]> Git Repo - qemu.git/blob - hw/block/nvme.c
hw/mips/fuloong2e: Fix typo in Fuloong machine name
[qemu.git] / hw / block / nvme.c
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <[email protected]>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
13  *
14  *  http://www.nvmexpress.org/resources/
15  */
16
17 /**
18  * Usage: add options:
19  *      -drive file=<file>,if=none,id=<drive_id>
20  *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21  *              cmb_size_mb=<cmb_size_mb[optional]>, \
22  *              [pmrdev=<mem_backend_file_id>,] \
23  *              num_queues=<N[optional]>
24  *
25  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
26  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27  *
28  * cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
29  * in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
30  * both provided.
31  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
32  * For example:
33  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
34  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
35  */
36
37 #include "qemu/osdep.h"
38 #include "qemu/units.h"
39 #include "hw/block/block.h"
40 #include "hw/pci/msix.h"
41 #include "hw/pci/pci.h"
42 #include "hw/qdev-properties.h"
43 #include "migration/vmstate.h"
44 #include "sysemu/sysemu.h"
45 #include "qapi/error.h"
46 #include "qapi/visitor.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/block-backend.h"
49 #include "exec/ram_addr.h"
50
51 #include "qemu/log.h"
52 #include "qemu/module.h"
53 #include "qemu/cutils.h"
54 #include "trace.h"
55 #include "nvme.h"
56
57 #define NVME_GUEST_ERR(trace, fmt, ...) \
58     do { \
59         (trace_##trace)(__VA_ARGS__); \
60         qemu_log_mask(LOG_GUEST_ERROR, #trace \
61             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
62     } while (0)
63
64 static void nvme_process_sq(void *opaque);
65
66 static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
67 {
68     if (n->cmbsz && addr >= n->ctrl_mem.addr &&
69                 addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
70         memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
71     } else {
72         pci_dma_read(&n->parent_obj, addr, buf, size);
73     }
74 }
75
76 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
77 {
78     return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
79 }
80
81 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
82 {
83     return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
84 }
85
86 static void nvme_inc_cq_tail(NvmeCQueue *cq)
87 {
88     cq->tail++;
89     if (cq->tail >= cq->size) {
90         cq->tail = 0;
91         cq->phase = !cq->phase;
92     }
93 }
94
95 static void nvme_inc_sq_head(NvmeSQueue *sq)
96 {
97     sq->head = (sq->head + 1) % sq->size;
98 }
99
100 static uint8_t nvme_cq_full(NvmeCQueue *cq)
101 {
102     return (cq->tail + 1) % cq->size == cq->head;
103 }
104
105 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
106 {
107     return sq->head == sq->tail;
108 }
109
110 static void nvme_irq_check(NvmeCtrl *n)
111 {
112     if (msix_enabled(&(n->parent_obj))) {
113         return;
114     }
115     if (~n->bar.intms & n->irq_status) {
116         pci_irq_assert(&n->parent_obj);
117     } else {
118         pci_irq_deassert(&n->parent_obj);
119     }
120 }
121
122 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
123 {
124     if (cq->irq_enabled) {
125         if (msix_enabled(&(n->parent_obj))) {
126             trace_nvme_irq_msix(cq->vector);
127             msix_notify(&(n->parent_obj), cq->vector);
128         } else {
129             trace_nvme_irq_pin();
130             assert(cq->cqid < 64);
131             n->irq_status |= 1 << cq->cqid;
132             nvme_irq_check(n);
133         }
134     } else {
135         trace_nvme_irq_masked();
136     }
137 }
138
139 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
140 {
141     if (cq->irq_enabled) {
142         if (msix_enabled(&(n->parent_obj))) {
143             return;
144         } else {
145             assert(cq->cqid < 64);
146             n->irq_status &= ~(1 << cq->cqid);
147             nvme_irq_check(n);
148         }
149     }
150 }
151
152 static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
153                              uint64_t prp2, uint32_t len, NvmeCtrl *n)
154 {
155     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
156     trans_len = MIN(len, trans_len);
157     int num_prps = (len >> n->page_bits) + 1;
158
159     if (unlikely(!prp1)) {
160         trace_nvme_err_invalid_prp();
161         return NVME_INVALID_FIELD | NVME_DNR;
162     } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
163                prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
164         qsg->nsg = 0;
165         qemu_iovec_init(iov, num_prps);
166         qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
167     } else {
168         pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
169         qemu_sglist_add(qsg, prp1, trans_len);
170     }
171     len -= trans_len;
172     if (len) {
173         if (unlikely(!prp2)) {
174             trace_nvme_err_invalid_prp2_missing();
175             goto unmap;
176         }
177         if (len > n->page_size) {
178             uint64_t prp_list[n->max_prp_ents];
179             uint32_t nents, prp_trans;
180             int i = 0;
181
182             nents = (len + n->page_size - 1) >> n->page_bits;
183             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
184             nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
185             while (len != 0) {
186                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
187
188                 if (i == n->max_prp_ents - 1 && len > n->page_size) {
189                     if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
190                         trace_nvme_err_invalid_prplist_ent(prp_ent);
191                         goto unmap;
192                     }
193
194                     i = 0;
195                     nents = (len + n->page_size - 1) >> n->page_bits;
196                     prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
197                     nvme_addr_read(n, prp_ent, (void *)prp_list,
198                         prp_trans);
199                     prp_ent = le64_to_cpu(prp_list[i]);
200                 }
201
202                 if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
203                     trace_nvme_err_invalid_prplist_ent(prp_ent);
204                     goto unmap;
205                 }
206
207                 trans_len = MIN(len, n->page_size);
208                 if (qsg->nsg){
209                     qemu_sglist_add(qsg, prp_ent, trans_len);
210                 } else {
211                     qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
212                 }
213                 len -= trans_len;
214                 i++;
215             }
216         } else {
217             if (unlikely(prp2 & (n->page_size - 1))) {
218                 trace_nvme_err_invalid_prp2_align(prp2);
219                 goto unmap;
220             }
221             if (qsg->nsg) {
222                 qemu_sglist_add(qsg, prp2, len);
223             } else {
224                 qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
225             }
226         }
227     }
228     return NVME_SUCCESS;
229
230  unmap:
231     qemu_sglist_destroy(qsg);
232     return NVME_INVALID_FIELD | NVME_DNR;
233 }
234
235 static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
236                                    uint64_t prp1, uint64_t prp2)
237 {
238     QEMUSGList qsg;
239     QEMUIOVector iov;
240     uint16_t status = NVME_SUCCESS;
241
242     if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
243         return NVME_INVALID_FIELD | NVME_DNR;
244     }
245     if (qsg.nsg > 0) {
246         if (dma_buf_write(ptr, len, &qsg)) {
247             status = NVME_INVALID_FIELD | NVME_DNR;
248         }
249         qemu_sglist_destroy(&qsg);
250     } else {
251         if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
252             status = NVME_INVALID_FIELD | NVME_DNR;
253         }
254         qemu_iovec_destroy(&iov);
255     }
256     return status;
257 }
258
259 static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
260     uint64_t prp1, uint64_t prp2)
261 {
262     QEMUSGList qsg;
263     QEMUIOVector iov;
264     uint16_t status = NVME_SUCCESS;
265
266     trace_nvme_dma_read(prp1, prp2);
267
268     if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
269         return NVME_INVALID_FIELD | NVME_DNR;
270     }
271     if (qsg.nsg > 0) {
272         if (unlikely(dma_buf_read(ptr, len, &qsg))) {
273             trace_nvme_err_invalid_dma();
274             status = NVME_INVALID_FIELD | NVME_DNR;
275         }
276         qemu_sglist_destroy(&qsg);
277     } else {
278         if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
279             trace_nvme_err_invalid_dma();
280             status = NVME_INVALID_FIELD | NVME_DNR;
281         }
282         qemu_iovec_destroy(&iov);
283     }
284     return status;
285 }
286
287 static void nvme_post_cqes(void *opaque)
288 {
289     NvmeCQueue *cq = opaque;
290     NvmeCtrl *n = cq->ctrl;
291     NvmeRequest *req, *next;
292
293     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
294         NvmeSQueue *sq;
295         hwaddr addr;
296
297         if (nvme_cq_full(cq)) {
298             break;
299         }
300
301         QTAILQ_REMOVE(&cq->req_list, req, entry);
302         sq = req->sq;
303         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
304         req->cqe.sq_id = cpu_to_le16(sq->sqid);
305         req->cqe.sq_head = cpu_to_le16(sq->head);
306         addr = cq->dma_addr + cq->tail * n->cqe_size;
307         nvme_inc_cq_tail(cq);
308         pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
309             sizeof(req->cqe));
310         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
311     }
312     if (cq->tail != cq->head) {
313         nvme_irq_assert(n, cq);
314     }
315 }
316
317 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
318 {
319     assert(cq->cqid == req->sq->cqid);
320     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
321     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
322     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
323 }
324
325 static void nvme_rw_cb(void *opaque, int ret)
326 {
327     NvmeRequest *req = opaque;
328     NvmeSQueue *sq = req->sq;
329     NvmeCtrl *n = sq->ctrl;
330     NvmeCQueue *cq = n->cq[sq->cqid];
331
332     if (!ret) {
333         block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
334         req->status = NVME_SUCCESS;
335     } else {
336         block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
337         req->status = NVME_INTERNAL_DEV_ERROR;
338     }
339     if (req->has_sg) {
340         qemu_sglist_destroy(&req->qsg);
341     }
342     nvme_enqueue_req_completion(cq, req);
343 }
344
345 static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
346     NvmeRequest *req)
347 {
348     req->has_sg = false;
349     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
350          BLOCK_ACCT_FLUSH);
351     req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
352
353     return NVME_NO_COMPLETE;
354 }
355
356 static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
357     NvmeRequest *req)
358 {
359     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
360     const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
361     const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
362     uint64_t slba = le64_to_cpu(rw->slba);
363     uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
364     uint64_t offset = slba << data_shift;
365     uint32_t count = nlb << data_shift;
366
367     if (unlikely(slba + nlb > ns->id_ns.nsze)) {
368         trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
369         return NVME_LBA_RANGE | NVME_DNR;
370     }
371
372     req->has_sg = false;
373     block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
374                      BLOCK_ACCT_WRITE);
375     req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
376                                         BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
377     return NVME_NO_COMPLETE;
378 }
379
380 static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
381     NvmeRequest *req)
382 {
383     NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
384     uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
385     uint64_t slba = le64_to_cpu(rw->slba);
386     uint64_t prp1 = le64_to_cpu(rw->prp1);
387     uint64_t prp2 = le64_to_cpu(rw->prp2);
388
389     uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
390     uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
391     uint64_t data_size = (uint64_t)nlb << data_shift;
392     uint64_t data_offset = slba << data_shift;
393     int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
394     enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
395
396     trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
397
398     if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
399         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
400         trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
401         return NVME_LBA_RANGE | NVME_DNR;
402     }
403
404     if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
405         block_acct_invalid(blk_get_stats(n->conf.blk), acct);
406         return NVME_INVALID_FIELD | NVME_DNR;
407     }
408
409     dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
410     if (req->qsg.nsg > 0) {
411         req->has_sg = true;
412         req->aiocb = is_write ?
413             dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
414                           nvme_rw_cb, req) :
415             dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
416                          nvme_rw_cb, req);
417     } else {
418         req->has_sg = false;
419         req->aiocb = is_write ?
420             blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
421                             req) :
422             blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
423                            req);
424     }
425
426     return NVME_NO_COMPLETE;
427 }
428
429 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
430 {
431     NvmeNamespace *ns;
432     uint32_t nsid = le32_to_cpu(cmd->nsid);
433
434     if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
435         trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
436         return NVME_INVALID_NSID | NVME_DNR;
437     }
438
439     ns = &n->namespaces[nsid - 1];
440     switch (cmd->opcode) {
441     case NVME_CMD_FLUSH:
442         return nvme_flush(n, ns, cmd, req);
443     case NVME_CMD_WRITE_ZEROS:
444         return nvme_write_zeros(n, ns, cmd, req);
445     case NVME_CMD_WRITE:
446     case NVME_CMD_READ:
447         return nvme_rw(n, ns, cmd, req);
448     default:
449         trace_nvme_err_invalid_opc(cmd->opcode);
450         return NVME_INVALID_OPCODE | NVME_DNR;
451     }
452 }
453
454 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
455 {
456     n->sq[sq->sqid] = NULL;
457     timer_del(sq->timer);
458     timer_free(sq->timer);
459     g_free(sq->io_req);
460     if (sq->sqid) {
461         g_free(sq);
462     }
463 }
464
465 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
466 {
467     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
468     NvmeRequest *req, *next;
469     NvmeSQueue *sq;
470     NvmeCQueue *cq;
471     uint16_t qid = le16_to_cpu(c->qid);
472
473     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
474         trace_nvme_err_invalid_del_sq(qid);
475         return NVME_INVALID_QID | NVME_DNR;
476     }
477
478     trace_nvme_del_sq(qid);
479
480     sq = n->sq[qid];
481     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
482         req = QTAILQ_FIRST(&sq->out_req_list);
483         assert(req->aiocb);
484         blk_aio_cancel(req->aiocb);
485     }
486     if (!nvme_check_cqid(n, sq->cqid)) {
487         cq = n->cq[sq->cqid];
488         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
489
490         nvme_post_cqes(cq);
491         QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
492             if (req->sq == sq) {
493                 QTAILQ_REMOVE(&cq->req_list, req, entry);
494                 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
495             }
496         }
497     }
498
499     nvme_free_sq(sq, n);
500     return NVME_SUCCESS;
501 }
502
503 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
504     uint16_t sqid, uint16_t cqid, uint16_t size)
505 {
506     int i;
507     NvmeCQueue *cq;
508
509     sq->ctrl = n;
510     sq->dma_addr = dma_addr;
511     sq->sqid = sqid;
512     sq->size = size;
513     sq->cqid = cqid;
514     sq->head = sq->tail = 0;
515     sq->io_req = g_new(NvmeRequest, sq->size);
516
517     QTAILQ_INIT(&sq->req_list);
518     QTAILQ_INIT(&sq->out_req_list);
519     for (i = 0; i < sq->size; i++) {
520         sq->io_req[i].sq = sq;
521         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
522     }
523     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
524
525     assert(n->cq[cqid]);
526     cq = n->cq[cqid];
527     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
528     n->sq[sqid] = sq;
529 }
530
531 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
532 {
533     NvmeSQueue *sq;
534     NvmeCreateSq *c = (NvmeCreateSq *)cmd;
535
536     uint16_t cqid = le16_to_cpu(c->cqid);
537     uint16_t sqid = le16_to_cpu(c->sqid);
538     uint16_t qsize = le16_to_cpu(c->qsize);
539     uint16_t qflags = le16_to_cpu(c->sq_flags);
540     uint64_t prp1 = le64_to_cpu(c->prp1);
541
542     trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
543
544     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
545         trace_nvme_err_invalid_create_sq_cqid(cqid);
546         return NVME_INVALID_CQID | NVME_DNR;
547     }
548     if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
549         trace_nvme_err_invalid_create_sq_sqid(sqid);
550         return NVME_INVALID_QID | NVME_DNR;
551     }
552     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
553         trace_nvme_err_invalid_create_sq_size(qsize);
554         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
555     }
556     if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
557         trace_nvme_err_invalid_create_sq_addr(prp1);
558         return NVME_INVALID_FIELD | NVME_DNR;
559     }
560     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
561         trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
562         return NVME_INVALID_FIELD | NVME_DNR;
563     }
564     sq = g_malloc0(sizeof(*sq));
565     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
566     return NVME_SUCCESS;
567 }
568
569 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
570 {
571     n->cq[cq->cqid] = NULL;
572     timer_del(cq->timer);
573     timer_free(cq->timer);
574     msix_vector_unuse(&n->parent_obj, cq->vector);
575     if (cq->cqid) {
576         g_free(cq);
577     }
578 }
579
580 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
581 {
582     NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
583     NvmeCQueue *cq;
584     uint16_t qid = le16_to_cpu(c->qid);
585
586     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
587         trace_nvme_err_invalid_del_cq_cqid(qid);
588         return NVME_INVALID_CQID | NVME_DNR;
589     }
590
591     cq = n->cq[qid];
592     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
593         trace_nvme_err_invalid_del_cq_notempty(qid);
594         return NVME_INVALID_QUEUE_DEL;
595     }
596     nvme_irq_deassert(n, cq);
597     trace_nvme_del_cq(qid);
598     nvme_free_cq(cq, n);
599     return NVME_SUCCESS;
600 }
601
602 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
603     uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
604 {
605     cq->ctrl = n;
606     cq->cqid = cqid;
607     cq->size = size;
608     cq->dma_addr = dma_addr;
609     cq->phase = 1;
610     cq->irq_enabled = irq_enabled;
611     cq->vector = vector;
612     cq->head = cq->tail = 0;
613     QTAILQ_INIT(&cq->req_list);
614     QTAILQ_INIT(&cq->sq_list);
615     msix_vector_use(&n->parent_obj, cq->vector);
616     n->cq[cqid] = cq;
617     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
618 }
619
620 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
621 {
622     NvmeCQueue *cq;
623     NvmeCreateCq *c = (NvmeCreateCq *)cmd;
624     uint16_t cqid = le16_to_cpu(c->cqid);
625     uint16_t vector = le16_to_cpu(c->irq_vector);
626     uint16_t qsize = le16_to_cpu(c->qsize);
627     uint16_t qflags = le16_to_cpu(c->cq_flags);
628     uint64_t prp1 = le64_to_cpu(c->prp1);
629
630     trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
631                          NVME_CQ_FLAGS_IEN(qflags) != 0);
632
633     if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
634         trace_nvme_err_invalid_create_cq_cqid(cqid);
635         return NVME_INVALID_CQID | NVME_DNR;
636     }
637     if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
638         trace_nvme_err_invalid_create_cq_size(qsize);
639         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
640     }
641     if (unlikely(!prp1)) {
642         trace_nvme_err_invalid_create_cq_addr(prp1);
643         return NVME_INVALID_FIELD | NVME_DNR;
644     }
645     if (unlikely(vector > n->num_queues)) {
646         trace_nvme_err_invalid_create_cq_vector(vector);
647         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
648     }
649     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
650         trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
651         return NVME_INVALID_FIELD | NVME_DNR;
652     }
653
654     cq = g_malloc0(sizeof(*cq));
655     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
656         NVME_CQ_FLAGS_IEN(qflags));
657     return NVME_SUCCESS;
658 }
659
660 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
661 {
662     uint64_t prp1 = le64_to_cpu(c->prp1);
663     uint64_t prp2 = le64_to_cpu(c->prp2);
664
665     trace_nvme_identify_ctrl();
666
667     return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
668         prp1, prp2);
669 }
670
671 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
672 {
673     NvmeNamespace *ns;
674     uint32_t nsid = le32_to_cpu(c->nsid);
675     uint64_t prp1 = le64_to_cpu(c->prp1);
676     uint64_t prp2 = le64_to_cpu(c->prp2);
677
678     trace_nvme_identify_ns(nsid);
679
680     if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
681         trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
682         return NVME_INVALID_NSID | NVME_DNR;
683     }
684
685     ns = &n->namespaces[nsid - 1];
686
687     return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
688         prp1, prp2);
689 }
690
691 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
692 {
693     static const int data_len = 4 * KiB;
694     uint32_t min_nsid = le32_to_cpu(c->nsid);
695     uint64_t prp1 = le64_to_cpu(c->prp1);
696     uint64_t prp2 = le64_to_cpu(c->prp2);
697     uint32_t *list;
698     uint16_t ret;
699     int i, j = 0;
700
701     trace_nvme_identify_nslist(min_nsid);
702
703     list = g_malloc0(data_len);
704     for (i = 0; i < n->num_namespaces; i++) {
705         if (i < min_nsid) {
706             continue;
707         }
708         list[j++] = cpu_to_le32(i + 1);
709         if (j == data_len / sizeof(uint32_t)) {
710             break;
711         }
712     }
713     ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
714     g_free(list);
715     return ret;
716 }
717
718 static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
719 {
720     NvmeIdentify *c = (NvmeIdentify *)cmd;
721
722     switch (le32_to_cpu(c->cns)) {
723     case 0x00:
724         return nvme_identify_ns(n, c);
725     case 0x01:
726         return nvme_identify_ctrl(n, c);
727     case 0x02:
728         return nvme_identify_nslist(n, c);
729     default:
730         trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
731         return NVME_INVALID_FIELD | NVME_DNR;
732     }
733 }
734
735 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
736 {
737     trace_nvme_setfeat_timestamp(ts);
738
739     n->host_timestamp = le64_to_cpu(ts);
740     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
741 }
742
743 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
744 {
745     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
746     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
747
748     union nvme_timestamp {
749         struct {
750             uint64_t timestamp:48;
751             uint64_t sync:1;
752             uint64_t origin:3;
753             uint64_t rsvd1:12;
754         };
755         uint64_t all;
756     };
757
758     union nvme_timestamp ts;
759     ts.all = 0;
760
761     /*
762      * If the sum of the Timestamp value set by the host and the elapsed
763      * time exceeds 2^48, the value returned should be reduced modulo 2^48.
764      */
765     ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
766
767     /* If the host timestamp is non-zero, set the timestamp origin */
768     ts.origin = n->host_timestamp ? 0x01 : 0x00;
769
770     trace_nvme_getfeat_timestamp(ts.all);
771
772     return cpu_to_le64(ts.all);
773 }
774
775 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
776 {
777     uint64_t prp1 = le64_to_cpu(cmd->prp1);
778     uint64_t prp2 = le64_to_cpu(cmd->prp2);
779
780     uint64_t timestamp = nvme_get_timestamp(n);
781
782     return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
783                                  sizeof(timestamp), prp1, prp2);
784 }
785
786 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
787 {
788     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
789     uint32_t result;
790
791     switch (dw10) {
792     case NVME_VOLATILE_WRITE_CACHE:
793         result = blk_enable_write_cache(n->conf.blk);
794         trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
795         break;
796     case NVME_NUMBER_OF_QUEUES:
797         result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
798         trace_nvme_getfeat_numq(result);
799         break;
800     case NVME_TIMESTAMP:
801         return nvme_get_feature_timestamp(n, cmd);
802         break;
803     default:
804         trace_nvme_err_invalid_getfeat(dw10);
805         return NVME_INVALID_FIELD | NVME_DNR;
806     }
807
808     req->cqe.result = result;
809     return NVME_SUCCESS;
810 }
811
812 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
813 {
814     uint16_t ret;
815     uint64_t timestamp;
816     uint64_t prp1 = le64_to_cpu(cmd->prp1);
817     uint64_t prp2 = le64_to_cpu(cmd->prp2);
818
819     ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
820                                 sizeof(timestamp), prp1, prp2);
821     if (ret != NVME_SUCCESS) {
822         return ret;
823     }
824
825     nvme_set_timestamp(n, timestamp);
826
827     return NVME_SUCCESS;
828 }
829
830 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
831 {
832     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
833     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
834
835     switch (dw10) {
836     case NVME_VOLATILE_WRITE_CACHE:
837         blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
838         break;
839     case NVME_NUMBER_OF_QUEUES:
840         trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
841                                 ((dw11 >> 16) & 0xFFFF) + 1,
842                                 n->num_queues - 1, n->num_queues - 1);
843         req->cqe.result =
844             cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
845         break;
846
847     case NVME_TIMESTAMP:
848         return nvme_set_feature_timestamp(n, cmd);
849         break;
850
851     default:
852         trace_nvme_err_invalid_setfeat(dw10);
853         return NVME_INVALID_FIELD | NVME_DNR;
854     }
855     return NVME_SUCCESS;
856 }
857
858 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
859 {
860     switch (cmd->opcode) {
861     case NVME_ADM_CMD_DELETE_SQ:
862         return nvme_del_sq(n, cmd);
863     case NVME_ADM_CMD_CREATE_SQ:
864         return nvme_create_sq(n, cmd);
865     case NVME_ADM_CMD_DELETE_CQ:
866         return nvme_del_cq(n, cmd);
867     case NVME_ADM_CMD_CREATE_CQ:
868         return nvme_create_cq(n, cmd);
869     case NVME_ADM_CMD_IDENTIFY:
870         return nvme_identify(n, cmd);
871     case NVME_ADM_CMD_SET_FEATURES:
872         return nvme_set_feature(n, cmd, req);
873     case NVME_ADM_CMD_GET_FEATURES:
874         return nvme_get_feature(n, cmd, req);
875     default:
876         trace_nvme_err_invalid_admin_opc(cmd->opcode);
877         return NVME_INVALID_OPCODE | NVME_DNR;
878     }
879 }
880
881 static void nvme_process_sq(void *opaque)
882 {
883     NvmeSQueue *sq = opaque;
884     NvmeCtrl *n = sq->ctrl;
885     NvmeCQueue *cq = n->cq[sq->cqid];
886
887     uint16_t status;
888     hwaddr addr;
889     NvmeCmd cmd;
890     NvmeRequest *req;
891
892     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
893         addr = sq->dma_addr + sq->head * n->sqe_size;
894         nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
895         nvme_inc_sq_head(sq);
896
897         req = QTAILQ_FIRST(&sq->req_list);
898         QTAILQ_REMOVE(&sq->req_list, req, entry);
899         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
900         memset(&req->cqe, 0, sizeof(req->cqe));
901         req->cqe.cid = cmd.cid;
902
903         status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
904             nvme_admin_cmd(n, &cmd, req);
905         if (status != NVME_NO_COMPLETE) {
906             req->status = status;
907             nvme_enqueue_req_completion(cq, req);
908         }
909     }
910 }
911
912 static void nvme_clear_ctrl(NvmeCtrl *n)
913 {
914     int i;
915
916     blk_drain(n->conf.blk);
917
918     for (i = 0; i < n->num_queues; i++) {
919         if (n->sq[i] != NULL) {
920             nvme_free_sq(n->sq[i], n);
921         }
922     }
923     for (i = 0; i < n->num_queues; i++) {
924         if (n->cq[i] != NULL) {
925             nvme_free_cq(n->cq[i], n);
926         }
927     }
928
929     blk_flush(n->conf.blk);
930     n->bar.cc = 0;
931 }
932
933 static int nvme_start_ctrl(NvmeCtrl *n)
934 {
935     uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
936     uint32_t page_size = 1 << page_bits;
937
938     if (unlikely(n->cq[0])) {
939         trace_nvme_err_startfail_cq();
940         return -1;
941     }
942     if (unlikely(n->sq[0])) {
943         trace_nvme_err_startfail_sq();
944         return -1;
945     }
946     if (unlikely(!n->bar.asq)) {
947         trace_nvme_err_startfail_nbarasq();
948         return -1;
949     }
950     if (unlikely(!n->bar.acq)) {
951         trace_nvme_err_startfail_nbaracq();
952         return -1;
953     }
954     if (unlikely(n->bar.asq & (page_size - 1))) {
955         trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
956         return -1;
957     }
958     if (unlikely(n->bar.acq & (page_size - 1))) {
959         trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
960         return -1;
961     }
962     if (unlikely(NVME_CC_MPS(n->bar.cc) <
963                  NVME_CAP_MPSMIN(n->bar.cap))) {
964         trace_nvme_err_startfail_page_too_small(
965                     NVME_CC_MPS(n->bar.cc),
966                     NVME_CAP_MPSMIN(n->bar.cap));
967         return -1;
968     }
969     if (unlikely(NVME_CC_MPS(n->bar.cc) >
970                  NVME_CAP_MPSMAX(n->bar.cap))) {
971         trace_nvme_err_startfail_page_too_large(
972                     NVME_CC_MPS(n->bar.cc),
973                     NVME_CAP_MPSMAX(n->bar.cap));
974         return -1;
975     }
976     if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
977                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
978         trace_nvme_err_startfail_cqent_too_small(
979                     NVME_CC_IOCQES(n->bar.cc),
980                     NVME_CTRL_CQES_MIN(n->bar.cap));
981         return -1;
982     }
983     if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
984                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
985         trace_nvme_err_startfail_cqent_too_large(
986                     NVME_CC_IOCQES(n->bar.cc),
987                     NVME_CTRL_CQES_MAX(n->bar.cap));
988         return -1;
989     }
990     if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
991                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
992         trace_nvme_err_startfail_sqent_too_small(
993                     NVME_CC_IOSQES(n->bar.cc),
994                     NVME_CTRL_SQES_MIN(n->bar.cap));
995         return -1;
996     }
997     if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
998                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
999         trace_nvme_err_startfail_sqent_too_large(
1000                     NVME_CC_IOSQES(n->bar.cc),
1001                     NVME_CTRL_SQES_MAX(n->bar.cap));
1002         return -1;
1003     }
1004     if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
1005         trace_nvme_err_startfail_asqent_sz_zero();
1006         return -1;
1007     }
1008     if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
1009         trace_nvme_err_startfail_acqent_sz_zero();
1010         return -1;
1011     }
1012
1013     n->page_bits = page_bits;
1014     n->page_size = page_size;
1015     n->max_prp_ents = n->page_size / sizeof(uint64_t);
1016     n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
1017     n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
1018     nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
1019         NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
1020     nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
1021         NVME_AQA_ASQS(n->bar.aqa) + 1);
1022
1023     nvme_set_timestamp(n, 0ULL);
1024
1025     return 0;
1026 }
1027
1028 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
1029     unsigned size)
1030 {
1031     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
1032         NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
1033                        "MMIO write not 32-bit aligned,"
1034                        " offset=0x%"PRIx64"", offset);
1035         /* should be ignored, fall through for now */
1036     }
1037
1038     if (unlikely(size < sizeof(uint32_t))) {
1039         NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
1040                        "MMIO write smaller than 32-bits,"
1041                        " offset=0x%"PRIx64", size=%u",
1042                        offset, size);
1043         /* should be ignored, fall through for now */
1044     }
1045
1046     switch (offset) {
1047     case 0xc:   /* INTMS */
1048         if (unlikely(msix_enabled(&(n->parent_obj)))) {
1049             NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1050                            "undefined access to interrupt mask set"
1051                            " when MSI-X is enabled");
1052             /* should be ignored, fall through for now */
1053         }
1054         n->bar.intms |= data & 0xffffffff;
1055         n->bar.intmc = n->bar.intms;
1056         trace_nvme_mmio_intm_set(data & 0xffffffff,
1057                                  n->bar.intmc);
1058         nvme_irq_check(n);
1059         break;
1060     case 0x10:  /* INTMC */
1061         if (unlikely(msix_enabled(&(n->parent_obj)))) {
1062             NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
1063                            "undefined access to interrupt mask clr"
1064                            " when MSI-X is enabled");
1065             /* should be ignored, fall through for now */
1066         }
1067         n->bar.intms &= ~(data & 0xffffffff);
1068         n->bar.intmc = n->bar.intms;
1069         trace_nvme_mmio_intm_clr(data & 0xffffffff,
1070                                  n->bar.intmc);
1071         nvme_irq_check(n);
1072         break;
1073     case 0x14:  /* CC */
1074         trace_nvme_mmio_cfg(data & 0xffffffff);
1075         /* Windows first sends data, then sends enable bit */
1076         if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
1077             !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
1078         {
1079             n->bar.cc = data;
1080         }
1081
1082         if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
1083             n->bar.cc = data;
1084             if (unlikely(nvme_start_ctrl(n))) {
1085                 trace_nvme_err_startfail();
1086                 n->bar.csts = NVME_CSTS_FAILED;
1087             } else {
1088                 trace_nvme_mmio_start_success();
1089                 n->bar.csts = NVME_CSTS_READY;
1090             }
1091         } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
1092             trace_nvme_mmio_stopped();
1093             nvme_clear_ctrl(n);
1094             n->bar.csts &= ~NVME_CSTS_READY;
1095         }
1096         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
1097             trace_nvme_mmio_shutdown_set();
1098             nvme_clear_ctrl(n);
1099             n->bar.cc = data;
1100             n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
1101         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
1102             trace_nvme_mmio_shutdown_cleared();
1103             n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
1104             n->bar.cc = data;
1105         }
1106         break;
1107     case 0x1C:  /* CSTS */
1108         if (data & (1 << 4)) {
1109             NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
1110                            "attempted to W1C CSTS.NSSRO"
1111                            " but CAP.NSSRS is zero (not supported)");
1112         } else if (data != 0) {
1113             NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
1114                            "attempted to set a read only bit"
1115                            " of controller status");
1116         }
1117         break;
1118     case 0x20:  /* NSSR */
1119         if (data == 0x4E564D65) {
1120             trace_nvme_ub_mmiowr_ssreset_unsupported();
1121         } else {
1122             /* The spec says that writes of other values have no effect */
1123             return;
1124         }
1125         break;
1126     case 0x24:  /* AQA */
1127         n->bar.aqa = data & 0xffffffff;
1128         trace_nvme_mmio_aqattr(data & 0xffffffff);
1129         break;
1130     case 0x28:  /* ASQ */
1131         n->bar.asq = data;
1132         trace_nvme_mmio_asqaddr(data);
1133         break;
1134     case 0x2c:  /* ASQ hi */
1135         n->bar.asq |= data << 32;
1136         trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1137         break;
1138     case 0x30:  /* ACQ */
1139         trace_nvme_mmio_acqaddr(data);
1140         n->bar.acq = data;
1141         break;
1142     case 0x34:  /* ACQ hi */
1143         n->bar.acq |= data << 32;
1144         trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1145         break;
1146     case 0x38:  /* CMBLOC */
1147         NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1148                        "invalid write to reserved CMBLOC"
1149                        " when CMBSZ is zero, ignored");
1150         return;
1151     case 0x3C:  /* CMBSZ */
1152         NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1153                        "invalid write to read only CMBSZ, ignored");
1154         return;
1155     case 0xE00: /* PMRCAP */
1156         NVME_GUEST_ERR(nvme_ub_mmiowr_pmrcap_readonly,
1157                        "invalid write to PMRCAP register, ignored");
1158         return;
1159     case 0xE04: /* TODO PMRCTL */
1160         break;
1161     case 0xE08: /* PMRSTS */
1162         NVME_GUEST_ERR(nvme_ub_mmiowr_pmrsts_readonly,
1163                        "invalid write to PMRSTS register, ignored");
1164         return;
1165     case 0xE0C: /* PMREBS */
1166         NVME_GUEST_ERR(nvme_ub_mmiowr_pmrebs_readonly,
1167                        "invalid write to PMREBS register, ignored");
1168         return;
1169     case 0xE10: /* PMRSWTP */
1170         NVME_GUEST_ERR(nvme_ub_mmiowr_pmrswtp_readonly,
1171                        "invalid write to PMRSWTP register, ignored");
1172         return;
1173     case 0xE14: /* TODO PMRMSC */
1174          break;
1175     default:
1176         NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1177                        "invalid MMIO write,"
1178                        " offset=0x%"PRIx64", data=%"PRIx64"",
1179                        offset, data);
1180         break;
1181     }
1182 }
1183
1184 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1185 {
1186     NvmeCtrl *n = (NvmeCtrl *)opaque;
1187     uint8_t *ptr = (uint8_t *)&n->bar;
1188     uint64_t val = 0;
1189
1190     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1191         NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1192                        "MMIO read not 32-bit aligned,"
1193                        " offset=0x%"PRIx64"", addr);
1194         /* should RAZ, fall through for now */
1195     } else if (unlikely(size < sizeof(uint32_t))) {
1196         NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1197                        "MMIO read smaller than 32-bits,"
1198                        " offset=0x%"PRIx64"", addr);
1199         /* should RAZ, fall through for now */
1200     }
1201
1202     if (addr < sizeof(n->bar)) {
1203         /*
1204          * When PMRWBM bit 1 is set then read from
1205          * from PMRSTS should ensure prior writes
1206          * made it to persistent media
1207          */
1208         if (addr == 0xE08 &&
1209             (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
1210             qemu_ram_writeback(n->pmrdev->mr.ram_block,
1211                                0, n->pmrdev->size);
1212         }
1213         memcpy(&val, ptr + addr, size);
1214     } else {
1215         NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1216                        "MMIO read beyond last register,"
1217                        " offset=0x%"PRIx64", returning 0", addr);
1218     }
1219
1220     return val;
1221 }
1222
1223 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1224 {
1225     uint32_t qid;
1226
1227     if (unlikely(addr & ((1 << 2) - 1))) {
1228         NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1229                        "doorbell write not 32-bit aligned,"
1230                        " offset=0x%"PRIx64", ignoring", addr);
1231         return;
1232     }
1233
1234     if (((addr - 0x1000) >> 2) & 1) {
1235         /* Completion queue doorbell write */
1236
1237         uint16_t new_head = val & 0xffff;
1238         int start_sqs;
1239         NvmeCQueue *cq;
1240
1241         qid = (addr - (0x1000 + (1 << 2))) >> 3;
1242         if (unlikely(nvme_check_cqid(n, qid))) {
1243             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1244                            "completion queue doorbell write"
1245                            " for nonexistent queue,"
1246                            " sqid=%"PRIu32", ignoring", qid);
1247             return;
1248         }
1249
1250         cq = n->cq[qid];
1251         if (unlikely(new_head >= cq->size)) {
1252             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1253                            "completion queue doorbell write value"
1254                            " beyond queue size, sqid=%"PRIu32","
1255                            " new_head=%"PRIu16", ignoring",
1256                            qid, new_head);
1257             return;
1258         }
1259
1260         start_sqs = nvme_cq_full(cq) ? 1 : 0;
1261         cq->head = new_head;
1262         if (start_sqs) {
1263             NvmeSQueue *sq;
1264             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1265                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1266             }
1267             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1268         }
1269
1270         if (cq->tail == cq->head) {
1271             nvme_irq_deassert(n, cq);
1272         }
1273     } else {
1274         /* Submission queue doorbell write */
1275
1276         uint16_t new_tail = val & 0xffff;
1277         NvmeSQueue *sq;
1278
1279         qid = (addr - 0x1000) >> 3;
1280         if (unlikely(nvme_check_sqid(n, qid))) {
1281             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1282                            "submission queue doorbell write"
1283                            " for nonexistent queue,"
1284                            " sqid=%"PRIu32", ignoring", qid);
1285             return;
1286         }
1287
1288         sq = n->sq[qid];
1289         if (unlikely(new_tail >= sq->size)) {
1290             NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1291                            "submission queue doorbell write value"
1292                            " beyond queue size, sqid=%"PRIu32","
1293                            " new_tail=%"PRIu16", ignoring",
1294                            qid, new_tail);
1295             return;
1296         }
1297
1298         sq->tail = new_tail;
1299         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1300     }
1301 }
1302
1303 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1304     unsigned size)
1305 {
1306     NvmeCtrl *n = (NvmeCtrl *)opaque;
1307     if (addr < sizeof(n->bar)) {
1308         nvme_write_bar(n, addr, data, size);
1309     } else if (addr >= 0x1000) {
1310         nvme_process_db(n, addr, data);
1311     }
1312 }
1313
1314 static const MemoryRegionOps nvme_mmio_ops = {
1315     .read = nvme_mmio_read,
1316     .write = nvme_mmio_write,
1317     .endianness = DEVICE_LITTLE_ENDIAN,
1318     .impl = {
1319         .min_access_size = 2,
1320         .max_access_size = 8,
1321     },
1322 };
1323
1324 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1325     unsigned size)
1326 {
1327     NvmeCtrl *n = (NvmeCtrl *)opaque;
1328     stn_le_p(&n->cmbuf[addr], size, data);
1329 }
1330
1331 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1332 {
1333     NvmeCtrl *n = (NvmeCtrl *)opaque;
1334     return ldn_le_p(&n->cmbuf[addr], size);
1335 }
1336
1337 static const MemoryRegionOps nvme_cmb_ops = {
1338     .read = nvme_cmb_read,
1339     .write = nvme_cmb_write,
1340     .endianness = DEVICE_LITTLE_ENDIAN,
1341     .impl = {
1342         .min_access_size = 1,
1343         .max_access_size = 8,
1344     },
1345 };
1346
1347 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1348 {
1349     NvmeCtrl *n = NVME(pci_dev);
1350     NvmeIdCtrl *id = &n->id_ctrl;
1351
1352     int i;
1353     int64_t bs_size;
1354     uint8_t *pci_conf;
1355
1356     if (!n->num_queues) {
1357         error_setg(errp, "num_queues can't be zero");
1358         return;
1359     }
1360
1361     if (!n->conf.blk) {
1362         error_setg(errp, "drive property not set");
1363         return;
1364     }
1365
1366     bs_size = blk_getlength(n->conf.blk);
1367     if (bs_size < 0) {
1368         error_setg(errp, "could not get backing file size");
1369         return;
1370     }
1371
1372     if (!n->serial) {
1373         error_setg(errp, "serial property not set");
1374         return;
1375     }
1376
1377     if (!n->cmb_size_mb && n->pmrdev) {
1378         if (host_memory_backend_is_mapped(n->pmrdev)) {
1379             char *path = object_get_canonical_path_component(OBJECT(n->pmrdev));
1380             error_setg(errp, "can't use already busy memdev: %s", path);
1381             g_free(path);
1382             return;
1383         }
1384
1385         if (!is_power_of_2(n->pmrdev->size)) {
1386             error_setg(errp, "pmr backend size needs to be power of 2 in size");
1387             return;
1388         }
1389
1390         host_memory_backend_set_mapped(n->pmrdev, true);
1391     }
1392
1393     blkconf_blocksizes(&n->conf);
1394     if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1395                                        false, errp)) {
1396         return;
1397     }
1398
1399     pci_conf = pci_dev->config;
1400     pci_conf[PCI_INTERRUPT_PIN] = 1;
1401     pci_config_set_prog_interface(pci_dev->config, 0x2);
1402     pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1403     pcie_endpoint_cap_init(pci_dev, 0x80);
1404
1405     n->num_namespaces = 1;
1406     n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1407     n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1408
1409     n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1410     n->sq = g_new0(NvmeSQueue *, n->num_queues);
1411     n->cq = g_new0(NvmeCQueue *, n->num_queues);
1412
1413     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1414                           "nvme", n->reg_size);
1415     pci_register_bar(pci_dev, 0,
1416         PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1417         &n->iomem);
1418     msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL);
1419
1420     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1421     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1422     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1423     strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1424     strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1425     id->rab = 6;
1426     id->ieee[0] = 0x00;
1427     id->ieee[1] = 0x02;
1428     id->ieee[2] = 0xb3;
1429     id->oacs = cpu_to_le16(0);
1430     id->frmw = 7 << 1;
1431     id->lpa = 1 << 0;
1432     id->sqes = (0x6 << 4) | 0x6;
1433     id->cqes = (0x4 << 4) | 0x4;
1434     id->nn = cpu_to_le32(n->num_namespaces);
1435     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP);
1436     id->psd[0].mp = cpu_to_le16(0x9c4);
1437     id->psd[0].enlat = cpu_to_le32(0x10);
1438     id->psd[0].exlat = cpu_to_le32(0x4);
1439     if (blk_enable_write_cache(n->conf.blk)) {
1440         id->vwc = 1;
1441     }
1442
1443     n->bar.cap = 0;
1444     NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1445     NVME_CAP_SET_CQR(n->bar.cap, 1);
1446     NVME_CAP_SET_TO(n->bar.cap, 0xf);
1447     NVME_CAP_SET_CSS(n->bar.cap, 1);
1448     NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1449
1450     n->bar.vs = 0x00010200;
1451     n->bar.intmc = n->bar.intms = 0;
1452
1453     if (n->cmb_size_mb) {
1454
1455         NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1456         NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1457
1458         NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1459         NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1460         NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1461         NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1462         NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1463         NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1464         NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1465
1466         n->cmbloc = n->bar.cmbloc;
1467         n->cmbsz = n->bar.cmbsz;
1468
1469         n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1470         memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1471                               "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1472         pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1473             PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1474             PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1475
1476     } else if (n->pmrdev) {
1477         /* Controller Capabilities register */
1478         NVME_CAP_SET_PMRS(n->bar.cap, 1);
1479
1480         /* PMR Capabities register */
1481         n->bar.pmrcap = 0;
1482         NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
1483         NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
1484         NVME_PMRCAP_SET_BIR(n->bar.pmrcap, 2);
1485         NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
1486         /* Turn on bit 1 support */
1487         NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
1488         NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
1489         NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
1490
1491         /* PMR Control register */
1492         n->bar.pmrctl = 0;
1493         NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
1494
1495         /* PMR Status register */
1496         n->bar.pmrsts = 0;
1497         NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
1498         NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
1499         NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
1500         NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
1501
1502         /* PMR Elasticity Buffer Size register */
1503         n->bar.pmrebs = 0;
1504         NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
1505         NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
1506         NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
1507
1508         /* PMR Sustained Write Throughput register */
1509         n->bar.pmrswtp = 0;
1510         NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
1511         NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
1512
1513         /* PMR Memory Space Control register */
1514         n->bar.pmrmsc = 0;
1515         NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
1516         NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
1517
1518         pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
1519             PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1520             PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
1521     }
1522
1523     for (i = 0; i < n->num_namespaces; i++) {
1524         NvmeNamespace *ns = &n->namespaces[i];
1525         NvmeIdNs *id_ns = &ns->id_ns;
1526         id_ns->nsfeat = 0;
1527         id_ns->nlbaf = 0;
1528         id_ns->flbas = 0;
1529         id_ns->mc = 0;
1530         id_ns->dpc = 0;
1531         id_ns->dps = 0;
1532         id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1533         id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1534             cpu_to_le64(n->ns_size >>
1535                 id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1536     }
1537 }
1538
1539 static void nvme_exit(PCIDevice *pci_dev)
1540 {
1541     NvmeCtrl *n = NVME(pci_dev);
1542
1543     nvme_clear_ctrl(n);
1544     g_free(n->namespaces);
1545     g_free(n->cq);
1546     g_free(n->sq);
1547
1548     if (n->cmb_size_mb) {
1549         g_free(n->cmbuf);
1550     }
1551
1552     if (n->pmrdev) {
1553         host_memory_backend_set_mapped(n->pmrdev, false);
1554     }
1555     msix_uninit_exclusive_bar(pci_dev);
1556 }
1557
1558 static Property nvme_props[] = {
1559     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1560     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
1561                      HostMemoryBackend *),
1562     DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1563     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1564     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1565     DEFINE_PROP_END_OF_LIST(),
1566 };
1567
1568 static const VMStateDescription nvme_vmstate = {
1569     .name = "nvme",
1570     .unmigratable = 1,
1571 };
1572
1573 static void nvme_class_init(ObjectClass *oc, void *data)
1574 {
1575     DeviceClass *dc = DEVICE_CLASS(oc);
1576     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1577
1578     pc->realize = nvme_realize;
1579     pc->exit = nvme_exit;
1580     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1581     pc->vendor_id = PCI_VENDOR_ID_INTEL;
1582     pc->device_id = 0x5845;
1583     pc->revision = 2;
1584
1585     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1586     dc->desc = "Non-Volatile Memory Express";
1587     device_class_set_props(dc, nvme_props);
1588     dc->vmsd = &nvme_vmstate;
1589 }
1590
1591 static void nvme_instance_init(Object *obj)
1592 {
1593     NvmeCtrl *s = NVME(obj);
1594
1595     device_add_bootindex_property(obj, &s->conf.bootindex,
1596                                   "bootindex", "/namespace@1,0",
1597                                   DEVICE(obj));
1598 }
1599
1600 static const TypeInfo nvme_info = {
1601     .name          = TYPE_NVME,
1602     .parent        = TYPE_PCI_DEVICE,
1603     .instance_size = sizeof(NvmeCtrl),
1604     .class_init    = nvme_class_init,
1605     .instance_init = nvme_instance_init,
1606     .interfaces = (InterfaceInfo[]) {
1607         { INTERFACE_PCIE_DEVICE },
1608         { }
1609     },
1610 };
1611
1612 static void nvme_register_types(void)
1613 {
1614     type_register_static(&nvme_info);
1615 }
1616
1617 type_init(nvme_register_types)
This page took 0.119235 seconds and 4 git commands to generate.