2 * Emulation of BSD signals
4 * Copyright (c) 2003 - 2008 Fabrice Bellard
5 * Copyright (c) 2013 Stacey Son
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
23 #include "signal-common.h"
25 #include "hw/core/tcg-cpu-ops.h"
26 #include "host-signal.h"
29 * Stubbed out routines until we merge signal support from bsd-user
33 static struct target_sigaction sigact_table[TARGET_NSIG];
34 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
35 static void target_to_host_sigset_internal(sigset_t *d,
36 const target_sigset_t *s);
40 * The BSD ABIs use the same singal numbers across all the CPU architectures, so
41 * (unlike Linux) these functions are just the identity mapping. This might not
42 * be true for XyzBSD running on AbcBSD, which doesn't currently work.
44 int host_to_target_signal(int sig)
49 int target_to_host_signal(int sig)
54 static inline void target_sigemptyset(target_sigset_t *set)
56 memset(set, 0, sizeof(*set));
59 static inline void target_sigaddset(target_sigset_t *set, int signum)
62 uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW);
63 set->__bits[signum / TARGET_NSIG_BPW] |= mask;
66 static inline int target_sigismember(const target_sigset_t *set, int signum)
69 abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
70 return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0;
73 /* Adjust the signal context to rewind out of safe-syscall if we're in it */
74 static inline void rewind_if_in_safe_syscall(void *puc)
76 ucontext_t *uc = (ucontext_t *)puc;
77 uintptr_t pcreg = host_signal_pc(uc);
79 if (pcreg > (uintptr_t)safe_syscall_start
80 && pcreg < (uintptr_t)safe_syscall_end) {
81 host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
86 * Note: The following take advantage of the BSD signal property that all
87 * signals are available on all architectures.
89 static void host_to_target_sigset_internal(target_sigset_t *d,
94 target_sigemptyset(d);
95 for (i = 1; i <= NSIG; i++) {
96 if (sigismember(s, i)) {
97 target_sigaddset(d, host_to_target_signal(i));
102 void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
107 host_to_target_sigset_internal(&d1, s);
108 for (i = 0; i < _SIG_WORDS; i++) {
109 d->__bits[i] = tswap32(d1.__bits[i]);
113 static void target_to_host_sigset_internal(sigset_t *d,
114 const target_sigset_t *s)
119 for (i = 1; i <= TARGET_NSIG; i++) {
120 if (target_sigismember(s, i)) {
121 sigaddset(d, target_to_host_signal(i));
126 void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
131 for (i = 0; i < TARGET_NSIG_WORDS; i++) {
132 s1.__bits[i] = tswap32(s->__bits[i]);
134 target_to_host_sigset_internal(d, &s1);
137 static bool has_trapno(int tsig)
139 return tsig == TARGET_SIGILL ||
140 tsig == TARGET_SIGFPE ||
141 tsig == TARGET_SIGSEGV ||
142 tsig == TARGET_SIGBUS ||
143 tsig == TARGET_SIGTRAP;
146 /* Siginfo conversion. */
149 * Populate tinfo w/o swapping based on guessing which fields are valid.
151 static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
152 const siginfo_t *info)
154 int sig = host_to_target_signal(info->si_signo);
155 int si_code = info->si_code;
159 * Make sure we that the variable portion of the target siginfo is zeroed
160 * out so we don't leak anything into that.
162 memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
165 * This is awkward, because we have to use a combination of the si_code and
166 * si_signo to figure out which of the union's members are valid.o We
167 * therefore make our best guess.
169 * Once we have made our guess, we record it in the top 16 bits of
170 * the si_code, so that tswap_siginfo() later can use it.
171 * tswap_siginfo() will strip these top bits out before writing
172 * si_code to the guest (sign-extending the lower bits).
174 tinfo->si_signo = sig;
175 tinfo->si_errno = info->si_errno;
176 tinfo->si_code = info->si_code;
177 tinfo->si_pid = info->si_pid;
178 tinfo->si_uid = info->si_uid;
179 tinfo->si_status = info->si_status;
180 tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
182 * si_value is opaque to kernel. On all FreeBSD platforms,
183 * sizeof(sival_ptr) >= sizeof(sival_int) so the following
184 * always will copy the larger element.
186 tinfo->si_value.sival_ptr =
187 (abi_ulong)(unsigned long)info->si_value.sival_ptr;
191 * All the SI_xxx codes that are defined here are global to
192 * all the signals (they have values that none of the other,
193 * more specific signal info will set).
201 * Only the fixed parts are valid (though FreeBSD doesn't always
202 * set all the fields to non-zero values.
204 si_type = QEMU_SI_NOINFO;
207 tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
208 tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
209 si_type = QEMU_SI_TIMER;
212 tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
213 si_type = QEMU_SI_MESGQ;
217 * We have to go based on the signal number now to figure out
220 if (has_trapno(sig)) {
221 tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
222 si_type = QEMU_SI_FAULT;
224 #ifdef TARGET_SIGPOLL
226 * FreeBSD never had SIGPOLL, but emulates it for Linux so there's
227 * a chance it may popup in the future.
229 if (sig == TARGET_SIGPOLL) {
230 tinfo->_reason._poll._band = info->_reason._poll._band;
231 si_type = QEMU_SI_POLL;
235 * Unsure that this can actually be generated, and our support for
236 * capsicum is somewhere between weak and non-existant, but if we get
237 * one, then we know what to save.
239 if (sig == TARGET_SIGTRAP) {
240 tinfo->_reason._capsicum._syscall =
241 info->_reason._capsicum._syscall;
242 si_type = QEMU_SI_CAPSICUM;
246 tinfo->si_code = deposit32(si_code, 24, 8, si_type);
249 /* Returns 1 if given signal should dump core if not handled. */
250 static int core_dump_signal(int sig)
266 /* Abort execution with signal. */
267 static void QEMU_NORETURN dump_core_and_abort(int target_sig)
269 CPUArchState *env = thread_cpu->env_ptr;
270 CPUState *cpu = env_cpu(env);
271 TaskState *ts = cpu->opaque;
274 struct sigaction act;
276 host_sig = target_to_host_signal(target_sig);
277 gdb_signalled(env, target_sig);
279 /* Dump core if supported by target binary format */
280 if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
283 ((*ts->bprm->core_dump)(target_sig, env) == 0);
286 struct rlimit nodump;
289 * We already dumped the core of target process, we don't want
290 * a coredump of qemu itself.
292 getrlimit(RLIMIT_CORE, &nodump);
294 setrlimit(RLIMIT_CORE, &nodump);
295 (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
296 "- %s\n", target_sig, strsignal(host_sig), "core dumped");
300 * The proper exit code for dying from an uncaught signal is
301 * -<signal>. The kernel doesn't allow exit() or _exit() to pass
302 * a negative value. To get the proper exit code we need to
303 * actually die from an uncaught signal. Here the default signal
304 * handler is installed, we send ourself a signal and we wait for
307 memset(&act, 0, sizeof(act));
308 sigfillset(&act.sa_mask);
309 act.sa_handler = SIG_DFL;
310 sigaction(host_sig, &act, NULL);
312 kill(getpid(), host_sig);
315 * Make sure the signal isn't masked (just reuse the mask inside
318 sigdelset(&act.sa_mask, host_sig);
319 sigsuspend(&act.sa_mask);
326 * Queue a signal so that it will be send to the virtual CPU as soon as
329 void queue_signal(CPUArchState *env, int sig, int si_type,
330 target_siginfo_t *info)
332 CPUState *cpu = env_cpu(env);
333 TaskState *ts = cpu->opaque;
335 trace_user_queue_signal(env, sig);
337 info->si_code = deposit32(info->si_code, 24, 8, si_type);
339 ts->sync_signal.info = *info;
340 ts->sync_signal.pending = sig;
341 /* Signal that a new signal is pending. */
342 qatomic_set(&ts->signal_pending, 1);
346 static int fatal_signal(int sig)
352 case TARGET_SIGWINCH:
354 /* Ignored by default. */
361 /* Job control signals. */
369 * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
370 * 'force' part is handled in process_pending_signals().
372 void force_sig_fault(int sig, int code, abi_ulong addr)
374 CPUState *cpu = thread_cpu;
375 CPUArchState *env = cpu->env_ptr;
376 target_siginfo_t info = {};
382 queue_signal(env, sig, QEMU_SI_FAULT, &info);
385 static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
387 CPUArchState *env = thread_cpu->env_ptr;
388 CPUState *cpu = env_cpu(env);
389 TaskState *ts = cpu->opaque;
390 target_siginfo_t tinfo;
391 ucontext_t *uc = puc;
392 struct emulated_sigtable *k;
395 bool sync_sig = false;
398 * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
399 * handling wrt signal blocking and unwinding.
401 if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
402 MMUAccessType access_type;
407 host_addr = (uintptr_t)info->si_addr;
410 * Convert forcefully to guest address space: addresses outside
411 * reserved_va are still valid to report via SEGV_MAPERR.
413 guest_addr = h2g_nocheck(host_addr);
415 pc = host_signal_pc(uc);
416 is_write = host_signal_write(info, uc);
417 access_type = adjust_signal_pc(&pc, is_write);
419 if (host_sig == SIGSEGV) {
422 if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
423 /* If this was a write to a TB protected page, restart. */
425 handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
431 * With reserved_va, the whole address space is PROT_NONE,
432 * which means that we may get ACCERR when we want MAPERR.
434 if (page_get_flags(guest_addr) & PAGE_VALID) {
437 info->si_code = SEGV_MAPERR;
441 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
442 cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
444 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
445 if (info->si_code == BUS_ADRALN) {
446 cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
453 /* Get the target signal number. */
454 guest_sig = host_to_target_signal(host_sig);
455 if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
458 trace_user_host_signal(cpu, host_sig, guest_sig);
460 host_to_target_siginfo_noswap(&tinfo, info);
462 k = &ts->sigtab[guest_sig - 1];
464 k->pending = guest_sig;
465 ts->signal_pending = 1;
468 * For synchronous signals, unwind the cpu state to the faulting
469 * insn and then exit back to the main loop so that the signal
470 * is delivered immediately.
473 cpu->exception_index = EXCP_INTERRUPT;
474 cpu_loop_exit_restore(cpu, pc);
477 rewind_if_in_safe_syscall(puc);
480 * Block host signals until target signal handler entered. We
481 * can't block SIGSEGV or SIGBUS while we're executing guest
482 * code in case the guest code provokes one in the window between
483 * now and it getting out to the main loop. Signals will be
484 * unblocked again in process_pending_signals().
486 sigfillset(&uc->uc_sigmask);
487 sigdelset(&uc->uc_sigmask, SIGSEGV);
488 sigdelset(&uc->uc_sigmask, SIGBUS);
490 /* Interrupt the virtual CPU as soon as possible. */
491 cpu_exit(thread_cpu);
494 void signal_init(void)
496 TaskState *ts = (TaskState *)thread_cpu->opaque;
497 struct sigaction act;
498 struct sigaction oact;
502 /* Set the signal mask from the host mask. */
503 sigprocmask(0, 0, &ts->signal_mask);
505 sigfillset(&act.sa_mask);
506 act.sa_sigaction = host_signal_handler;
507 act.sa_flags = SA_SIGINFO;
509 for (i = 1; i <= TARGET_NSIG; i++) {
511 if (i == TARGET_SIGPROF) {
515 host_sig = target_to_host_signal(i);
516 sigaction(host_sig, NULL, &oact);
517 if (oact.sa_sigaction == (void *)SIG_IGN) {
518 sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
519 } else if (oact.sa_sigaction == (void *)SIG_DFL) {
520 sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
523 * If there's already a handler installed then something has
524 * gone horribly wrong, so don't even try to handle that case.
525 * Install some handlers for our own use. We need at least
526 * SIGSEGV and SIGBUS, to detect exceptions. We can not just
527 * trap all signals because it affects syscall interrupt
528 * behavior. But do trap all default-fatal signals.
530 if (fatal_signal(i)) {
531 sigaction(host_sig, &act, NULL);
536 void process_pending_signals(CPUArchState *cpu_env)
540 void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
541 MMUAccessType access_type, bool maperr, uintptr_t ra)
543 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
545 if (tcg_ops->record_sigsegv) {
546 tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
549 force_sig_fault(TARGET_SIGSEGV,
550 maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
552 cpu->exception_index = EXCP_INTERRUPT;
553 cpu_loop_exit_restore(cpu, ra);
556 void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
557 MMUAccessType access_type, uintptr_t ra)
559 const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
561 if (tcg_ops->record_sigbus) {
562 tcg_ops->record_sigbus(cpu, addr, access_type, ra);
565 force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
566 cpu->exception_index = EXCP_INTERRUPT;
567 cpu_loop_exit_restore(cpu, ra);