 uint32_t f32_val = float32_val(f32);
11965 bool f32_sign = float32_is_neg(f32);
11966 int f32_exp = extract32(f32_val, 23, 8);
11967 uint32_t f32_frac = extract32(f32_val, 0, 23);
11970 if (float32_is_any_nan(f32)) {
11972 if (float32_is_signaling_nan(f32, fpst)) {
11973 float_raise(float_flag_invalid, fpst);
11974 nan = float32_silence_nan(f32, fpst);
11976 if (fpst->default_nan_mode) {
11977 nan = float32_default_nan(fpst);
11980 } else if (float32_is_infinity(f32)) {
11981 return float32_set_sign(float32_zero, float32_is_neg(f32));
11982 } else if (float32_is_zero(f32)) {
11983 float_raise(float_flag_divbyzero, fpst);
11984 return float32_set_sign(float32_infinity, float32_is_neg(f32));
11985 } else if (float32_abs(f32) < (1ULL << 21)) {
11986 /* Abs(value) < 2.0^-128 */
11987 float_raise(float_flag_overflow | float_flag_inexact, fpst);
11988 if (round_to_inf(fpst, f32_sign)) {
11989 return float32_set_sign(float32_infinity, f32_sign);
11991 return float32_set_sign(float32_maxnorm, f32_sign);
11993 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11994 float_raise(float_flag_underflow, fpst);
11995 return float32_set_sign(float32_zero, float32_is_neg(f32));
11998 f64_frac = call_recip_estimate(&f32_exp, 253,
11999 ((uint64_t) f32_frac) << (52 - 23));
12001 /* result = sign : result_exp<7:0> : fraction<51:29> */
12002 f32_val = deposit32(0, 31, 1, f32_sign);
12003 f32_val = deposit32(f32_val, 23, 8, f32_exp);
12004 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
12005 return make_float32(f32_val);
12008 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
12010 float_status *fpst = fpstp;
12011 float64 f64 = float64_squash_input_denormal(input, fpst);
12012 uint64_t f64_val = float64_val(f64);
12013 bool f64_sign = float64_is_neg(f64);
12014 int f64_exp = extract64(f64_val, 52, 11);
12015 uint64_t f64_frac = extract64(f64_val, 0, 52);
12017 /* Deal with any special cases */
12018 if (float64_is_any_nan(f64)) {
12020 if (float64_is_signaling_nan(f64, fpst)) {
12021 float_raise(float_flag_invalid, fpst);
12022 nan = float64_silence_nan(f64, fpst);
12024 if (fpst->default_nan_mode) {
12025 nan = float64_default_nan(fpst);
12028 } else if (float64_is_infinity(f64)) {
12029 return float64_set_sign(float64_zero, float64_is_neg(f64));
12030 } else if (float64_is_zero(f64)) {
12031 float_raise(float_flag_divbyzero, fpst);
12032 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12033 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12034 /* Abs(value) < 2.0^-1024 */
12035 float_raise(float_flag_overflow | float_flag_inexact, fpst);
12036 if (round_to_inf(fpst, f64_sign)) {
12037 return float64_set_sign(float64_infinity, f64_sign);
12039 return float64_set_sign(float64_maxnorm, f64_sign);
12041 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12042 float_raise(float_flag_underflow, fpst);
12043 return float64_set_sign(float64_zero, float64_is_neg(f64));
12046 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12048 /* result = sign : result_exp<10:0> : fraction<51:0>; */
12049 f64_val = deposit64(0, 63, 1, f64_sign);
12050 f64_val = deposit64(f64_val, 52, 11, f64_exp);
12051 f64_val = deposit64(f64_val, 0, 52, f64_frac);
12052 return make_float64(f64_val);
12055 /* The algorithm that must be used to calculate the estimate
12056 * is specified by the ARM ARM.
12059 static int do_recip_sqrt_estimate(int a)
12063 assert(128 <= a && a < 512);
12071 while (a * (b + 1) * (b + 1) < (1 << 28)) {
12074 estimate = (b + 1) / 2;
12075 assert(256 <= estimate && estimate < 512);
12081 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12087 while (extract64(frac, 51, 1) == 0) {
12091 frac = extract64(frac, 0, 51) << 1;
12095 /* scaled = UInt('01':fraction<51:45>) */
12096 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12098 /* scaled = UInt('1':fraction<51:44>) */
12099 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12101 estimate = do_recip_sqrt_estimate(scaled);
12103 *exp = (exp_off - *exp) / 2;
12104 return extract64(estimate, 0, 8) << 44;
12107 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12109 float_status *s = fpstp;
12110 float16 f16 = float16_squash_input_denormal(input, s);
12111 uint16_t val = float16_val(f16);
12112 bool f16_sign = float16_is_neg(f16);
12113 int f16_exp = extract32(val, 10, 5);
12114 uint16_t f16_frac = extract32(val, 0, 10);
12117 if (float16_is_any_nan(f16)) {
12119 if (float16_is_signaling_nan(f16, s)) {
12120 float_raise(float_flag_invalid, s);
12121 nan = float16_silence_nan(f16, s);
12123 if (s->default_nan_mode) {
12124 nan = float16_default_nan(s);
12127 } else if (float16_is_zero(f16)) {
12128 float_raise(float_flag_divbyzero, s);
12129 return float16_set_sign(float16_infinity, f16_sign);
12130 } else if (f16_sign) {
12131 float_raise(float_flag_invalid, s);
12132 return float16_default_nan(s);
12133 } else if (float16_is_infinity(f16)) {
12134 return float16_zero;
12137 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12138 * preserving the parity of the exponent. */
12140 f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12142 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12144 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12145 val = deposit32(0, 15, 1, f16_sign);
12146 val = deposit32(val, 10, 5, f16_exp);
12147 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12148 return make_float16(val);
12151 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12153 float_status *s = fpstp;
12154 float32 f32 = float32_squash_input_denormal(input, s);
12155 uint32_t val = float32_val(f32);
12156 uint32_t f32_sign = float32_is_neg(f32);
12157 int f32_exp = extract32(val, 23, 8);
12158 uint32_t f32_frac = extract32(val, 0, 23);
12161 if (float32_is_any_nan(f32)) {
12163 if (float32_is_signaling_nan(f32, s)) {
12164 float_raise(float_flag_invalid, s);
12165 nan = float32_silence_nan(f32, s);
12167 if (s->default_nan_mode) {
12168 nan = float32_default_nan(s);
12171 } else if (float32_is_zero(f32)) {
12172 float_raise(float_flag_divbyzero, s);
12173 return float32_set_sign(float32_infinity, float32_is_neg(f32));
12174 } else if (float32_is_neg(f32)) {
12175 float_raise(float_flag_invalid, s);
12176 return float32_default_nan(s);
12177 } else if (float32_is_infinity(f32)) {
12178 return float32_zero;
12181 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12182 * preserving the parity of the exponent. */
12184 f64_frac = ((uint64_t) f32_frac) << 29;
12186 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12188 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12189 val = deposit32(0, 31, 1, f32_sign);
12190 val = deposit32(val, 23, 8, f32_exp);
12191 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12192 return make_float32(val);
12195 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12197 float_status *s = fpstp;
12198 float64 f64 = float64_squash_input_denormal(input, s);
12199 uint64_t val = float64_val(f64);
12200 bool f64_sign = float64_is_neg(f64);
12201 int f64_exp = extract64(val, 52, 11);
12202 uint64_t f64_frac = extract64(val, 0, 52);
12204 if (float64_is_any_nan(f64)) {
12206 if (float64_is_signaling_nan(f64, s)) {
12207 float_raise(float_flag_invalid, s);
12208 nan = float64_silence_nan(f64, s);
12210 if (s->default_nan_mode) {
12211 nan = float64_default_nan(s);
12214 } else if (float64_is_zero(f64)) {
12215 float_raise(float_flag_divbyzero, s);
12216 return float64_set_sign(float64_infinity, float64_is_neg(f64));
12217 } else if (float64_is_neg(f64)) {
12218 float_raise(float_flag_invalid, s);
12219 return float64_default_nan(s);
12220 } else if (float64_is_infinity(f64)) {
12221 return float64_zero;
12224 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12226 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12227 val = deposit64(0, 61, 1, f64_sign);
12228 val = deposit64(val, 52, 11, f64_exp);
12229 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12230 return make_float64(val);
12233 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12235 /* float_status *s = fpstp; */
12236 int input, estimate;
12238 if ((a & 0x80000000) == 0) {
12242 input = extract32(a, 23, 9);
12243 estimate = recip_estimate(input);
12245 return deposit32(0, (32 - 9), 9, estimate);
12248 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12252 if ((a & 0xc0000000) == 0) {
12256 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12258 return deposit32(0, 23, 9, estimate);
12261 /* VFPv4 fused multiply-accumulate */
12262 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12264 float_status *fpst = fpstp;
12265 return float32_muladd(a, b, c, 0, fpst);
12268 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12270 float_status *fpst = fpstp;
12271 return float64_muladd(a, b, c, 0, fpst);
12274 /* ARMv8 round to integral */
12275 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12277 return float32_round_to_int(x, fp_status);
12280 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12282 return float64_round_to_int(x, fp_status);
12285 float32 HELPER(rints)(float32 x, void *fp_status)
12287 int old_flags = get_float_exception_flags(fp_status), new_flags;
12290 ret = float32_round_to_int(x, fp_status);
12292 /* Suppress any inexact exceptions the conversion produced */
12293 if (!(old_flags & float_flag_inexact)) {
12294 new_flags = get_float_exception_flags(fp_status);
12295 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12301 float64 HELPER(rintd)(float64 x, void *fp_status)
12303 int old_flags = get_float_exception_flags(fp_status), new_flags;
12306 ret = float64_round_to_int(x, fp_status);
12308 new_flags = get_float_exception_flags(fp_status);
12310 /* Suppress any inexact exceptions the conversion produced */
12311 if (!(old_flags & float_flag_inexact)) {
12312 new_flags = get_float_exception_flags(fp_status);
12313 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12319 /* Convert ARM rounding mode to softfloat */
12320 int arm_rmode_to_sf(int rmode)
12323 case FPROUNDING_TIEAWAY:
12324 rmode = float_round_ties_away;
12326 case FPROUNDING_ODD:
12327 /* FIXME: add support for TIEAWAY and ODD */
12328 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12330 case FPROUNDING_TIEEVEN:
12332 rmode = float_round_nearest_even;
12334 case FPROUNDING_POSINF:
12335 rmode = float_round_up;
12337 case FPROUNDING_NEGINF:
12338 rmode = float_round_down;
12340 case FPROUNDING_ZERO:
12341 rmode = float_round_to_zero;
12348 * The upper bytes of val (above the number specified by 'bytes') must have
12349 * been zeroed out by the caller.
12351 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12355 stl_le_p(buf, val);
12357 /* zlib crc32 converts the accumulator and output to one's complement. */
12358 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12361 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12365 stl_le_p(buf, val);
12367 /* Linux crc32c converts the output to one's complement. */
12368 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12371 /* Return the exception level to which FP-disabled exceptions should
12372 * be taken, or 0 if FP is enabled.
12374 static inline int fp_exception_el(CPUARMState *env)
12376 #ifndef CONFIG_USER_ONLY
12378 int cur_el = arm_current_el(env);
12380 /* CPACR and the CPTR registers don't exist before v6, so FP is
12381 * always accessible
12383 if (!arm_feature(env, ARM_FEATURE_V6)) {
12387 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12388 * 0, 2 : trap EL0 and EL1/PL1 accesses
12389 * 1 : trap only EL0 accesses
12390 * 3 : trap no accesses
12392 fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12396 if (cur_el == 0 || cur_el == 1) {
12397 /* Trap to PL1, which might be EL1 or EL3 */
12398 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12403 if (cur_el == 3 && !is_a64(env)) {
12404 /* Secure PL1 running at EL3 */
12417 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12418 * check because zero bits in the registers mean "don't trap".
12421 /* CPTR_EL2 : present in v7VE or v8 */
12422 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12423 && !arm_is_secure_below_el3(env)) {
12424 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12428 /* CPTR_EL3 : present in v8 */
12429 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12430 /* Trap all FP ops to EL3 */
12437 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12438 target_ulong *cs_base, uint32_t *pflags)
12440 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12441 int fp_el = fp_exception_el(env);
12445 int sve_el = sve_exception_el(env);
12449 flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12450 /* Get control bits for tagged addresses */
12451 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12452 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12453 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12455 /* If SVE is disabled, but FP is enabled,
12456 then the effective len is 0. */
12457 if (sve_el != 0 && fp_el == 0) {
12460 int current_el = arm_current_el(env);
12461 ARMCPU *cpu = arm_env_get_cpu(env);
12463 zcr_len = cpu->sve_max_vq - 1;
12464 if (current_el <= 1) {
12465 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
12467 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12468 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12470 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12471 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12474 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12476 *pc = env->regs[15];
12477 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12478 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12479 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12480 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12481 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12482 if (!(access_secure_reg(env))) {
12483 flags |= ARM_TBFLAG_NS_MASK;
12485 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12486 || arm_el_is_aa64(env, 1)) {
12487 flags |= ARM_TBFLAG_VFPEN_MASK;
12489 flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12490 << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12493 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12495 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12496 * states defined in the ARM ARM for software singlestep:
12497 * SS_ACTIVE PSTATE.SS State
12498 * 0 x Inactive (the TB flag for SS is always 0)
12499 * 1 0 Active-pending
12500 * 1 1 Active-not-pending
12502 if (arm_singlestep_active(env)) {
12503 flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12505 if (env->pstate & PSTATE_SS) {
12506 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12509 if (env->uncached_cpsr & PSTATE_SS) {
12510 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12514 if (arm_cpu_data_is_big_endian(env)) {
12515 flags |= ARM_TBFLAG_BE_DATA_MASK;
12517 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12519 if (arm_v7m_is_handler_mode(env)) {
12520 flags |= ARM_TBFLAG_HANDLER_MASK;