]> Git Repo - qemu.git/blob - hw/etraxfs_eth.c
ETRAX-FS: Correct ethernet PHY diagnostics register reads.
[qemu.git] / hw / etraxfs_eth.c
1 /*
2  * QEMU ETRAX Ethernet Controller.
3  *
4  * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24
25 #include <stdio.h>
26 #include "hw.h"
27 #include "net.h"
28
29 #include "etraxfs_dma.h"
30
31 #define D(x)
32
33 /* Advertisement control register. */
34 #define ADVERTISE_10HALF        0x0020  /* Try for 10mbps half-duplex  */
35 #define ADVERTISE_10FULL        0x0040  /* Try for 10mbps full-duplex  */
36 #define ADVERTISE_100HALF       0x0080  /* Try for 100mbps half-duplex */
37 #define ADVERTISE_100FULL       0x0100  /* Try for 100mbps full-duplex */
38
39 /* 
40  * The MDIO extensions in the TDK PHY model were reversed engineered from the 
41  * linux driver (PHYID and Diagnostics reg).
42  * TODO: Add friendly names for the register nums.
43  */
44 struct qemu_phy
45 {
46         uint32_t regs[32];
47
48         unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
49         void (*write)(struct qemu_phy *phy, unsigned int req, 
50                       unsigned int data);
51 };
52
53 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
54 {
55         int regnum;
56         unsigned r = 0;
57
58         regnum = req & 0x1f;
59
60         switch (regnum) {
61                 case 1:
62                         /* MR1.  */
63                         /* Speeds and modes.  */
64                         r |= (1 << 13) | (1 << 14);
65                         r |= (1 << 11) | (1 << 12);
66                         r |= (1 << 5); /* Autoneg complete.  */
67                         r |= (1 << 3); /* Autoneg able.  */
68                         r |= (1 << 2); /* Link.  */
69                         break;
70                 case 5:
71                         /* Link partner ability.
72                            We are kind; always agree with whatever best mode
73                            the guest advertises.  */
74                         r = 1 << 14; /* Success.  */
75                         /* Copy advertised modes.  */
76                         r |= phy->regs[4] & (15 << 5);
77                         /* Autoneg support.  */
78                         r |= 1;
79                         break;
80                 case 18:
81                 {
82                         /* Diagnostics reg.  */
83                         int duplex = 0;
84                         int speed_100 = 0;
85
86                         /* Are we advertising 100 half or 100 duplex ? */
87                         speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
88                         speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
89
90                         /* Are we advertising 10 duplex or 100 duplex ? */
91                         duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
92                         duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
93                         r = (speed_100 << 10) | (duplex << 11);
94                 }
95                 break;
96
97                 default:
98                         r = phy->regs[regnum];
99                         break;
100         }
101         D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
102         return r;
103 }
104
105 static void 
106 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
107 {
108         int regnum;
109
110         regnum = req & 0x1f;
111         D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
112         switch (regnum) {
113                 default:
114                         phy->regs[regnum] = data;
115                         break;
116         }
117 }
118
119 static void 
120 tdk_init(struct qemu_phy *phy)
121 {
122         phy->regs[0] = 0x3100;
123         /* PHY Id.  */
124         phy->regs[2] = 0x0300;
125         phy->regs[3] = 0xe400;
126         /* Autonegotiation advertisement reg.  */
127         phy->regs[4] = 0x01E1;
128
129         phy->read = tdk_read;
130         phy->write = tdk_write;
131 }
132
133 struct qemu_mdio
134 {
135         /* bus.  */
136         int mdc;
137         int mdio;
138
139         /* decoder.  */
140         enum {
141                 PREAMBLE,
142                 SOF,
143                 OPC,
144                 ADDR,
145                 REQ,
146                 TURNAROUND,
147                 DATA
148         } state;
149         unsigned int drive;
150
151         unsigned int cnt;
152         unsigned int addr;
153         unsigned int opc;
154         unsigned int req;
155         unsigned int data;
156
157         struct qemu_phy *devs[32];
158 };
159
160 static void 
161 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
162 {
163         bus->devs[addr & 0x1f] = phy;
164 }
165
166 #ifdef USE_THIS_DEAD_CODE
167 static void 
168 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169 {
170         bus->devs[addr & 0x1f] = NULL;  
171 }
172 #endif
173
174 static void mdio_read_req(struct qemu_mdio *bus)
175 {
176         struct qemu_phy *phy;
177
178         phy = bus->devs[bus->addr];
179         if (phy && phy->read)
180                 bus->data = phy->read(phy, bus->req);
181         else 
182                 bus->data = 0xffff;
183 }
184
185 static void mdio_write_req(struct qemu_mdio *bus)
186 {
187         struct qemu_phy *phy;
188
189         phy = bus->devs[bus->addr];
190         if (phy && phy->write)
191                 phy->write(phy, bus->req, bus->data);
192 }
193
194 static void mdio_cycle(struct qemu_mdio *bus)
195 {
196         bus->cnt++;
197
198         D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
199                 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
200 #if 0
201         if (bus->mdc)
202                 printf("%d", bus->mdio);
203 #endif
204         switch (bus->state)
205         {
206                 case PREAMBLE:
207                         if (bus->mdc) {
208                                 if (bus->cnt >= (32 * 2) && !bus->mdio) {
209                                         bus->cnt = 0;
210                                         bus->state = SOF;
211                                         bus->data = 0;
212                                 }
213                         }
214                         break;
215                 case SOF:
216                         if (bus->mdc) {
217                                 if (bus->mdio != 1)
218                                         printf("WARNING: no SOF\n");
219                                 if (bus->cnt == 1*2) {
220                                         bus->cnt = 0;
221                                         bus->opc = 0;
222                                         bus->state = OPC;
223                                 }
224                         }
225                         break;
226                 case OPC:
227                         if (bus->mdc) {
228                                 bus->opc <<= 1;
229                                 bus->opc |= bus->mdio & 1;
230                                 if (bus->cnt == 2*2) {
231                                         bus->cnt = 0;
232                                         bus->addr = 0;
233                                         bus->state = ADDR;
234                                 }
235                         }
236                         break;
237                 case ADDR:
238                         if (bus->mdc) {
239                                 bus->addr <<= 1;
240                                 bus->addr |= bus->mdio & 1;
241
242                                 if (bus->cnt == 5*2) {
243                                         bus->cnt = 0;
244                                         bus->req = 0;
245                                         bus->state = REQ;
246                                 }
247                         }
248                         break;
249                 case REQ:
250                         if (bus->mdc) {
251                                 bus->req <<= 1;
252                                 bus->req |= bus->mdio & 1;
253                                 if (bus->cnt == 5*2) {
254                                         bus->cnt = 0;
255                                         bus->state = TURNAROUND;
256                                 }
257                         }
258                         break;
259                 case TURNAROUND:
260                         if (bus->mdc && bus->cnt == 2*2) {
261                                 bus->mdio = 0;
262                                 bus->cnt = 0;
263
264                                 if (bus->opc == 2) {
265                                         bus->drive = 1;
266                                         mdio_read_req(bus);
267                                         bus->mdio = bus->data & 1;
268                                 }
269                                 bus->state = DATA;
270                         }
271                         break;
272                 case DATA:                      
273                         if (!bus->mdc) {
274                                 if (bus->drive) {
275                                         bus->mdio = !!(bus->data & (1 << 15));
276                                         bus->data <<= 1;
277                                 }
278                         } else {
279                                 if (!bus->drive) {
280                                         bus->data <<= 1;
281                                         bus->data |= bus->mdio;
282                                 }
283                                 if (bus->cnt == 16 * 2) {
284                                         bus->cnt = 0;
285                                         bus->state = PREAMBLE;
286                                         if (!bus->drive)
287                                                 mdio_write_req(bus);
288                                         bus->drive = 0;
289                                 }
290                         }
291                         break;
292                 default:
293                         break;
294         }
295 }
296
297 /* ETRAX-FS Ethernet MAC block starts here.  */
298
299 #define RW_MA0_LO         0x00
300 #define RW_MA0_HI         0x04
301 #define RW_MA1_LO         0x08
302 #define RW_MA1_HI         0x0c
303 #define RW_GA_LO          0x10
304 #define RW_GA_HI          0x14
305 #define RW_GEN_CTRL       0x18
306 #define RW_REC_CTRL       0x1c
307 #define RW_TR_CTRL        0x20
308 #define RW_CLR_ERR        0x24
309 #define RW_MGM_CTRL       0x28
310 #define R_STAT            0x2c
311 #define FS_ETH_MAX_REGS   0x5c
312
313 struct fs_eth
314 {
315         CPUState *env;
316         qemu_irq *irq;
317         target_phys_addr_t base;
318         VLANClientState *vc;
319         int ethregs;
320
321         /* Two addrs in the filter.  */
322         uint8_t macaddr[2][6];
323         uint32_t regs[FS_ETH_MAX_REGS];
324
325         unsigned char rx_fifo[1536];
326         int rx_fifo_len;
327         int rx_fifo_pos;
328
329         struct etraxfs_dma_client *dma_out;
330         struct etraxfs_dma_client *dma_in;
331
332         /* MDIO bus.  */
333         struct qemu_mdio mdio_bus;
334         unsigned int phyaddr;
335         int duplex_mismatch;
336
337         /* PHY.  */
338         struct qemu_phy phy;
339 };
340
341 static void eth_validate_duplex(struct fs_eth *eth)
342 {
343         struct qemu_phy *phy;
344         unsigned int phy_duplex;
345         unsigned int mac_duplex;
346         int new_mm = 0;
347
348         phy = eth->mdio_bus.devs[eth->phyaddr];
349         phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
350         mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
351
352         if (mac_duplex != phy_duplex)
353                 new_mm = 1;
354
355         if (eth->regs[RW_GEN_CTRL] & 1) {
356                 if (new_mm != eth->duplex_mismatch) {
357                         if (new_mm)
358                                 printf("HW: WARNING "
359                                        "ETH duplex mismatch MAC=%d PHY=%d\n",
360                                        mac_duplex, phy_duplex);
361                         else
362                                 printf("HW: ETH duplex ok.\n");
363                 }
364                 eth->duplex_mismatch = new_mm;
365         }
366 }
367
368 static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
369 {
370         struct fs_eth *eth = opaque;
371         CPUState *env = eth->env;
372         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
373                   addr);
374         return 0;
375 }
376
377 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
378 {
379         struct fs_eth *eth = opaque;
380         uint32_t r = 0;
381
382         /* Make addr relative to this instances base.  */
383         addr -= eth->base;
384         switch (addr) {
385                 case R_STAT:
386                         /* Attach an MDIO/PHY abstraction.  */
387                         r = eth->mdio_bus.mdio & 1;
388                         break;
389         default:
390                 r = eth->regs[addr];
391                 D(printf ("%s %x\n", __func__, addr));
392                 break;
393         }
394         return r;
395 }
396
397 static void
398 eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
399 {
400         struct fs_eth *eth = opaque;
401         CPUState *env = eth->env;
402         cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
403                   addr);
404 }
405
406 static void eth_update_ma(struct fs_eth *eth, int ma)
407 {
408         int reg;
409         int i = 0;
410
411         ma &= 1;
412
413         reg = RW_MA0_LO;
414         if (ma)
415                 reg = RW_MA1_LO;
416
417         eth->macaddr[ma][i++] = eth->regs[reg];
418         eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
419         eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
420         eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
421         eth->macaddr[ma][i++] = eth->regs[reg + 4];
422         eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
423
424         D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
425                  eth->macaddr[ma][0], eth->macaddr[ma][1],
426                  eth->macaddr[ma][2], eth->macaddr[ma][3],
427                  eth->macaddr[ma][4], eth->macaddr[ma][5]));
428 }
429
430 static void
431 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
432 {
433         struct fs_eth *eth = opaque;
434
435         /* Make addr relative to this instances base.  */
436         addr -= eth->base;
437         switch (addr)
438         {
439                 case RW_MA0_LO:
440                         eth->regs[addr] = value;
441                         eth_update_ma(eth, 0);
442                         break;
443                 case RW_MA0_HI:
444                         eth->regs[addr] = value;
445                         eth_update_ma(eth, 0);
446                         break;
447                 case RW_MA1_LO:
448                         eth->regs[addr] = value;
449                         eth_update_ma(eth, 1);
450                         break;
451                 case RW_MA1_HI:
452                         eth->regs[addr] = value;
453                         eth_update_ma(eth, 1);
454                         break;
455
456                 case RW_MGM_CTRL:
457                         /* Attach an MDIO/PHY abstraction.  */
458                         if (value & 2)
459                                 eth->mdio_bus.mdio = value & 1;
460                         if (eth->mdio_bus.mdc != (value & 4)) {
461                                 mdio_cycle(&eth->mdio_bus);
462                                 eth_validate_duplex(eth);
463                         }
464                         eth->mdio_bus.mdc = !!(value & 4);
465                         break;
466
467                 case RW_REC_CTRL:
468                         eth->regs[addr] = value;
469                         eth_validate_duplex(eth);
470                         break;
471
472                 default:
473                         eth->regs[addr] = value;
474                         D(printf ("%s %x %x\n",
475                                   __func__, addr, value));
476                         break;
477         }
478 }
479
480 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
481    filter dropping group addresses we have not joined.  The filter has 64
482    bits (m). The has function is a simple nible xor of the group addr.  */
483 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
484 {
485         unsigned int hsh;
486         int m_individual = eth->regs[RW_REC_CTRL] & 4;
487         int match;
488
489         /* First bit on the wire of a MAC address signals multicast or
490            physical address.  */
491         if (!m_individual && !sa[0] & 1)
492                 return 0;
493
494         /* Calculate the hash index for the GA registers. */
495         hsh = 0;
496         hsh ^= (*sa) & 0x3f;
497         hsh ^= ((*sa) >> 6) & 0x03;
498         ++sa;
499         hsh ^= ((*sa) << 2) & 0x03c;
500         hsh ^= ((*sa) >> 4) & 0xf;
501         ++sa;
502         hsh ^= ((*sa) << 4) & 0x30;
503         hsh ^= ((*sa) >> 2) & 0x3f;
504         ++sa;
505         hsh ^= (*sa) & 0x3f;
506         hsh ^= ((*sa) >> 6) & 0x03;
507         ++sa;
508         hsh ^= ((*sa) << 2) & 0x03c;
509         hsh ^= ((*sa) >> 4) & 0xf;
510         ++sa;
511         hsh ^= ((*sa) << 4) & 0x30;
512         hsh ^= ((*sa) >> 2) & 0x3f;
513
514         hsh &= 63;
515         if (hsh > 31)
516                 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
517         else
518                 match = eth->regs[RW_GA_LO] & (1 << hsh);
519         D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
520                  eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
521         return match;
522 }
523
524 static int eth_can_receive(void *opaque)
525 {
526         struct fs_eth *eth = opaque;
527         int r;
528
529         r = eth->rx_fifo_len == 0;
530         if (!r) {
531                 /* TODO: signal fifo overrun.  */
532                 printf("PACKET LOSS!\n");
533         }
534         return r;
535 }
536
537 static void eth_receive(void *opaque, const uint8_t *buf, int size)
538 {
539         unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
540         struct fs_eth *eth = opaque;
541         int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
542         int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
543         int r_bcast = eth->regs[RW_REC_CTRL] & 8;
544
545         if (size < 12)
546                 return;
547
548         D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
549                  buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
550                  use_ma0, use_ma1, r_bcast));
551                
552         /* Does the frame get through the address filters?  */
553         if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
554             && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
555             && (!r_bcast || memcmp(buf, sa_bcast, 6))
556             && !eth_match_groupaddr(eth, buf))
557                 return;
558
559         if (size > sizeof(eth->rx_fifo)) {
560                 /* TODO: signal error.  */
561         } else if (eth->rx_fifo_len) {
562                 /* FIFO overrun.  */
563         } else {
564                 memcpy(eth->rx_fifo, buf, size);
565                 /* +4, HW passes the CRC to sw.  */
566                 eth->rx_fifo_len = size + 4;
567                 eth->rx_fifo_pos = 0;
568         }
569 }
570
571 static void eth_rx_pull(void *opaque)
572 {
573         struct fs_eth *eth = opaque;
574         int len;
575         if (eth->rx_fifo_len) {         
576                 D(printf("%s %d\n", __func__, eth->rx_fifo_len));
577 #if 0
578                 {
579                         int i;
580                         for (i = 0; i < 32; i++)
581                                 printf("%2.2x", eth->rx_fifo[i]);
582                         printf("\n");
583                 }
584 #endif
585                 len = etraxfs_dmac_input(eth->dma_in,
586                                          eth->rx_fifo + eth->rx_fifo_pos, 
587                                          eth->rx_fifo_len, 1);
588                 eth->rx_fifo_len -= len;
589                 eth->rx_fifo_pos += len;
590         }
591 }
592
593 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
594 {
595         struct fs_eth *eth = opaque;
596
597         D(printf("%s buf=%p len=%d\n", __func__, buf, len));
598         qemu_send_packet(eth->vc, buf, len);
599         return len;
600 }
601
602 static CPUReadMemoryFunc *eth_read[] = {
603         &eth_rinvalid,
604         &eth_rinvalid,
605         &eth_readl,
606 };
607
608 static CPUWriteMemoryFunc *eth_write[] = {
609         &eth_winvalid,
610         &eth_winvalid,
611         &eth_writel,
612 };
613
614 void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
615                        qemu_irq *irq, target_phys_addr_t base)
616 {
617         struct etraxfs_dma_client *dma = NULL;  
618         struct fs_eth *eth = NULL;
619
620         dma = qemu_mallocz(sizeof *dma * 2);
621         if (!dma)
622                 return NULL;
623
624         eth = qemu_mallocz(sizeof *eth);
625         if (!eth)
626                 goto err;
627
628         dma[0].client.push = eth_tx_push;
629         dma[0].client.opaque = eth;
630         dma[1].client.opaque = eth;
631         dma[1].client.pull = eth_rx_pull;
632
633         eth->env = env;
634         eth->base = base;
635         eth->irq = irq;
636         eth->dma_out = dma;
637         eth->dma_in = dma + 1;
638
639         /* Connect the phy.  */
640         eth->phyaddr = 1;
641         tdk_init(&eth->phy);
642         mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
643
644         eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
645         cpu_register_physical_memory (base, 0x5c, eth->ethregs);
646
647         eth->vc = qemu_new_vlan_client(nd->vlan, 
648                                        eth_receive, eth_can_receive, eth);
649
650         return dma;
651   err:
652         qemu_free(eth);
653         qemu_free(dma);
654         return NULL;
655 }
This page took 0.06389 seconds and 4 git commands to generate.