4 #include "fpu/softfloat-types.h"
6 #ifdef CONFIG_MACHINE_BSWAP_H
7 # include <sys/endian.h>
8 # include <machine/bswap.h>
9 #elif defined(__FreeBSD__)
10 # include <sys/endian.h>
11 #elif defined(__HAIKU__)
13 #elif defined(CONFIG_BYTESWAP_H)
14 # include <byteswap.h>
16 static inline uint16_t bswap16(uint16_t x)
21 static inline uint32_t bswap32(uint32_t x)
26 static inline uint64_t bswap64(uint64_t x)
31 static inline uint16_t bswap16(uint16_t x)
33 return (((x & 0x00ff) << 8) |
37 static inline uint32_t bswap32(uint32_t x)
39 return (((x & 0x000000ffU) << 24) |
40 ((x & 0x0000ff00U) << 8) |
41 ((x & 0x00ff0000U) >> 8) |
42 ((x & 0xff000000U) >> 24));
45 static inline uint64_t bswap64(uint64_t x)
47 return (((x & 0x00000000000000ffULL) << 56) |
48 ((x & 0x000000000000ff00ULL) << 40) |
49 ((x & 0x0000000000ff0000ULL) << 24) |
50 ((x & 0x00000000ff000000ULL) << 8) |
51 ((x & 0x000000ff00000000ULL) >> 8) |
52 ((x & 0x0000ff0000000000ULL) >> 24) |
53 ((x & 0x00ff000000000000ULL) >> 40) |
54 ((x & 0xff00000000000000ULL) >> 56));
56 #endif /* ! CONFIG_MACHINE_BSWAP_H */
58 static inline void bswap16s(uint16_t *s)
63 static inline void bswap32s(uint32_t *s)
68 static inline void bswap64s(uint64_t *s)
73 #if defined(HOST_WORDS_BIGENDIAN)
74 #define be_bswap(v, size) (v)
75 #define le_bswap(v, size) glue(bswap, size)(v)
76 #define be_bswaps(v, size)
77 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
79 #define le_bswap(v, size) (v)
80 #define be_bswap(v, size) glue(bswap, size)(v)
81 #define le_bswaps(v, size)
82 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
86 * Endianness conversion functions between host cpu and specified endianness.
87 * (We list the complete set of prototypes produced by the macros below
88 * to assist people who search the headers to find their definitions.)
90 * uint16_t le16_to_cpu(uint16_t v);
91 * uint32_t le32_to_cpu(uint32_t v);
92 * uint64_t le64_to_cpu(uint64_t v);
93 * uint16_t be16_to_cpu(uint16_t v);
94 * uint32_t be32_to_cpu(uint32_t v);
95 * uint64_t be64_to_cpu(uint64_t v);
97 * Convert the value @v from the specified format to the native
98 * endianness of the host CPU by byteswapping if necessary, and
99 * return the converted value.
101 * uint16_t cpu_to_le16(uint16_t v);
102 * uint32_t cpu_to_le32(uint32_t v);
103 * uint64_t cpu_to_le64(uint64_t v);
104 * uint16_t cpu_to_be16(uint16_t v);
105 * uint32_t cpu_to_be32(uint32_t v);
106 * uint64_t cpu_to_be64(uint64_t v);
108 * Convert the value @v from the native endianness of the host CPU to
109 * the specified format by byteswapping if necessary, and return
110 * the converted value.
112 * void le16_to_cpus(uint16_t *v);
113 * void le32_to_cpus(uint32_t *v);
114 * void le64_to_cpus(uint64_t *v);
115 * void be16_to_cpus(uint16_t *v);
116 * void be32_to_cpus(uint32_t *v);
117 * void be64_to_cpus(uint64_t *v);
119 * Do an in-place conversion of the value pointed to by @v from the
120 * specified format to the native endianness of the host CPU.
122 * void cpu_to_le16s(uint16_t *v);
123 * void cpu_to_le32s(uint32_t *v);
124 * void cpu_to_le64s(uint64_t *v);
125 * void cpu_to_be16s(uint16_t *v);
126 * void cpu_to_be32s(uint32_t *v);
127 * void cpu_to_be64s(uint64_t *v);
129 * Do an in-place conversion of the value pointed to by @v from the
130 * native endianness of the host CPU to the specified format.
132 * Both X_to_cpu() and cpu_to_X() perform the same operation; you
133 * should use whichever one is better documenting of the function your
134 * code is performing.
136 * Do not use these functions for conversion of values which are in guest
137 * memory, since the data may not be sufficiently aligned for the host CPU's
138 * load and store instructions. Instead you should use the ld*_p() and
139 * st*_p() functions, which perform loads and stores of data of any
140 * required size and endianness and handle possible misalignment.
143 #define CPU_CONVERT(endian, size, type)\
144 static inline type endian ## size ## _to_cpu(type v)\
146 return glue(endian, _bswap)(v, size);\
149 static inline type cpu_to_ ## endian ## size(type v)\
151 return glue(endian, _bswap)(v, size);\
154 static inline void endian ## size ## _to_cpus(type *p)\
156 glue(endian, _bswaps)(p, size);\
159 static inline void cpu_to_ ## endian ## size ## s(type *p)\
161 glue(endian, _bswaps)(p, size);\
164 CPU_CONVERT(be, 16, uint16_t)
165 CPU_CONVERT(be, 32, uint32_t)
166 CPU_CONVERT(be, 64, uint64_t)
168 CPU_CONVERT(le, 16, uint16_t)
169 CPU_CONVERT(le, 32, uint32_t)
170 CPU_CONVERT(le, 64, uint64_t)
173 * Same as cpu_to_le{16,32}, except that gcc will figure the result is
174 * a compile-time constant if you pass in a constant. So this can be
175 * used to initialize static variables.
177 #if defined(HOST_WORDS_BIGENDIAN)
178 # define const_le32(_x) \
179 ((((_x) & 0x000000ffU) << 24) | \
180 (((_x) & 0x0000ff00U) << 8) | \
181 (((_x) & 0x00ff0000U) >> 8) | \
182 (((_x) & 0xff000000U) >> 24))
183 # define const_le16(_x) \
184 ((((_x) & 0x00ff) << 8) | \
185 (((_x) & 0xff00) >> 8))
187 # define const_le32(_x) (_x)
188 # define const_le16(_x) (_x)
191 /* Unions for reinterpreting between floats and integers. */
200 #if defined(HOST_WORDS_BIGENDIAN)
224 #if defined(HOST_WORDS_BIGENDIAN)
249 /* unaligned/endian-independent pointer access */
252 * the generic syntax is:
254 * load: ld{type}{sign}{size}_{endian}_p(ptr)
256 * store: st{type}{size}_{endian}_p(ptr, val)
258 * Note there are small differences with the softmmu access API!
261 * (empty): integer access
265 * (empty): for 32 or 64 bit sizes (including floats and doubles)
280 * (except for byte accesses, which have no endian infix).
282 * The target endian accessors are obviously only available to source
283 * files which are built per-target; they are defined in cpu-all.h.
285 * In all cases these functions take a host pointer.
286 * For accessors that take a guest address rather than a
287 * host address, see the cpu_{ld,st}_* accessors defined in
290 * For cases where the size to be used is not fixed at compile time,
292 * stn_{endian}_p(ptr, sz, val)
293 * which stores @val to @ptr as an @endian-order number @sz bytes in size
295 * ldn_{endian}_p(ptr, sz)
296 * which loads @sz bytes from @ptr as an unsigned @endian-order number
297 * and returns it in a uint64_t.
300 static inline int ldub_p(const void *ptr)
302 return *(uint8_t *)ptr;
305 static inline int ldsb_p(const void *ptr)
307 return *(int8_t *)ptr;
310 static inline void stb_p(void *ptr, uint8_t v)
316 * Any compiler worth its salt will turn these memcpy into native unaligned
317 * operations. Thus we don't need to play games with packed attributes, or
318 * inline byte-by-byte stores.
319 * Some compilation environments (eg some fortify-source implementations)
320 * may intercept memcpy() in a way that defeats the compiler optimization,
321 * though, so we use __builtin_memcpy() to give ourselves the best chance
322 * of good performance.
325 static inline int lduw_he_p(const void *ptr)
328 __builtin_memcpy(&r, ptr, sizeof(r));
332 static inline int ldsw_he_p(const void *ptr)
335 __builtin_memcpy(&r, ptr, sizeof(r));
339 static inline void stw_he_p(void *ptr, uint16_t v)
341 __builtin_memcpy(ptr, &v, sizeof(v));
344 static inline int ldl_he_p(const void *ptr)
347 __builtin_memcpy(&r, ptr, sizeof(r));
351 static inline void stl_he_p(void *ptr, uint32_t v)
353 __builtin_memcpy(ptr, &v, sizeof(v));
356 static inline uint64_t ldq_he_p(const void *ptr)
359 __builtin_memcpy(&r, ptr, sizeof(r));
363 static inline void stq_he_p(void *ptr, uint64_t v)
365 __builtin_memcpy(ptr, &v, sizeof(v));
368 static inline int lduw_le_p(const void *ptr)
370 return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
373 static inline int ldsw_le_p(const void *ptr)
375 return (int16_t)le_bswap(lduw_he_p(ptr), 16);
378 static inline int ldl_le_p(const void *ptr)
380 return le_bswap(ldl_he_p(ptr), 32);
383 static inline uint64_t ldq_le_p(const void *ptr)
385 return le_bswap(ldq_he_p(ptr), 64);
388 static inline void stw_le_p(void *ptr, uint16_t v)
390 stw_he_p(ptr, le_bswap(v, 16));
393 static inline void stl_le_p(void *ptr, uint32_t v)
395 stl_he_p(ptr, le_bswap(v, 32));
398 static inline void stq_le_p(void *ptr, uint64_t v)
400 stq_he_p(ptr, le_bswap(v, 64));
405 static inline float32 ldfl_le_p(const void *ptr)
412 static inline void stfl_le_p(void *ptr, float32 v)
419 static inline float64 ldfq_le_p(const void *ptr)
422 u.ll = ldq_le_p(ptr);
426 static inline void stfq_le_p(void *ptr, float64 v)
433 static inline int lduw_be_p(const void *ptr)
435 return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
438 static inline int ldsw_be_p(const void *ptr)
440 return (int16_t)be_bswap(lduw_he_p(ptr), 16);
443 static inline int ldl_be_p(const void *ptr)
445 return be_bswap(ldl_he_p(ptr), 32);
448 static inline uint64_t ldq_be_p(const void *ptr)
450 return be_bswap(ldq_he_p(ptr), 64);
453 static inline void stw_be_p(void *ptr, uint16_t v)
455 stw_he_p(ptr, be_bswap(v, 16));
458 static inline void stl_be_p(void *ptr, uint32_t v)
460 stl_he_p(ptr, be_bswap(v, 32));
463 static inline void stq_be_p(void *ptr, uint64_t v)
465 stq_he_p(ptr, be_bswap(v, 64));
470 static inline float32 ldfl_be_p(const void *ptr)
477 static inline void stfl_be_p(void *ptr, float32 v)
484 static inline float64 ldfq_be_p(const void *ptr)
487 u.ll = ldq_be_p(ptr);
491 static inline void stfq_be_p(void *ptr, float64 v)
498 static inline unsigned long leul_to_cpu(unsigned long v)
500 #if HOST_LONG_BITS == 32
501 return le_bswap(v, 32);
502 #elif HOST_LONG_BITS == 64
503 return le_bswap(v, 64);
505 # error Unknown sizeof long
509 /* Store v to p as a sz byte value in host order */
510 #define DO_STN_LDN_P(END) \
511 static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v) \
518 stw_ ## END ## _p(ptr, v); \
521 stl_ ## END ## _p(ptr, v); \
524 stq_ ## END ## _p(ptr, v); \
527 g_assert_not_reached(); \
530 static inline uint64_t ldn_## END ## _p(const void *ptr, int sz) \
534 return ldub_p(ptr); \
536 return lduw_ ## END ## _p(ptr); \
538 return (uint32_t)ldl_ ## END ## _p(ptr); \
540 return ldq_ ## END ## _p(ptr); \
542 g_assert_not_reached(); \