4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
34 CPUState *cs = CPU(arm_env_get_cpu(env));
36 assert(!excp_is_internal(excp));
37 cs->exception_index = excp;
38 env->exception.syndrome = syndrome;
39 env->exception.target_el = target_el;
43 static int exception_target_el(CPUARMState *env)
45 int target_el = MAX(1, arm_current_el(env));
47 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
48 * to EL3 in this case.
50 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
57 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
64 for (shift = 0; shift < 32; shift += 8) {
65 uint32_t index = (ireg >> shift) & 0xff;
66 if (index < maxindex) {
67 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
70 val |= def & (0xff << shift);
76 #if !defined(CONFIG_USER_ONLY)
78 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
79 unsigned int target_el,
80 bool same_el, bool ea,
81 bool s1ptw, bool is_write,
86 /* ISV is only set for data aborts routed to EL2 and
87 * never for stage-1 page table walks faulting on stage 2.
89 * Furthermore, ISV is only set for certain kinds of load/stores.
90 * If the template syndrome does not have ISV set, we should leave
93 * See ARMv8 specs, D7-1974:
94 * ISS encoding for an exception from a Data Abort, the
97 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
98 syn = syn_data_abort_no_iss(same_el,
99 ea, 0, s1ptw, is_write, fsc);
101 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
102 * syndrome created at translation time.
103 * Now we create the runtime syndrome with the remaining fields.
105 syn = syn_data_abort_with_iss(same_el,
107 ea, 0, s1ptw, is_write, fsc,
109 /* Merge the runtime syndrome with the template syndrome. */
115 static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
116 int mmu_idx, ARMMMUFaultInfo *fi)
118 CPUARMState *env = &cpu->env;
121 uint32_t syn, exc, fsr, fsc;
122 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
124 target_el = exception_target_el(env);
127 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
129 same_el = (arm_current_el(env) == target_el);
131 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
132 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
133 /* LPAE format fault status register : bottom 6 bits are
134 * status code in the same form as needed for syndrome
136 fsr = arm_fi_to_lfsc(fi);
137 fsc = extract32(fsr, 0, 6);
139 fsr = arm_fi_to_sfsc(fi);
140 /* Short format FSR : this fault will never actually be reported
141 * to an EL that uses a syndrome register. Use a (currently)
142 * reserved FSR code in case the constructed syndrome does leak
143 * into the guest somehow.
148 if (access_type == MMU_INST_FETCH) {
149 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
150 exc = EXCP_PREFETCH_ABORT;
152 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
153 same_el, fi->ea, fi->s1ptw,
154 access_type == MMU_DATA_STORE,
156 if (access_type == MMU_DATA_STORE
157 && arm_feature(env, ARM_FEATURE_V6)) {
160 exc = EXCP_DATA_ABORT;
163 env->exception.vaddress = addr;
164 env->exception.fsr = fsr;
165 raise_exception(env, exc, syn, target_el);
168 /* try to fill the TLB and return an exception if error. If retaddr is
169 * NULL, it means that the function was called in C code (i.e. not
170 * from generated code or from helper.c)
172 void tlb_fill(CPUState *cs, target_ulong addr, int size,
173 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
176 ARMMMUFaultInfo fi = {};
178 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
180 ARMCPU *cpu = ARM_CPU(cs);
182 /* now we have a real cpu fault */
183 cpu_restore_state(cs, retaddr);
185 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
189 /* Raise a data fault alignment exception for the specified virtual address */
190 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
191 MMUAccessType access_type,
192 int mmu_idx, uintptr_t retaddr)
194 ARMCPU *cpu = ARM_CPU(cs);
195 ARMMMUFaultInfo fi = {};
197 /* now we have a real cpu fault */
198 cpu_restore_state(cs, retaddr);
200 fi.type = ARMFault_Alignment;
201 deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
204 /* arm_cpu_do_transaction_failed: handle a memory system error response
205 * (eg "no device/memory present at address") by raising an external abort
208 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
209 vaddr addr, unsigned size,
210 MMUAccessType access_type,
211 int mmu_idx, MemTxAttrs attrs,
212 MemTxResult response, uintptr_t retaddr)
214 ARMCPU *cpu = ARM_CPU(cs);
215 ARMMMUFaultInfo fi = {};
217 /* now we have a real cpu fault */
218 cpu_restore_state(cs, retaddr);
220 fi.ea = arm_extabort_type(response);
221 fi.type = ARMFault_SyncExternal;
222 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
225 #endif /* !defined(CONFIG_USER_ONLY) */
227 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
229 uint32_t res = a + b;
230 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
235 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
237 uint32_t res = a + b;
238 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
240 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
245 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
247 uint32_t res = a - b;
248 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
250 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
255 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
258 if (val >= 0x40000000) {
261 } else if (val <= (int32_t)0xc0000000) {
270 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
272 uint32_t res = a + b;
280 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
282 uint32_t res = a - b;
290 /* Signed saturation. */
291 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
297 mask = (1u << shift) - 1;
301 } else if (top < -1) {
308 /* Unsigned saturation. */
309 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
313 max = (1u << shift) - 1;
317 } else if (val > max) {
324 /* Signed saturate. */
325 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
327 return do_ssat(env, x, shift);
330 /* Dual halfword signed saturate. */
331 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
335 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
336 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
340 /* Unsigned saturate. */
341 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
343 return do_usat(env, x, shift);
346 /* Dual halfword unsigned saturate. */
347 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
351 res = (uint16_t)do_usat(env, (int16_t)x, shift);
352 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
356 void HELPER(setend)(CPUARMState *env)
358 env->uncached_cpsr ^= CPSR_E;
361 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
362 * The function returns the target EL (1-3) if the instruction is to be trapped;
363 * otherwise it returns 0 indicating it is not trapped.
365 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
367 int cur_el = arm_current_el(env);
370 if (arm_feature(env, ARM_FEATURE_M)) {
371 /* M profile cores can never trap WFI/WFE. */
375 /* If we are currently in EL0 then we need to check if SCTLR is set up for
376 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
378 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
381 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
382 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
383 /* Secure EL0 and Secure PL1 is at EL3 */
389 if (!(env->cp15.sctlr_el[target_el] & mask)) {
394 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
395 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
396 * bits will be zero indicating no trap.
398 if (cur_el < 2 && !arm_is_secure(env)) {
399 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
400 if (env->cp15.hcr_el2 & mask) {
405 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
407 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
408 if (env->cp15.scr_el3 & mask) {
416 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
418 CPUState *cs = CPU(arm_env_get_cpu(env));
419 int target_el = check_wfx_trap(env, false);
421 if (cpu_has_work(cs)) {
422 /* Don't bother to go into our "low power state" if
423 * we would just wake up immediately.
430 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
434 cs->exception_index = EXCP_HLT;
439 void HELPER(wfe)(CPUARMState *env)
441 /* This is a hint instruction that is semantically different
442 * from YIELD even though we currently implement it identically.
443 * Don't actually halt the CPU, just yield back to top
444 * level loop. This is not going into a "low power state"
445 * (ie halting until some event occurs), so we never take
446 * a configurable trap to a different exception level.
451 void HELPER(yield)(CPUARMState *env)
453 ARMCPU *cpu = arm_env_get_cpu(env);
454 CPUState *cs = CPU(cpu);
456 /* This is a non-trappable hint instruction that generally indicates
457 * that the guest is currently busy-looping. Yield control back to the
458 * top level loop so that a more deserving VCPU has a chance to run.
460 cs->exception_index = EXCP_YIELD;
464 /* Raise an internal-to-QEMU exception. This is limited to only
465 * those EXCP values which are special cases for QEMU to interrupt
466 * execution and not to be used for exceptions which are passed to
467 * the guest (those must all have syndrome information and thus should
468 * use exception_with_syndrome).
470 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
472 CPUState *cs = CPU(arm_env_get_cpu(env));
474 assert(excp_is_internal(excp));
475 cs->exception_index = excp;
479 /* Raise an exception with the specified syndrome register value */
480 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
481 uint32_t syndrome, uint32_t target_el)
483 raise_exception(env, excp, syndrome, target_el);
486 /* Raise an EXCP_BKPT with the specified syndrome register value,
487 * targeting the correct exception level for debug exceptions.
489 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
491 raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
494 uint32_t HELPER(cpsr_read)(CPUARMState *env)
496 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
499 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
501 cpsr_write(env, val, mask, CPSRWriteByInstr);
504 /* Write the CPSR for a 32-bit exception return */
505 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
507 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
509 /* Generated code has already stored the new PC value, but
510 * without masking out its low bits, because which bits need
511 * masking depends on whether we're returning to Thumb or ARM
512 * state. Do the masking now.
514 env->regs[15] &= (env->thumb ? ~1 : ~3);
516 qemu_mutex_lock_iothread();
517 arm_call_el_change_hook(arm_env_get_cpu(env));
518 qemu_mutex_unlock_iothread();
521 /* Access to user mode registers from privileged modes. */
522 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
527 val = env->banked_r13[BANK_USRSYS];
528 } else if (regno == 14) {
529 val = env->banked_r14[BANK_USRSYS];
530 } else if (regno >= 8
531 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
532 val = env->usr_regs[regno - 8];
534 val = env->regs[regno];
539 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
542 env->banked_r13[BANK_USRSYS] = val;
543 } else if (regno == 14) {
544 env->banked_r14[BANK_USRSYS] = val;
545 } else if (regno >= 8
546 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
547 env->usr_regs[regno - 8] = val;
549 env->regs[regno] = val;
553 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
555 if ((env->uncached_cpsr & CPSR_M) == mode) {
558 env->banked_r13[bank_number(mode)] = val;
562 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
564 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
565 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
566 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
568 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
569 exception_target_el(env));
572 if ((env->uncached_cpsr & CPSR_M) == mode) {
573 return env->regs[13];
575 return env->banked_r13[bank_number(mode)];
579 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
582 /* Raise an exception if the requested access is one of the UNPREDICTABLE
583 * cases; otherwise return. This broadly corresponds to the pseudocode
584 * BankedRegisterAccessValid() and SPSRAccessValid(),
585 * except that we have already handled some cases at translate time.
587 int curmode = env->uncached_cpsr & CPSR_M;
589 if (curmode == tgtmode) {
593 if (tgtmode == ARM_CPU_MODE_USR) {
596 if (curmode != ARM_CPU_MODE_FIQ) {
601 if (curmode == ARM_CPU_MODE_SYS) {
606 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
615 if (tgtmode == ARM_CPU_MODE_HYP) {
617 case 17: /* ELR_Hyp */
618 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
623 if (curmode != ARM_CPU_MODE_MON) {
633 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
634 exception_target_el(env));
637 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
640 msr_mrs_banked_exc_checks(env, tgtmode, regno);
644 env->banked_spsr[bank_number(tgtmode)] = value;
646 case 17: /* ELR_Hyp */
647 env->elr_el[2] = value;
650 env->banked_r13[bank_number(tgtmode)] = value;
653 env->banked_r14[bank_number(tgtmode)] = value;
657 case ARM_CPU_MODE_USR:
658 env->usr_regs[regno - 8] = value;
660 case ARM_CPU_MODE_FIQ:
661 env->fiq_regs[regno - 8] = value;
664 g_assert_not_reached();
668 g_assert_not_reached();
672 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
674 msr_mrs_banked_exc_checks(env, tgtmode, regno);
678 return env->banked_spsr[bank_number(tgtmode)];
679 case 17: /* ELR_Hyp */
680 return env->elr_el[2];
682 return env->banked_r13[bank_number(tgtmode)];
684 return env->banked_r14[bank_number(tgtmode)];
687 case ARM_CPU_MODE_USR:
688 return env->usr_regs[regno - 8];
689 case ARM_CPU_MODE_FIQ:
690 return env->fiq_regs[regno - 8];
692 g_assert_not_reached();
695 g_assert_not_reached();
699 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
702 const ARMCPRegInfo *ri = rip;
705 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
706 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
707 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
714 switch (ri->accessfn(env, ri, isread)) {
718 target_el = exception_target_el(env);
720 case CP_ACCESS_TRAP_EL2:
721 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
722 * a bug in the access function.
724 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
727 case CP_ACCESS_TRAP_EL3:
730 case CP_ACCESS_TRAP_UNCATEGORIZED:
731 target_el = exception_target_el(env);
732 syndrome = syn_uncategorized();
734 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
736 syndrome = syn_uncategorized();
738 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
740 syndrome = syn_uncategorized();
742 case CP_ACCESS_TRAP_FP_EL2:
744 /* Since we are an implementation that takes exceptions on a trapped
745 * conditional insn only if the insn has passed its condition code
746 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
747 * (which is also the required value for AArch64 traps).
749 syndrome = syn_fp_access_trap(1, 0xe, false);
751 case CP_ACCESS_TRAP_FP_EL3:
753 syndrome = syn_fp_access_trap(1, 0xe, false);
756 g_assert_not_reached();
759 raise_exception(env, EXCP_UDEF, syndrome, target_el);
762 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
764 const ARMCPRegInfo *ri = rip;
766 if (ri->type & ARM_CP_IO) {
767 qemu_mutex_lock_iothread();
768 ri->writefn(env, ri, value);
769 qemu_mutex_unlock_iothread();
771 ri->writefn(env, ri, value);
775 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
777 const ARMCPRegInfo *ri = rip;
780 if (ri->type & ARM_CP_IO) {
781 qemu_mutex_lock_iothread();
782 res = ri->readfn(env, ri);
783 qemu_mutex_unlock_iothread();
785 res = ri->readfn(env, ri);
791 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
793 const ARMCPRegInfo *ri = rip;
795 if (ri->type & ARM_CP_IO) {
796 qemu_mutex_lock_iothread();
797 ri->writefn(env, ri, value);
798 qemu_mutex_unlock_iothread();
800 ri->writefn(env, ri, value);
804 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
806 const ARMCPRegInfo *ri = rip;
809 if (ri->type & ARM_CP_IO) {
810 qemu_mutex_lock_iothread();
811 res = ri->readfn(env, ri);
812 qemu_mutex_unlock_iothread();
814 res = ri->readfn(env, ri);
820 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
822 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
823 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
824 * to catch that case at translate time.
826 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
827 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
828 extract32(op, 3, 3), 4,
830 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
834 case 0x05: /* SPSel */
835 update_spsel(env, imm);
837 case 0x1e: /* DAIFSet */
838 env->daif |= (imm << 6) & PSTATE_DAIF;
840 case 0x1f: /* DAIFClear */
841 env->daif &= ~((imm << 6) & PSTATE_DAIF);
844 g_assert_not_reached();
848 void HELPER(clear_pstate_ss)(CPUARMState *env)
850 env->pstate &= ~PSTATE_SS;
853 void HELPER(pre_hvc)(CPUARMState *env)
855 ARMCPU *cpu = arm_env_get_cpu(env);
856 int cur_el = arm_current_el(env);
857 /* FIXME: Use actual secure state. */
861 if (arm_is_psci_call(cpu, EXCP_HVC)) {
862 /* If PSCI is enabled and this looks like a valid PSCI call then
863 * that overrides the architecturally mandated HVC behaviour.
868 if (!arm_feature(env, ARM_FEATURE_EL2)) {
869 /* If EL2 doesn't exist, HVC always UNDEFs */
871 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
872 /* EL3.HCE has priority over EL2.HCD. */
873 undef = !(env->cp15.scr_el3 & SCR_HCE);
875 undef = env->cp15.hcr_el2 & HCR_HCD;
878 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
879 * For ARMv8/AArch64, HVC is allowed in EL3.
880 * Note that we've already trapped HVC from EL0 at translation
883 if (secure && (!is_a64(env) || cur_el == 1)) {
888 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
889 exception_target_el(env));
893 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
895 ARMCPU *cpu = arm_env_get_cpu(env);
896 int cur_el = arm_current_el(env);
897 bool secure = arm_is_secure(env);
898 bool smd = env->cp15.scr_el3 & SCR_SMD;
899 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
900 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
901 * extensions, SMD only applies to NS state.
902 * On ARMv7 without the Virtualization extensions, the SMD bit
903 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
904 * so we need not special case this here.
906 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
908 if (!arm_feature(env, ARM_FEATURE_EL3) &&
909 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
910 /* If we have no EL3 then SMC always UNDEFs and can't be
911 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
912 * firmware within QEMU, and we want an EL2 guest to be able
913 * to forbid its EL1 from making PSCI calls into QEMU's
914 * "firmware" via HCR.TSC, so for these purposes treat
915 * PSCI-via-SMC as implying an EL3.
918 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
919 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
920 * We also want an EL2 guest to be able to forbid its EL1 from
921 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
923 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
926 /* If PSCI is enabled and this looks like a valid PSCI call then
927 * suppress the UNDEF -- we'll catch the SMC exception and
928 * implement the PSCI call behaviour there.
930 if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
931 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
932 exception_target_el(env));
936 static int el_from_spsr(uint32_t spsr)
938 /* Return the exception level that this SPSR is requesting a return to,
939 * or -1 if it is invalid (an illegal return)
941 if (spsr & PSTATE_nRW) {
942 switch (spsr & CPSR_M) {
943 case ARM_CPU_MODE_USR:
945 case ARM_CPU_MODE_HYP:
947 case ARM_CPU_MODE_FIQ:
948 case ARM_CPU_MODE_IRQ:
949 case ARM_CPU_MODE_SVC:
950 case ARM_CPU_MODE_ABT:
951 case ARM_CPU_MODE_UND:
952 case ARM_CPU_MODE_SYS:
954 case ARM_CPU_MODE_MON:
955 /* Returning to Mon from AArch64 is never possible,
956 * so this is an illegal return.
962 if (extract32(spsr, 1, 1)) {
963 /* Return with reserved M[1] bit set */
966 if (extract32(spsr, 0, 4) == 1) {
967 /* return to EL0 with M[0] bit set */
970 return extract32(spsr, 2, 2);
974 void HELPER(exception_return)(CPUARMState *env)
976 int cur_el = arm_current_el(env);
977 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
978 uint32_t spsr = env->banked_spsr[spsr_idx];
980 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
982 aarch64_save_sp(env, cur_el);
984 arm_clear_exclusive(env);
986 /* We must squash the PSTATE.SS bit to zero unless both of the
988 * 1. debug exceptions are currently disabled
989 * 2. singlestep will be active in the EL we return to
990 * We check 1 here and 2 after we've done the pstate/cpsr write() to
991 * transition to the EL we're going to.
993 if (arm_generate_debug_exceptions(env)) {
997 new_el = el_from_spsr(spsr);
1002 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
1003 /* Disallow return to an EL which is unimplemented or higher
1004 * than the current one.
1006 goto illegal_return;
1009 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
1010 /* Return to an EL which is configured for a different register width */
1011 goto illegal_return;
1014 if (new_el == 2 && arm_is_secure_below_el3(env)) {
1015 /* Return to the non-existent secure-EL2 */
1016 goto illegal_return;
1019 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
1020 && !arm_is_secure_below_el3(env)) {
1021 goto illegal_return;
1024 if (!return_to_aa64) {
1026 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1027 * will sort the register banks out for us, and we've already
1028 * caught all the bad-mode cases in el_from_spsr().
1030 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1031 if (!arm_singlestep_active(env)) {
1032 env->uncached_cpsr &= ~PSTATE_SS;
1034 aarch64_sync_64_to_32(env);
1036 if (spsr & CPSR_T) {
1037 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1039 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1041 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1042 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1043 cur_el, new_el, env->regs[15]);
1046 pstate_write(env, spsr);
1047 if (!arm_singlestep_active(env)) {
1048 env->pstate &= ~PSTATE_SS;
1050 aarch64_restore_sp(env, new_el);
1051 env->pc = env->elr_el[cur_el];
1052 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1053 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1054 cur_el, new_el, env->pc);
1057 qemu_mutex_lock_iothread();
1058 arm_call_el_change_hook(arm_env_get_cpu(env));
1059 qemu_mutex_unlock_iothread();
1064 /* Illegal return events of various kinds have architecturally
1065 * mandated behaviour:
1066 * restore NZCV and DAIF from SPSR_ELx
1068 * restore PC from ELR_ELx
1069 * no change to exception level, execution state or stack pointer
1071 env->pstate |= PSTATE_IL;
1072 env->pc = env->elr_el[cur_el];
1073 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1074 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1075 pstate_write(env, spsr);
1076 if (!arm_singlestep_active(env)) {
1077 env->pstate &= ~PSTATE_SS;
1079 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1080 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1083 /* Return true if the linked breakpoint entry lbn passes its checks */
1084 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1086 CPUARMState *env = &cpu->env;
1087 uint64_t bcr = env->cp15.dbgbcr[lbn];
1088 int brps = extract32(cpu->dbgdidr, 24, 4);
1089 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1091 uint32_t contextidr;
1093 /* Links to unimplemented or non-context aware breakpoints are
1094 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1095 * as if linked to an UNKNOWN context-aware breakpoint (in which
1096 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1097 * We choose the former.
1099 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1103 bcr = env->cp15.dbgbcr[lbn];
1105 if (extract64(bcr, 0, 1) == 0) {
1106 /* Linked breakpoint disabled : generate no events */
1110 bt = extract64(bcr, 20, 4);
1112 /* We match the whole register even if this is AArch32 using the
1113 * short descriptor format (in which case it holds both PROCID and ASID),
1114 * since we don't implement the optional v7 context ID masking.
1116 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1119 case 3: /* linked context ID match */
1120 if (arm_current_el(env) > 1) {
1121 /* Context matches never fire in EL2 or (AArch64) EL3 */
1124 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1125 case 5: /* linked address mismatch (reserved in AArch64) */
1126 case 9: /* linked VMID match (reserved if no EL2) */
1127 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1129 /* Links to Unlinked context breakpoints must generate no
1130 * events; we choose to do the same for reserved values too.
1138 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1140 CPUARMState *env = &cpu->env;
1142 int pac, hmc, ssc, wt, lbn;
1143 /* Note that for watchpoints the check is against the CPU security
1144 * state, not the S/NS attribute on the offending data access.
1146 bool is_secure = arm_is_secure(env);
1147 int access_el = arm_current_el(env);
1150 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1152 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1155 cr = env->cp15.dbgwcr[n];
1156 if (wp->hitattrs.user) {
1157 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1158 * match watchpoints as if they were accesses done at EL0, even if
1159 * the CPU is at EL1 or higher.
1164 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1166 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1169 cr = env->cp15.dbgbcr[n];
1171 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1172 * enabled and that the address and access type match; for breakpoints
1173 * we know the address matched; check the remaining fields, including
1174 * linked breakpoints. We rely on WCR and BCR having the same layout
1175 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1176 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1177 * must act either like some valid combination or as if the watchpoint
1178 * were disabled. We choose the former, and use this together with
1179 * the fact that EL3 must always be Secure and EL2 must always be
1180 * Non-Secure to simplify the code slightly compared to the full
1181 * table in the ARM ARM.
1183 pac = extract64(cr, 1, 2);
1184 hmc = extract64(cr, 13, 1);
1185 ssc = extract64(cr, 14, 2);
1203 switch (access_el) {
1211 if (extract32(pac, 0, 1) == 0) {
1216 if (extract32(pac, 1, 1) == 0) {
1221 g_assert_not_reached();
1224 wt = extract64(cr, 20, 1);
1225 lbn = extract64(cr, 16, 4);
1227 if (wt && !linked_bp_matches(cpu, lbn)) {
1234 static bool check_watchpoints(ARMCPU *cpu)
1236 CPUARMState *env = &cpu->env;
1239 /* If watchpoints are disabled globally or we can't take debug
1240 * exceptions here then watchpoint firings are ignored.
1242 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1243 || !arm_generate_debug_exceptions(env)) {
1247 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1248 if (bp_wp_matches(cpu, n, true)) {
1255 static bool check_breakpoints(ARMCPU *cpu)
1257 CPUARMState *env = &cpu->env;
1260 /* If breakpoints are disabled globally or we can't take debug
1261 * exceptions here then breakpoint firings are ignored.
1263 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1264 || !arm_generate_debug_exceptions(env)) {
1268 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1269 if (bp_wp_matches(cpu, n, false)) {
1276 void HELPER(check_breakpoints)(CPUARMState *env)
1278 ARMCPU *cpu = arm_env_get_cpu(env);
1280 if (check_breakpoints(cpu)) {
1281 HELPER(exception_internal(env, EXCP_DEBUG));
1285 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1287 /* Called by core code when a CPU watchpoint fires; need to check if this
1288 * is also an architectural watchpoint match.
1290 ARMCPU *cpu = ARM_CPU(cs);
1292 return check_watchpoints(cpu);
1295 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1297 ARMCPU *cpu = ARM_CPU(cs);
1298 CPUARMState *env = &cpu->env;
1300 /* In BE32 system mode, target memory is stored byteswapped (on a
1301 * little-endian host system), and by the time we reach here (via an
1302 * opcode helper) the addresses of subword accesses have been adjusted
1303 * to account for that, which means that watchpoints will not match.
1304 * Undo the adjustment here.
1306 if (arm_sctlr_b(env)) {
1309 } else if (len == 2) {
1317 void arm_debug_excp_handler(CPUState *cs)
1319 /* Called by core code when a watchpoint or breakpoint fires;
1320 * need to check which one and raise the appropriate exception.
1322 ARMCPU *cpu = ARM_CPU(cs);
1323 CPUARMState *env = &cpu->env;
1324 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1327 if (wp_hit->flags & BP_CPU) {
1328 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1329 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1331 cs->watchpoint_hit = NULL;
1333 if (extended_addresses_enabled(env)) {
1334 env->exception.fsr = (1 << 9) | 0x22;
1336 env->exception.fsr = 0x2;
1338 env->exception.vaddress = wp_hit->hitaddr;
1339 raise_exception(env, EXCP_DATA_ABORT,
1340 syn_watchpoint(same_el, 0, wnr),
1341 arm_debug_target_el(env));
1344 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1345 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1347 /* (1) GDB breakpoints should be handled first.
1348 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1349 * since singlestep is also done by generating a debug internal
1352 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1353 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1357 if (extended_addresses_enabled(env)) {
1358 env->exception.fsr = (1 << 9) | 0x22;
1360 env->exception.fsr = 0x2;
1362 /* FAR is UNKNOWN, so doesn't need setting */
1363 raise_exception(env, EXCP_PREFETCH_ABORT,
1364 syn_breakpoint(same_el),
1365 arm_debug_target_el(env));
1369 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1370 The only way to do that in TCG is a conditional branch, which clobbers
1371 all our temporaries. For now implement these as helper functions. */
1373 /* Similarly for variable shift instructions. */
1375 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1377 int shift = i & 0xff;
1384 } else if (shift != 0) {
1385 env->CF = (x >> (32 - shift)) & 1;
1391 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1393 int shift = i & 0xff;
1396 env->CF = (x >> 31) & 1;
1400 } else if (shift != 0) {
1401 env->CF = (x >> (shift - 1)) & 1;
1407 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1409 int shift = i & 0xff;
1411 env->CF = (x >> 31) & 1;
1412 return (int32_t)x >> 31;
1413 } else if (shift != 0) {
1414 env->CF = (x >> (shift - 1)) & 1;
1415 return (int32_t)x >> shift;
1420 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1424 shift = shift1 & 0x1f;
1427 env->CF = (x >> 31) & 1;
1430 env->CF = (x >> (shift - 1)) & 1;
1431 return ((uint32_t)x >> shift) | (x << (32 - shift));