2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "sysemu/kvm.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/sysemu.h"
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #include "hw/i386/apic_internal.h"
32 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
34 int cpuver = env->cpuid_version;
36 if (family == NULL || model == NULL) {
40 *family = (cpuver >> 8) & 0x0f;
41 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
44 /* Broadcast MCA signal for processor version 06H_EH and above */
45 int cpu_x86_support_mca_broadcast(CPUX86State *env)
50 cpu_x86_version(env, &family, &model);
51 if ((family == 6 && model >= 14) || family > 6) {
58 /***********************************************************/
61 static const char *cc_op_str[CC_OP_NB] = {
128 cpu_x86_dump_seg_cache(CPUX86State *env, FILE *f, fprintf_function cpu_fprintf,
129 const char *name, struct SegmentCache *sc)
132 if (env->hflags & HF_CS64_MASK) {
133 cpu_fprintf(f, "%-3s=%04x %016" PRIx64 " %08x %08x", name,
134 sc->selector, sc->base, sc->limit, sc->flags & 0x00ffff00);
138 cpu_fprintf(f, "%-3s=%04x %08x %08x %08x", name, sc->selector,
139 (uint32_t)sc->base, sc->limit, sc->flags & 0x00ffff00);
142 if (!(env->hflags & HF_PE_MASK) || !(sc->flags & DESC_P_MASK))
145 cpu_fprintf(f, " DPL=%d ", (sc->flags & DESC_DPL_MASK) >> DESC_DPL_SHIFT);
146 if (sc->flags & DESC_S_MASK) {
147 if (sc->flags & DESC_CS_MASK) {
148 cpu_fprintf(f, (sc->flags & DESC_L_MASK) ? "CS64" :
149 ((sc->flags & DESC_B_MASK) ? "CS32" : "CS16"));
150 cpu_fprintf(f, " [%c%c", (sc->flags & DESC_C_MASK) ? 'C' : '-',
151 (sc->flags & DESC_R_MASK) ? 'R' : '-');
154 (sc->flags & DESC_B_MASK || env->hflags & HF_LMA_MASK)
156 cpu_fprintf(f, " [%c%c", (sc->flags & DESC_E_MASK) ? 'E' : '-',
157 (sc->flags & DESC_W_MASK) ? 'W' : '-');
159 cpu_fprintf(f, "%c]", (sc->flags & DESC_A_MASK) ? 'A' : '-');
161 static const char *sys_type_name[2][16] = {
163 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
164 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
165 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
166 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
169 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
170 "Reserved", "Reserved", "Reserved", "Reserved",
171 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
172 "Reserved", "IntGate64", "TrapGate64"
176 sys_type_name[(env->hflags & HF_LMA_MASK) ? 1 : 0]
177 [(sc->flags & DESC_TYPE_MASK)
178 >> DESC_TYPE_SHIFT]);
181 cpu_fprintf(f, "\n");
184 #ifndef CONFIG_USER_ONLY
186 /* ARRAY_SIZE check is not required because
187 * DeliveryMode(dm) has a size of 3 bit.
189 static inline const char *dm2str(uint32_t dm)
191 static const char *str[] = {
204 static void dump_apic_lvt(FILE *f, fprintf_function cpu_fprintf,
205 const char *name, uint32_t lvt, bool is_timer)
207 uint32_t dm = (lvt & APIC_LVT_DELIV_MOD) >> APIC_LVT_DELIV_MOD_SHIFT;
209 "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
211 lvt & APIC_LVT_INT_POLARITY ? "active-lo" : "active-hi",
212 lvt & APIC_LVT_LEVEL_TRIGGER ? "level" : "edge",
213 lvt & APIC_LVT_MASKED ? "masked" : "",
214 lvt & APIC_LVT_DELIV_STS ? "pending" : "",
216 "" : lvt & APIC_LVT_TIMER_PERIODIC ?
217 "periodic" : lvt & APIC_LVT_TIMER_TSCDEADLINE ?
218 "tsc-deadline" : "one-shot",
220 if (dm != APIC_DM_NMI) {
221 cpu_fprintf(f, " (vec %u)\n", lvt & APIC_VECTOR_MASK);
223 cpu_fprintf(f, "\n");
227 /* ARRAY_SIZE check is not required because
228 * destination shorthand has a size of 2 bit.
230 static inline const char *shorthand2str(uint32_t shorthand)
232 const char *str[] = {
233 "no-shorthand", "self", "all-self", "all"
235 return str[shorthand];
238 static inline uint8_t divider_conf(uint32_t divide_conf)
240 uint8_t divide_val = ((divide_conf & 0x8) >> 1) | (divide_conf & 0x3);
242 return divide_val == 7 ? 1 : 2 << divide_val;
245 static inline void mask2str(char *str, uint32_t val, uint8_t size)
248 *str++ = (val >> size) & 1 ? '1' : '0';
253 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
255 static void dump_apic_icr(FILE *f, fprintf_function cpu_fprintf,
256 APICCommonState *s, CPUX86State *env)
258 uint32_t icr = s->icr[0], icr2 = s->icr[1];
259 uint8_t dest_shorthand = \
260 (icr & APIC_ICR_DEST_SHORT) >> APIC_ICR_DEST_SHORT_SHIFT;
261 bool logical_mod = icr & APIC_ICR_DEST_MOD;
262 char apic_id_str[MAX_LOGICAL_APIC_ID_MASK_SIZE + 1];
266 cpu_fprintf(f, "ICR\t 0x%08x %s %s %s %s\n",
268 logical_mod ? "logical" : "physical",
269 icr & APIC_ICR_TRIGGER_MOD ? "level" : "edge",
270 icr & APIC_ICR_LEVEL ? "assert" : "de-assert",
271 shorthand2str(dest_shorthand));
273 cpu_fprintf(f, "ICR2\t 0x%08x", icr2);
274 if (dest_shorthand != 0) {
275 cpu_fprintf(f, "\n");
278 x2apic = env->features[FEAT_1_ECX] & CPUID_EXT_X2APIC;
279 dest_field = x2apic ? icr2 : icr2 >> APIC_ICR_DEST_SHIFT;
283 cpu_fprintf(f, " cpu %u (X2APIC ID)\n", dest_field);
285 cpu_fprintf(f, " cpu %u (APIC ID)\n",
286 dest_field & APIC_LOGDEST_XAPIC_ID);
291 if (s->dest_mode == 0xf) { /* flat mode */
292 mask2str(apic_id_str, icr2 >> APIC_ICR_DEST_SHIFT, 8);
293 cpu_fprintf(f, " mask %s (APIC ID)\n", apic_id_str);
294 } else if (s->dest_mode == 0) { /* cluster mode */
296 mask2str(apic_id_str, dest_field & APIC_LOGDEST_X2APIC_ID, 16);
297 cpu_fprintf(f, " cluster %u mask %s (X2APIC ID)\n",
298 dest_field >> APIC_LOGDEST_X2APIC_SHIFT, apic_id_str);
300 mask2str(apic_id_str, dest_field & APIC_LOGDEST_XAPIC_ID, 4);
301 cpu_fprintf(f, " cluster %u mask %s (APIC ID)\n",
302 dest_field >> APIC_LOGDEST_XAPIC_SHIFT, apic_id_str);
307 static void dump_apic_interrupt(FILE *f, fprintf_function cpu_fprintf,
308 const char *name, uint32_t *ireg_tab,
313 cpu_fprintf(f, "%s\t ", name);
314 for (i = 0; i < 256; i++) {
315 if (apic_get_bit(ireg_tab, i)) {
316 cpu_fprintf(f, "%u%s ", i,
317 apic_get_bit(tmr_tab, i) ? "(level)" : "");
321 cpu_fprintf(f, "%s\n", empty ? "(none)" : "");
324 void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f,
325 fprintf_function cpu_fprintf, int flags)
327 X86CPU *cpu = X86_CPU(cs);
328 APICCommonState *s = APIC_COMMON(cpu->apic_state);
330 cpu_fprintf(f, "local apic state not available\n");
333 uint32_t *lvt = s->lvt;
335 cpu_fprintf(f, "dumping local APIC state for CPU %-2u\n\n",
336 CPU(cpu)->cpu_index);
337 dump_apic_lvt(f, cpu_fprintf, "LVT0", lvt[APIC_LVT_LINT0], false);
338 dump_apic_lvt(f, cpu_fprintf, "LVT1", lvt[APIC_LVT_LINT1], false);
339 dump_apic_lvt(f, cpu_fprintf, "LVTPC", lvt[APIC_LVT_PERFORM], false);
340 dump_apic_lvt(f, cpu_fprintf, "LVTERR", lvt[APIC_LVT_ERROR], false);
341 dump_apic_lvt(f, cpu_fprintf, "LVTTHMR", lvt[APIC_LVT_THERMAL], false);
342 dump_apic_lvt(f, cpu_fprintf, "LVTT", lvt[APIC_LVT_TIMER], true);
344 cpu_fprintf(f, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
345 s->divide_conf & APIC_DCR_MASK,
346 divider_conf(s->divide_conf),
349 cpu_fprintf(f, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
351 s->spurious_vec & APIC_SPURIO_ENABLED ? "enabled" : "disabled",
352 s->spurious_vec & APIC_SPURIO_FOCUS ? "on" : "off",
353 s->spurious_vec & APIC_VECTOR_MASK);
355 dump_apic_icr(f, cpu_fprintf, s, &cpu->env);
357 cpu_fprintf(f, "ESR\t 0x%08x\n", s->esr);
359 dump_apic_interrupt(f, cpu_fprintf, "ISR", s->isr, s->tmr);
360 dump_apic_interrupt(f, cpu_fprintf, "IRR", s->irr, s->tmr);
362 cpu_fprintf(f, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
363 s->arb_id, s->tpr, s->dest_mode, s->log_dest);
364 if (s->dest_mode == 0) {
365 cpu_fprintf(f, "(cluster %u: id %u)",
366 s->log_dest >> APIC_LOGDEST_XAPIC_SHIFT,
367 s->log_dest & APIC_LOGDEST_XAPIC_ID);
369 cpu_fprintf(f, " PPR 0x%02x\n", apic_get_ppr(s));
372 void x86_cpu_dump_local_apic_state(CPUState *cs, FILE *f,
373 fprintf_function cpu_fprintf, int flags)
376 #endif /* !CONFIG_USER_ONLY */
378 #define DUMP_CODE_BYTES_TOTAL 50
379 #define DUMP_CODE_BYTES_BACKWARD 20
381 void x86_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
384 X86CPU *cpu = X86_CPU(cs);
385 CPUX86State *env = &cpu->env;
388 static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
390 eflags = cpu_compute_eflags(env);
392 if (env->hflags & HF_CS64_MASK) {
394 "RAX=%016" PRIx64 " RBX=%016" PRIx64 " RCX=%016" PRIx64 " RDX=%016" PRIx64 "\n"
395 "RSI=%016" PRIx64 " RDI=%016" PRIx64 " RBP=%016" PRIx64 " RSP=%016" PRIx64 "\n"
396 "R8 =%016" PRIx64 " R9 =%016" PRIx64 " R10=%016" PRIx64 " R11=%016" PRIx64 "\n"
397 "R12=%016" PRIx64 " R13=%016" PRIx64 " R14=%016" PRIx64 " R15=%016" PRIx64 "\n"
398 "RIP=%016" PRIx64 " RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
416 eflags & DF_MASK ? 'D' : '-',
417 eflags & CC_O ? 'O' : '-',
418 eflags & CC_S ? 'S' : '-',
419 eflags & CC_Z ? 'Z' : '-',
420 eflags & CC_A ? 'A' : '-',
421 eflags & CC_P ? 'P' : '-',
422 eflags & CC_C ? 'C' : '-',
423 env->hflags & HF_CPL_MASK,
424 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
425 (env->a20_mask >> 20) & 1,
426 (env->hflags >> HF_SMM_SHIFT) & 1,
431 cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
432 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
433 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
434 (uint32_t)env->regs[R_EAX],
435 (uint32_t)env->regs[R_EBX],
436 (uint32_t)env->regs[R_ECX],
437 (uint32_t)env->regs[R_EDX],
438 (uint32_t)env->regs[R_ESI],
439 (uint32_t)env->regs[R_EDI],
440 (uint32_t)env->regs[R_EBP],
441 (uint32_t)env->regs[R_ESP],
442 (uint32_t)env->eip, eflags,
443 eflags & DF_MASK ? 'D' : '-',
444 eflags & CC_O ? 'O' : '-',
445 eflags & CC_S ? 'S' : '-',
446 eflags & CC_Z ? 'Z' : '-',
447 eflags & CC_A ? 'A' : '-',
448 eflags & CC_P ? 'P' : '-',
449 eflags & CC_C ? 'C' : '-',
450 env->hflags & HF_CPL_MASK,
451 (env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
452 (env->a20_mask >> 20) & 1,
453 (env->hflags >> HF_SMM_SHIFT) & 1,
457 for(i = 0; i < 6; i++) {
458 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, seg_name[i],
461 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "LDT", &env->ldt);
462 cpu_x86_dump_seg_cache(env, f, cpu_fprintf, "TR", &env->tr);
465 if (env->hflags & HF_LMA_MASK) {
466 cpu_fprintf(f, "GDT= %016" PRIx64 " %08x\n",
467 env->gdt.base, env->gdt.limit);
468 cpu_fprintf(f, "IDT= %016" PRIx64 " %08x\n",
469 env->idt.base, env->idt.limit);
470 cpu_fprintf(f, "CR0=%08x CR2=%016" PRIx64 " CR3=%016" PRIx64 " CR4=%08x\n",
471 (uint32_t)env->cr[0],
474 (uint32_t)env->cr[4]);
475 for(i = 0; i < 4; i++)
476 cpu_fprintf(f, "DR%d=%016" PRIx64 " ", i, env->dr[i]);
477 cpu_fprintf(f, "\nDR6=%016" PRIx64 " DR7=%016" PRIx64 "\n",
478 env->dr[6], env->dr[7]);
482 cpu_fprintf(f, "GDT= %08x %08x\n",
483 (uint32_t)env->gdt.base, env->gdt.limit);
484 cpu_fprintf(f, "IDT= %08x %08x\n",
485 (uint32_t)env->idt.base, env->idt.limit);
486 cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
487 (uint32_t)env->cr[0],
488 (uint32_t)env->cr[2],
489 (uint32_t)env->cr[3],
490 (uint32_t)env->cr[4]);
491 for(i = 0; i < 4; i++) {
492 cpu_fprintf(f, "DR%d=" TARGET_FMT_lx " ", i, env->dr[i]);
494 cpu_fprintf(f, "\nDR6=" TARGET_FMT_lx " DR7=" TARGET_FMT_lx "\n",
495 env->dr[6], env->dr[7]);
497 if (flags & CPU_DUMP_CCOP) {
498 if ((unsigned)env->cc_op < CC_OP_NB)
499 snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
501 snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
503 if (env->hflags & HF_CS64_MASK) {
504 cpu_fprintf(f, "CCS=%016" PRIx64 " CCD=%016" PRIx64 " CCO=%-8s\n",
505 env->cc_src, env->cc_dst,
510 cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
511 (uint32_t)env->cc_src, (uint32_t)env->cc_dst,
515 cpu_fprintf(f, "EFER=%016" PRIx64 "\n", env->efer);
516 if (flags & CPU_DUMP_FPU) {
519 for(i = 0; i < 8; i++) {
520 fptag |= ((!env->fptags[i]) << i);
522 cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
524 (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
530 u.d = env->fpregs[i].d;
531 cpu_fprintf(f, "FPR%d=%016" PRIx64 " %04x",
532 i, u.l.lower, u.l.upper);
534 cpu_fprintf(f, "\n");
538 if (env->hflags & HF_CS64_MASK)
543 cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
545 env->xmm_regs[i].ZMM_L(3),
546 env->xmm_regs[i].ZMM_L(2),
547 env->xmm_regs[i].ZMM_L(1),
548 env->xmm_regs[i].ZMM_L(0));
550 cpu_fprintf(f, "\n");
555 if (flags & CPU_DUMP_CODE) {
556 target_ulong base = env->segs[R_CS].base + env->eip;
557 target_ulong offs = MIN(env->eip, DUMP_CODE_BYTES_BACKWARD);
561 cpu_fprintf(f, "Code=");
562 for (i = 0; i < DUMP_CODE_BYTES_TOTAL; i++) {
563 if (cpu_memory_rw_debug(cs, base - offs + i, &code, 1, 0) == 0) {
564 snprintf(codestr, sizeof(codestr), "%02x", code);
566 snprintf(codestr, sizeof(codestr), "??");
568 cpu_fprintf(f, "%s%s%s%s", i > 0 ? " " : "",
569 i == offs ? "<" : "", codestr, i == offs ? ">" : "");
571 cpu_fprintf(f, "\n");
575 /***********************************************************/
577 /* XXX: add PGE support */
579 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
581 CPUX86State *env = &cpu->env;
583 a20_state = (a20_state != 0);
584 if (a20_state != ((env->a20_mask >> 20) & 1)) {
585 CPUState *cs = CPU(cpu);
587 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
588 /* if the cpu is currently executing code, we must unlink it and
589 all the potentially executing TB */
590 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
592 /* when a20 is changed, all the MMU mappings are invalid, so
593 we must flush everything */
595 env->a20_mask = ~(1 << 20) | (a20_state << 20);
599 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
601 X86CPU *cpu = x86_env_get_cpu(env);
604 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
605 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
606 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
611 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
612 (env->efer & MSR_EFER_LME)) {
613 /* enter in long mode */
614 /* XXX: generate an exception */
615 if (!(env->cr[4] & CR4_PAE_MASK))
617 env->efer |= MSR_EFER_LMA;
618 env->hflags |= HF_LMA_MASK;
619 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
620 (env->efer & MSR_EFER_LMA)) {
622 env->efer &= ~MSR_EFER_LMA;
623 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
624 env->eip &= 0xffffffff;
627 env->cr[0] = new_cr0 | CR0_ET_MASK;
629 /* update PE flag in hidden flags */
630 pe_state = (env->cr[0] & CR0_PE_MASK);
631 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
632 /* ensure that ADDSEG is always set in real mode */
633 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
634 /* update FPU flags */
635 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
636 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
639 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
641 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
643 X86CPU *cpu = x86_env_get_cpu(env);
645 env->cr[3] = new_cr3;
646 if (env->cr[0] & CR0_PG_MASK) {
647 qemu_log_mask(CPU_LOG_MMU,
648 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
653 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
655 X86CPU *cpu = x86_env_get_cpu(env);
658 #if defined(DEBUG_MMU)
659 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
661 if ((new_cr4 ^ env->cr[4]) &
662 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
663 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
667 /* Clear bits we're going to recompute. */
668 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK);
671 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
672 new_cr4 &= ~CR4_OSFXSR_MASK;
674 if (new_cr4 & CR4_OSFXSR_MASK) {
675 hflags |= HF_OSFXSR_MASK;
678 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
679 new_cr4 &= ~CR4_SMAP_MASK;
681 if (new_cr4 & CR4_SMAP_MASK) {
682 hflags |= HF_SMAP_MASK;
685 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
686 new_cr4 &= ~CR4_PKE_MASK;
689 env->cr[4] = new_cr4;
690 env->hflags = hflags;
692 cpu_sync_bndcs_hflags(env);
695 #if defined(CONFIG_USER_ONLY)
697 int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr,
698 int is_write, int mmu_idx)
700 X86CPU *cpu = X86_CPU(cs);
701 CPUX86State *env = &cpu->env;
703 /* user mode only emulation */
706 env->error_code = (is_write << PG_ERROR_W_BIT);
707 env->error_code |= PG_ERROR_U_MASK;
708 cs->exception_index = EXCP0E_PAGE;
709 env->exception_is_int = 0;
710 env->exception_next_eip = -1;
717 * -1 = cannot handle fault
718 * 0 = nothing more to do
719 * 1 = generate PF fault
721 int x86_cpu_handle_mmu_fault(CPUState *cs, vaddr addr,
722 int is_write1, int mmu_idx)
724 X86CPU *cpu = X86_CPU(cs);
725 CPUX86State *env = &cpu->env;
728 target_ulong pde_addr, pte_addr;
730 int is_dirty, prot, page_size, is_write, is_user;
732 uint64_t rsvd_mask = PG_HI_RSVD_MASK;
733 uint32_t page_offset;
736 is_user = mmu_idx == MMU_USER_IDX;
737 #if defined(DEBUG_MMU)
738 printf("MMU fault: addr=%" VADDR_PRIx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
739 addr, is_write1, is_user, env->eip);
741 is_write = is_write1 & 1;
743 a20_mask = x86_get_a20_mask(env);
744 if (!(env->cr[0] & CR0_PG_MASK)) {
747 if (!(env->hflags & HF_LMA_MASK)) {
748 /* Without long mode we can only address 32bits in real mode */
752 prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
757 if (!(env->efer & MSR_EFER_NXE)) {
758 rsvd_mask |= PG_NX_MASK;
761 if (env->cr[4] & CR4_PAE_MASK) {
763 target_ulong pdpe_addr;
766 if (env->hflags & HF_LMA_MASK) {
767 bool la57 = env->cr[4] & CR4_LA57_MASK;
768 uint64_t pml5e_addr, pml5e;
769 uint64_t pml4e_addr, pml4e;
772 /* test virtual address sign extension */
773 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
774 if (sext != 0 && sext != -1) {
776 cs->exception_index = EXCP0D_GPF;
781 pml5e_addr = ((env->cr[3] & ~0xfff) +
782 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
783 pml5e = x86_ldq_phys(cs, pml5e_addr);
784 if (!(pml5e & PG_PRESENT_MASK)) {
787 if (pml5e & (rsvd_mask | PG_PSE_MASK)) {
790 if (!(pml5e & PG_ACCESSED_MASK)) {
791 pml5e |= PG_ACCESSED_MASK;
792 x86_stl_phys_notdirty(cs, pml5e_addr, pml5e);
794 ptep = pml5e ^ PG_NX_MASK;
797 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
800 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
801 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
802 pml4e = x86_ldq_phys(cs, pml4e_addr);
803 if (!(pml4e & PG_PRESENT_MASK)) {
806 if (pml4e & (rsvd_mask | PG_PSE_MASK)) {
809 if (!(pml4e & PG_ACCESSED_MASK)) {
810 pml4e |= PG_ACCESSED_MASK;
811 x86_stl_phys_notdirty(cs, pml4e_addr, pml4e);
813 ptep &= pml4e ^ PG_NX_MASK;
814 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
816 pdpe = x86_ldq_phys(cs, pdpe_addr);
817 if (!(pdpe & PG_PRESENT_MASK)) {
820 if (pdpe & rsvd_mask) {
823 ptep &= pdpe ^ PG_NX_MASK;
824 if (!(pdpe & PG_ACCESSED_MASK)) {
825 pdpe |= PG_ACCESSED_MASK;
826 x86_stl_phys_notdirty(cs, pdpe_addr, pdpe);
828 if (pdpe & PG_PSE_MASK) {
830 page_size = 1024 * 1024 * 1024;
831 pte_addr = pdpe_addr;
833 goto do_check_protect;
838 /* XXX: load them when cr3 is loaded ? */
839 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
841 pdpe = x86_ldq_phys(cs, pdpe_addr);
842 if (!(pdpe & PG_PRESENT_MASK)) {
845 rsvd_mask |= PG_HI_USER_MASK;
846 if (pdpe & (rsvd_mask | PG_NX_MASK)) {
849 ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
852 pde_addr = ((pdpe & PG_ADDRESS_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
854 pde = x86_ldq_phys(cs, pde_addr);
855 if (!(pde & PG_PRESENT_MASK)) {
858 if (pde & rsvd_mask) {
861 ptep &= pde ^ PG_NX_MASK;
862 if (pde & PG_PSE_MASK) {
864 page_size = 2048 * 1024;
867 goto do_check_protect;
870 if (!(pde & PG_ACCESSED_MASK)) {
871 pde |= PG_ACCESSED_MASK;
872 x86_stl_phys_notdirty(cs, pde_addr, pde);
874 pte_addr = ((pde & PG_ADDRESS_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
876 pte = x86_ldq_phys(cs, pte_addr);
877 if (!(pte & PG_PRESENT_MASK)) {
880 if (pte & rsvd_mask) {
883 /* combine pde and pte nx, user and rw protections */
884 ptep &= pte ^ PG_NX_MASK;
889 /* page directory entry */
890 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) &
892 pde = x86_ldl_phys(cs, pde_addr);
893 if (!(pde & PG_PRESENT_MASK)) {
896 ptep = pde | PG_NX_MASK;
898 /* if PSE bit is set, then we use a 4MB page */
899 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
900 page_size = 4096 * 1024;
903 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
904 * Leave bits 20-13 in place for setting accessed/dirty bits below.
906 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
907 rsvd_mask = 0x200000;
908 goto do_check_protect_pse36;
911 if (!(pde & PG_ACCESSED_MASK)) {
912 pde |= PG_ACCESSED_MASK;
913 x86_stl_phys_notdirty(cs, pde_addr, pde);
916 /* page directory entry */
917 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
919 pte = x86_ldl_phys(cs, pte_addr);
920 if (!(pte & PG_PRESENT_MASK)) {
923 /* combine pde and pte user and rw protections */
924 ptep &= pte | PG_NX_MASK;
930 rsvd_mask |= (page_size - 1) & PG_ADDRESS_MASK & ~PG_PSE_PAT_MASK;
931 do_check_protect_pse36:
932 if (pte & rsvd_mask) {
937 /* can the page can be put in the TLB? prot will tell us */
938 if (is_user && !(ptep & PG_USER_MASK)) {
939 goto do_fault_protect;
943 if (mmu_idx != MMU_KSMAP_IDX || !(ptep & PG_USER_MASK)) {
945 if ((ptep & PG_RW_MASK) || (!is_user && !(env->cr[0] & CR0_WP_MASK))) {
949 if (!(ptep & PG_NX_MASK) &&
950 (mmu_idx == MMU_USER_IDX ||
951 !((env->cr[4] & CR4_SMEP_MASK) && (ptep & PG_USER_MASK)))) {
954 if ((env->cr[4] & CR4_PKE_MASK) && (env->hflags & HF_LMA_MASK) &&
955 (ptep & PG_USER_MASK) && env->pkru) {
956 uint32_t pk = (pte & PG_PKRU_MASK) >> PG_PKRU_BIT;
957 uint32_t pkru_ad = (env->pkru >> pk * 2) & 1;
958 uint32_t pkru_wd = (env->pkru >> pk * 2) & 2;
959 uint32_t pkru_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
962 pkru_prot &= ~(PAGE_READ | PAGE_WRITE);
963 } else if (pkru_wd && (is_user || env->cr[0] & CR0_WP_MASK)) {
964 pkru_prot &= ~PAGE_WRITE;
968 if ((pkru_prot & (1 << is_write1)) == 0) {
969 assert(is_write1 != 2);
970 error_code |= PG_ERROR_PK_MASK;
971 goto do_fault_protect;
975 if ((prot & (1 << is_write1)) == 0) {
976 goto do_fault_protect;
980 is_dirty = is_write && !(pte & PG_DIRTY_MASK);
981 if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
982 pte |= PG_ACCESSED_MASK;
984 pte |= PG_DIRTY_MASK;
986 x86_stl_phys_notdirty(cs, pte_addr, pte);
989 if (!(pte & PG_DIRTY_MASK)) {
990 /* only set write access if already dirty... otherwise wait
997 pte = pte & a20_mask;
999 /* align to page_size */
1000 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
1002 /* Even if 4MB pages, we map only one 4KB page in the cache to
1003 avoid filling it too fast */
1004 vaddr = addr & TARGET_PAGE_MASK;
1005 page_offset = vaddr & (page_size - 1);
1006 paddr = pte + page_offset;
1008 assert(prot & (1 << is_write1));
1009 tlb_set_page_with_attrs(cs, vaddr, paddr, cpu_get_mem_attrs(env),
1010 prot, mmu_idx, page_size);
1013 error_code |= PG_ERROR_RSVD_MASK;
1015 error_code |= PG_ERROR_P_MASK;
1017 error_code |= (is_write << PG_ERROR_W_BIT);
1019 error_code |= PG_ERROR_U_MASK;
1020 if (is_write1 == 2 &&
1021 (((env->efer & MSR_EFER_NXE) &&
1022 (env->cr[4] & CR4_PAE_MASK)) ||
1023 (env->cr[4] & CR4_SMEP_MASK)))
1024 error_code |= PG_ERROR_I_D_MASK;
1025 if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) {
1026 /* cr2 is not modified in case of exceptions */
1028 env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
1033 env->error_code = error_code;
1034 cs->exception_index = EXCP0E_PAGE;
1038 hwaddr x86_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1040 X86CPU *cpu = X86_CPU(cs);
1041 CPUX86State *env = &cpu->env;
1042 target_ulong pde_addr, pte_addr;
1045 uint32_t page_offset;
1048 a20_mask = x86_get_a20_mask(env);
1049 if (!(env->cr[0] & CR0_PG_MASK)) {
1050 pte = addr & a20_mask;
1052 } else if (env->cr[4] & CR4_PAE_MASK) {
1053 target_ulong pdpe_addr;
1056 #ifdef TARGET_X86_64
1057 if (env->hflags & HF_LMA_MASK) {
1058 bool la57 = env->cr[4] & CR4_LA57_MASK;
1059 uint64_t pml5e_addr, pml5e;
1060 uint64_t pml4e_addr, pml4e;
1063 /* test virtual address sign extension */
1064 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
1065 if (sext != 0 && sext != -1) {
1070 pml5e_addr = ((env->cr[3] & ~0xfff) +
1071 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
1072 pml5e = x86_ldq_phys(cs, pml5e_addr);
1073 if (!(pml5e & PG_PRESENT_MASK)) {
1080 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
1081 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
1082 pml4e = x86_ldq_phys(cs, pml4e_addr);
1083 if (!(pml4e & PG_PRESENT_MASK)) {
1086 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
1087 (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
1088 pdpe = x86_ldq_phys(cs, pdpe_addr);
1089 if (!(pdpe & PG_PRESENT_MASK)) {
1092 if (pdpe & PG_PSE_MASK) {
1093 page_size = 1024 * 1024 * 1024;
1101 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
1103 pdpe = x86_ldq_phys(cs, pdpe_addr);
1104 if (!(pdpe & PG_PRESENT_MASK))
1108 pde_addr = ((pdpe & PG_ADDRESS_MASK) +
1109 (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
1110 pde = x86_ldq_phys(cs, pde_addr);
1111 if (!(pde & PG_PRESENT_MASK)) {
1114 if (pde & PG_PSE_MASK) {
1116 page_size = 2048 * 1024;
1120 pte_addr = ((pde & PG_ADDRESS_MASK) +
1121 (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
1123 pte = x86_ldq_phys(cs, pte_addr);
1125 if (!(pte & PG_PRESENT_MASK)) {
1131 /* page directory entry */
1132 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
1133 pde = x86_ldl_phys(cs, pde_addr);
1134 if (!(pde & PG_PRESENT_MASK))
1136 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
1137 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
1138 page_size = 4096 * 1024;
1140 /* page directory entry */
1141 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
1142 pte = x86_ldl_phys(cs, pte_addr);
1143 if (!(pte & PG_PRESENT_MASK)) {
1148 pte = pte & a20_mask;
1151 #ifdef TARGET_X86_64
1154 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
1155 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
1156 return pte | page_offset;
1159 typedef struct MCEInjectionParams {
1163 uint64_t mcg_status;
1167 } MCEInjectionParams;
1169 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
1171 MCEInjectionParams *params = data.host_ptr;
1172 X86CPU *cpu = X86_CPU(cs);
1173 CPUX86State *cenv = &cpu->env;
1174 uint64_t *banks = cenv->mce_banks + 4 * params->bank;
1176 cpu_synchronize_state(cs);
1179 * If there is an MCE exception being processed, ignore this SRAO MCE
1180 * unless unconditional injection was requested.
1182 if (!(params->flags & MCE_INJECT_UNCOND_AO)
1183 && !(params->status & MCI_STATUS_AR)
1184 && (cenv->mcg_status & MCG_STATUS_MCIP)) {
1188 if (params->status & MCI_STATUS_UC) {
1190 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1191 * reporting is disabled
1193 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
1194 monitor_printf(params->mon,
1195 "CPU %d: Uncorrected error reporting disabled\n",
1201 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1202 * reporting is disabled for the bank
1204 if (banks[0] != ~(uint64_t)0) {
1205 monitor_printf(params->mon,
1206 "CPU %d: Uncorrected error reporting disabled for"
1208 cs->cpu_index, params->bank);
1212 if ((cenv->mcg_status & MCG_STATUS_MCIP) ||
1213 !(cenv->cr[4] & CR4_MCE_MASK)) {
1214 monitor_printf(params->mon,
1215 "CPU %d: Previous MCE still in progress, raising"
1218 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
1219 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1222 if (banks[1] & MCI_STATUS_VAL) {
1223 params->status |= MCI_STATUS_OVER;
1225 banks[2] = params->addr;
1226 banks[3] = params->misc;
1227 cenv->mcg_status = params->mcg_status;
1228 banks[1] = params->status;
1229 cpu_interrupt(cs, CPU_INTERRUPT_MCE);
1230 } else if (!(banks[1] & MCI_STATUS_VAL)
1231 || !(banks[1] & MCI_STATUS_UC)) {
1232 if (banks[1] & MCI_STATUS_VAL) {
1233 params->status |= MCI_STATUS_OVER;
1235 banks[2] = params->addr;
1236 banks[3] = params->misc;
1237 banks[1] = params->status;
1239 banks[1] |= MCI_STATUS_OVER;
1243 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
1244 uint64_t status, uint64_t mcg_status, uint64_t addr,
1245 uint64_t misc, int flags)
1247 CPUState *cs = CPU(cpu);
1248 CPUX86State *cenv = &cpu->env;
1249 MCEInjectionParams params = {
1253 .mcg_status = mcg_status,
1258 unsigned bank_num = cenv->mcg_cap & 0xff;
1260 if (!cenv->mcg_cap) {
1261 monitor_printf(mon, "MCE injection not supported\n");
1264 if (bank >= bank_num) {
1265 monitor_printf(mon, "Invalid MCE bank number\n");
1268 if (!(status & MCI_STATUS_VAL)) {
1269 monitor_printf(mon, "Invalid MCE status code\n");
1272 if ((flags & MCE_INJECT_BROADCAST)
1273 && !cpu_x86_support_mca_broadcast(cenv)) {
1274 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
1278 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms));
1279 if (flags & MCE_INJECT_BROADCAST) {
1283 params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
1284 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1287 CPU_FOREACH(other_cs) {
1288 if (other_cs == cs) {
1291 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(¶ms));
1296 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
1298 X86CPU *cpu = x86_env_get_cpu(env);
1299 CPUState *cs = CPU(cpu);
1301 if (kvm_enabled()) {
1302 env->tpr_access_type = access;
1304 cpu_interrupt(cs, CPU_INTERRUPT_TPR);
1306 cpu_restore_state(cs, cs->mem_io_pc);
1308 apic_handle_tpr_access_report(cpu->apic_state, env->eip, access);
1311 #endif /* !CONFIG_USER_ONLY */
1313 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
1314 target_ulong *base, unsigned int *limit,
1315 unsigned int *flags)
1317 X86CPU *cpu = x86_env_get_cpu(env);
1318 CPUState *cs = CPU(cpu);
1328 index = selector & ~7;
1329 ptr = dt->base + index;
1330 if ((index + 7) > dt->limit
1331 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
1332 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
1335 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
1336 *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
1337 if (e2 & DESC_G_MASK)
1338 *limit = (*limit << 12) | 0xfff;
1344 #if !defined(CONFIG_USER_ONLY)
1345 void do_cpu_init(X86CPU *cpu)
1347 CPUState *cs = CPU(cpu);
1348 CPUX86State *env = &cpu->env;
1349 CPUX86State *save = g_new(CPUX86State, 1);
1350 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
1355 cs->interrupt_request = sipi;
1356 memcpy(&env->start_init_save, &save->start_init_save,
1357 offsetof(CPUX86State, end_init_save) -
1358 offsetof(CPUX86State, start_init_save));
1361 if (kvm_enabled()) {
1362 kvm_arch_do_init_vcpu(cpu);
1364 apic_init_reset(cpu->apic_state);
1367 void do_cpu_sipi(X86CPU *cpu)
1369 apic_sipi(cpu->apic_state);
1372 void do_cpu_init(X86CPU *cpu)
1375 void do_cpu_sipi(X86CPU *cpu)
1380 /* Frob eflags into and out of the CPU temporary format. */
1382 void x86_cpu_exec_enter(CPUState *cs)
1384 X86CPU *cpu = X86_CPU(cs);
1385 CPUX86State *env = &cpu->env;
1387 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1388 env->df = 1 - (2 * ((env->eflags >> 10) & 1));
1389 CC_OP = CC_OP_EFLAGS;
1390 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
1393 void x86_cpu_exec_exit(CPUState *cs)
1395 X86CPU *cpu = X86_CPU(cs);
1396 CPUX86State *env = &cpu->env;
1398 env->eflags = cpu_compute_eflags(env);
1401 #ifndef CONFIG_USER_ONLY
1402 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
1404 X86CPU *cpu = X86_CPU(cs);
1405 CPUX86State *env = &cpu->env;
1407 return address_space_ldub(cs->as, addr,
1408 cpu_get_mem_attrs(env),
1412 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
1414 X86CPU *cpu = X86_CPU(cs);
1415 CPUX86State *env = &cpu->env;
1417 return address_space_lduw(cs->as, addr,
1418 cpu_get_mem_attrs(env),
1422 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
1424 X86CPU *cpu = X86_CPU(cs);
1425 CPUX86State *env = &cpu->env;
1427 return address_space_ldl(cs->as, addr,
1428 cpu_get_mem_attrs(env),
1432 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
1434 X86CPU *cpu = X86_CPU(cs);
1435 CPUX86State *env = &cpu->env;
1437 return address_space_ldq(cs->as, addr,
1438 cpu_get_mem_attrs(env),
1442 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
1444 X86CPU *cpu = X86_CPU(cs);
1445 CPUX86State *env = &cpu->env;
1447 address_space_stb(cs->as, addr, val,
1448 cpu_get_mem_attrs(env),
1452 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
1454 X86CPU *cpu = X86_CPU(cs);
1455 CPUX86State *env = &cpu->env;
1457 address_space_stl_notdirty(cs->as, addr, val,
1458 cpu_get_mem_attrs(env),
1462 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
1464 X86CPU *cpu = X86_CPU(cs);
1465 CPUX86State *env = &cpu->env;
1467 address_space_stw(cs->as, addr, val,
1468 cpu_get_mem_attrs(env),
1472 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
1474 X86CPU *cpu = X86_CPU(cs);
1475 CPUX86State *env = &cpu->env;
1477 address_space_stl(cs->as, addr, val,
1478 cpu_get_mem_attrs(env),
1482 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
1484 X86CPU *cpu = X86_CPU(cs);
1485 CPUX86State *env = &cpu->env;
1487 address_space_stq(cs->as, addr, val,
1488 cpu_get_mem_attrs(env),