4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
23 #include "exec/helper-proto.h"
24 #include "internals.h"
25 #include "exec/exec-all.h"
26 #include "exec/cpu_ldst.h"
28 #define SIGNBIT (uint32_t)0x80000000
29 #define SIGNBIT64 ((uint64_t)1 << 63)
31 static void raise_exception(CPUARMState *env, uint32_t excp,
32 uint32_t syndrome, uint32_t target_el)
34 CPUState *cs = CPU(arm_env_get_cpu(env));
36 if ((env->cp15.hcr_el2 & HCR_TGE) &&
37 target_el == 1 && !arm_is_secure(env)) {
39 * Redirect NS EL1 exceptions to NS EL2. These are reported with
40 * their original syndrome register value, with the exception of
41 * SIMD/FP access traps, which are reported as uncategorized
42 * (see DDI0478C.a D1.10.4)
45 if (syndrome >> ARM_EL_EC_SHIFT == EC_ADVSIMDFPACCESSTRAP) {
46 syndrome = syn_uncategorized();
50 assert(!excp_is_internal(excp));
51 cs->exception_index = excp;
52 env->exception.syndrome = syndrome;
53 env->exception.target_el = target_el;
57 static int exception_target_el(CPUARMState *env)
59 int target_el = MAX(1, arm_current_el(env));
61 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
62 * to EL3 in this case.
64 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
71 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
78 for (shift = 0; shift < 32; shift += 8) {
79 uint32_t index = (ireg >> shift) & 0xff;
80 if (index < maxindex) {
81 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
84 val |= def & (0xff << shift);
90 #if !defined(CONFIG_USER_ONLY)
92 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
93 unsigned int target_el,
94 bool same_el, bool ea,
95 bool s1ptw, bool is_write,
100 /* ISV is only set for data aborts routed to EL2 and
101 * never for stage-1 page table walks faulting on stage 2.
103 * Furthermore, ISV is only set for certain kinds of load/stores.
104 * If the template syndrome does not have ISV set, we should leave
107 * See ARMv8 specs, D7-1974:
108 * ISS encoding for an exception from a Data Abort, the
111 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
112 syn = syn_data_abort_no_iss(same_el,
113 ea, 0, s1ptw, is_write, fsc);
115 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
116 * syndrome created at translation time.
117 * Now we create the runtime syndrome with the remaining fields.
119 syn = syn_data_abort_with_iss(same_el,
121 ea, 0, s1ptw, is_write, fsc,
123 /* Merge the runtime syndrome with the template syndrome. */
129 static void deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
130 int mmu_idx, ARMMMUFaultInfo *fi)
132 CPUARMState *env = &cpu->env;
135 uint32_t syn, exc, fsr, fsc;
136 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
138 target_el = exception_target_el(env);
141 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
143 same_el = (arm_current_el(env) == target_el);
145 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
146 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
147 /* LPAE format fault status register : bottom 6 bits are
148 * status code in the same form as needed for syndrome
150 fsr = arm_fi_to_lfsc(fi);
151 fsc = extract32(fsr, 0, 6);
153 fsr = arm_fi_to_sfsc(fi);
154 /* Short format FSR : this fault will never actually be reported
155 * to an EL that uses a syndrome register. Use a (currently)
156 * reserved FSR code in case the constructed syndrome does leak
157 * into the guest somehow.
162 if (access_type == MMU_INST_FETCH) {
163 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
164 exc = EXCP_PREFETCH_ABORT;
166 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
167 same_el, fi->ea, fi->s1ptw,
168 access_type == MMU_DATA_STORE,
170 if (access_type == MMU_DATA_STORE
171 && arm_feature(env, ARM_FEATURE_V6)) {
174 exc = EXCP_DATA_ABORT;
177 env->exception.vaddress = addr;
178 env->exception.fsr = fsr;
179 raise_exception(env, exc, syn, target_el);
182 /* try to fill the TLB and return an exception if error. If retaddr is
183 * NULL, it means that the function was called in C code (i.e. not
184 * from generated code or from helper.c)
186 void tlb_fill(CPUState *cs, target_ulong addr, int size,
187 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
190 ARMMMUFaultInfo fi = {};
192 ret = arm_tlb_fill(cs, addr, access_type, mmu_idx, &fi);
194 ARMCPU *cpu = ARM_CPU(cs);
196 /* now we have a real cpu fault */
197 cpu_restore_state(cs, retaddr, true);
199 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
203 /* Raise a data fault alignment exception for the specified virtual address */
204 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
205 MMUAccessType access_type,
206 int mmu_idx, uintptr_t retaddr)
208 ARMCPU *cpu = ARM_CPU(cs);
209 ARMMMUFaultInfo fi = {};
211 /* now we have a real cpu fault */
212 cpu_restore_state(cs, retaddr, true);
214 fi.type = ARMFault_Alignment;
215 deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
218 /* arm_cpu_do_transaction_failed: handle a memory system error response
219 * (eg "no device/memory present at address") by raising an external abort
222 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
223 vaddr addr, unsigned size,
224 MMUAccessType access_type,
225 int mmu_idx, MemTxAttrs attrs,
226 MemTxResult response, uintptr_t retaddr)
228 ARMCPU *cpu = ARM_CPU(cs);
229 ARMMMUFaultInfo fi = {};
231 /* now we have a real cpu fault */
232 cpu_restore_state(cs, retaddr, true);
234 fi.ea = arm_extabort_type(response);
235 fi.type = ARMFault_SyncExternal;
236 deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
239 #endif /* !defined(CONFIG_USER_ONLY) */
241 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
243 uint32_t res = a + b;
244 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
249 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
251 uint32_t res = a + b;
252 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
254 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
259 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
261 uint32_t res = a - b;
262 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
264 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
269 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
272 if (val >= 0x40000000) {
275 } else if (val <= (int32_t)0xc0000000) {
284 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
286 uint32_t res = a + b;
294 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
296 uint32_t res = a - b;
304 /* Signed saturation. */
305 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
311 mask = (1u << shift) - 1;
315 } else if (top < -1) {
322 /* Unsigned saturation. */
323 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
327 max = (1u << shift) - 1;
331 } else if (val > max) {
338 /* Signed saturate. */
339 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
341 return do_ssat(env, x, shift);
344 /* Dual halfword signed saturate. */
345 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
349 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
350 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
354 /* Unsigned saturate. */
355 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
357 return do_usat(env, x, shift);
360 /* Dual halfword unsigned saturate. */
361 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
365 res = (uint16_t)do_usat(env, (int16_t)x, shift);
366 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
370 void HELPER(setend)(CPUARMState *env)
372 env->uncached_cpsr ^= CPSR_E;
375 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
376 * The function returns the target EL (1-3) if the instruction is to be trapped;
377 * otherwise it returns 0 indicating it is not trapped.
379 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
381 int cur_el = arm_current_el(env);
384 if (arm_feature(env, ARM_FEATURE_M)) {
385 /* M profile cores can never trap WFI/WFE. */
389 /* If we are currently in EL0 then we need to check if SCTLR is set up for
390 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
392 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
395 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
396 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
397 /* Secure EL0 and Secure PL1 is at EL3 */
403 if (!(env->cp15.sctlr_el[target_el] & mask)) {
408 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
409 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
410 * bits will be zero indicating no trap.
412 if (cur_el < 2 && !arm_is_secure(env)) {
413 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
414 if (env->cp15.hcr_el2 & mask) {
419 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
421 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
422 if (env->cp15.scr_el3 & mask) {
430 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
432 CPUState *cs = CPU(arm_env_get_cpu(env));
433 int target_el = check_wfx_trap(env, false);
435 if (cpu_has_work(cs)) {
436 /* Don't bother to go into our "low power state" if
437 * we would just wake up immediately.
444 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
448 cs->exception_index = EXCP_HLT;
453 void HELPER(wfe)(CPUARMState *env)
455 /* This is a hint instruction that is semantically different
456 * from YIELD even though we currently implement it identically.
457 * Don't actually halt the CPU, just yield back to top
458 * level loop. This is not going into a "low power state"
459 * (ie halting until some event occurs), so we never take
460 * a configurable trap to a different exception level.
465 void HELPER(yield)(CPUARMState *env)
467 ARMCPU *cpu = arm_env_get_cpu(env);
468 CPUState *cs = CPU(cpu);
470 /* This is a non-trappable hint instruction that generally indicates
471 * that the guest is currently busy-looping. Yield control back to the
472 * top level loop so that a more deserving VCPU has a chance to run.
474 cs->exception_index = EXCP_YIELD;
478 /* Raise an internal-to-QEMU exception. This is limited to only
479 * those EXCP values which are special cases for QEMU to interrupt
480 * execution and not to be used for exceptions which are passed to
481 * the guest (those must all have syndrome information and thus should
482 * use exception_with_syndrome).
484 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
486 CPUState *cs = CPU(arm_env_get_cpu(env));
488 assert(excp_is_internal(excp));
489 cs->exception_index = excp;
493 /* Raise an exception with the specified syndrome register value */
494 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
495 uint32_t syndrome, uint32_t target_el)
497 raise_exception(env, excp, syndrome, target_el);
500 /* Raise an EXCP_BKPT with the specified syndrome register value,
501 * targeting the correct exception level for debug exceptions.
503 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
505 /* FSR will only be used if the debug target EL is AArch32. */
506 env->exception.fsr = arm_debug_exception_fsr(env);
507 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
508 * values to the guest that it shouldn't be able to see at its
509 * exception/security level.
511 env->exception.vaddress = 0;
512 raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
515 uint32_t HELPER(cpsr_read)(CPUARMState *env)
517 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
520 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
522 cpsr_write(env, val, mask, CPSRWriteByInstr);
525 /* Write the CPSR for a 32-bit exception return */
526 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
528 qemu_mutex_lock_iothread();
529 arm_call_pre_el_change_hook(arm_env_get_cpu(env));
530 qemu_mutex_unlock_iothread();
532 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
534 /* Generated code has already stored the new PC value, but
535 * without masking out its low bits, because which bits need
536 * masking depends on whether we're returning to Thumb or ARM
537 * state. Do the masking now.
539 env->regs[15] &= (env->thumb ? ~1 : ~3);
541 qemu_mutex_lock_iothread();
542 arm_call_el_change_hook(arm_env_get_cpu(env));
543 qemu_mutex_unlock_iothread();
546 /* Access to user mode registers from privileged modes. */
547 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
552 val = env->banked_r13[BANK_USRSYS];
553 } else if (regno == 14) {
554 val = env->banked_r14[BANK_USRSYS];
555 } else if (regno >= 8
556 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
557 val = env->usr_regs[regno - 8];
559 val = env->regs[regno];
564 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
567 env->banked_r13[BANK_USRSYS] = val;
568 } else if (regno == 14) {
569 env->banked_r14[BANK_USRSYS] = val;
570 } else if (regno >= 8
571 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
572 env->usr_regs[regno - 8] = val;
574 env->regs[regno] = val;
578 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
580 if ((env->uncached_cpsr & CPSR_M) == mode) {
583 env->banked_r13[bank_number(mode)] = val;
587 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
589 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
590 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
591 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
593 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
594 exception_target_el(env));
597 if ((env->uncached_cpsr & CPSR_M) == mode) {
598 return env->regs[13];
600 return env->banked_r13[bank_number(mode)];
604 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
607 /* Raise an exception if the requested access is one of the UNPREDICTABLE
608 * cases; otherwise return. This broadly corresponds to the pseudocode
609 * BankedRegisterAccessValid() and SPSRAccessValid(),
610 * except that we have already handled some cases at translate time.
612 int curmode = env->uncached_cpsr & CPSR_M;
614 if (curmode == tgtmode) {
618 if (tgtmode == ARM_CPU_MODE_USR) {
621 if (curmode != ARM_CPU_MODE_FIQ) {
626 if (curmode == ARM_CPU_MODE_SYS) {
631 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
640 if (tgtmode == ARM_CPU_MODE_HYP) {
642 case 17: /* ELR_Hyp */
643 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
648 if (curmode != ARM_CPU_MODE_MON) {
658 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
659 exception_target_el(env));
662 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
665 msr_mrs_banked_exc_checks(env, tgtmode, regno);
669 env->banked_spsr[bank_number(tgtmode)] = value;
671 case 17: /* ELR_Hyp */
672 env->elr_el[2] = value;
675 env->banked_r13[bank_number(tgtmode)] = value;
678 env->banked_r14[bank_number(tgtmode)] = value;
682 case ARM_CPU_MODE_USR:
683 env->usr_regs[regno - 8] = value;
685 case ARM_CPU_MODE_FIQ:
686 env->fiq_regs[regno - 8] = value;
689 g_assert_not_reached();
693 g_assert_not_reached();
697 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
699 msr_mrs_banked_exc_checks(env, tgtmode, regno);
703 return env->banked_spsr[bank_number(tgtmode)];
704 case 17: /* ELR_Hyp */
705 return env->elr_el[2];
707 return env->banked_r13[bank_number(tgtmode)];
709 return env->banked_r14[bank_number(tgtmode)];
712 case ARM_CPU_MODE_USR:
713 return env->usr_regs[regno - 8];
714 case ARM_CPU_MODE_FIQ:
715 return env->fiq_regs[regno - 8];
717 g_assert_not_reached();
720 g_assert_not_reached();
724 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
727 const ARMCPRegInfo *ri = rip;
730 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
731 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
732 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
739 switch (ri->accessfn(env, ri, isread)) {
743 target_el = exception_target_el(env);
745 case CP_ACCESS_TRAP_EL2:
746 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
747 * a bug in the access function.
749 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
752 case CP_ACCESS_TRAP_EL3:
755 case CP_ACCESS_TRAP_UNCATEGORIZED:
756 target_el = exception_target_el(env);
757 syndrome = syn_uncategorized();
759 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
761 syndrome = syn_uncategorized();
763 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
765 syndrome = syn_uncategorized();
767 case CP_ACCESS_TRAP_FP_EL2:
769 /* Since we are an implementation that takes exceptions on a trapped
770 * conditional insn only if the insn has passed its condition code
771 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
772 * (which is also the required value for AArch64 traps).
774 syndrome = syn_fp_access_trap(1, 0xe, false);
776 case CP_ACCESS_TRAP_FP_EL3:
778 syndrome = syn_fp_access_trap(1, 0xe, false);
781 g_assert_not_reached();
784 raise_exception(env, EXCP_UDEF, syndrome, target_el);
787 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
789 const ARMCPRegInfo *ri = rip;
791 if (ri->type & ARM_CP_IO) {
792 qemu_mutex_lock_iothread();
793 ri->writefn(env, ri, value);
794 qemu_mutex_unlock_iothread();
796 ri->writefn(env, ri, value);
800 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
802 const ARMCPRegInfo *ri = rip;
805 if (ri->type & ARM_CP_IO) {
806 qemu_mutex_lock_iothread();
807 res = ri->readfn(env, ri);
808 qemu_mutex_unlock_iothread();
810 res = ri->readfn(env, ri);
816 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
818 const ARMCPRegInfo *ri = rip;
820 if (ri->type & ARM_CP_IO) {
821 qemu_mutex_lock_iothread();
822 ri->writefn(env, ri, value);
823 qemu_mutex_unlock_iothread();
825 ri->writefn(env, ri, value);
829 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
831 const ARMCPRegInfo *ri = rip;
834 if (ri->type & ARM_CP_IO) {
835 qemu_mutex_lock_iothread();
836 res = ri->readfn(env, ri);
837 qemu_mutex_unlock_iothread();
839 res = ri->readfn(env, ri);
845 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
847 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
848 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
849 * to catch that case at translate time.
851 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
852 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
853 extract32(op, 3, 3), 4,
855 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
859 case 0x05: /* SPSel */
860 update_spsel(env, imm);
862 case 0x1e: /* DAIFSet */
863 env->daif |= (imm << 6) & PSTATE_DAIF;
865 case 0x1f: /* DAIFClear */
866 env->daif &= ~((imm << 6) & PSTATE_DAIF);
869 g_assert_not_reached();
873 void HELPER(clear_pstate_ss)(CPUARMState *env)
875 env->pstate &= ~PSTATE_SS;
878 void HELPER(pre_hvc)(CPUARMState *env)
880 ARMCPU *cpu = arm_env_get_cpu(env);
881 int cur_el = arm_current_el(env);
882 /* FIXME: Use actual secure state. */
886 if (arm_is_psci_call(cpu, EXCP_HVC)) {
887 /* If PSCI is enabled and this looks like a valid PSCI call then
888 * that overrides the architecturally mandated HVC behaviour.
893 if (!arm_feature(env, ARM_FEATURE_EL2)) {
894 /* If EL2 doesn't exist, HVC always UNDEFs */
896 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
897 /* EL3.HCE has priority over EL2.HCD. */
898 undef = !(env->cp15.scr_el3 & SCR_HCE);
900 undef = env->cp15.hcr_el2 & HCR_HCD;
903 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
904 * For ARMv8/AArch64, HVC is allowed in EL3.
905 * Note that we've already trapped HVC from EL0 at translation
908 if (secure && (!is_a64(env) || cur_el == 1)) {
913 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
914 exception_target_el(env));
918 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
920 ARMCPU *cpu = arm_env_get_cpu(env);
921 int cur_el = arm_current_el(env);
922 bool secure = arm_is_secure(env);
923 bool smd = env->cp15.scr_el3 & SCR_SMD;
924 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
925 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
926 * extensions, SMD only applies to NS state.
927 * On ARMv7 without the Virtualization extensions, the SMD bit
928 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
929 * so we need not special case this here.
931 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
933 if (!arm_feature(env, ARM_FEATURE_EL3) &&
934 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
935 /* If we have no EL3 then SMC always UNDEFs and can't be
936 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
937 * firmware within QEMU, and we want an EL2 guest to be able
938 * to forbid its EL1 from making PSCI calls into QEMU's
939 * "firmware" via HCR.TSC, so for these purposes treat
940 * PSCI-via-SMC as implying an EL3.
943 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
944 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
945 * We also want an EL2 guest to be able to forbid its EL1 from
946 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
948 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
951 /* If PSCI is enabled and this looks like a valid PSCI call then
952 * suppress the UNDEF -- we'll catch the SMC exception and
953 * implement the PSCI call behaviour there.
955 if (undef && !arm_is_psci_call(cpu, EXCP_SMC)) {
956 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
957 exception_target_el(env));
961 static int el_from_spsr(uint32_t spsr)
963 /* Return the exception level that this SPSR is requesting a return to,
964 * or -1 if it is invalid (an illegal return)
966 if (spsr & PSTATE_nRW) {
967 switch (spsr & CPSR_M) {
968 case ARM_CPU_MODE_USR:
970 case ARM_CPU_MODE_HYP:
972 case ARM_CPU_MODE_FIQ:
973 case ARM_CPU_MODE_IRQ:
974 case ARM_CPU_MODE_SVC:
975 case ARM_CPU_MODE_ABT:
976 case ARM_CPU_MODE_UND:
977 case ARM_CPU_MODE_SYS:
979 case ARM_CPU_MODE_MON:
980 /* Returning to Mon from AArch64 is never possible,
981 * so this is an illegal return.
987 if (extract32(spsr, 1, 1)) {
988 /* Return with reserved M[1] bit set */
991 if (extract32(spsr, 0, 4) == 1) {
992 /* return to EL0 with M[0] bit set */
995 return extract32(spsr, 2, 2);
999 void HELPER(exception_return)(CPUARMState *env)
1001 int cur_el = arm_current_el(env);
1002 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
1003 uint32_t spsr = env->banked_spsr[spsr_idx];
1005 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
1007 aarch64_save_sp(env, cur_el);
1009 arm_clear_exclusive(env);
1011 /* We must squash the PSTATE.SS bit to zero unless both of the
1013 * 1. debug exceptions are currently disabled
1014 * 2. singlestep will be active in the EL we return to
1015 * We check 1 here and 2 after we've done the pstate/cpsr write() to
1016 * transition to the EL we're going to.
1018 if (arm_generate_debug_exceptions(env)) {
1022 new_el = el_from_spsr(spsr);
1024 goto illegal_return;
1027 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
1028 /* Disallow return to an EL which is unimplemented or higher
1029 * than the current one.
1031 goto illegal_return;
1034 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
1035 /* Return to an EL which is configured for a different register width */
1036 goto illegal_return;
1039 if (new_el == 2 && arm_is_secure_below_el3(env)) {
1040 /* Return to the non-existent secure-EL2 */
1041 goto illegal_return;
1044 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
1045 && !arm_is_secure_below_el3(env)) {
1046 goto illegal_return;
1049 qemu_mutex_lock_iothread();
1050 arm_call_pre_el_change_hook(arm_env_get_cpu(env));
1051 qemu_mutex_unlock_iothread();
1053 if (!return_to_aa64) {
1055 /* We do a raw CPSR write because aarch64_sync_64_to_32()
1056 * will sort the register banks out for us, and we've already
1057 * caught all the bad-mode cases in el_from_spsr().
1059 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
1060 if (!arm_singlestep_active(env)) {
1061 env->uncached_cpsr &= ~PSTATE_SS;
1063 aarch64_sync_64_to_32(env);
1065 if (spsr & CPSR_T) {
1066 env->regs[15] = env->elr_el[cur_el] & ~0x1;
1068 env->regs[15] = env->elr_el[cur_el] & ~0x3;
1070 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1071 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1072 cur_el, new_el, env->regs[15]);
1075 pstate_write(env, spsr);
1076 if (!arm_singlestep_active(env)) {
1077 env->pstate &= ~PSTATE_SS;
1079 aarch64_restore_sp(env, new_el);
1080 env->pc = env->elr_el[cur_el];
1081 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1082 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1083 cur_el, new_el, env->pc);
1086 qemu_mutex_lock_iothread();
1087 arm_call_el_change_hook(arm_env_get_cpu(env));
1088 qemu_mutex_unlock_iothread();
1093 /* Illegal return events of various kinds have architecturally
1094 * mandated behaviour:
1095 * restore NZCV and DAIF from SPSR_ELx
1097 * restore PC from ELR_ELx
1098 * no change to exception level, execution state or stack pointer
1100 env->pstate |= PSTATE_IL;
1101 env->pc = env->elr_el[cur_el];
1102 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1103 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1104 pstate_write(env, spsr);
1105 if (!arm_singlestep_active(env)) {
1106 env->pstate &= ~PSTATE_SS;
1108 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1109 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1112 /* Return true if the linked breakpoint entry lbn passes its checks */
1113 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
1115 CPUARMState *env = &cpu->env;
1116 uint64_t bcr = env->cp15.dbgbcr[lbn];
1117 int brps = extract32(cpu->dbgdidr, 24, 4);
1118 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
1120 uint32_t contextidr;
1122 /* Links to unimplemented or non-context aware breakpoints are
1123 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1124 * as if linked to an UNKNOWN context-aware breakpoint (in which
1125 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1126 * We choose the former.
1128 if (lbn > brps || lbn < (brps - ctx_cmps)) {
1132 bcr = env->cp15.dbgbcr[lbn];
1134 if (extract64(bcr, 0, 1) == 0) {
1135 /* Linked breakpoint disabled : generate no events */
1139 bt = extract64(bcr, 20, 4);
1141 /* We match the whole register even if this is AArch32 using the
1142 * short descriptor format (in which case it holds both PROCID and ASID),
1143 * since we don't implement the optional v7 context ID masking.
1145 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
1148 case 3: /* linked context ID match */
1149 if (arm_current_el(env) > 1) {
1150 /* Context matches never fire in EL2 or (AArch64) EL3 */
1153 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
1154 case 5: /* linked address mismatch (reserved in AArch64) */
1155 case 9: /* linked VMID match (reserved if no EL2) */
1156 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1158 /* Links to Unlinked context breakpoints must generate no
1159 * events; we choose to do the same for reserved values too.
1167 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
1169 CPUARMState *env = &cpu->env;
1171 int pac, hmc, ssc, wt, lbn;
1172 /* Note that for watchpoints the check is against the CPU security
1173 * state, not the S/NS attribute on the offending data access.
1175 bool is_secure = arm_is_secure(env);
1176 int access_el = arm_current_el(env);
1179 CPUWatchpoint *wp = env->cpu_watchpoint[n];
1181 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
1184 cr = env->cp15.dbgwcr[n];
1185 if (wp->hitattrs.user) {
1186 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1187 * match watchpoints as if they were accesses done at EL0, even if
1188 * the CPU is at EL1 or higher.
1193 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1195 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
1198 cr = env->cp15.dbgbcr[n];
1200 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1201 * enabled and that the address and access type match; for breakpoints
1202 * we know the address matched; check the remaining fields, including
1203 * linked breakpoints. We rely on WCR and BCR having the same layout
1204 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1205 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1206 * must act either like some valid combination or as if the watchpoint
1207 * were disabled. We choose the former, and use this together with
1208 * the fact that EL3 must always be Secure and EL2 must always be
1209 * Non-Secure to simplify the code slightly compared to the full
1210 * table in the ARM ARM.
1212 pac = extract64(cr, 1, 2);
1213 hmc = extract64(cr, 13, 1);
1214 ssc = extract64(cr, 14, 2);
1232 switch (access_el) {
1240 if (extract32(pac, 0, 1) == 0) {
1245 if (extract32(pac, 1, 1) == 0) {
1250 g_assert_not_reached();
1253 wt = extract64(cr, 20, 1);
1254 lbn = extract64(cr, 16, 4);
1256 if (wt && !linked_bp_matches(cpu, lbn)) {
1263 static bool check_watchpoints(ARMCPU *cpu)
1265 CPUARMState *env = &cpu->env;
1268 /* If watchpoints are disabled globally or we can't take debug
1269 * exceptions here then watchpoint firings are ignored.
1271 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1272 || !arm_generate_debug_exceptions(env)) {
1276 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
1277 if (bp_wp_matches(cpu, n, true)) {
1284 static bool check_breakpoints(ARMCPU *cpu)
1286 CPUARMState *env = &cpu->env;
1289 /* If breakpoints are disabled globally or we can't take debug
1290 * exceptions here then breakpoint firings are ignored.
1292 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1293 || !arm_generate_debug_exceptions(env)) {
1297 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1298 if (bp_wp_matches(cpu, n, false)) {
1305 void HELPER(check_breakpoints)(CPUARMState *env)
1307 ARMCPU *cpu = arm_env_get_cpu(env);
1309 if (check_breakpoints(cpu)) {
1310 HELPER(exception_internal(env, EXCP_DEBUG));
1314 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1316 /* Called by core code when a CPU watchpoint fires; need to check if this
1317 * is also an architectural watchpoint match.
1319 ARMCPU *cpu = ARM_CPU(cs);
1321 return check_watchpoints(cpu);
1324 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
1326 ARMCPU *cpu = ARM_CPU(cs);
1327 CPUARMState *env = &cpu->env;
1329 /* In BE32 system mode, target memory is stored byteswapped (on a
1330 * little-endian host system), and by the time we reach here (via an
1331 * opcode helper) the addresses of subword accesses have been adjusted
1332 * to account for that, which means that watchpoints will not match.
1333 * Undo the adjustment here.
1335 if (arm_sctlr_b(env)) {
1338 } else if (len == 2) {
1346 void arm_debug_excp_handler(CPUState *cs)
1348 /* Called by core code when a watchpoint or breakpoint fires;
1349 * need to check which one and raise the appropriate exception.
1351 ARMCPU *cpu = ARM_CPU(cs);
1352 CPUARMState *env = &cpu->env;
1353 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1356 if (wp_hit->flags & BP_CPU) {
1357 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1358 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1360 cs->watchpoint_hit = NULL;
1362 env->exception.fsr = arm_debug_exception_fsr(env);
1363 env->exception.vaddress = wp_hit->hitaddr;
1364 raise_exception(env, EXCP_DATA_ABORT,
1365 syn_watchpoint(same_el, 0, wnr),
1366 arm_debug_target_el(env));
1369 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1370 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1372 /* (1) GDB breakpoints should be handled first.
1373 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1374 * since singlestep is also done by generating a debug internal
1377 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1378 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1382 env->exception.fsr = arm_debug_exception_fsr(env);
1383 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
1384 * values to the guest that it shouldn't be able to see at its
1385 * exception/security level.
1387 env->exception.vaddress = 0;
1388 raise_exception(env, EXCP_PREFETCH_ABORT,
1389 syn_breakpoint(same_el),
1390 arm_debug_target_el(env));
1394 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1395 The only way to do that in TCG is a conditional branch, which clobbers
1396 all our temporaries. For now implement these as helper functions. */
1398 /* Similarly for variable shift instructions. */
1400 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1402 int shift = i & 0xff;
1409 } else if (shift != 0) {
1410 env->CF = (x >> (32 - shift)) & 1;
1416 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1418 int shift = i & 0xff;
1421 env->CF = (x >> 31) & 1;
1425 } else if (shift != 0) {
1426 env->CF = (x >> (shift - 1)) & 1;
1432 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1434 int shift = i & 0xff;
1436 env->CF = (x >> 31) & 1;
1437 return (int32_t)x >> 31;
1438 } else if (shift != 0) {
1439 env->CF = (x >> (shift - 1)) & 1;
1440 return (int32_t)x >> shift;
1445 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1449 shift = shift1 & 0x1f;
1452 env->CF = (x >> 31) & 1;
1455 env->CF = (x >> (shift - 1)) & 1;
1456 return ((uint32_t)x >> shift) | (x << (32 - shift));