2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 //#define DEBUG_IRQ_COUNT
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
35 #define DPRINTF(fmt, args...)
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
52 typedef struct SLAVIO_INTCTLState {
53 uint32_t intreg_pending[MAX_CPUS];
54 uint32_t intregm_pending;
55 uint32_t intregm_disabled;
57 #ifdef DEBUG_IRQ_COUNT
58 uint64_t irq_count[32];
60 qemu_irq *cpu_irqs[MAX_CPUS];
61 const uint32_t *intbit_to_level;
62 uint32_t cputimer_lbit, cputimer_mbit;
63 uint32_t pil_out[MAX_CPUS];
66 #define INTCTL_MAXADDR 0xf
67 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
68 #define INTCTLM_MAXADDR 0x13
69 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1)
70 #define INTCTLM_MASK 0x1f
71 #define MASTER_IRQ_MASK ~0x0fa2007f
72 #define MASTER_DISABLE 0x80000000
73 #define CPU_SOFTIRQ_MASK 0xfffe0000
74 #define CPU_HARDIRQ_MASK 0x0000fffe
75 #define CPU_IRQ_INT15_IN 0x0004000
76 #define CPU_IRQ_INT15_MASK 0x80000000
78 static void slavio_check_interrupts(void *opaque);
80 // per-cpu interrupt controller
81 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
83 SLAVIO_INTCTLState *s = opaque;
87 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
88 saddr = (addr & INTCTL_MAXADDR) >> 2;
91 ret = s->intreg_pending[cpu];
97 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, ret);
102 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
105 SLAVIO_INTCTLState *s = opaque;
109 cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
110 saddr = (addr & INTCTL_MAXADDR) >> 2;
111 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", cpu, addr, val);
113 case 1: // clear pending softints
114 if (val & CPU_IRQ_INT15_IN)
115 val |= CPU_IRQ_INT15_MASK;
116 val &= CPU_SOFTIRQ_MASK;
117 s->intreg_pending[cpu] &= ~val;
118 slavio_check_interrupts(s);
119 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val,
120 s->intreg_pending[cpu]);
122 case 2: // set softint
123 val &= CPU_SOFTIRQ_MASK;
124 s->intreg_pending[cpu] |= val;
125 slavio_check_interrupts(s);
126 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val,
127 s->intreg_pending[cpu]);
134 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
137 slavio_intctl_mem_readl,
140 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
143 slavio_intctl_mem_writel,
146 // master system interrupt controller
147 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
149 SLAVIO_INTCTLState *s = opaque;
152 saddr = (addr & INTCTLM_MASK) >> 2;
155 ret = s->intregm_pending & ~MASTER_DISABLE;
158 ret = s->intregm_disabled & MASTER_IRQ_MASK;
167 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
172 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
175 SLAVIO_INTCTLState *s = opaque;
178 saddr = (addr & INTCTLM_MASK) >> 2;
179 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
181 case 2: // clear (enable)
182 // Force clear unused bits
183 val &= MASTER_IRQ_MASK;
184 s->intregm_disabled &= ~val;
185 DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
186 s->intregm_disabled);
187 slavio_check_interrupts(s);
189 case 3: // set (disable, clear pending)
190 // Force clear unused bits
191 val &= MASTER_IRQ_MASK;
192 s->intregm_disabled |= val;
193 s->intregm_pending &= ~val;
194 slavio_check_interrupts(s);
195 DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
196 s->intregm_disabled);
199 s->target_cpu = val & (MAX_CPUS - 1);
200 slavio_check_interrupts(s);
201 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
208 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
211 slavio_intctlm_mem_readl,
214 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
217 slavio_intctlm_mem_writel,
220 void slavio_pic_info(void *opaque)
222 SLAVIO_INTCTLState *s = opaque;
225 for (i = 0; i < MAX_CPUS; i++) {
226 term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
228 term_printf("master: pending 0x%08x, disabled 0x%08x\n",
229 s->intregm_pending, s->intregm_disabled);
232 void slavio_irq_info(void *opaque)
234 #ifndef DEBUG_IRQ_COUNT
235 term_printf("irq statistic code not compiled.\n");
237 SLAVIO_INTCTLState *s = opaque;
241 term_printf("IRQ statistics:\n");
242 for (i = 0; i < 32; i++) {
243 count = s->irq_count[i];
245 term_printf("%2d: %" PRId64 "\n", i, count);
250 static void slavio_check_interrupts(void *opaque)
252 SLAVIO_INTCTLState *s = opaque;
253 uint32_t pending = s->intregm_pending, pil_pending;
256 pending &= ~s->intregm_disabled;
258 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
259 for (i = 0; i < MAX_CPUS; i++) {
261 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
262 (i == s->target_cpu)) {
263 for (j = 0; j < 32; j++) {
264 if (pending & (1 << j))
265 pil_pending |= 1 << s->intbit_to_level[j];
268 pil_pending |= (s->intreg_pending[i] & CPU_SOFTIRQ_MASK) >> 16;
270 for (j = 0; j < MAX_PILS; j++) {
271 if (pil_pending & (1 << j)) {
272 if (!(s->pil_out[i] & (1 << j)))
273 qemu_irq_raise(s->cpu_irqs[i][j]);
275 if (s->pil_out[i] & (1 << j))
276 qemu_irq_lower(s->cpu_irqs[i][j]);
279 s->pil_out[i] = pil_pending;
284 * "irq" here is the bit number in the system interrupt register to
285 * separate serial and keyboard interrupts sharing a level.
287 static void slavio_set_irq(void *opaque, int irq, int level)
289 SLAVIO_INTCTLState *s = opaque;
290 uint32_t mask = 1 << irq;
291 uint32_t pil = s->intbit_to_level[irq];
293 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
297 #ifdef DEBUG_IRQ_COUNT
300 s->intregm_pending |= mask;
301 s->intreg_pending[s->target_cpu] |= 1 << pil;
303 s->intregm_pending &= ~mask;
304 s->intreg_pending[s->target_cpu] &= ~(1 << pil);
306 slavio_check_interrupts(s);
310 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
312 SLAVIO_INTCTLState *s = opaque;
314 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
317 s->intregm_pending |= s->cputimer_mbit;
318 s->intreg_pending[cpu] |= s->cputimer_lbit;
320 s->intregm_pending &= ~s->cputimer_mbit;
321 s->intreg_pending[cpu] &= ~s->cputimer_lbit;
324 slavio_check_interrupts(s);
327 static void slavio_intctl_save(QEMUFile *f, void *opaque)
329 SLAVIO_INTCTLState *s = opaque;
332 for (i = 0; i < MAX_CPUS; i++) {
333 qemu_put_be32s(f, &s->intreg_pending[i]);
335 qemu_put_be32s(f, &s->intregm_pending);
336 qemu_put_be32s(f, &s->intregm_disabled);
337 qemu_put_be32s(f, &s->target_cpu);
340 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
342 SLAVIO_INTCTLState *s = opaque;
348 for (i = 0; i < MAX_CPUS; i++) {
349 qemu_get_be32s(f, &s->intreg_pending[i]);
351 qemu_get_be32s(f, &s->intregm_pending);
352 qemu_get_be32s(f, &s->intregm_disabled);
353 qemu_get_be32s(f, &s->target_cpu);
354 slavio_check_interrupts(s);
358 static void slavio_intctl_reset(void *opaque)
360 SLAVIO_INTCTLState *s = opaque;
363 for (i = 0; i < MAX_CPUS; i++) {
364 s->intreg_pending[i] = 0;
366 s->intregm_disabled = ~MASTER_IRQ_MASK;
367 s->intregm_pending = 0;
369 slavio_check_interrupts(s);
372 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
373 const uint32_t *intbit_to_level,
374 qemu_irq **irq, qemu_irq **cpu_irq,
375 qemu_irq **parent_irq, unsigned int cputimer)
377 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
378 SLAVIO_INTCTLState *s;
380 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
384 s->intbit_to_level = intbit_to_level;
385 for (i = 0; i < MAX_CPUS; i++) {
386 slavio_intctl_io_memory = cpu_register_io_memory(0,
387 slavio_intctl_mem_read,
388 slavio_intctl_mem_write,
390 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
391 slavio_intctl_io_memory);
392 s->cpu_irqs[i] = parent_irq[i];
395 slavio_intctlm_io_memory = cpu_register_io_memory(0,
396 slavio_intctlm_mem_read,
397 slavio_intctlm_mem_write,
399 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
401 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
402 slavio_intctl_load, s);
403 qemu_register_reset(slavio_intctl_reset, s);
404 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
406 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
407 s->cputimer_mbit = 1 << cputimer;
408 s->cputimer_lbit = 1 << intbit_to_level[cputimer];
409 slavio_intctl_reset(s);