2 * internal execution defines for qemu
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
32 #define __builtin_expect(x, n) (x)
36 #define REGPARM(n) __attribute((regparm(n)))
41 /* is_jmp field values */
42 #define DISAS_NEXT 0 /* next instruction can be analyzed */
43 #define DISAS_JUMP 1 /* only pc was modified dynamically */
44 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
45 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
47 struct TranslationBlock;
49 /* XXX: make safe guess about sizes */
50 #define MAX_OP_PER_INSTR 32
51 #define OPC_BUF_SIZE 512
52 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
54 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
56 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
57 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
58 extern long gen_labels[OPC_BUF_SIZE];
59 extern int nb_gen_labels;
60 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
61 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
62 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
63 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
64 extern target_ulong gen_opc_jump_pc[2];
66 typedef void (GenOpFunc)(void);
67 typedef void (GenOpFunc1)(long);
68 typedef void (GenOpFunc2)(long, long);
69 typedef void (GenOpFunc3)(long, long, long);
71 #if defined(TARGET_I386)
73 void optimize_flags_init(void);
80 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
81 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
82 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
83 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
84 int max_code_size, int *gen_code_size_ptr);
85 int cpu_restore_state(struct TranslationBlock *tb,
86 CPUState *env, unsigned long searched_pc,
88 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
89 int max_code_size, int *gen_code_size_ptr);
90 int cpu_restore_state_copy(struct TranslationBlock *tb,
91 CPUState *env, unsigned long searched_pc,
93 void cpu_resume_from_signal(CPUState *env1, void *puc);
94 void cpu_exec_init(void);
95 int page_unprotect(unsigned long address, unsigned long pc, void *puc);
96 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
97 int is_cpu_write_access);
98 void tb_invalidate_page_range(target_ulong start, target_ulong end);
99 void tlb_flush_page(CPUState *env, target_ulong addr);
100 void tlb_flush(CPUState *env, int flush_global);
101 int tlb_set_page(CPUState *env, target_ulong vaddr,
102 target_phys_addr_t paddr, int prot,
103 int is_user, int is_softmmu);
105 #define CODE_GEN_MAX_SIZE 65536
106 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
108 #define CODE_GEN_HASH_BITS 15
109 #define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
111 #define CODE_GEN_PHYS_HASH_BITS 15
112 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
114 /* maximum total translate dcode allocated */
116 /* NOTE: the translated code area cannot be too big because on some
117 archs the range of "fast" function calls is limited. Here is a
118 summary of the ranges:
120 i386 : signed 32 bits
123 sparc : signed 32 bits
124 alpha : signed 23 bits
127 #if defined(__alpha__)
128 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
129 #elif defined(__ia64)
130 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
131 #elif defined(__powerpc__)
132 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
134 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
137 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
139 /* estimated block size for TB allocation */
140 /* XXX: use a per code average code fragment size and modulate it
141 according to the host CPU */
142 #if defined(CONFIG_SOFTMMU)
143 #define CODE_GEN_AVG_BLOCK_SIZE 128
145 #define CODE_GEN_AVG_BLOCK_SIZE 64
148 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
150 #if defined(__powerpc__)
151 #define USE_DIRECT_JUMP
153 #if defined(__i386__) && !defined(_WIN32)
154 #define USE_DIRECT_JUMP
157 typedef struct TranslationBlock {
158 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
159 target_ulong cs_base; /* CS base for this block */
160 unsigned int flags; /* flags defining in which context the code was generated */
161 uint16_t size; /* size of target code for this block (1 <=
162 size <= TARGET_PAGE_SIZE) */
163 uint16_t cflags; /* compile flags */
164 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
165 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
166 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
167 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
169 uint8_t *tc_ptr; /* pointer to the translated code */
170 struct TranslationBlock *hash_next; /* next matching tb for virtual address */
171 /* next matching tb for physical address. */
172 struct TranslationBlock *phys_hash_next;
173 /* first and second physical page containing code. The lower bit
174 of the pointer tells the index in page_next[] */
175 struct TranslationBlock *page_next[2];
176 target_ulong page_addr[2];
178 /* the following data are used to directly call another TB from
179 the code of this one. */
180 uint16_t tb_next_offset[2]; /* offset of original jump target */
181 #ifdef USE_DIRECT_JUMP
182 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
184 uint32_t tb_next[2]; /* address of jump generated code */
186 /* list of TBs jumping to this one. This is a circular list using
187 the two least significant bits of the pointers to tell what is
188 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
190 struct TranslationBlock *jmp_next[2];
191 struct TranslationBlock *jmp_first;
194 static inline unsigned int tb_hash_func(target_ulong pc)
196 return pc & (CODE_GEN_HASH_SIZE - 1);
199 static inline unsigned int tb_phys_hash_func(unsigned long pc)
201 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
204 TranslationBlock *tb_alloc(target_ulong pc);
205 void tb_flush(CPUState *env);
206 void tb_link(TranslationBlock *tb);
207 void tb_link_phys(TranslationBlock *tb,
208 target_ulong phys_pc, target_ulong phys_page2);
210 extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
211 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
213 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
214 extern uint8_t *code_gen_ptr;
216 /* find a translation block in the translation cache. If not found,
217 return NULL and the pointer to the last element of the list in pptb */
218 static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
220 target_ulong cs_base,
223 TranslationBlock **ptb, *tb;
226 h = tb_hash_func(pc);
232 if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
234 ptb = &tb->hash_next;
241 #if defined(USE_DIRECT_JUMP)
243 #if defined(__powerpc__)
244 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
248 /* patch the branch destination */
249 ptr = (uint32_t *)jmp_addr;
251 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
254 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
255 asm volatile ("sync" : : : "memory");
256 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
257 asm volatile ("sync" : : : "memory");
258 asm volatile ("isync" : : : "memory");
260 #elif defined(__i386__)
261 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
263 /* patch the branch destination */
264 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
265 /* no need to flush icache explicitely */
269 static inline void tb_set_jmp_target(TranslationBlock *tb,
270 int n, unsigned long addr)
272 unsigned long offset;
274 offset = tb->tb_jmp_offset[n];
275 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
276 offset = tb->tb_jmp_offset[n + 2];
277 if (offset != 0xffff)
278 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
283 /* set the jump target */
284 static inline void tb_set_jmp_target(TranslationBlock *tb,
285 int n, unsigned long addr)
287 tb->tb_next[n] = addr;
292 static inline void tb_add_jump(TranslationBlock *tb, int n,
293 TranslationBlock *tb_next)
295 /* NOTE: this test is only needed for thread safety */
296 if (!tb->jmp_next[n]) {
297 /* patch the native jump address */
298 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
300 /* add in TB jmp circular list */
301 tb->jmp_next[n] = tb_next->jmp_first;
302 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
306 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
309 #define offsetof(type, field) ((size_t) &((type *)0)->field)
313 #define ASM_DATA_SECTION ".section \".data\"\n"
314 #define ASM_PREVIOUS_SECTION ".section .text\n"
315 #elif defined(__APPLE__)
316 #define ASM_DATA_SECTION ".data\n"
317 #define ASM_PREVIOUS_SECTION ".text\n"
319 #define ASM_DATA_SECTION ".section \".data\"\n"
320 #define ASM_PREVIOUS_SECTION ".previous\n"
323 #define ASM_OP_LABEL_NAME(n, opname) \
324 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
326 #if defined(__powerpc__)
328 /* we patch the jump instruction directly */
329 #define GOTO_TB(opname, tbparam, n)\
331 asm volatile (ASM_DATA_SECTION\
332 ASM_OP_LABEL_NAME(n, opname) ":\n"\
334 ASM_PREVIOUS_SECTION \
335 "b " ASM_NAME(__op_jmp) #n "\n"\
339 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
341 /* we patch the jump instruction directly */
342 #define GOTO_TB(opname, tbparam, n)\
344 asm volatile (".section .data\n"\
345 ASM_OP_LABEL_NAME(n, opname) ":\n"\
347 ASM_PREVIOUS_SECTION \
348 "jmp " ASM_NAME(__op_jmp) #n "\n"\
354 /* jump to next block operations (more portable code, does not need
355 cache flushing, but slower because of indirect jump) */
356 #define GOTO_TB(opname, tbparam, n)\
358 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
359 static void __attribute__((unused)) *__op_label ## n \
360 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
361 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
368 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
369 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
370 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
373 static inline int testandset (int *p)
376 __asm__ __volatile__ (
384 : "r" (p), "r" (1), "r" (0)
391 static inline int testandset (int *p)
393 long int readval = 0;
395 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
396 : "+m" (*p), "+a" (readval)
404 static inline int testandset (int *p)
406 long int readval = 0;
408 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
409 : "+m" (*p), "+a" (readval)
417 static inline int testandset (int *p)
421 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
424 : "r" (1), "a" (p), "0" (*p)
431 static inline int testandset (int *p)
436 __asm__ __volatile__ ("0: mov 1,%2\n"
443 : "=r" (ret), "=m" (*p), "=r" (one)
450 static inline int testandset (int *p)
454 __asm__ __volatile__("ldstub [%1], %0"
459 return (ret ? 1 : 0);
464 static inline int testandset (int *spinlock)
466 register unsigned int ret;
467 __asm__ __volatile__("swp %0, %1, [%2]"
469 : "0"(1), "r"(spinlock));
476 static inline int testandset (int *p)
479 __asm__ __volatile__("tas %1; sne %0"
488 #include <ia64intrin.h>
490 static inline int testandset (int *p)
492 return __sync_lock_test_and_set (p, 1);
496 typedef int spinlock_t;
498 #define SPIN_LOCK_UNLOCKED 0
500 #if defined(CONFIG_USER_ONLY)
501 static inline void spin_lock(spinlock_t *lock)
503 while (testandset(lock));
506 static inline void spin_unlock(spinlock_t *lock)
511 static inline int spin_trylock(spinlock_t *lock)
513 return !testandset(lock);
516 static inline void spin_lock(spinlock_t *lock)
520 static inline void spin_unlock(spinlock_t *lock)
524 static inline int spin_trylock(spinlock_t *lock)
530 extern spinlock_t tb_lock;
532 extern int tb_invalidated_flag;
534 #if !defined(CONFIG_USER_ONLY)
536 void tlb_fill(target_ulong addr, int is_write, int is_user,
539 #define ACCESS_TYPE 3
540 #define MEMSUFFIX _code
541 #define env cpu_single_env
544 #include "softmmu_header.h"
547 #include "softmmu_header.h"
550 #include "softmmu_header.h"
553 #include "softmmu_header.h"
561 #if defined(CONFIG_USER_ONLY)
562 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
567 /* NOTE: this function can trigger an exception */
568 /* NOTE2: the returned address is not exactly the physical address: it
569 is the offset relative to phys_ram_base */
570 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
572 int is_user, index, pd;
574 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
575 #if defined(TARGET_I386)
576 is_user = ((env->hflags & HF_CPL_MASK) == 3);
577 #elif defined (TARGET_PPC)
579 #elif defined (TARGET_MIPS)
580 is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
581 #elif defined (TARGET_SPARC)
582 is_user = (env->psrs == 0);
584 #error "Unimplemented !"
586 if (__builtin_expect(env->tlb_read[is_user][index].address !=
587 (addr & TARGET_PAGE_MASK), 0)) {
590 pd = env->tlb_read[is_user][index].address & ~TARGET_PAGE_MASK;
591 if (pd > IO_MEM_ROM) {
592 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x%08lx\n", addr);
594 return addr + env->tlb_read[is_user][index].addend - (unsigned long)phys_ram_base;
600 int kqemu_init(CPUState *env);
601 int kqemu_cpu_exec(CPUState *env);
602 void kqemu_flush_page(CPUState *env, target_ulong addr);
603 void kqemu_flush(CPUState *env, int global);
604 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
605 void kqemu_cpu_interrupt(CPUState *env);
607 static inline int kqemu_is_ok(CPUState *env)
609 return(env->kqemu_enabled &&
610 (env->hflags & HF_CPL_MASK) == 3 &&
611 (env->eflags & IOPL_MASK) != IOPL_MASK &&
612 (env->cr[0] & CR0_PE_MASK) &&
613 (env->eflags & IF_MASK) &&
614 !(env->eflags & VM_MASK));