4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "qemu/timer.h"
39 #include "qemu/config-file.h"
40 #include "qemu/error-report.h"
41 #include "qemu/qemu-print.h"
42 #if defined(CONFIG_USER_ONLY)
44 #else /* !CONFIG_USER_ONLY */
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/hostmem.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
68 #include "qemu/pmem.h"
70 #include "migration/vmstate.h"
72 #include "qemu/range.h"
74 #include "qemu/mmap-alloc.h"
77 #include "monitor/monitor.h"
79 //#define DEBUG_SUBPAGE
81 #if !defined(CONFIG_USER_ONLY)
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
83 * are protected by the ramlist lock.
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
93 static MemoryRegion io_mem_unassigned;
96 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98 /* current CPU in the current thread. It is only valid inside
100 __thread CPUState *current_cpu;
101 /* 0 = Do not count executed instructions.
102 1 = Precise instruction counting.
103 2 = Adaptive rate instruction counting. */
106 uintptr_t qemu_host_page_size;
107 intptr_t qemu_host_page_mask;
109 #if !defined(CONFIG_USER_ONLY)
111 typedef struct PhysPageEntry PhysPageEntry;
113 struct PhysPageEntry {
114 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
116 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
120 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
122 /* Size of the L2 (and L3, etc) page tables. */
123 #define ADDR_SPACE_BITS 64
126 #define P_L2_SIZE (1 << P_L2_BITS)
128 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
130 typedef PhysPageEntry Node[P_L2_SIZE];
132 typedef struct PhysPageMap {
135 unsigned sections_nb;
136 unsigned sections_nb_alloc;
138 unsigned nodes_nb_alloc;
140 MemoryRegionSection *sections;
143 struct AddressSpaceDispatch {
144 MemoryRegionSection *mru_section;
145 /* This is a multi-level map on the physical address space.
146 * The bottom level has pointers to MemoryRegionSections.
148 PhysPageEntry phys_map;
152 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
153 typedef struct subpage_t {
157 uint16_t sub_section[];
160 #define PHYS_SECTION_UNASSIGNED 0
162 static void io_mem_init(void);
163 static void memory_map_init(void);
164 static void tcg_log_global_after_sync(MemoryListener *listener);
165 static void tcg_commit(MemoryListener *listener);
168 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
169 * @cpu: the CPU whose AddressSpace this is
170 * @as: the AddressSpace itself
171 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
172 * @tcg_as_listener: listener for tracking changes to the AddressSpace
174 struct CPUAddressSpace {
177 struct AddressSpaceDispatch *memory_dispatch;
178 MemoryListener tcg_as_listener;
181 struct DirtyBitmapSnapshot {
184 unsigned long dirty[];
189 #if !defined(CONFIG_USER_ONLY)
191 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
193 static unsigned alloc_hint = 16;
194 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
195 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
196 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
197 alloc_hint = map->nodes_nb_alloc;
201 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
208 ret = map->nodes_nb++;
210 assert(ret != PHYS_MAP_NODE_NIL);
211 assert(ret != map->nodes_nb_alloc);
213 e.skip = leaf ? 0 : 1;
214 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
215 for (i = 0; i < P_L2_SIZE; ++i) {
216 memcpy(&p[i], &e, sizeof(e));
221 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
222 hwaddr *index, uint64_t *nb, uint16_t leaf,
226 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
228 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
229 lp->ptr = phys_map_node_alloc(map, level == 0);
231 p = map->nodes[lp->ptr];
232 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
234 while (*nb && lp < &p[P_L2_SIZE]) {
235 if ((*index & (step - 1)) == 0 && *nb >= step) {
241 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
247 static void phys_page_set(AddressSpaceDispatch *d,
248 hwaddr index, uint64_t nb,
251 /* Wildly overreserve - it doesn't matter much. */
252 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
254 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
257 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
258 * and update our entry so we can skip it and go directly to the destination.
260 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
262 unsigned valid_ptr = P_L2_SIZE;
267 if (lp->ptr == PHYS_MAP_NODE_NIL) {
272 for (i = 0; i < P_L2_SIZE; i++) {
273 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
280 phys_page_compact(&p[i], nodes);
284 /* We can only compress if there's only one child. */
289 assert(valid_ptr < P_L2_SIZE);
291 /* Don't compress if it won't fit in the # of bits we have. */
292 if (P_L2_LEVELS >= (1 << 6) &&
293 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
297 lp->ptr = p[valid_ptr].ptr;
298 if (!p[valid_ptr].skip) {
299 /* If our only child is a leaf, make this a leaf. */
300 /* By design, we should have made this node a leaf to begin with so we
301 * should never reach here.
302 * But since it's so simple to handle this, let's do it just in case we
307 lp->skip += p[valid_ptr].skip;
311 void address_space_dispatch_compact(AddressSpaceDispatch *d)
313 if (d->phys_map.skip) {
314 phys_page_compact(&d->phys_map, d->map.nodes);
318 static inline bool section_covers_addr(const MemoryRegionSection *section,
321 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
322 * the section must cover the entire address space.
324 return int128_gethi(section->size) ||
325 range_covers_byte(section->offset_within_address_space,
326 int128_getlo(section->size), addr);
329 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
331 PhysPageEntry lp = d->phys_map, *p;
332 Node *nodes = d->map.nodes;
333 MemoryRegionSection *sections = d->map.sections;
334 hwaddr index = addr >> TARGET_PAGE_BITS;
337 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
338 if (lp.ptr == PHYS_MAP_NODE_NIL) {
339 return §ions[PHYS_SECTION_UNASSIGNED];
342 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
345 if (section_covers_addr(§ions[lp.ptr], addr)) {
346 return §ions[lp.ptr];
348 return §ions[PHYS_SECTION_UNASSIGNED];
352 /* Called from RCU critical section */
353 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
355 bool resolve_subpage)
357 MemoryRegionSection *section = atomic_read(&d->mru_section);
360 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
361 !section_covers_addr(section, addr)) {
362 section = phys_page_find(d, addr);
363 atomic_set(&d->mru_section, section);
365 if (resolve_subpage && section->mr->subpage) {
366 subpage = container_of(section->mr, subpage_t, iomem);
367 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
372 /* Called from RCU critical section */
373 static MemoryRegionSection *
374 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
375 hwaddr *plen, bool resolve_subpage)
377 MemoryRegionSection *section;
381 section = address_space_lookup_region(d, addr, resolve_subpage);
382 /* Compute offset within MemoryRegionSection */
383 addr -= section->offset_within_address_space;
385 /* Compute offset within MemoryRegion */
386 *xlat = addr + section->offset_within_region;
390 /* MMIO registers can be expected to perform full-width accesses based only
391 * on their address, without considering adjacent registers that could
392 * decode to completely different MemoryRegions. When such registers
393 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
394 * regions overlap wildly. For this reason we cannot clamp the accesses
397 * If the length is small (as is the case for address_space_ldl/stl),
398 * everything works fine. If the incoming length is large, however,
399 * the caller really has to do the clamping through memory_access_size.
401 if (memory_region_is_ram(mr)) {
402 diff = int128_sub(section->size, int128_make64(addr));
403 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
409 * address_space_translate_iommu - translate an address through an IOMMU
410 * memory region and then through the target address space.
412 * @iommu_mr: the IOMMU memory region that we start the translation from
413 * @addr: the address to be translated through the MMU
414 * @xlat: the translated address offset within the destination memory region.
415 * It cannot be %NULL.
416 * @plen_out: valid read/write length of the translated address. It
418 * @page_mask_out: page mask for the translated address. This
419 * should only be meaningful for IOMMU translated
420 * addresses, since there may be huge pages that this bit
421 * would tell. It can be %NULL if we don't care about it.
422 * @is_write: whether the translation operation is for write
423 * @is_mmio: whether this can be MMIO, set true if it can
424 * @target_as: the address space targeted by the IOMMU
425 * @attrs: transaction attributes
427 * This function is called from RCU critical section. It is the common
428 * part of flatview_do_translate and address_space_translate_cached.
430 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
433 hwaddr *page_mask_out,
436 AddressSpace **target_as,
439 MemoryRegionSection *section;
440 hwaddr page_mask = (hwaddr)-1;
444 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
448 if (imrc->attrs_to_index) {
449 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
452 iotlb = imrc->translate(iommu_mr, addr, is_write ?
453 IOMMU_WO : IOMMU_RO, iommu_idx);
455 if (!(iotlb.perm & (1 << is_write))) {
459 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
460 | (addr & iotlb.addr_mask));
461 page_mask &= iotlb.addr_mask;
462 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
463 *target_as = iotlb.target_as;
465 section = address_space_translate_internal(
466 address_space_to_dispatch(iotlb.target_as), addr, xlat,
469 iommu_mr = memory_region_get_iommu(section->mr);
470 } while (unlikely(iommu_mr));
473 *page_mask_out = page_mask;
478 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
482 * flatview_do_translate - translate an address in FlatView
484 * @fv: the flat view that we want to translate on
485 * @addr: the address to be translated in above address space
486 * @xlat: the translated address offset within memory region. It
488 * @plen_out: valid read/write length of the translated address. It
489 * can be @NULL when we don't care about it.
490 * @page_mask_out: page mask for the translated address. This
491 * should only be meaningful for IOMMU translated
492 * addresses, since there may be huge pages that this bit
493 * would tell. It can be @NULL if we don't care about it.
494 * @is_write: whether the translation operation is for write
495 * @is_mmio: whether this can be MMIO, set true if it can
496 * @target_as: the address space targeted by the IOMMU
497 * @attrs: memory transaction attributes
499 * This function is called from RCU critical section
501 static MemoryRegionSection flatview_do_translate(FlatView *fv,
505 hwaddr *page_mask_out,
508 AddressSpace **target_as,
511 MemoryRegionSection *section;
512 IOMMUMemoryRegion *iommu_mr;
513 hwaddr plen = (hwaddr)(-1);
519 section = address_space_translate_internal(
520 flatview_to_dispatch(fv), addr, xlat,
523 iommu_mr = memory_region_get_iommu(section->mr);
524 if (unlikely(iommu_mr)) {
525 return address_space_translate_iommu(iommu_mr, xlat,
526 plen_out, page_mask_out,
531 /* Not behind an IOMMU, use default page size. */
532 *page_mask_out = ~TARGET_PAGE_MASK;
538 /* Called from RCU critical section */
539 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
540 bool is_write, MemTxAttrs attrs)
542 MemoryRegionSection section;
543 hwaddr xlat, page_mask;
546 * This can never be MMIO, and we don't really care about plen,
549 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
550 NULL, &page_mask, is_write, false, &as,
553 /* Illegal translation */
554 if (section.mr == &io_mem_unassigned) {
558 /* Convert memory region offset into address space offset */
559 xlat += section.offset_within_address_space -
560 section.offset_within_region;
562 return (IOMMUTLBEntry) {
564 .iova = addr & ~page_mask,
565 .translated_addr = xlat & ~page_mask,
566 .addr_mask = page_mask,
567 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 return (IOMMUTLBEntry) {0};
575 /* Called from RCU critical section */
576 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
577 hwaddr *plen, bool is_write,
581 MemoryRegionSection section;
582 AddressSpace *as = NULL;
584 /* This can be MMIO, so setup MMIO bit. */
585 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
586 is_write, true, &as, attrs);
589 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
590 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
591 *plen = MIN(page, *plen);
597 typedef struct TCGIOMMUNotifier {
605 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
607 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
609 if (!notifier->active) {
612 tlb_flush(notifier->cpu);
613 notifier->active = false;
614 /* We leave the notifier struct on the list to avoid reallocating it later.
615 * Generally the number of IOMMUs a CPU deals with will be small.
616 * In any case we can't unregister the iommu notifier from a notify
621 static void tcg_register_iommu_notifier(CPUState *cpu,
622 IOMMUMemoryRegion *iommu_mr,
625 /* Make sure this CPU has an IOMMU notifier registered for this
626 * IOMMU/IOMMU index combination, so that we can flush its TLB
627 * when the IOMMU tells us the mappings we've cached have changed.
629 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
630 TCGIOMMUNotifier *notifier;
634 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
635 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
636 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
640 if (i == cpu->iommu_notifiers->len) {
641 /* Not found, add a new entry at the end of the array */
642 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
643 notifier = g_new0(TCGIOMMUNotifier, 1);
644 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
647 notifier->iommu_idx = iommu_idx;
649 /* Rather than trying to register interest in the specific part
650 * of the iommu's address space that we've accessed and then
651 * expand it later as subsequent accesses touch more of it, we
652 * just register interest in the whole thing, on the assumption
653 * that iommu reconfiguration will be rare.
655 iommu_notifier_init(¬ifier->n,
656 tcg_iommu_unmap_notify,
657 IOMMU_NOTIFIER_UNMAP,
661 ret = memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
664 error_report_err(err);
669 if (!notifier->active) {
670 notifier->active = true;
674 static void tcg_iommu_free_notifier_list(CPUState *cpu)
676 /* Destroy the CPU's notifier list */
678 TCGIOMMUNotifier *notifier;
680 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
681 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
682 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
685 g_array_free(cpu->iommu_notifiers, true);
688 /* Called from RCU critical section */
689 MemoryRegionSection *
690 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
691 hwaddr *xlat, hwaddr *plen,
692 MemTxAttrs attrs, int *prot)
694 MemoryRegionSection *section;
695 IOMMUMemoryRegion *iommu_mr;
696 IOMMUMemoryRegionClass *imrc;
699 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
702 section = address_space_translate_internal(d, addr, &addr, plen, false);
704 iommu_mr = memory_region_get_iommu(section->mr);
709 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
711 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
712 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
713 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
714 * doesn't short-cut its translation table walk.
716 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
717 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
718 | (addr & iotlb.addr_mask));
719 /* Update the caller's prot bits to remove permissions the IOMMU
720 * is giving us a failure response for. If we get down to no
721 * permissions left at all we can give up now.
723 if (!(iotlb.perm & IOMMU_RO)) {
724 *prot &= ~(PAGE_READ | PAGE_EXEC);
726 if (!(iotlb.perm & IOMMU_WO)) {
727 *prot &= ~PAGE_WRITE;
734 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
737 assert(!memory_region_is_iommu(section->mr));
742 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
746 #if !defined(CONFIG_USER_ONLY)
748 static int cpu_common_post_load(void *opaque, int version_id)
750 CPUState *cpu = opaque;
752 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
753 version_id is increased. */
754 cpu->interrupt_request &= ~0x01;
757 /* loadvm has just updated the content of RAM, bypassing the
758 * usual mechanisms that ensure we flush TBs for writes to
759 * memory we've translated code from. So we must flush all TBs,
760 * which will now be stale.
767 static int cpu_common_pre_load(void *opaque)
769 CPUState *cpu = opaque;
771 cpu->exception_index = -1;
776 static bool cpu_common_exception_index_needed(void *opaque)
778 CPUState *cpu = opaque;
780 return tcg_enabled() && cpu->exception_index != -1;
783 static const VMStateDescription vmstate_cpu_common_exception_index = {
784 .name = "cpu_common/exception_index",
786 .minimum_version_id = 1,
787 .needed = cpu_common_exception_index_needed,
788 .fields = (VMStateField[]) {
789 VMSTATE_INT32(exception_index, CPUState),
790 VMSTATE_END_OF_LIST()
794 static bool cpu_common_crash_occurred_needed(void *opaque)
796 CPUState *cpu = opaque;
798 return cpu->crash_occurred;
801 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
802 .name = "cpu_common/crash_occurred",
804 .minimum_version_id = 1,
805 .needed = cpu_common_crash_occurred_needed,
806 .fields = (VMStateField[]) {
807 VMSTATE_BOOL(crash_occurred, CPUState),
808 VMSTATE_END_OF_LIST()
812 const VMStateDescription vmstate_cpu_common = {
813 .name = "cpu_common",
815 .minimum_version_id = 1,
816 .pre_load = cpu_common_pre_load,
817 .post_load = cpu_common_post_load,
818 .fields = (VMStateField[]) {
819 VMSTATE_UINT32(halted, CPUState),
820 VMSTATE_UINT32(interrupt_request, CPUState),
821 VMSTATE_END_OF_LIST()
823 .subsections = (const VMStateDescription*[]) {
824 &vmstate_cpu_common_exception_index,
825 &vmstate_cpu_common_crash_occurred,
832 CPUState *qemu_get_cpu(int index)
837 if (cpu->cpu_index == index) {
845 #if !defined(CONFIG_USER_ONLY)
846 void cpu_address_space_init(CPUState *cpu, int asidx,
847 const char *prefix, MemoryRegion *mr)
849 CPUAddressSpace *newas;
850 AddressSpace *as = g_new0(AddressSpace, 1);
854 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
855 address_space_init(as, mr, as_name);
858 /* Target code should have set num_ases before calling us */
859 assert(asidx < cpu->num_ases);
862 /* address space 0 gets the convenience alias */
866 /* KVM cannot currently support multiple address spaces. */
867 assert(asidx == 0 || !kvm_enabled());
869 if (!cpu->cpu_ases) {
870 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
873 newas = &cpu->cpu_ases[asidx];
877 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
878 newas->tcg_as_listener.commit = tcg_commit;
879 memory_listener_register(&newas->tcg_as_listener, as);
883 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
885 /* Return the AddressSpace corresponding to the specified index */
886 return cpu->cpu_ases[asidx].as;
890 void cpu_exec_unrealizefn(CPUState *cpu)
892 CPUClass *cc = CPU_GET_CLASS(cpu);
894 cpu_list_remove(cpu);
896 if (cc->vmsd != NULL) {
897 vmstate_unregister(NULL, cc->vmsd, cpu);
899 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
900 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
902 #ifndef CONFIG_USER_ONLY
903 tcg_iommu_free_notifier_list(cpu);
907 Property cpu_common_props[] = {
908 #ifndef CONFIG_USER_ONLY
909 /* Create a memory property for softmmu CPU object,
910 * so users can wire up its memory. (This can't go in hw/core/cpu.c
911 * because that file is compiled only once for both user-mode
912 * and system builds.) The default if no link is set up is to use
913 * the system address space.
915 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
918 DEFINE_PROP_END_OF_LIST(),
921 void cpu_exec_initfn(CPUState *cpu)
926 #ifndef CONFIG_USER_ONLY
927 cpu->thread_id = qemu_get_thread_id();
928 cpu->memory = system_memory;
929 object_ref(OBJECT(cpu->memory));
933 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
935 CPUClass *cc = CPU_GET_CLASS(cpu);
936 static bool tcg_target_initialized;
940 if (tcg_enabled() && !tcg_target_initialized) {
941 tcg_target_initialized = true;
942 cc->tcg_initialize();
946 qemu_plugin_vcpu_init_hook(cpu);
948 #ifndef CONFIG_USER_ONLY
949 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
950 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
952 if (cc->vmsd != NULL) {
953 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
956 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
960 const char *parse_cpu_option(const char *cpu_option)
964 gchar **model_pieces;
965 const char *cpu_type;
967 model_pieces = g_strsplit(cpu_option, ",", 2);
968 if (!model_pieces[0]) {
969 error_report("-cpu option cannot be empty");
973 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
975 error_report("unable to find CPU model '%s'", model_pieces[0]);
976 g_strfreev(model_pieces);
980 cpu_type = object_class_get_name(oc);
982 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
983 g_strfreev(model_pieces);
987 #if defined(CONFIG_USER_ONLY)
988 void tb_invalidate_phys_addr(target_ulong addr)
991 tb_invalidate_phys_page_range(addr, addr + 1);
995 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
997 tb_invalidate_phys_addr(pc);
1000 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1002 ram_addr_t ram_addr;
1006 if (!tcg_enabled()) {
1010 RCU_READ_LOCK_GUARD();
1011 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1012 if (!(memory_region_is_ram(mr)
1013 || memory_region_is_romd(mr))) {
1016 ram_addr = memory_region_get_ram_addr(mr) + addr;
1017 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1020 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1023 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1024 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1026 /* Locks grabbed by tb_invalidate_phys_addr */
1027 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1028 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1033 #ifndef CONFIG_USER_ONLY
1034 /* Add a watchpoint. */
1035 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1036 int flags, CPUWatchpoint **watchpoint)
1040 /* forbid ranges which are empty or run off the end of the address space */
1041 if (len == 0 || (addr + len - 1) < addr) {
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1046 wp = g_malloc(sizeof(*wp));
1052 /* keep all GDB-injected watchpoints in front */
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1059 tlb_flush_page(cpu, addr);
1066 /* Remove a specific watchpoint. */
1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1073 if (addr == wp->vaddr && len == wp->len
1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1075 cpu_watchpoint_remove_by_ref(cpu, wp);
1082 /* Remove a specific watchpoint by reference. */
1083 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1087 tlb_flush_page(cpu, watchpoint->vaddr);
1092 /* Remove all matching watchpoints. */
1093 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1095 CPUWatchpoint *wp, *next;
1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1104 /* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1109 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1120 return !(addr > wpend || wp->vaddr > addrend);
1123 /* Return flags for watchpoints that match addr + prot. */
1124 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1136 #endif /* !CONFIG_USER_ONLY */
1138 /* Add a breakpoint. */
1139 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1140 CPUBreakpoint **breakpoint)
1144 bp = g_malloc(sizeof(*bp));
1149 /* keep all GDB-injected breakpoints in front */
1150 if (flags & BP_GDB) {
1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1156 breakpoint_invalidate(cpu, pc);
1164 /* Remove a specific breakpoint. */
1165 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1170 if (bp->pc == pc && bp->flags == flags) {
1171 cpu_breakpoint_remove_by_ref(cpu, bp);
1178 /* Remove a specific breakpoint by reference. */
1179 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1183 breakpoint_invalidate(cpu, breakpoint->pc);
1188 /* Remove all matching breakpoints. */
1189 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1191 CPUBreakpoint *bp, *next;
1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1200 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
1202 void cpu_single_step(CPUState *cpu, int enabled)
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
1207 kvm_update_guest_debug(cpu, 0);
1209 /* must flush all the translated code to avoid inconsistencies */
1210 /* XXX: only flush what is necessary */
1216 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1227 if (qemu_log_separate()) {
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1240 #if defined(CONFIG_USER_ONLY)
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
1246 sigaction(SIGABRT, &act, NULL);
1252 #if !defined(CONFIG_USER_ONLY)
1253 /* Called from RCU critical section */
1254 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1258 block = atomic_rcu_read(&ram_list.mru_block);
1259 if (block && addr - block->offset < block->max_length) {
1262 RAMBLOCK_FOREACH(block) {
1263 if (addr - block->offset < block->max_length) {
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1272 /* It is safe to write mru_block outside the iothread lock. This
1277 * xxx removed from list
1281 * call_rcu(reclaim_ramblock, xxx);
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1288 ram_list.mru_block = block;
1292 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1299 assert(tcg_enabled());
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
1303 RCU_READ_LOCK_GUARD();
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1308 tlb_reset_dirty(cpu, start1, length);
1312 /* Note: start and end must be within the same ram block. */
1313 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1317 DirtyMemoryBlocks *blocks;
1318 unsigned long end, page;
1321 uint64_t mr_offset, mr_size;
1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328 page = start >> TARGET_PAGE_BITS;
1330 WITH_RCU_READ_LOCK_GUARD() {
1331 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1332 ramblock = qemu_get_ram_block(start);
1333 /* Range sanity check on the ramblock */
1334 assert(start >= ramblock->offset &&
1335 start + length <= ramblock->offset + ramblock->used_length);
1337 while (page < end) {
1338 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1339 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long num = MIN(end - page,
1341 DIRTY_MEMORY_BLOCK_SIZE - offset);
1343 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1348 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1349 mr_size = (end - page) << TARGET_PAGE_BITS;
1350 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1353 if (dirty && tcg_enabled()) {
1354 tlb_reset_dirty_range_all(start, length);
1360 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1361 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1363 DirtyMemoryBlocks *blocks;
1364 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1365 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1366 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1367 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1368 DirtyBitmapSnapshot *snap;
1369 unsigned long page, end, dest;
1371 snap = g_malloc0(sizeof(*snap) +
1372 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1373 snap->start = first;
1376 page = first >> TARGET_PAGE_BITS;
1377 end = last >> TARGET_PAGE_BITS;
1380 WITH_RCU_READ_LOCK_GUARD() {
1381 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1383 while (page < end) {
1384 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long num = MIN(end - page,
1387 DIRTY_MEMORY_BLOCK_SIZE - offset);
1389 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1390 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1391 offset >>= BITS_PER_LEVEL;
1393 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1394 blocks->blocks[idx] + offset,
1397 dest += num >> BITS_PER_LEVEL;
1401 if (tcg_enabled()) {
1402 tlb_reset_dirty_range_all(start, length);
1405 memory_region_clear_dirty_bitmap(mr, offset, length);
1410 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1414 unsigned long page, end;
1416 assert(start >= snap->start);
1417 assert(start + length <= snap->end);
1419 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1420 page = (start - snap->start) >> TARGET_PAGE_BITS;
1422 while (page < end) {
1423 if (test_bit(page, snap->dirty)) {
1431 /* Called from RCU critical section */
1432 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1433 MemoryRegionSection *section)
1435 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1436 return section - d->map.sections;
1438 #endif /* defined(CONFIG_USER_ONLY) */
1440 #if !defined(CONFIG_USER_ONLY)
1442 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1444 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1446 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1447 qemu_anon_ram_alloc;
1450 * Set a custom physical guest memory alloator.
1451 * Accelerators with unusual needs may need this. Hopefully, we can
1452 * get rid of it eventually.
1454 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1456 phys_mem_alloc = alloc;
1459 static uint16_t phys_section_add(PhysPageMap *map,
1460 MemoryRegionSection *section)
1462 /* The physical section number is ORed with a page-aligned
1463 * pointer to produce the iotlb entries. Thus it should
1464 * never overflow into the page-aligned value.
1466 assert(map->sections_nb < TARGET_PAGE_SIZE);
1468 if (map->sections_nb == map->sections_nb_alloc) {
1469 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1470 map->sections = g_renew(MemoryRegionSection, map->sections,
1471 map->sections_nb_alloc);
1473 map->sections[map->sections_nb] = *section;
1474 memory_region_ref(section->mr);
1475 return map->sections_nb++;
1478 static void phys_section_destroy(MemoryRegion *mr)
1480 bool have_sub_page = mr->subpage;
1482 memory_region_unref(mr);
1484 if (have_sub_page) {
1485 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1486 object_unref(OBJECT(&subpage->iomem));
1491 static void phys_sections_free(PhysPageMap *map)
1493 while (map->sections_nb > 0) {
1494 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1495 phys_section_destroy(section->mr);
1497 g_free(map->sections);
1501 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1503 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1505 hwaddr base = section->offset_within_address_space
1507 MemoryRegionSection *existing = phys_page_find(d, base);
1508 MemoryRegionSection subsection = {
1509 .offset_within_address_space = base,
1510 .size = int128_make64(TARGET_PAGE_SIZE),
1514 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1516 if (!(existing->mr->subpage)) {
1517 subpage = subpage_init(fv, base);
1519 subsection.mr = &subpage->iomem;
1520 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1521 phys_section_add(&d->map, &subsection));
1523 subpage = container_of(existing->mr, subpage_t, iomem);
1525 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1526 end = start + int128_get64(section->size) - 1;
1527 subpage_register(subpage, start, end,
1528 phys_section_add(&d->map, section));
1532 static void register_multipage(FlatView *fv,
1533 MemoryRegionSection *section)
1535 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1536 hwaddr start_addr = section->offset_within_address_space;
1537 uint16_t section_index = phys_section_add(&d->map, section);
1538 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1542 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1546 * The range in *section* may look like this:
1550 * where s stands for subpage and P for page.
1552 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1554 MemoryRegionSection remain = *section;
1555 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1557 /* register first subpage */
1558 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1559 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1560 - remain.offset_within_address_space;
1562 MemoryRegionSection now = remain;
1563 now.size = int128_min(int128_make64(left), now.size);
1564 register_subpage(fv, &now);
1565 if (int128_eq(remain.size, now.size)) {
1568 remain.size = int128_sub(remain.size, now.size);
1569 remain.offset_within_address_space += int128_get64(now.size);
1570 remain.offset_within_region += int128_get64(now.size);
1573 /* register whole pages */
1574 if (int128_ge(remain.size, page_size)) {
1575 MemoryRegionSection now = remain;
1576 now.size = int128_and(now.size, int128_neg(page_size));
1577 register_multipage(fv, &now);
1578 if (int128_eq(remain.size, now.size)) {
1581 remain.size = int128_sub(remain.size, now.size);
1582 remain.offset_within_address_space += int128_get64(now.size);
1583 remain.offset_within_region += int128_get64(now.size);
1586 /* register last subpage */
1587 register_subpage(fv, &remain);
1590 void qemu_flush_coalesced_mmio_buffer(void)
1593 kvm_flush_coalesced_mmio_buffer();
1596 void qemu_mutex_lock_ramlist(void)
1598 qemu_mutex_lock(&ram_list.mutex);
1601 void qemu_mutex_unlock_ramlist(void)
1603 qemu_mutex_unlock(&ram_list.mutex);
1606 void ram_block_dump(Monitor *mon)
1611 RCU_READ_LOCK_GUARD();
1612 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1613 "Block Name", "PSize", "Offset", "Used", "Total");
1614 RAMBLOCK_FOREACH(block) {
1615 psize = size_to_str(block->page_size);
1616 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1617 " 0x%016" PRIx64 "\n", block->idstr, psize,
1618 (uint64_t)block->offset,
1619 (uint64_t)block->used_length,
1620 (uint64_t)block->max_length);
1627 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1628 * may or may not name the same files / on the same filesystem now as
1629 * when we actually open and map them. Iterate over the file
1630 * descriptors instead, and use qemu_fd_getpagesize().
1632 static int find_min_backend_pagesize(Object *obj, void *opaque)
1634 long *hpsize_min = opaque;
1636 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1637 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1638 long hpsize = host_memory_backend_pagesize(backend);
1640 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1641 *hpsize_min = hpsize;
1648 static int find_max_backend_pagesize(Object *obj, void *opaque)
1650 long *hpsize_max = opaque;
1652 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1653 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1654 long hpsize = host_memory_backend_pagesize(backend);
1656 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1657 *hpsize_max = hpsize;
1665 * TODO: We assume right now that all mapped host memory backends are
1666 * used as RAM, however some might be used for different purposes.
1668 long qemu_minrampagesize(void)
1670 long hpsize = LONG_MAX;
1671 long mainrampagesize;
1672 Object *memdev_root;
1673 MachineState *ms = MACHINE(qdev_get_machine());
1675 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1677 /* it's possible we have memory-backend objects with
1678 * hugepage-backed RAM. these may get mapped into system
1679 * address space via -numa parameters or memory hotplug
1680 * hooks. we want to take these into account, but we
1681 * also want to make sure these supported hugepage
1682 * sizes are applicable across the entire range of memory
1683 * we may boot from, so we take the min across all
1684 * backends, and assume normal pages in cases where a
1685 * backend isn't backed by hugepages.
1687 memdev_root = object_resolve_path("/objects", NULL);
1689 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1691 if (hpsize == LONG_MAX) {
1692 /* No additional memory regions found ==> Report main RAM page size */
1693 return mainrampagesize;
1696 /* If NUMA is disabled or the NUMA nodes are not backed with a
1697 * memory-backend, then there is at least one node using "normal" RAM,
1698 * so if its page size is smaller we have got to report that size instead.
1700 if (hpsize > mainrampagesize &&
1701 (ms->numa_state == NULL ||
1702 ms->numa_state->num_nodes == 0 ||
1703 ms->numa_state->nodes[0].node_memdev == NULL)) {
1706 error_report("Huge page support disabled (n/a for main memory).");
1709 return mainrampagesize;
1715 long qemu_maxrampagesize(void)
1717 long pagesize = qemu_mempath_getpagesize(mem_path);
1718 Object *memdev_root = object_resolve_path("/objects", NULL);
1721 object_child_foreach(memdev_root, find_max_backend_pagesize,
1727 long qemu_minrampagesize(void)
1729 return qemu_real_host_page_size;
1731 long qemu_maxrampagesize(void)
1733 return qemu_real_host_page_size;
1738 static int64_t get_file_size(int fd)
1741 #if defined(__linux__)
1744 if (fstat(fd, &st) < 0) {
1748 /* Special handling for devdax character devices */
1749 if (S_ISCHR(st.st_mode)) {
1750 g_autofree char *subsystem_path = NULL;
1751 g_autofree char *subsystem = NULL;
1753 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1754 major(st.st_rdev), minor(st.st_rdev));
1755 subsystem = g_file_read_link(subsystem_path, NULL);
1757 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1758 g_autofree char *size_path = NULL;
1759 g_autofree char *size_str = NULL;
1761 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1762 major(st.st_rdev), minor(st.st_rdev));
1764 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1765 return g_ascii_strtoll(size_str, NULL, 0);
1769 #endif /* defined(__linux__) */
1771 /* st.st_size may be zero for special files yet lseek(2) works */
1772 size = lseek(fd, 0, SEEK_END);
1779 static int file_ram_open(const char *path,
1780 const char *region_name,
1785 char *sanitized_name;
1791 fd = open(path, O_RDWR);
1793 /* @path names an existing file, use it */
1796 if (errno == ENOENT) {
1797 /* @path names a file that doesn't exist, create it */
1798 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1803 } else if (errno == EISDIR) {
1804 /* @path names a directory, create a file there */
1805 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1806 sanitized_name = g_strdup(region_name);
1807 for (c = sanitized_name; *c != '\0'; c++) {
1813 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1815 g_free(sanitized_name);
1817 fd = mkstemp(filename);
1825 if (errno != EEXIST && errno != EINTR) {
1826 error_setg_errno(errp, errno,
1827 "can't open backing store %s for guest RAM",
1832 * Try again on EINTR and EEXIST. The latter happens when
1833 * something else creates the file between our two open().
1840 static void *file_ram_alloc(RAMBlock *block,
1846 MachineState *ms = MACHINE(qdev_get_machine());
1849 block->page_size = qemu_fd_getpagesize(fd);
1850 if (block->mr->align % block->page_size) {
1851 error_setg(errp, "alignment 0x%" PRIx64
1852 " must be multiples of page size 0x%zx",
1853 block->mr->align, block->page_size);
1855 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1856 error_setg(errp, "alignment 0x%" PRIx64
1857 " must be a power of two", block->mr->align);
1860 block->mr->align = MAX(block->page_size, block->mr->align);
1861 #if defined(__s390x__)
1862 if (kvm_enabled()) {
1863 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1867 if (memory < block->page_size) {
1868 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1869 "or larger than page size 0x%zx",
1870 memory, block->page_size);
1874 memory = ROUND_UP(memory, block->page_size);
1877 * ftruncate is not supported by hugetlbfs in older
1878 * hosts, so don't bother bailing out on errors.
1879 * If anything goes wrong with it under other filesystems,
1882 * Do not truncate the non-empty backend file to avoid corrupting
1883 * the existing data in the file. Disabling shrinking is not
1884 * enough. For example, the current vNVDIMM implementation stores
1885 * the guest NVDIMM labels at the end of the backend file. If the
1886 * backend file is later extended, QEMU will not be able to find
1887 * those labels. Therefore, extending the non-empty backend file
1888 * is disabled as well.
1890 if (truncate && ftruncate(fd, memory)) {
1891 perror("ftruncate");
1894 area = qemu_ram_mmap(fd, memory, block->mr->align,
1895 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1896 if (area == MAP_FAILED) {
1897 error_setg_errno(errp, errno,
1898 "unable to map backing store for guest RAM");
1903 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
1904 if (errp && *errp) {
1905 qemu_ram_munmap(fd, area, memory);
1915 /* Allocate space within the ram_addr_t space that governs the
1917 * Called with the ramlist lock held.
1919 static ram_addr_t find_ram_offset(ram_addr_t size)
1921 RAMBlock *block, *next_block;
1922 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1924 assert(size != 0); /* it would hand out same offset multiple times */
1926 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1930 RAMBLOCK_FOREACH(block) {
1931 ram_addr_t candidate, next = RAM_ADDR_MAX;
1933 /* Align blocks to start on a 'long' in the bitmap
1934 * which makes the bitmap sync'ing take the fast path.
1936 candidate = block->offset + block->max_length;
1937 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1939 /* Search for the closest following block
1942 RAMBLOCK_FOREACH(next_block) {
1943 if (next_block->offset >= candidate) {
1944 next = MIN(next, next_block->offset);
1948 /* If it fits remember our place and remember the size
1949 * of gap, but keep going so that we might find a smaller
1950 * gap to fill so avoiding fragmentation.
1952 if (next - candidate >= size && next - candidate < mingap) {
1954 mingap = next - candidate;
1957 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1960 if (offset == RAM_ADDR_MAX) {
1961 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1966 trace_find_ram_offset(size, offset);
1971 static unsigned long last_ram_page(void)
1974 ram_addr_t last = 0;
1976 RCU_READ_LOCK_GUARD();
1977 RAMBLOCK_FOREACH(block) {
1978 last = MAX(last, block->offset + block->max_length);
1980 return last >> TARGET_PAGE_BITS;
1983 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1987 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1988 if (!machine_dump_guest_core(current_machine)) {
1989 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1991 perror("qemu_madvise");
1992 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1993 "but dump_guest_core=off specified\n");
1998 const char *qemu_ram_get_idstr(RAMBlock *rb)
2003 void *qemu_ram_get_host_addr(RAMBlock *rb)
2008 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2013 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2015 return rb->used_length;
2018 bool qemu_ram_is_shared(RAMBlock *rb)
2020 return rb->flags & RAM_SHARED;
2023 /* Note: Only set at the start of postcopy */
2024 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2026 return rb->flags & RAM_UF_ZEROPAGE;
2029 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2031 rb->flags |= RAM_UF_ZEROPAGE;
2034 bool qemu_ram_is_migratable(RAMBlock *rb)
2036 return rb->flags & RAM_MIGRATABLE;
2039 void qemu_ram_set_migratable(RAMBlock *rb)
2041 rb->flags |= RAM_MIGRATABLE;
2044 void qemu_ram_unset_migratable(RAMBlock *rb)
2046 rb->flags &= ~RAM_MIGRATABLE;
2049 /* Called with iothread lock held. */
2050 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2055 assert(!new_block->idstr[0]);
2058 char *id = qdev_get_dev_path(dev);
2060 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2064 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2066 RCU_READ_LOCK_GUARD();
2067 RAMBLOCK_FOREACH(block) {
2068 if (block != new_block &&
2069 !strcmp(block->idstr, new_block->idstr)) {
2070 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2077 /* Called with iothread lock held. */
2078 void qemu_ram_unset_idstr(RAMBlock *block)
2080 /* FIXME: arch_init.c assumes that this is not called throughout
2081 * migration. Ignore the problem since hot-unplug during migration
2082 * does not work anyway.
2085 memset(block->idstr, 0, sizeof(block->idstr));
2089 size_t qemu_ram_pagesize(RAMBlock *rb)
2091 return rb->page_size;
2094 /* Returns the largest size of page in use */
2095 size_t qemu_ram_pagesize_largest(void)
2100 RAMBLOCK_FOREACH(block) {
2101 largest = MAX(largest, qemu_ram_pagesize(block));
2107 static int memory_try_enable_merging(void *addr, size_t len)
2109 if (!machine_mem_merge(current_machine)) {
2110 /* disabled by the user */
2114 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2117 /* Only legal before guest might have detected the memory size: e.g. on
2118 * incoming migration, or right after reset.
2120 * As memory core doesn't know how is memory accessed, it is up to
2121 * resize callback to update device state and/or add assertions to detect
2122 * misuse, if necessary.
2124 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2128 newsize = HOST_PAGE_ALIGN(newsize);
2130 if (block->used_length == newsize) {
2134 if (!(block->flags & RAM_RESIZEABLE)) {
2135 error_setg_errno(errp, EINVAL,
2136 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2137 " in != 0x" RAM_ADDR_FMT, block->idstr,
2138 newsize, block->used_length);
2142 if (block->max_length < newsize) {
2143 error_setg_errno(errp, EINVAL,
2144 "Length too large: %s: 0x" RAM_ADDR_FMT
2145 " > 0x" RAM_ADDR_FMT, block->idstr,
2146 newsize, block->max_length);
2150 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2151 block->used_length = newsize;
2152 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2154 memory_region_set_size(block->mr, newsize);
2155 if (block->resized) {
2156 block->resized(block->idstr, newsize, block->host);
2162 * Trigger sync on the given ram block for range [start, start + length]
2163 * with the backing store if one is available.
2165 * @Note: this is supposed to be a synchronous op.
2167 void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2169 void *addr = ramblock_ptr(block, start);
2171 /* The requested range should fit in within the block range */
2172 g_assert((start + length) <= block->used_length);
2174 #ifdef CONFIG_LIBPMEM
2175 /* The lack of support for pmem should not block the sync */
2176 if (ramblock_is_pmem(block)) {
2177 pmem_persist(addr, length);
2181 if (block->fd >= 0) {
2183 * Case there is no support for PMEM or the memory has not been
2184 * specified as persistent (or is not one) - use the msync.
2185 * Less optimal but still achieves the same goal
2187 if (qemu_msync(addr, length, block->fd)) {
2188 warn_report("%s: failed to sync memory range: start: "
2189 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2190 __func__, start, length);
2195 /* Called with ram_list.mutex held */
2196 static void dirty_memory_extend(ram_addr_t old_ram_size,
2197 ram_addr_t new_ram_size)
2199 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2200 DIRTY_MEMORY_BLOCK_SIZE);
2201 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2202 DIRTY_MEMORY_BLOCK_SIZE);
2205 /* Only need to extend if block count increased */
2206 if (new_num_blocks <= old_num_blocks) {
2210 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2211 DirtyMemoryBlocks *old_blocks;
2212 DirtyMemoryBlocks *new_blocks;
2215 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2216 new_blocks = g_malloc(sizeof(*new_blocks) +
2217 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2219 if (old_num_blocks) {
2220 memcpy(new_blocks->blocks, old_blocks->blocks,
2221 old_num_blocks * sizeof(old_blocks->blocks[0]));
2224 for (j = old_num_blocks; j < new_num_blocks; j++) {
2225 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2228 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2231 g_free_rcu(old_blocks, rcu);
2236 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2239 RAMBlock *last_block = NULL;
2240 ram_addr_t old_ram_size, new_ram_size;
2243 old_ram_size = last_ram_page();
2245 qemu_mutex_lock_ramlist();
2246 new_block->offset = find_ram_offset(new_block->max_length);
2248 if (!new_block->host) {
2249 if (xen_enabled()) {
2250 xen_ram_alloc(new_block->offset, new_block->max_length,
2251 new_block->mr, &err);
2253 error_propagate(errp, err);
2254 qemu_mutex_unlock_ramlist();
2258 new_block->host = phys_mem_alloc(new_block->max_length,
2259 &new_block->mr->align, shared);
2260 if (!new_block->host) {
2261 error_setg_errno(errp, errno,
2262 "cannot set up guest memory '%s'",
2263 memory_region_name(new_block->mr));
2264 qemu_mutex_unlock_ramlist();
2267 memory_try_enable_merging(new_block->host, new_block->max_length);
2271 new_ram_size = MAX(old_ram_size,
2272 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2273 if (new_ram_size > old_ram_size) {
2274 dirty_memory_extend(old_ram_size, new_ram_size);
2276 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2277 * QLIST (which has an RCU-friendly variant) does not have insertion at
2278 * tail, so save the last element in last_block.
2280 RAMBLOCK_FOREACH(block) {
2282 if (block->max_length < new_block->max_length) {
2287 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2288 } else if (last_block) {
2289 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2290 } else { /* list is empty */
2291 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2293 ram_list.mru_block = NULL;
2295 /* Write list before version */
2298 qemu_mutex_unlock_ramlist();
2300 cpu_physical_memory_set_dirty_range(new_block->offset,
2301 new_block->used_length,
2304 if (new_block->host) {
2305 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2306 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2307 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2308 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2309 ram_block_notify_add(new_block->host, new_block->max_length);
2314 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2315 uint32_t ram_flags, int fd,
2318 RAMBlock *new_block;
2319 Error *local_err = NULL;
2322 /* Just support these ram flags by now. */
2323 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2325 if (xen_enabled()) {
2326 error_setg(errp, "-mem-path not supported with Xen");
2330 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2332 "host lacks kvm mmu notifiers, -mem-path unsupported");
2336 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2338 * file_ram_alloc() needs to allocate just like
2339 * phys_mem_alloc, but we haven't bothered to provide
2343 "-mem-path not supported with this accelerator");
2347 size = HOST_PAGE_ALIGN(size);
2348 file_size = get_file_size(fd);
2349 if (file_size > 0 && file_size < size) {
2350 error_setg(errp, "backing store %s size 0x%" PRIx64
2351 " does not match 'size' option 0x" RAM_ADDR_FMT,
2352 mem_path, file_size, size);
2356 new_block = g_malloc0(sizeof(*new_block));
2358 new_block->used_length = size;
2359 new_block->max_length = size;
2360 new_block->flags = ram_flags;
2361 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2362 if (!new_block->host) {
2367 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2370 error_propagate(errp, local_err);
2378 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2379 uint32_t ram_flags, const char *mem_path,
2386 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2391 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2405 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2406 void (*resized)(const char*,
2409 void *host, bool resizeable, bool share,
2410 MemoryRegion *mr, Error **errp)
2412 RAMBlock *new_block;
2413 Error *local_err = NULL;
2415 size = HOST_PAGE_ALIGN(size);
2416 max_size = HOST_PAGE_ALIGN(max_size);
2417 new_block = g_malloc0(sizeof(*new_block));
2419 new_block->resized = resized;
2420 new_block->used_length = size;
2421 new_block->max_length = max_size;
2422 assert(max_size >= size);
2424 new_block->page_size = qemu_real_host_page_size;
2425 new_block->host = host;
2427 new_block->flags |= RAM_PREALLOC;
2430 new_block->flags |= RAM_RESIZEABLE;
2432 ram_block_add(new_block, &local_err, share);
2435 error_propagate(errp, local_err);
2441 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2442 MemoryRegion *mr, Error **errp)
2444 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2448 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2449 MemoryRegion *mr, Error **errp)
2451 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2455 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2456 void (*resized)(const char*,
2459 MemoryRegion *mr, Error **errp)
2461 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2465 static void reclaim_ramblock(RAMBlock *block)
2467 if (block->flags & RAM_PREALLOC) {
2469 } else if (xen_enabled()) {
2470 xen_invalidate_map_cache_entry(block->host);
2472 } else if (block->fd >= 0) {
2473 qemu_ram_munmap(block->fd, block->host, block->max_length);
2477 qemu_anon_ram_free(block->host, block->max_length);
2482 void qemu_ram_free(RAMBlock *block)
2489 ram_block_notify_remove(block->host, block->max_length);
2492 qemu_mutex_lock_ramlist();
2493 QLIST_REMOVE_RCU(block, next);
2494 ram_list.mru_block = NULL;
2495 /* Write list before version */
2498 call_rcu(block, reclaim_ramblock, rcu);
2499 qemu_mutex_unlock_ramlist();
2503 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2510 RAMBLOCK_FOREACH(block) {
2511 offset = addr - block->offset;
2512 if (offset < block->max_length) {
2513 vaddr = ramblock_ptr(block, offset);
2514 if (block->flags & RAM_PREALLOC) {
2516 } else if (xen_enabled()) {
2520 if (block->fd >= 0) {
2521 flags |= (block->flags & RAM_SHARED ?
2522 MAP_SHARED : MAP_PRIVATE);
2523 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2524 flags, block->fd, offset);
2527 * Remap needs to match alloc. Accelerators that
2528 * set phys_mem_alloc never remap. If they did,
2529 * we'd need a remap hook here.
2531 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2533 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2534 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2537 if (area != vaddr) {
2538 error_report("Could not remap addr: "
2539 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2543 memory_try_enable_merging(vaddr, length);
2544 qemu_ram_setup_dump(vaddr, length);
2549 #endif /* !_WIN32 */
2551 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2552 * This should not be used for general purpose DMA. Use address_space_map
2553 * or address_space_rw instead. For local memory (e.g. video ram) that the
2554 * device owns, use memory_region_get_ram_ptr.
2556 * Called within RCU critical section.
2558 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2560 RAMBlock *block = ram_block;
2562 if (block == NULL) {
2563 block = qemu_get_ram_block(addr);
2564 addr -= block->offset;
2567 if (xen_enabled() && block->host == NULL) {
2568 /* We need to check if the requested address is in the RAM
2569 * because we don't want to map the entire memory in QEMU.
2570 * In that case just map until the end of the page.
2572 if (block->offset == 0) {
2573 return xen_map_cache(addr, 0, 0, false);
2576 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2578 return ramblock_ptr(block, addr);
2581 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2582 * but takes a size argument.
2584 * Called within RCU critical section.
2586 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2587 hwaddr *size, bool lock)
2589 RAMBlock *block = ram_block;
2594 if (block == NULL) {
2595 block = qemu_get_ram_block(addr);
2596 addr -= block->offset;
2598 *size = MIN(*size, block->max_length - addr);
2600 if (xen_enabled() && block->host == NULL) {
2601 /* We need to check if the requested address is in the RAM
2602 * because we don't want to map the entire memory in QEMU.
2603 * In that case just map the requested area.
2605 if (block->offset == 0) {
2606 return xen_map_cache(addr, *size, lock, lock);
2609 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2612 return ramblock_ptr(block, addr);
2615 /* Return the offset of a hostpointer within a ramblock */
2616 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2618 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2619 assert((uintptr_t)host >= (uintptr_t)rb->host);
2620 assert(res < rb->max_length);
2626 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2629 * ptr: Host pointer to look up
2630 * round_offset: If true round the result offset down to a page boundary
2631 * *ram_addr: set to result ram_addr
2632 * *offset: set to result offset within the RAMBlock
2634 * Returns: RAMBlock (or NULL if not found)
2636 * By the time this function returns, the returned pointer is not protected
2637 * by RCU anymore. If the caller is not within an RCU critical section and
2638 * does not hold the iothread lock, it must have other means of protecting the
2639 * pointer, such as a reference to the region that includes the incoming
2642 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2646 uint8_t *host = ptr;
2648 if (xen_enabled()) {
2649 ram_addr_t ram_addr;
2650 RCU_READ_LOCK_GUARD();
2651 ram_addr = xen_ram_addr_from_mapcache(ptr);
2652 block = qemu_get_ram_block(ram_addr);
2654 *offset = ram_addr - block->offset;
2659 RCU_READ_LOCK_GUARD();
2660 block = atomic_rcu_read(&ram_list.mru_block);
2661 if (block && block->host && host - block->host < block->max_length) {
2665 RAMBLOCK_FOREACH(block) {
2666 /* This case append when the block is not mapped. */
2667 if (block->host == NULL) {
2670 if (host - block->host < block->max_length) {
2678 *offset = (host - block->host);
2680 *offset &= TARGET_PAGE_MASK;
2686 * Finds the named RAMBlock
2688 * name: The name of RAMBlock to find
2690 * Returns: RAMBlock (or NULL if not found)
2692 RAMBlock *qemu_ram_block_by_name(const char *name)
2696 RAMBLOCK_FOREACH(block) {
2697 if (!strcmp(name, block->idstr)) {
2705 /* Some of the softmmu routines need to translate from a host pointer
2706 (typically a TLB entry) back to a ram offset. */
2707 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2712 block = qemu_ram_block_from_host(ptr, false, &offset);
2714 return RAM_ADDR_INVALID;
2717 return block->offset + offset;
2720 /* Generate a debug exception if a watchpoint has been hit. */
2721 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2722 MemTxAttrs attrs, int flags, uintptr_t ra)
2724 CPUClass *cc = CPU_GET_CLASS(cpu);
2727 assert(tcg_enabled());
2728 if (cpu->watchpoint_hit) {
2730 * We re-entered the check after replacing the TB.
2731 * Now raise the debug interrupt so that it will
2732 * trigger after the current instruction.
2734 qemu_mutex_lock_iothread();
2735 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2736 qemu_mutex_unlock_iothread();
2740 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2741 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2742 if (watchpoint_address_matches(wp, addr, len)
2743 && (wp->flags & flags)) {
2744 if (flags == BP_MEM_READ) {
2745 wp->flags |= BP_WATCHPOINT_HIT_READ;
2747 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2749 wp->hitaddr = MAX(addr, wp->vaddr);
2750 wp->hitattrs = attrs;
2751 if (!cpu->watchpoint_hit) {
2752 if (wp->flags & BP_CPU &&
2753 !cc->debug_check_watchpoint(cpu, wp)) {
2754 wp->flags &= ~BP_WATCHPOINT_HIT;
2757 cpu->watchpoint_hit = wp;
2760 tb_check_watchpoint(cpu, ra);
2761 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2762 cpu->exception_index = EXCP_DEBUG;
2764 cpu_loop_exit_restore(cpu, ra);
2766 /* Force execution of one insn next time. */
2767 cpu->cflags_next_tb = 1 | curr_cflags();
2770 cpu_restore_state(cpu, ra, true);
2772 cpu_loop_exit_noexc(cpu);
2776 wp->flags &= ~BP_WATCHPOINT_HIT;
2781 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2782 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2783 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2784 const uint8_t *buf, hwaddr len);
2785 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2786 bool is_write, MemTxAttrs attrs);
2788 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2789 unsigned len, MemTxAttrs attrs)
2791 subpage_t *subpage = opaque;
2795 #if defined(DEBUG_SUBPAGE)
2796 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2797 subpage, len, addr);
2799 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2803 *data = ldn_p(buf, len);
2807 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2808 uint64_t value, unsigned len, MemTxAttrs attrs)
2810 subpage_t *subpage = opaque;
2813 #if defined(DEBUG_SUBPAGE)
2814 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2815 " value %"PRIx64"\n",
2816 __func__, subpage, len, addr, value);
2818 stn_p(buf, len, value);
2819 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2822 static bool subpage_accepts(void *opaque, hwaddr addr,
2823 unsigned len, bool is_write,
2826 subpage_t *subpage = opaque;
2827 #if defined(DEBUG_SUBPAGE)
2828 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2829 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2832 return flatview_access_valid(subpage->fv, addr + subpage->base,
2833 len, is_write, attrs);
2836 static const MemoryRegionOps subpage_ops = {
2837 .read_with_attrs = subpage_read,
2838 .write_with_attrs = subpage_write,
2839 .impl.min_access_size = 1,
2840 .impl.max_access_size = 8,
2841 .valid.min_access_size = 1,
2842 .valid.max_access_size = 8,
2843 .valid.accepts = subpage_accepts,
2844 .endianness = DEVICE_NATIVE_ENDIAN,
2847 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2852 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2854 idx = SUBPAGE_IDX(start);
2855 eidx = SUBPAGE_IDX(end);
2856 #if defined(DEBUG_SUBPAGE)
2857 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2858 __func__, mmio, start, end, idx, eidx, section);
2860 for (; idx <= eidx; idx++) {
2861 mmio->sub_section[idx] = section;
2867 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2871 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2872 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2875 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2876 NULL, TARGET_PAGE_SIZE);
2877 mmio->iomem.subpage = true;
2878 #if defined(DEBUG_SUBPAGE)
2879 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2880 mmio, base, TARGET_PAGE_SIZE);
2886 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2889 MemoryRegionSection section = {
2892 .offset_within_address_space = 0,
2893 .offset_within_region = 0,
2894 .size = int128_2_64(),
2897 return phys_section_add(map, §ion);
2900 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2901 hwaddr index, MemTxAttrs attrs)
2903 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2904 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2905 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2906 MemoryRegionSection *sections = d->map.sections;
2908 return §ions[index & ~TARGET_PAGE_MASK];
2911 static void io_mem_init(void)
2913 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2917 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2919 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2922 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2923 assert(n == PHYS_SECTION_UNASSIGNED);
2925 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2930 void address_space_dispatch_free(AddressSpaceDispatch *d)
2932 phys_sections_free(&d->map);
2936 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2940 static void tcg_log_global_after_sync(MemoryListener *listener)
2942 CPUAddressSpace *cpuas;
2944 /* Wait for the CPU to end the current TB. This avoids the following
2948 * ---------------------- -------------------------
2949 * TLB check -> slow path
2950 * notdirty_mem_write
2954 * TLB check -> fast path
2958 * by pushing the migration thread's memory read after the vCPU thread has
2959 * written the memory.
2961 if (replay_mode == REPLAY_MODE_NONE) {
2963 * VGA can make calls to this function while updating the screen.
2964 * In record/replay mode this causes a deadlock, because
2965 * run_on_cpu waits for rr mutex. Therefore no races are possible
2966 * in this case and no need for making run_on_cpu when
2967 * record/replay is not enabled.
2969 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2970 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2974 static void tcg_commit(MemoryListener *listener)
2976 CPUAddressSpace *cpuas;
2977 AddressSpaceDispatch *d;
2979 assert(tcg_enabled());
2980 /* since each CPU stores ram addresses in its TLB cache, we must
2981 reset the modified entries */
2982 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2983 cpu_reloading_memory_map();
2984 /* The CPU and TLB are protected by the iothread lock.
2985 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2986 * may have split the RCU critical section.
2988 d = address_space_to_dispatch(cpuas->as);
2989 atomic_rcu_set(&cpuas->memory_dispatch, d);
2990 tlb_flush(cpuas->cpu);
2993 static void memory_map_init(void)
2995 system_memory = g_malloc(sizeof(*system_memory));
2997 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2998 address_space_init(&address_space_memory, system_memory, "memory");
3000 system_io = g_malloc(sizeof(*system_io));
3001 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3003 address_space_init(&address_space_io, system_io, "I/O");
3006 MemoryRegion *get_system_memory(void)
3008 return system_memory;
3011 MemoryRegion *get_system_io(void)
3016 #endif /* !defined(CONFIG_USER_ONLY) */
3018 /* physical memory access (slow version, mainly for debug) */
3019 #if defined(CONFIG_USER_ONLY)
3020 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3021 uint8_t *buf, target_ulong len, int is_write)
3024 target_ulong l, page;
3028 page = addr & TARGET_PAGE_MASK;
3029 l = (page + TARGET_PAGE_SIZE) - addr;
3032 flags = page_get_flags(page);
3033 if (!(flags & PAGE_VALID))
3036 if (!(flags & PAGE_WRITE))
3038 /* XXX: this code should not depend on lock_user */
3039 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3042 unlock_user(p, addr, l);
3044 if (!(flags & PAGE_READ))
3046 /* XXX: this code should not depend on lock_user */
3047 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3050 unlock_user(p, addr, 0);
3061 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3064 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3065 addr += memory_region_get_ram_addr(mr);
3067 /* No early return if dirty_log_mask is or becomes 0, because
3068 * cpu_physical_memory_set_dirty_range will still call
3069 * xen_modified_memory.
3071 if (dirty_log_mask) {
3073 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3075 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3076 assert(tcg_enabled());
3077 tb_invalidate_phys_range(addr, addr + length);
3078 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3080 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3083 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3086 * In principle this function would work on other memory region types too,
3087 * but the ROM device use case is the only one where this operation is
3088 * necessary. Other memory regions should use the
3089 * address_space_read/write() APIs.
3091 assert(memory_region_is_romd(mr));
3093 invalidate_and_set_dirty(mr, addr, size);
3096 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3098 unsigned access_size_max = mr->ops->valid.max_access_size;
3100 /* Regions are assumed to support 1-4 byte accesses unless
3101 otherwise specified. */
3102 if (access_size_max == 0) {
3103 access_size_max = 4;
3106 /* Bound the maximum access by the alignment of the address. */
3107 if (!mr->ops->impl.unaligned) {
3108 unsigned align_size_max = addr & -addr;
3109 if (align_size_max != 0 && align_size_max < access_size_max) {
3110 access_size_max = align_size_max;
3114 /* Don't attempt accesses larger than the maximum. */
3115 if (l > access_size_max) {
3116 l = access_size_max;
3123 static bool prepare_mmio_access(MemoryRegion *mr)
3125 bool unlocked = !qemu_mutex_iothread_locked();
3126 bool release_lock = false;
3128 if (unlocked && mr->global_locking) {
3129 qemu_mutex_lock_iothread();
3131 release_lock = true;
3133 if (mr->flush_coalesced_mmio) {
3135 qemu_mutex_lock_iothread();
3137 qemu_flush_coalesced_mmio_buffer();
3139 qemu_mutex_unlock_iothread();
3143 return release_lock;
3146 /* Called within RCU critical section. */
3147 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3150 hwaddr len, hwaddr addr1,
3151 hwaddr l, MemoryRegion *mr)
3155 MemTxResult result = MEMTX_OK;
3156 bool release_lock = false;
3159 if (!memory_access_is_direct(mr, true)) {
3160 release_lock |= prepare_mmio_access(mr);
3161 l = memory_access_size(mr, l, addr1);
3162 /* XXX: could force current_cpu to NULL to avoid
3164 val = ldn_he_p(buf, l);
3165 result |= memory_region_dispatch_write(mr, addr1, val,
3166 size_memop(l), attrs);
3169 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3170 memcpy(ptr, buf, l);
3171 invalidate_and_set_dirty(mr, addr1, l);
3175 qemu_mutex_unlock_iothread();
3176 release_lock = false;
3188 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3194 /* Called from RCU critical section. */
3195 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3196 const uint8_t *buf, hwaddr len)
3201 MemTxResult result = MEMTX_OK;
3204 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3205 result = flatview_write_continue(fv, addr, attrs, buf, len,
3211 /* Called within RCU critical section. */
3212 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3213 MemTxAttrs attrs, uint8_t *buf,
3214 hwaddr len, hwaddr addr1, hwaddr l,
3219 MemTxResult result = MEMTX_OK;
3220 bool release_lock = false;
3223 if (!memory_access_is_direct(mr, false)) {
3225 release_lock |= prepare_mmio_access(mr);
3226 l = memory_access_size(mr, l, addr1);
3227 result |= memory_region_dispatch_read(mr, addr1, &val,
3228 size_memop(l), attrs);
3229 stn_he_p(buf, l, val);
3232 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3233 memcpy(buf, ptr, l);
3237 qemu_mutex_unlock_iothread();
3238 release_lock = false;
3250 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3256 /* Called from RCU critical section. */
3257 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3258 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3265 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3266 return flatview_read_continue(fv, addr, attrs, buf, len,
3270 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3271 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3273 MemTxResult result = MEMTX_OK;
3277 RCU_READ_LOCK_GUARD();
3278 fv = address_space_to_flatview(as);
3279 result = flatview_read(fv, addr, attrs, buf, len);
3285 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3287 const uint8_t *buf, hwaddr len)
3289 MemTxResult result = MEMTX_OK;
3293 RCU_READ_LOCK_GUARD();
3294 fv = address_space_to_flatview(as);
3295 result = flatview_write(fv, addr, attrs, buf, len);
3301 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3302 uint8_t *buf, hwaddr len, bool is_write)
3305 return address_space_write(as, addr, attrs, buf, len);
3307 return address_space_read_full(as, addr, attrs, buf, len);
3311 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3312 hwaddr len, int is_write)
3314 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3315 buf, len, is_write);
3318 enum write_rom_type {
3323 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3328 enum write_rom_type type)
3335 RCU_READ_LOCK_GUARD();
3338 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3340 if (!(memory_region_is_ram(mr) ||
3341 memory_region_is_romd(mr))) {
3342 l = memory_access_size(mr, l, addr1);
3345 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3348 memcpy(ptr, buf, l);
3349 invalidate_and_set_dirty(mr, addr1, l);
3352 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3363 /* used for ROM loading : can write in RAM and ROM */
3364 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3366 const uint8_t *buf, hwaddr len)
3368 return address_space_write_rom_internal(as, addr, attrs,
3369 buf, len, WRITE_DATA);
3372 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3375 * This function should do the same thing as an icache flush that was
3376 * triggered from within the guest. For TCG we are always cache coherent,
3377 * so there is no need to flush anything. For KVM / Xen we need to flush
3378 * the host's instruction cache at least.
3380 if (tcg_enabled()) {
3384 address_space_write_rom_internal(&address_space_memory,
3385 start, MEMTXATTRS_UNSPECIFIED,
3386 NULL, len, FLUSH_CACHE);
3397 static BounceBuffer bounce;
3399 typedef struct MapClient {
3401 QLIST_ENTRY(MapClient) link;
3404 QemuMutex map_client_list_lock;
3405 static QLIST_HEAD(, MapClient) map_client_list
3406 = QLIST_HEAD_INITIALIZER(map_client_list);
3408 static void cpu_unregister_map_client_do(MapClient *client)
3410 QLIST_REMOVE(client, link);
3414 static void cpu_notify_map_clients_locked(void)
3418 while (!QLIST_EMPTY(&map_client_list)) {
3419 client = QLIST_FIRST(&map_client_list);
3420 qemu_bh_schedule(client->bh);
3421 cpu_unregister_map_client_do(client);
3425 void cpu_register_map_client(QEMUBH *bh)
3427 MapClient *client = g_malloc(sizeof(*client));
3429 qemu_mutex_lock(&map_client_list_lock);
3431 QLIST_INSERT_HEAD(&map_client_list, client, link);
3432 if (!atomic_read(&bounce.in_use)) {
3433 cpu_notify_map_clients_locked();
3435 qemu_mutex_unlock(&map_client_list_lock);
3438 void cpu_exec_init_all(void)
3440 qemu_mutex_init(&ram_list.mutex);
3441 /* The data structures we set up here depend on knowing the page size,
3442 * so no more changes can be made after this point.
3443 * In an ideal world, nothing we did before we had finished the
3444 * machine setup would care about the target page size, and we could
3445 * do this much later, rather than requiring board models to state
3446 * up front what their requirements are.
3448 finalize_target_page_bits();
3451 qemu_mutex_init(&map_client_list_lock);
3454 void cpu_unregister_map_client(QEMUBH *bh)
3458 qemu_mutex_lock(&map_client_list_lock);
3459 QLIST_FOREACH(client, &map_client_list, link) {
3460 if (client->bh == bh) {
3461 cpu_unregister_map_client_do(client);
3465 qemu_mutex_unlock(&map_client_list_lock);
3468 static void cpu_notify_map_clients(void)
3470 qemu_mutex_lock(&map_client_list_lock);
3471 cpu_notify_map_clients_locked();
3472 qemu_mutex_unlock(&map_client_list_lock);
3475 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3476 bool is_write, MemTxAttrs attrs)
3483 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3484 if (!memory_access_is_direct(mr, is_write)) {
3485 l = memory_access_size(mr, l, addr);
3486 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3497 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3498 hwaddr len, bool is_write,
3504 RCU_READ_LOCK_GUARD();
3505 fv = address_space_to_flatview(as);
3506 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3511 flatview_extend_translation(FlatView *fv, hwaddr addr,
3513 MemoryRegion *mr, hwaddr base, hwaddr len,
3514 bool is_write, MemTxAttrs attrs)
3518 MemoryRegion *this_mr;
3524 if (target_len == 0) {
3529 this_mr = flatview_translate(fv, addr, &xlat,
3530 &len, is_write, attrs);
3531 if (this_mr != mr || xlat != base + done) {
3537 /* Map a physical memory region into a host virtual address.
3538 * May map a subset of the requested range, given by and returned in *plen.
3539 * May return NULL if resources needed to perform the mapping are exhausted.
3540 * Use only for reads OR writes - not for read-modify-write operations.
3541 * Use cpu_register_map_client() to know when retrying the map operation is
3542 * likely to succeed.
3544 void *address_space_map(AddressSpace *as,
3561 RCU_READ_LOCK_GUARD();
3562 fv = address_space_to_flatview(as);
3563 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3565 if (!memory_access_is_direct(mr, is_write)) {
3566 if (atomic_xchg(&bounce.in_use, true)) {
3569 /* Avoid unbounded allocations */
3570 l = MIN(l, TARGET_PAGE_SIZE);
3571 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3575 memory_region_ref(mr);
3578 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3583 return bounce.buffer;
3587 memory_region_ref(mr);
3588 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3589 l, is_write, attrs);
3590 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3595 /* Unmaps a memory region previously mapped by address_space_map().
3596 * Will also mark the memory as dirty if is_write == 1. access_len gives
3597 * the amount of memory that was actually read or written by the caller.
3599 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3600 int is_write, hwaddr access_len)
3602 if (buffer != bounce.buffer) {
3606 mr = memory_region_from_host(buffer, &addr1);
3609 invalidate_and_set_dirty(mr, addr1, access_len);
3611 if (xen_enabled()) {
3612 xen_invalidate_map_cache_entry(buffer);
3614 memory_region_unref(mr);
3618 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3619 bounce.buffer, access_len);
3621 qemu_vfree(bounce.buffer);
3622 bounce.buffer = NULL;
3623 memory_region_unref(bounce.mr);
3624 atomic_mb_set(&bounce.in_use, false);
3625 cpu_notify_map_clients();
3628 void *cpu_physical_memory_map(hwaddr addr,
3632 return address_space_map(&address_space_memory, addr, plen, is_write,
3633 MEMTXATTRS_UNSPECIFIED);
3636 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3637 int is_write, hwaddr access_len)
3639 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3642 #define ARG1_DECL AddressSpace *as
3645 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3646 #define RCU_READ_LOCK(...) rcu_read_lock()
3647 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3648 #include "memory_ldst.inc.c"
3650 int64_t address_space_cache_init(MemoryRegionCache *cache,
3656 AddressSpaceDispatch *d;
3663 cache->fv = address_space_get_flatview(as);
3664 d = flatview_to_dispatch(cache->fv);
3665 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3668 memory_region_ref(mr);
3669 if (memory_access_is_direct(mr, is_write)) {
3670 /* We don't care about the memory attributes here as we're only
3671 * doing this if we found actual RAM, which behaves the same
3672 * regardless of attributes; so UNSPECIFIED is fine.
3674 l = flatview_extend_translation(cache->fv, addr, len, mr,
3675 cache->xlat, l, is_write,
3676 MEMTXATTRS_UNSPECIFIED);
3677 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3683 cache->is_write = is_write;
3687 void address_space_cache_invalidate(MemoryRegionCache *cache,
3691 assert(cache->is_write);
3692 if (likely(cache->ptr)) {
3693 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3697 void address_space_cache_destroy(MemoryRegionCache *cache)
3699 if (!cache->mrs.mr) {
3703 if (xen_enabled()) {
3704 xen_invalidate_map_cache_entry(cache->ptr);
3706 memory_region_unref(cache->mrs.mr);
3707 flatview_unref(cache->fv);
3708 cache->mrs.mr = NULL;
3712 /* Called from RCU critical section. This function has the same
3713 * semantics as address_space_translate, but it only works on a
3714 * predefined range of a MemoryRegion that was mapped with
3715 * address_space_cache_init.
3717 static inline MemoryRegion *address_space_translate_cached(
3718 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3719 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3721 MemoryRegionSection section;
3723 IOMMUMemoryRegion *iommu_mr;
3724 AddressSpace *target_as;
3726 assert(!cache->ptr);
3727 *xlat = addr + cache->xlat;
3730 iommu_mr = memory_region_get_iommu(mr);
3736 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3737 NULL, is_write, true,
3742 /* Called from RCU critical section. address_space_read_cached uses this
3743 * out of line function when the target is an MMIO or IOMMU region.
3746 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3747 void *buf, hwaddr len)
3753 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3754 MEMTXATTRS_UNSPECIFIED);
3755 flatview_read_continue(cache->fv,
3756 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3760 /* Called from RCU critical section. address_space_write_cached uses this
3761 * out of line function when the target is an MMIO or IOMMU region.
3764 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3765 const void *buf, hwaddr len)
3771 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3772 MEMTXATTRS_UNSPECIFIED);
3773 flatview_write_continue(cache->fv,
3774 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3778 #define ARG1_DECL MemoryRegionCache *cache
3780 #define SUFFIX _cached_slow
3781 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3782 #define RCU_READ_LOCK() ((void)0)
3783 #define RCU_READ_UNLOCK() ((void)0)
3784 #include "memory_ldst.inc.c"
3786 /* virtual memory access for debug (includes writing to ROM) */
3787 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3788 uint8_t *buf, target_ulong len, int is_write)
3791 target_ulong l, page;
3793 cpu_synchronize_state(cpu);
3798 page = addr & TARGET_PAGE_MASK;
3799 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3800 asidx = cpu_asidx_from_attrs(cpu, attrs);
3801 /* if no physical page mapped, return an error */
3802 if (phys_addr == -1)
3804 l = (page + TARGET_PAGE_SIZE) - addr;
3807 phys_addr += (addr & ~TARGET_PAGE_MASK);
3809 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3812 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3823 * Allows code that needs to deal with migration bitmaps etc to still be built
3824 * target independent.
3826 size_t qemu_target_page_size(void)
3828 return TARGET_PAGE_SIZE;
3831 int qemu_target_page_bits(void)
3833 return TARGET_PAGE_BITS;
3836 int qemu_target_page_bits_min(void)
3838 return TARGET_PAGE_BITS_MIN;
3842 bool target_words_bigendian(void)
3844 #if defined(TARGET_WORDS_BIGENDIAN)
3851 #ifndef CONFIG_USER_ONLY
3852 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3858 RCU_READ_LOCK_GUARD();
3859 mr = address_space_translate(&address_space_memory,
3860 phys_addr, &phys_addr, &l, false,
3861 MEMTXATTRS_UNSPECIFIED);
3863 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3867 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3872 RCU_READ_LOCK_GUARD();
3873 RAMBLOCK_FOREACH(block) {
3874 ret = func(block, opaque);
3883 * Unmap pages of memory from start to start+length such that
3884 * they a) read as 0, b) Trigger whatever fault mechanism
3885 * the OS provides for postcopy.
3886 * The pages must be unmapped by the end of the function.
3887 * Returns: 0 on success, none-0 on failure
3890 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3894 uint8_t *host_startaddr = rb->host + start;
3896 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3897 error_report("ram_block_discard_range: Unaligned start address: %p",
3902 if ((start + length) <= rb->used_length) {
3903 bool need_madvise, need_fallocate;
3904 uint8_t *host_endaddr = host_startaddr + length;
3905 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3906 error_report("ram_block_discard_range: Unaligned end address: %p",
3911 errno = ENOTSUP; /* If we are missing MADVISE etc */
3913 /* The logic here is messy;
3914 * madvise DONTNEED fails for hugepages
3915 * fallocate works on hugepages and shmem
3917 need_madvise = (rb->page_size == qemu_host_page_size);
3918 need_fallocate = rb->fd != -1;
3919 if (need_fallocate) {
3920 /* For a file, this causes the area of the file to be zero'd
3921 * if read, and for hugetlbfs also causes it to be unmapped
3922 * so a userfault will trigger.
3924 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3925 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3929 error_report("ram_block_discard_range: Failed to fallocate "
3930 "%s:%" PRIx64 " +%zx (%d)",
3931 rb->idstr, start, length, ret);
3936 error_report("ram_block_discard_range: fallocate not available/file"
3937 "%s:%" PRIx64 " +%zx (%d)",
3938 rb->idstr, start, length, ret);
3943 /* For normal RAM this causes it to be unmapped,
3944 * for shared memory it causes the local mapping to disappear
3945 * and to fall back on the file contents (which we just
3946 * fallocate'd away).
3948 #if defined(CONFIG_MADVISE)
3949 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3952 error_report("ram_block_discard_range: Failed to discard range "
3953 "%s:%" PRIx64 " +%zx (%d)",
3954 rb->idstr, start, length, ret);
3959 error_report("ram_block_discard_range: MADVISE not available"
3960 "%s:%" PRIx64 " +%zx (%d)",
3961 rb->idstr, start, length, ret);
3965 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3966 need_madvise, need_fallocate, ret);
3968 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3969 "/%zx/" RAM_ADDR_FMT")",
3970 rb->idstr, start, length, rb->used_length);
3977 bool ramblock_is_pmem(RAMBlock *rb)
3979 return rb->flags & RAM_PMEM;
3984 void page_size_init(void)
3986 /* NOTE: we can always suppose that qemu_host_page_size >=
3988 if (qemu_host_page_size == 0) {
3989 qemu_host_page_size = qemu_real_host_page_size;
3991 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3992 qemu_host_page_size = TARGET_PAGE_SIZE;
3994 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3997 #if !defined(CONFIG_USER_ONLY)
3999 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4001 if (start == end - 1) {
4002 qemu_printf("\t%3d ", start);
4004 qemu_printf("\t%3d..%-3d ", start, end - 1);
4006 qemu_printf(" skip=%d ", skip);
4007 if (ptr == PHYS_MAP_NODE_NIL) {
4008 qemu_printf(" ptr=NIL");
4010 qemu_printf(" ptr=#%d", ptr);
4012 qemu_printf(" ptr=[%d]", ptr);
4017 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4018 int128_sub((size), int128_one())) : 0)
4020 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4024 qemu_printf(" Dispatch\n");
4025 qemu_printf(" Physical sections\n");
4027 for (i = 0; i < d->map.sections_nb; ++i) {
4028 MemoryRegionSection *s = d->map.sections + i;
4029 const char *names[] = { " [unassigned]", " [not dirty]",
4030 " [ROM]", " [watch]" };
4032 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4035 s->offset_within_address_space,
4036 s->offset_within_address_space + MR_SIZE(s->mr->size),
4037 s->mr->name ? s->mr->name : "(noname)",
4038 i < ARRAY_SIZE(names) ? names[i] : "",
4039 s->mr == root ? " [ROOT]" : "",
4040 s == d->mru_section ? " [MRU]" : "",
4041 s->mr->is_iommu ? " [iommu]" : "");
4044 qemu_printf(" alias=%s", s->mr->alias->name ?
4045 s->mr->alias->name : "noname");
4050 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4051 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4052 for (i = 0; i < d->map.nodes_nb; ++i) {
4055 Node *n = d->map.nodes + i;
4057 qemu_printf(" [%d]\n", i);
4059 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4060 PhysPageEntry *pe = *n + j;
4062 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4066 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4072 if (jprev != ARRAY_SIZE(*n)) {
4073 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);