4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
27 #include "host-utils.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #define DPRINTF(fmt, ...) \
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
51 #define BUS_MCEERR_AR 4
54 #define BUS_MCEERR_AO 5
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en;
69 static int lm_capable_kernel;
71 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
73 struct kvm_cpuid2 *cpuid;
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80 if (r == 0 && cpuid->nent >= max) {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
99 struct kvm_cpuid2 *cpuid;
102 uint32_t cpuid_1_edx;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
109 for (i = 0; i < cpuid->nent; ++i) {
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
114 ret = cpuid->entries[i].eax;
117 ret = cpuid->entries[i].ebx;
120 ret = cpuid->entries[i].ecx;
123 ret = cpuid->entries[i].edx;
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134 ret |= cpuid_1_edx & 0x183f7ff;
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
151 } para_features[] = {
152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
161 static int get_para_features(CPUState *env)
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
176 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
181 r = kvm_check_extension(s, KVM_CAP_MCE);
184 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
189 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
191 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
196 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
201 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
206 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
207 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
212 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
213 static int kvm_mce_in_progress(CPUState *env)
215 struct kvm_msr_entry msr_mcg_status = {
216 .index = MSR_MCG_STATUS,
220 r = kvm_get_msr(env, &msr_mcg_status, 1);
221 if (r == -1 || r == 0) {
222 fprintf(stderr, "Failed to get MCE status\n");
225 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228 struct kvm_x86_mce_data
231 struct kvm_x86_mce *mce;
235 static void kvm_do_inject_x86_mce(void *_data)
237 struct kvm_x86_mce_data *data = _data;
240 /* If there is an MCE exception being processed, ignore this SRAO MCE */
241 if ((data->env->mcg_cap & MCG_SER_P) &&
242 !(data->mce->status & MCI_STATUS_AR)) {
243 if (kvm_mce_in_progress(data->env)) {
248 r = kvm_set_mce(data->env, data->mce);
250 perror("kvm_set_mce FAILED");
251 if (data->abort_on_error) {
257 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 struct kvm_x86_mce_data data = {
263 .abort_on_error = (flag & ABORT_ON_ERROR),
267 fprintf(stderr, "MCE support is not enabled!\n");
271 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274 static void kvm_mce_broadcast_rest(CPUState *env);
277 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
278 uint64_t mcg_status, uint64_t addr, uint64_t misc,
282 struct kvm_x86_mce mce = {
285 .mcg_status = mcg_status,
290 if (flag & MCE_BROADCAST) {
291 kvm_mce_broadcast_rest(cenv);
294 kvm_inject_x86_mce_on(cenv, &mce, flag);
296 if (flag & ABORT_ON_ERROR) {
302 int kvm_arch_init_vcpu(CPUState *env)
305 struct kvm_cpuid2 cpuid;
306 struct kvm_cpuid_entry2 entries[100];
307 } __attribute__((packed)) cpuid_data;
308 uint32_t limit, i, j, cpuid_i;
310 struct kvm_cpuid_entry2 *c;
311 #ifdef CONFIG_KVM_PARA
312 uint32_t signature[3];
315 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
317 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
318 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
319 env->cpuid_ext_features |= i;
321 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
323 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
325 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
331 #ifdef CONFIG_KVM_PARA
332 /* Paravirtualization CPUIDs */
333 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
334 c = &cpuid_data.entries[cpuid_i++];
335 memset(c, 0, sizeof(*c));
336 c->function = KVM_CPUID_SIGNATURE;
338 c->ebx = signature[0];
339 c->ecx = signature[1];
340 c->edx = signature[2];
342 c = &cpuid_data.entries[cpuid_i++];
343 memset(c, 0, sizeof(*c));
344 c->function = KVM_CPUID_FEATURES;
345 c->eax = env->cpuid_kvm_features & get_para_features(env);
348 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
350 for (i = 0; i <= limit; i++) {
351 c = &cpuid_data.entries[cpuid_i++];
355 /* Keep reading function 2 till all the input is received */
359 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
360 KVM_CPUID_FLAG_STATE_READ_NEXT;
361 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
362 times = c->eax & 0xff;
364 for (j = 1; j < times; ++j) {
365 c = &cpuid_data.entries[cpuid_i++];
367 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
368 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
377 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
379 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
381 if (i == 4 && c->eax == 0) {
384 if (i == 0xb && !(c->ecx & 0xff00)) {
387 if (i == 0xd && c->eax == 0) {
390 c = &cpuid_data.entries[cpuid_i++];
396 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
400 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
402 for (i = 0x80000000; i <= limit; i++) {
403 c = &cpuid_data.entries[cpuid_i++];
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
410 cpuid_data.cpuid.nent = cpuid_i;
413 if (((env->cpuid_version >> 8)&0xF) >= 6
414 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
415 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
419 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
420 perror("kvm_get_mce_cap_supported FAILED");
422 if (banks > MCE_BANKS_DEF)
423 banks = MCE_BANKS_DEF;
424 mcg_cap &= MCE_CAP_DEF;
426 if (kvm_setup_mce(env, &mcg_cap)) {
427 perror("kvm_setup_mce FAILED");
429 env->mcg_cap = mcg_cap;
435 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
438 void kvm_arch_reset_vcpu(CPUState *env)
440 env->exception_injected = -1;
441 env->interrupt_injected = -1;
443 if (kvm_irqchip_in_kernel()) {
444 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
445 KVM_MP_STATE_UNINITIALIZED;
447 env->mp_state = KVM_MP_STATE_RUNNABLE;
451 static int kvm_get_supported_msrs(KVMState *s)
453 static int kvm_supported_msrs;
457 if (kvm_supported_msrs == 0) {
458 struct kvm_msr_list msr_list, *kvm_msr_list;
460 kvm_supported_msrs = -1;
462 /* Obtain MSR list from KVM. These are the MSRs that we must
465 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
466 if (ret < 0 && ret != -E2BIG) {
469 /* Old kernel modules had a bug and could write beyond the provided
470 memory. Allocate at least a safe amount of 1K. */
471 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
473 sizeof(msr_list.indices[0])));
475 kvm_msr_list->nmsrs = msr_list.nmsrs;
476 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
480 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
481 if (kvm_msr_list->indices[i] == MSR_STAR) {
485 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
486 has_msr_hsave_pa = true;
498 int kvm_arch_init(KVMState *s)
500 uint64_t identity_base = 0xfffbc000;
502 struct utsname utsname;
504 ret = kvm_get_supported_msrs(s);
510 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
513 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
514 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
515 * Since these must be part of guest physical memory, we need to allocate
516 * them, both by setting their start addresses in the kernel and by
517 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
519 * Older KVM versions may not support setting the identity map base. In
520 * that case we need to stick with the default, i.e. a 256K maximum BIOS
523 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
524 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
525 /* Allows up to 16M BIOSes. */
526 identity_base = 0xfeffc000;
528 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
534 /* Set TSS base one page after EPT identity map. */
535 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
540 /* Tell fw_cfg to notify the BIOS to reserve the range. */
541 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
543 fprintf(stderr, "e820_add_entry() table is full\n");
550 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
552 lhs->selector = rhs->selector;
553 lhs->base = rhs->base;
554 lhs->limit = rhs->limit;
566 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
568 unsigned flags = rhs->flags;
569 lhs->selector = rhs->selector;
570 lhs->base = rhs->base;
571 lhs->limit = rhs->limit;
572 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
573 lhs->present = (flags & DESC_P_MASK) != 0;
574 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
575 lhs->db = (flags >> DESC_B_SHIFT) & 1;
576 lhs->s = (flags & DESC_S_MASK) != 0;
577 lhs->l = (flags >> DESC_L_SHIFT) & 1;
578 lhs->g = (flags & DESC_G_MASK) != 0;
579 lhs->avl = (flags & DESC_AVL_MASK) != 0;
583 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
585 lhs->selector = rhs->selector;
586 lhs->base = rhs->base;
587 lhs->limit = rhs->limit;
588 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
589 (rhs->present * DESC_P_MASK) |
590 (rhs->dpl << DESC_DPL_SHIFT) |
591 (rhs->db << DESC_B_SHIFT) |
592 (rhs->s * DESC_S_MASK) |
593 (rhs->l << DESC_L_SHIFT) |
594 (rhs->g * DESC_G_MASK) |
595 (rhs->avl * DESC_AVL_MASK);
598 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
601 *kvm_reg = *qemu_reg;
603 *qemu_reg = *kvm_reg;
607 static int kvm_getput_regs(CPUState *env, int set)
609 struct kvm_regs regs;
613 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
619 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
620 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
621 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
622 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
623 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
624 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
625 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
626 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
628 kvm_getput_reg(®s.r8, &env->regs[8], set);
629 kvm_getput_reg(®s.r9, &env->regs[9], set);
630 kvm_getput_reg(®s.r10, &env->regs[10], set);
631 kvm_getput_reg(®s.r11, &env->regs[11], set);
632 kvm_getput_reg(®s.r12, &env->regs[12], set);
633 kvm_getput_reg(®s.r13, &env->regs[13], set);
634 kvm_getput_reg(®s.r14, &env->regs[14], set);
635 kvm_getput_reg(®s.r15, &env->regs[15], set);
638 kvm_getput_reg(®s.rflags, &env->eflags, set);
639 kvm_getput_reg(®s.rip, &env->eip, set);
642 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
648 static int kvm_put_fpu(CPUState *env)
653 memset(&fpu, 0, sizeof fpu);
654 fpu.fsw = env->fpus & ~(7 << 11);
655 fpu.fsw |= (env->fpstt & 7) << 11;
657 for (i = 0; i < 8; ++i) {
658 fpu.ftwx |= (!env->fptags[i]) << i;
660 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
661 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
662 fpu.mxcsr = env->mxcsr;
664 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
668 #define XSAVE_CWD_RIP 2
669 #define XSAVE_CWD_RDP 4
670 #define XSAVE_MXCSR 6
671 #define XSAVE_ST_SPACE 8
672 #define XSAVE_XMM_SPACE 40
673 #define XSAVE_XSTATE_BV 128
674 #define XSAVE_YMMH_SPACE 144
677 static int kvm_put_xsave(CPUState *env)
681 struct kvm_xsave* xsave;
682 uint16_t cwd, swd, twd, fop;
684 if (!kvm_has_xsave()) {
685 return kvm_put_fpu(env);
688 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
689 memset(xsave, 0, sizeof(struct kvm_xsave));
690 cwd = swd = twd = fop = 0;
691 swd = env->fpus & ~(7 << 11);
692 swd |= (env->fpstt & 7) << 11;
694 for (i = 0; i < 8; ++i) {
695 twd |= (!env->fptags[i]) << i;
697 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
698 xsave->region[1] = (uint32_t)(fop << 16) + twd;
699 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
701 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
702 sizeof env->xmm_regs);
703 xsave->region[XSAVE_MXCSR] = env->mxcsr;
704 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
705 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
706 sizeof env->ymmh_regs);
707 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
711 return kvm_put_fpu(env);
715 static int kvm_put_xcrs(CPUState *env)
718 struct kvm_xcrs xcrs;
720 if (!kvm_has_xcrs()) {
726 xcrs.xcrs[0].xcr = 0;
727 xcrs.xcrs[0].value = env->xcr0;
728 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
734 static int kvm_put_sregs(CPUState *env)
736 struct kvm_sregs sregs;
738 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
739 if (env->interrupt_injected >= 0) {
740 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
741 (uint64_t)1 << (env->interrupt_injected % 64);
744 if ((env->eflags & VM_MASK)) {
745 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
746 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
747 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
748 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
749 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
750 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
752 set_seg(&sregs.cs, &env->segs[R_CS]);
753 set_seg(&sregs.ds, &env->segs[R_DS]);
754 set_seg(&sregs.es, &env->segs[R_ES]);
755 set_seg(&sregs.fs, &env->segs[R_FS]);
756 set_seg(&sregs.gs, &env->segs[R_GS]);
757 set_seg(&sregs.ss, &env->segs[R_SS]);
760 set_seg(&sregs.tr, &env->tr);
761 set_seg(&sregs.ldt, &env->ldt);
763 sregs.idt.limit = env->idt.limit;
764 sregs.idt.base = env->idt.base;
765 sregs.gdt.limit = env->gdt.limit;
766 sregs.gdt.base = env->gdt.base;
768 sregs.cr0 = env->cr[0];
769 sregs.cr2 = env->cr[2];
770 sregs.cr3 = env->cr[3];
771 sregs.cr4 = env->cr[4];
773 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
774 sregs.apic_base = cpu_get_apic_base(env->apic_state);
776 sregs.efer = env->efer;
778 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
781 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
782 uint32_t index, uint64_t value)
784 entry->index = index;
788 static int kvm_put_msrs(CPUState *env, int level)
791 struct kvm_msrs info;
792 struct kvm_msr_entry entries[100];
794 struct kvm_msr_entry *msrs = msr_data.entries;
797 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
798 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
799 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
801 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
803 if (has_msr_hsave_pa) {
804 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
807 if (lm_capable_kernel) {
808 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
809 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
810 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
811 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
814 if (level == KVM_PUT_FULL_STATE) {
816 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
817 * writeback. Until this is fixed, we only write the offset to SMP
818 * guests after migration, desynchronizing the VCPUs, but avoiding
819 * huge jump-backs that would occur without any writeback at all.
821 if (smp_cpus == 1 || env->tsc != 0) {
822 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
826 * The following paravirtual MSRs have side effects on the guest or are
827 * too heavy for normal writeback. Limit them to reset or full state
830 if (level >= KVM_PUT_RESET_STATE) {
831 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
832 env->system_time_msr);
833 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
834 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
835 if (has_msr_async_pf_en) {
836 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
837 env->async_pf_en_msr);
845 if (level == KVM_PUT_RESET_STATE) {
846 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
847 } else if (level == KVM_PUT_FULL_STATE) {
848 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
850 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
851 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
857 msr_data.info.nmsrs = n;
859 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
864 static int kvm_get_fpu(CPUState *env)
869 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
874 env->fpstt = (fpu.fsw >> 11) & 7;
877 for (i = 0; i < 8; ++i) {
878 env->fptags[i] = !((fpu.ftwx >> i) & 1);
880 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
881 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
882 env->mxcsr = fpu.mxcsr;
887 static int kvm_get_xsave(CPUState *env)
890 struct kvm_xsave* xsave;
892 uint16_t cwd, swd, twd, fop;
894 if (!kvm_has_xsave()) {
895 return kvm_get_fpu(env);
898 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
899 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
905 cwd = (uint16_t)xsave->region[0];
906 swd = (uint16_t)(xsave->region[0] >> 16);
907 twd = (uint16_t)xsave->region[1];
908 fop = (uint16_t)(xsave->region[1] >> 16);
909 env->fpstt = (swd >> 11) & 7;
912 for (i = 0; i < 8; ++i) {
913 env->fptags[i] = !((twd >> i) & 1);
915 env->mxcsr = xsave->region[XSAVE_MXCSR];
916 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
918 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
919 sizeof env->xmm_regs);
920 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
921 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
922 sizeof env->ymmh_regs);
926 return kvm_get_fpu(env);
930 static int kvm_get_xcrs(CPUState *env)
934 struct kvm_xcrs xcrs;
936 if (!kvm_has_xcrs()) {
940 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
945 for (i = 0; i < xcrs.nr_xcrs; i++) {
946 /* Only support xcr0 now */
947 if (xcrs.xcrs[0].xcr == 0) {
948 env->xcr0 = xcrs.xcrs[0].value;
958 static int kvm_get_sregs(CPUState *env)
960 struct kvm_sregs sregs;
964 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
969 /* There can only be one pending IRQ set in the bitmap at a time, so try
970 to find it and save its number instead (-1 for none). */
971 env->interrupt_injected = -1;
972 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
973 if (sregs.interrupt_bitmap[i]) {
974 bit = ctz64(sregs.interrupt_bitmap[i]);
975 env->interrupt_injected = i * 64 + bit;
980 get_seg(&env->segs[R_CS], &sregs.cs);
981 get_seg(&env->segs[R_DS], &sregs.ds);
982 get_seg(&env->segs[R_ES], &sregs.es);
983 get_seg(&env->segs[R_FS], &sregs.fs);
984 get_seg(&env->segs[R_GS], &sregs.gs);
985 get_seg(&env->segs[R_SS], &sregs.ss);
987 get_seg(&env->tr, &sregs.tr);
988 get_seg(&env->ldt, &sregs.ldt);
990 env->idt.limit = sregs.idt.limit;
991 env->idt.base = sregs.idt.base;
992 env->gdt.limit = sregs.gdt.limit;
993 env->gdt.base = sregs.gdt.base;
995 env->cr[0] = sregs.cr0;
996 env->cr[2] = sregs.cr2;
997 env->cr[3] = sregs.cr3;
998 env->cr[4] = sregs.cr4;
1000 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1002 env->efer = sregs.efer;
1003 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1005 #define HFLAG_COPY_MASK \
1006 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1007 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1008 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1009 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1011 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1012 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1013 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1014 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1015 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1016 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1017 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1019 if (env->efer & MSR_EFER_LMA) {
1020 hflags |= HF_LMA_MASK;
1023 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1024 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1026 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1027 (DESC_B_SHIFT - HF_CS32_SHIFT);
1028 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1029 (DESC_B_SHIFT - HF_SS32_SHIFT);
1030 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1031 !(hflags & HF_CS32_MASK)) {
1032 hflags |= HF_ADDSEG_MASK;
1034 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1035 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1038 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1043 static int kvm_get_msrs(CPUState *env)
1046 struct kvm_msrs info;
1047 struct kvm_msr_entry entries[100];
1049 struct kvm_msr_entry *msrs = msr_data.entries;
1053 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1054 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1055 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1057 msrs[n++].index = MSR_STAR;
1059 if (has_msr_hsave_pa) {
1060 msrs[n++].index = MSR_VM_HSAVE_PA;
1062 msrs[n++].index = MSR_IA32_TSC;
1063 #ifdef TARGET_X86_64
1064 if (lm_capable_kernel) {
1065 msrs[n++].index = MSR_CSTAR;
1066 msrs[n++].index = MSR_KERNELGSBASE;
1067 msrs[n++].index = MSR_FMASK;
1068 msrs[n++].index = MSR_LSTAR;
1071 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1072 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1073 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1074 if (has_msr_async_pf_en) {
1075 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1081 msrs[n++].index = MSR_MCG_STATUS;
1082 msrs[n++].index = MSR_MCG_CTL;
1083 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1084 msrs[n++].index = MSR_MC0_CTL + i;
1089 msr_data.info.nmsrs = n;
1090 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1095 for (i = 0; i < ret; i++) {
1096 switch (msrs[i].index) {
1097 case MSR_IA32_SYSENTER_CS:
1098 env->sysenter_cs = msrs[i].data;
1100 case MSR_IA32_SYSENTER_ESP:
1101 env->sysenter_esp = msrs[i].data;
1103 case MSR_IA32_SYSENTER_EIP:
1104 env->sysenter_eip = msrs[i].data;
1107 env->star = msrs[i].data;
1109 #ifdef TARGET_X86_64
1111 env->cstar = msrs[i].data;
1113 case MSR_KERNELGSBASE:
1114 env->kernelgsbase = msrs[i].data;
1117 env->fmask = msrs[i].data;
1120 env->lstar = msrs[i].data;
1124 env->tsc = msrs[i].data;
1126 case MSR_VM_HSAVE_PA:
1127 env->vm_hsave = msrs[i].data;
1129 case MSR_KVM_SYSTEM_TIME:
1130 env->system_time_msr = msrs[i].data;
1132 case MSR_KVM_WALL_CLOCK:
1133 env->wall_clock_msr = msrs[i].data;
1136 case MSR_MCG_STATUS:
1137 env->mcg_status = msrs[i].data;
1140 env->mcg_ctl = msrs[i].data;
1145 if (msrs[i].index >= MSR_MC0_CTL &&
1146 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1147 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1151 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1152 case MSR_KVM_ASYNC_PF_EN:
1153 env->async_pf_en_msr = msrs[i].data;
1162 static int kvm_put_mp_state(CPUState *env)
1164 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1166 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1169 static int kvm_get_mp_state(CPUState *env)
1171 struct kvm_mp_state mp_state;
1174 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1178 env->mp_state = mp_state.mp_state;
1179 if (kvm_irqchip_in_kernel()) {
1180 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1185 static int kvm_put_vcpu_events(CPUState *env, int level)
1187 #ifdef KVM_CAP_VCPU_EVENTS
1188 struct kvm_vcpu_events events;
1190 if (!kvm_has_vcpu_events()) {
1194 events.exception.injected = (env->exception_injected >= 0);
1195 events.exception.nr = env->exception_injected;
1196 events.exception.has_error_code = env->has_error_code;
1197 events.exception.error_code = env->error_code;
1199 events.interrupt.injected = (env->interrupt_injected >= 0);
1200 events.interrupt.nr = env->interrupt_injected;
1201 events.interrupt.soft = env->soft_interrupt;
1203 events.nmi.injected = env->nmi_injected;
1204 events.nmi.pending = env->nmi_pending;
1205 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1207 events.sipi_vector = env->sipi_vector;
1210 if (level >= KVM_PUT_RESET_STATE) {
1212 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1215 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1221 static int kvm_get_vcpu_events(CPUState *env)
1223 #ifdef KVM_CAP_VCPU_EVENTS
1224 struct kvm_vcpu_events events;
1227 if (!kvm_has_vcpu_events()) {
1231 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1235 env->exception_injected =
1236 events.exception.injected ? events.exception.nr : -1;
1237 env->has_error_code = events.exception.has_error_code;
1238 env->error_code = events.exception.error_code;
1240 env->interrupt_injected =
1241 events.interrupt.injected ? events.interrupt.nr : -1;
1242 env->soft_interrupt = events.interrupt.soft;
1244 env->nmi_injected = events.nmi.injected;
1245 env->nmi_pending = events.nmi.pending;
1246 if (events.nmi.masked) {
1247 env->hflags2 |= HF2_NMI_MASK;
1249 env->hflags2 &= ~HF2_NMI_MASK;
1252 env->sipi_vector = events.sipi_vector;
1258 static int kvm_guest_debug_workarounds(CPUState *env)
1261 #ifdef KVM_CAP_SET_GUEST_DEBUG
1262 unsigned long reinject_trap = 0;
1264 if (!kvm_has_vcpu_events()) {
1265 if (env->exception_injected == 1) {
1266 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1267 } else if (env->exception_injected == 3) {
1268 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1270 env->exception_injected = -1;
1274 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1275 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1276 * by updating the debug state once again if single-stepping is on.
1277 * Another reason to call kvm_update_guest_debug here is a pending debug
1278 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1279 * reinject them via SET_GUEST_DEBUG.
1281 if (reinject_trap ||
1282 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1283 ret = kvm_update_guest_debug(env, reinject_trap);
1285 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1289 static int kvm_put_debugregs(CPUState *env)
1291 #ifdef KVM_CAP_DEBUGREGS
1292 struct kvm_debugregs dbgregs;
1295 if (!kvm_has_debugregs()) {
1299 for (i = 0; i < 4; i++) {
1300 dbgregs.db[i] = env->dr[i];
1302 dbgregs.dr6 = env->dr[6];
1303 dbgregs.dr7 = env->dr[7];
1306 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1312 static int kvm_get_debugregs(CPUState *env)
1314 #ifdef KVM_CAP_DEBUGREGS
1315 struct kvm_debugregs dbgregs;
1318 if (!kvm_has_debugregs()) {
1322 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1326 for (i = 0; i < 4; i++) {
1327 env->dr[i] = dbgregs.db[i];
1329 env->dr[4] = env->dr[6] = dbgregs.dr6;
1330 env->dr[5] = env->dr[7] = dbgregs.dr7;
1336 int kvm_arch_put_registers(CPUState *env, int level)
1340 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1342 ret = kvm_getput_regs(env, 1);
1346 ret = kvm_put_xsave(env);
1350 ret = kvm_put_xcrs(env);
1354 ret = kvm_put_sregs(env);
1358 ret = kvm_put_msrs(env, level);
1362 if (level >= KVM_PUT_RESET_STATE) {
1363 ret = kvm_put_mp_state(env);
1368 ret = kvm_put_vcpu_events(env, level);
1372 ret = kvm_put_debugregs(env);
1377 ret = kvm_guest_debug_workarounds(env);
1384 int kvm_arch_get_registers(CPUState *env)
1388 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1390 ret = kvm_getput_regs(env, 0);
1394 ret = kvm_get_xsave(env);
1398 ret = kvm_get_xcrs(env);
1402 ret = kvm_get_sregs(env);
1406 ret = kvm_get_msrs(env);
1410 ret = kvm_get_mp_state(env);
1414 ret = kvm_get_vcpu_events(env);
1418 ret = kvm_get_debugregs(env);
1425 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1428 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1429 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1430 DPRINTF("injected NMI\n");
1431 kvm_vcpu_ioctl(env, KVM_NMI);
1434 /* Try to inject an interrupt if the guest can accept it */
1435 if (run->ready_for_interrupt_injection &&
1436 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1437 (env->eflags & IF_MASK)) {
1440 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1441 irq = cpu_get_pic_interrupt(env);
1443 struct kvm_interrupt intr;
1446 DPRINTF("injected interrupt %d\n", irq);
1447 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1451 /* If we have an interrupt but the guest is not ready to receive an
1452 * interrupt, request an interrupt window exit. This will
1453 * cause a return to userspace as soon as the guest is ready to
1454 * receive interrupts. */
1455 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1456 run->request_interrupt_window = 1;
1458 run->request_interrupt_window = 0;
1461 DPRINTF("setting tpr\n");
1462 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1467 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1470 env->eflags |= IF_MASK;
1472 env->eflags &= ~IF_MASK;
1474 cpu_set_apic_tpr(env->apic_state, run->cr8);
1475 cpu_set_apic_base(env->apic_state, run->apic_base);
1480 int kvm_arch_process_irqchip_events(CPUState *env)
1482 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1483 kvm_cpu_synchronize_state(env);
1485 env->exception_index = EXCP_HALTED;
1488 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1489 kvm_cpu_synchronize_state(env);
1496 static int kvm_handle_halt(CPUState *env)
1498 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1499 (env->eflags & IF_MASK)) &&
1500 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1502 env->exception_index = EXCP_HLT;
1509 static bool host_supports_vmx(void)
1511 uint32_t ecx, unused;
1513 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1514 return ecx & CPUID_EXT_VMX;
1517 #define VMX_INVALID_GUEST_STATE 0x80000021
1519 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1524 switch (run->exit_reason) {
1526 DPRINTF("handle_hlt\n");
1527 ret = kvm_handle_halt(env);
1529 case KVM_EXIT_SET_TPR:
1532 case KVM_EXIT_FAIL_ENTRY:
1533 code = run->fail_entry.hardware_entry_failure_reason;
1534 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1536 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1538 "\nIf you're runnning a guest on an Intel machine without "
1539 "unrestricted mode\n"
1540 "support, the failure can be most likely due to the guest "
1541 "entering an invalid\n"
1542 "state for Intel VT. For example, the guest maybe running "
1543 "in big real mode\n"
1544 "which is not supported on less recent Intel processors."
1549 case KVM_EXIT_EXCEPTION:
1550 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1551 run->ex.exception, run->ex.error_code);
1555 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1563 #ifdef KVM_CAP_SET_GUEST_DEBUG
1564 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1566 static const uint8_t int3 = 0xcc;
1568 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1569 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1575 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1579 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1580 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1592 static int nb_hw_breakpoint;
1594 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1598 for (n = 0; n < nb_hw_breakpoint; n++) {
1599 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1600 (hw_breakpoint[n].len == len || len == -1)) {
1607 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1608 target_ulong len, int type)
1611 case GDB_BREAKPOINT_HW:
1614 case GDB_WATCHPOINT_WRITE:
1615 case GDB_WATCHPOINT_ACCESS:
1622 if (addr & (len - 1)) {
1634 if (nb_hw_breakpoint == 4) {
1637 if (find_hw_breakpoint(addr, len, type) >= 0) {
1640 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1641 hw_breakpoint[nb_hw_breakpoint].len = len;
1642 hw_breakpoint[nb_hw_breakpoint].type = type;
1648 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1649 target_ulong len, int type)
1653 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1658 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1663 void kvm_arch_remove_all_hw_breakpoints(void)
1665 nb_hw_breakpoint = 0;
1668 static CPUWatchpoint hw_watchpoint;
1670 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1675 if (arch_info->exception == 1) {
1676 if (arch_info->dr6 & (1 << 14)) {
1677 if (cpu_single_env->singlestep_enabled) {
1681 for (n = 0; n < 4; n++) {
1682 if (arch_info->dr6 & (1 << n)) {
1683 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1689 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1690 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1691 hw_watchpoint.flags = BP_MEM_WRITE;
1695 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1696 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1697 hw_watchpoint.flags = BP_MEM_ACCESS;
1703 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1707 cpu_synchronize_state(cpu_single_env);
1708 assert(cpu_single_env->exception_injected == -1);
1710 cpu_single_env->exception_injected = arch_info->exception;
1711 cpu_single_env->has_error_code = 0;
1717 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1719 const uint8_t type_code[] = {
1720 [GDB_BREAKPOINT_HW] = 0x0,
1721 [GDB_WATCHPOINT_WRITE] = 0x1,
1722 [GDB_WATCHPOINT_ACCESS] = 0x3
1724 const uint8_t len_code[] = {
1725 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1729 if (kvm_sw_breakpoints_active(env)) {
1730 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1732 if (nb_hw_breakpoint > 0) {
1733 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1734 dbg->arch.debugreg[7] = 0x0600;
1735 for (n = 0; n < nb_hw_breakpoint; n++) {
1736 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1737 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1738 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1739 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1743 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1745 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1747 return !(env->cr[0] & CR0_PE_MASK) ||
1748 ((env->segs[R_CS].selector & 3) != 3);
1751 static void hardware_memory_error(void)
1753 fprintf(stderr, "Hardware memory error!\n");
1758 static void kvm_mce_broadcast_rest(CPUState *env)
1760 struct kvm_x86_mce mce = {
1762 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1763 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1769 /* Broadcast MCA signal for processor version 06H_EH and above */
1770 if (cpu_x86_support_mca_broadcast(env)) {
1771 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1775 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1780 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1782 struct kvm_x86_mce mce = {
1784 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1785 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1786 | MCI_STATUS_AR | 0x134,
1787 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1789 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1793 r = kvm_set_mce(env, &mce);
1795 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1798 kvm_mce_broadcast_rest(env);
1801 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1803 struct kvm_x86_mce mce = {
1805 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1808 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1810 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1814 r = kvm_set_mce(env, &mce);
1816 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1819 kvm_mce_broadcast_rest(env);
1822 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1824 struct kvm_x86_mce mce = {
1826 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1829 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1831 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1834 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1835 kvm_mce_broadcast_rest(env);
1840 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1842 #if defined(KVM_CAP_MCE)
1844 ram_addr_t ram_addr;
1845 target_phys_addr_t paddr;
1847 if ((env->mcg_cap & MCG_SER_P) && addr
1848 && (code == BUS_MCEERR_AR
1849 || code == BUS_MCEERR_AO)) {
1850 vaddr = (void *)addr;
1851 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1852 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1853 fprintf(stderr, "Hardware memory error for memory used by "
1854 "QEMU itself instead of guest system!\n");
1855 /* Hope we are lucky for AO MCE */
1856 if (code == BUS_MCEERR_AO) {
1859 hardware_memory_error();
1863 if (code == BUS_MCEERR_AR) {
1864 /* Fake an Intel architectural Data Load SRAR UCR */
1865 kvm_mce_inj_srar_dataload(env, paddr);
1868 * If there is an MCE excpetion being processed, ignore
1871 if (!kvm_mce_in_progress(env)) {
1872 /* Fake an Intel architectural Memory scrubbing UCR */
1873 kvm_mce_inj_srao_memscrub(env, paddr);
1879 if (code == BUS_MCEERR_AO) {
1881 } else if (code == BUS_MCEERR_AR) {
1882 hardware_memory_error();
1890 int kvm_on_sigbus(int code, void *addr)
1892 #if defined(KVM_CAP_MCE)
1893 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1895 ram_addr_t ram_addr;
1896 target_phys_addr_t paddr;
1898 /* Hope we are lucky for AO MCE */
1900 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1901 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1902 fprintf(stderr, "Hardware memory error for memory used by "
1903 "QEMU itself instead of guest system!: %p\n", addr);
1906 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1910 if (code == BUS_MCEERR_AO) {
1912 } else if (code == BUS_MCEERR_AR) {
1913 hardware_memory_error();