4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
28 #include "qemu/osdep.h"
29 #include "qemu-common.h"
32 #include "qapi-event.h"
33 #include "qemu/cutils.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "qemu/timer.h"
37 #include "qemu/main-loop.h"
38 #include "migration/migration.h"
39 #include "postcopy-ram.h"
40 #include "exec/address-spaces.h"
41 #include "migration/page_cache.h"
42 #include "qemu/error-report.h"
44 #include "exec/ram_addr.h"
45 #include "qemu/rcu_queue.h"
46 #include "migration/colo.h"
48 /***********************************************************/
49 /* ram save/restore */
51 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
52 #define RAM_SAVE_FLAG_COMPRESS 0x02
53 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
54 #define RAM_SAVE_FLAG_PAGE 0x08
55 #define RAM_SAVE_FLAG_EOS 0x10
56 #define RAM_SAVE_FLAG_CONTINUE 0x20
57 #define RAM_SAVE_FLAG_XBZRLE 0x40
58 /* 0x80 is reserved in migration.h start with 0x100 next */
59 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
61 static uint8_t *ZERO_TARGET_PAGE;
63 static inline bool is_zero_range(uint8_t *p, uint64_t size)
65 return buffer_is_zero(p, size);
68 /* struct contains XBZRLE cache and a static page
69 used by the compression */
71 /* buffer used for XBZRLE encoding */
73 /* buffer for storing page content */
75 /* Cache for XBZRLE, Protected by lock. */
80 /* buffer used for XBZRLE decoding */
81 static uint8_t *xbzrle_decoded_buf;
83 static void XBZRLE_cache_lock(void)
85 if (migrate_use_xbzrle())
86 qemu_mutex_lock(&XBZRLE.lock);
89 static void XBZRLE_cache_unlock(void)
91 if (migrate_use_xbzrle())
92 qemu_mutex_unlock(&XBZRLE.lock);
96 * xbzrle_cache_resize: resize the xbzrle cache
98 * This function is called from qmp_migrate_set_cache_size in main
99 * thread, possibly while a migration is in progress. A running
100 * migration may be using the cache and might finish during this call,
101 * hence changes to the cache are protected by XBZRLE.lock().
103 * Returns the new_size or negative in case of error.
105 * @new_size: new cache size
107 int64_t xbzrle_cache_resize(int64_t new_size)
109 PageCache *new_cache;
112 if (new_size < TARGET_PAGE_SIZE) {
118 if (XBZRLE.cache != NULL) {
119 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) {
122 new_cache = cache_init(new_size / TARGET_PAGE_SIZE,
125 error_report("Error creating cache");
130 cache_fini(XBZRLE.cache);
131 XBZRLE.cache = new_cache;
135 ret = pow2floor(new_size);
137 XBZRLE_cache_unlock();
142 * An outstanding page request, on the source, having been received
145 struct RAMSrcPageRequest {
150 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
153 /* State of RAM for migration */
155 /* QEMUFile used for this migration */
157 /* Last block that we have visited searching for dirty pages */
158 RAMBlock *last_seen_block;
159 /* Last block from where we have sent data */
160 RAMBlock *last_sent_block;
161 /* Last dirty target page we have sent */
162 ram_addr_t last_page;
163 /* last ram version we have seen */
164 uint32_t last_version;
165 /* We are in the first round */
167 /* How many times we have dirty too many pages */
168 int dirty_rate_high_cnt;
169 /* How many times we have synchronized the bitmap */
170 uint64_t bitmap_sync_count;
171 /* these variables are used for bitmap sync */
172 /* last time we did a full bitmap_sync */
173 int64_t time_last_bitmap_sync;
174 /* bytes transferred at start_time */
175 uint64_t bytes_xfer_prev;
176 /* number of dirty pages since start_time */
177 uint64_t num_dirty_pages_period;
178 /* xbzrle misses since the beginning of the period */
179 uint64_t xbzrle_cache_miss_prev;
180 /* number of iterations at the beginning of period */
181 uint64_t iterations_prev;
182 /* Accounting fields */
183 /* number of zero pages. It used to be pages filled by the same char. */
185 /* number of normal transferred pages */
187 /* Iterations since start */
189 /* xbzrle transmitted bytes. Notice that this is with
190 * compression, they can't be calculated from the pages */
191 uint64_t xbzrle_bytes;
192 /* xbzrle transmmited pages */
193 uint64_t xbzrle_pages;
194 /* xbzrle number of cache miss */
195 uint64_t xbzrle_cache_miss;
196 /* xbzrle miss rate */
197 double xbzrle_cache_miss_rate;
198 /* xbzrle number of overflows */
199 uint64_t xbzrle_overflows;
200 /* number of dirty bits in the bitmap */
201 uint64_t migration_dirty_pages;
202 /* total number of bytes transferred */
203 uint64_t bytes_transferred;
204 /* number of dirtied pages in the last second */
205 uint64_t dirty_pages_rate;
206 /* Count of requests incoming from destination */
207 uint64_t postcopy_requests;
208 /* protects modification of the bitmap */
209 QemuMutex bitmap_mutex;
210 /* The RAMBlock used in the last src_page_requests */
211 RAMBlock *last_req_rb;
212 /* Queue of outstanding page requests from the destination */
213 QemuMutex src_page_req_mutex;
214 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
216 typedef struct RAMState RAMState;
218 static RAMState ram_state;
220 uint64_t dup_mig_pages_transferred(void)
222 return ram_state.zero_pages;
225 uint64_t norm_mig_pages_transferred(void)
227 return ram_state.norm_pages;
230 uint64_t xbzrle_mig_bytes_transferred(void)
232 return ram_state.xbzrle_bytes;
235 uint64_t xbzrle_mig_pages_transferred(void)
237 return ram_state.xbzrle_pages;
240 uint64_t xbzrle_mig_pages_cache_miss(void)
242 return ram_state.xbzrle_cache_miss;
245 double xbzrle_mig_cache_miss_rate(void)
247 return ram_state.xbzrle_cache_miss_rate;
250 uint64_t xbzrle_mig_pages_overflow(void)
252 return ram_state.xbzrle_overflows;
255 uint64_t ram_bytes_transferred(void)
257 return ram_state.bytes_transferred;
260 uint64_t ram_bytes_remaining(void)
262 return ram_state.migration_dirty_pages * TARGET_PAGE_SIZE;
265 uint64_t ram_dirty_sync_count(void)
267 return ram_state.bitmap_sync_count;
270 uint64_t ram_dirty_pages_rate(void)
272 return ram_state.dirty_pages_rate;
275 uint64_t ram_postcopy_requests(void)
277 return ram_state.postcopy_requests;
280 /* used by the search for pages to send */
281 struct PageSearchStatus {
282 /* Current block being searched */
284 /* Current page to search from */
286 /* Set once we wrap around */
289 typedef struct PageSearchStatus PageSearchStatus;
291 struct CompressParam {
300 typedef struct CompressParam CompressParam;
302 struct DecompressParam {
311 typedef struct DecompressParam DecompressParam;
313 static CompressParam *comp_param;
314 static QemuThread *compress_threads;
315 /* comp_done_cond is used to wake up the migration thread when
316 * one of the compression threads has finished the compression.
317 * comp_done_lock is used to co-work with comp_done_cond.
319 static QemuMutex comp_done_lock;
320 static QemuCond comp_done_cond;
321 /* The empty QEMUFileOps will be used by file in CompressParam */
322 static const QEMUFileOps empty_ops = { };
324 static DecompressParam *decomp_param;
325 static QemuThread *decompress_threads;
326 static QemuMutex decomp_done_lock;
327 static QemuCond decomp_done_cond;
329 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
332 static void *do_data_compress(void *opaque)
334 CompressParam *param = opaque;
338 qemu_mutex_lock(¶m->mutex);
339 while (!param->quit) {
341 block = param->block;
342 offset = param->offset;
344 qemu_mutex_unlock(¶m->mutex);
346 do_compress_ram_page(param->file, block, offset);
348 qemu_mutex_lock(&comp_done_lock);
350 qemu_cond_signal(&comp_done_cond);
351 qemu_mutex_unlock(&comp_done_lock);
353 qemu_mutex_lock(¶m->mutex);
355 qemu_cond_wait(¶m->cond, ¶m->mutex);
358 qemu_mutex_unlock(¶m->mutex);
363 static inline void terminate_compression_threads(void)
365 int idx, thread_count;
367 thread_count = migrate_compress_threads();
369 for (idx = 0; idx < thread_count; idx++) {
370 qemu_mutex_lock(&comp_param[idx].mutex);
371 comp_param[idx].quit = true;
372 qemu_cond_signal(&comp_param[idx].cond);
373 qemu_mutex_unlock(&comp_param[idx].mutex);
377 void migrate_compress_threads_join(void)
381 if (!migrate_use_compression()) {
384 terminate_compression_threads();
385 thread_count = migrate_compress_threads();
386 for (i = 0; i < thread_count; i++) {
387 qemu_thread_join(compress_threads + i);
388 qemu_fclose(comp_param[i].file);
389 qemu_mutex_destroy(&comp_param[i].mutex);
390 qemu_cond_destroy(&comp_param[i].cond);
392 qemu_mutex_destroy(&comp_done_lock);
393 qemu_cond_destroy(&comp_done_cond);
394 g_free(compress_threads);
396 compress_threads = NULL;
400 void migrate_compress_threads_create(void)
404 if (!migrate_use_compression()) {
407 thread_count = migrate_compress_threads();
408 compress_threads = g_new0(QemuThread, thread_count);
409 comp_param = g_new0(CompressParam, thread_count);
410 qemu_cond_init(&comp_done_cond);
411 qemu_mutex_init(&comp_done_lock);
412 for (i = 0; i < thread_count; i++) {
413 /* comp_param[i].file is just used as a dummy buffer to save data,
414 * set its ops to empty.
416 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
417 comp_param[i].done = true;
418 comp_param[i].quit = false;
419 qemu_mutex_init(&comp_param[i].mutex);
420 qemu_cond_init(&comp_param[i].cond);
421 qemu_thread_create(compress_threads + i, "compress",
422 do_data_compress, comp_param + i,
423 QEMU_THREAD_JOINABLE);
428 * save_page_header: write page header to wire
430 * If this is the 1st block, it also writes the block identification
432 * Returns the number of bytes written
434 * @f: QEMUFile where to send the data
435 * @block: block that contains the page we want to send
436 * @offset: offset inside the block for the page
437 * in the lower bits, it contains flags
439 static size_t save_page_header(RAMState *rs, RAMBlock *block, ram_addr_t offset)
443 if (block == rs->last_sent_block) {
444 offset |= RAM_SAVE_FLAG_CONTINUE;
446 qemu_put_be64(rs->f, offset);
449 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
450 len = strlen(block->idstr);
451 qemu_put_byte(rs->f, len);
452 qemu_put_buffer(rs->f, (uint8_t *)block->idstr, len);
454 rs->last_sent_block = block;
460 * mig_throttle_guest_down: throotle down the guest
462 * Reduce amount of guest cpu execution to hopefully slow down memory
463 * writes. If guest dirty memory rate is reduced below the rate at
464 * which we can transfer pages to the destination then we should be
465 * able to complete migration. Some workloads dirty memory way too
466 * fast and will not effectively converge, even with auto-converge.
468 static void mig_throttle_guest_down(void)
470 MigrationState *s = migrate_get_current();
471 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
472 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
474 /* We have not started throttling yet. Let's start it. */
475 if (!cpu_throttle_active()) {
476 cpu_throttle_set(pct_initial);
478 /* Throttling already on, just increase the rate */
479 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
484 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
486 * @rs: current RAM state
487 * @current_addr: address for the zero page
489 * Update the xbzrle cache to reflect a page that's been sent as all 0.
490 * The important thing is that a stale (not-yet-0'd) page be replaced
492 * As a bonus, if the page wasn't in the cache it gets added so that
493 * when a small write is made into the 0'd page it gets XBZRLE sent.
495 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
497 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
501 /* We don't care if this fails to allocate a new cache page
502 * as long as it updated an old one */
503 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE,
504 rs->bitmap_sync_count);
507 #define ENCODING_FLAG_XBZRLE 0x1
510 * save_xbzrle_page: compress and send current page
512 * Returns: 1 means that we wrote the page
513 * 0 means that page is identical to the one already sent
514 * -1 means that xbzrle would be longer than normal
516 * @rs: current RAM state
517 * @current_data: pointer to the address of the page contents
518 * @current_addr: addr of the page
519 * @block: block that contains the page we want to send
520 * @offset: offset inside the block for the page
521 * @last_stage: if we are at the completion stage
523 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
524 ram_addr_t current_addr, RAMBlock *block,
525 ram_addr_t offset, bool last_stage)
527 int encoded_len = 0, bytes_xbzrle;
528 uint8_t *prev_cached_page;
530 if (!cache_is_cached(XBZRLE.cache, current_addr, rs->bitmap_sync_count)) {
531 rs->xbzrle_cache_miss++;
533 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
534 rs->bitmap_sync_count) == -1) {
537 /* update *current_data when the page has been
538 inserted into cache */
539 *current_data = get_cached_data(XBZRLE.cache, current_addr);
545 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
547 /* save current buffer into memory */
548 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
550 /* XBZRLE encoding (if there is no overflow) */
551 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
552 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
554 if (encoded_len == 0) {
555 trace_save_xbzrle_page_skipping();
557 } else if (encoded_len == -1) {
558 trace_save_xbzrle_page_overflow();
559 rs->xbzrle_overflows++;
560 /* update data in the cache */
562 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
563 *current_data = prev_cached_page;
568 /* we need to update the data in the cache, in order to get the same data */
570 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
573 /* Send XBZRLE based compressed page */
574 bytes_xbzrle = save_page_header(rs, block,
575 offset | RAM_SAVE_FLAG_XBZRLE);
576 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
577 qemu_put_be16(rs->f, encoded_len);
578 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
579 bytes_xbzrle += encoded_len + 1 + 2;
581 rs->xbzrle_bytes += bytes_xbzrle;
582 rs->bytes_transferred += bytes_xbzrle;
588 * migration_bitmap_find_dirty: find the next dirty page from start
590 * Called with rcu_read_lock() to protect migration_bitmap
592 * Returns the byte offset within memory region of the start of a dirty page
594 * @rs: current RAM state
595 * @rb: RAMBlock where to search for dirty pages
596 * @start: page where we start the search
599 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
602 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
603 unsigned long *bitmap = rb->bmap;
606 if (rs->ram_bulk_stage && start > 0) {
609 next = find_next_bit(bitmap, size, start);
615 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
621 ret = test_and_clear_bit(page, rb->bmap);
624 rs->migration_dirty_pages--;
629 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
630 ram_addr_t start, ram_addr_t length)
632 rs->migration_dirty_pages +=
633 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
634 &rs->num_dirty_pages_period);
638 * ram_pagesize_summary: calculate all the pagesizes of a VM
640 * Returns a summary bitmap of the page sizes of all RAMBlocks
642 * For VMs with just normal pages this is equivalent to the host page
643 * size. If it's got some huge pages then it's the OR of all the
644 * different page sizes.
646 uint64_t ram_pagesize_summary(void)
649 uint64_t summary = 0;
651 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
652 summary |= block->page_size;
658 static void migration_bitmap_sync(RAMState *rs)
662 uint64_t bytes_xfer_now;
664 rs->bitmap_sync_count++;
666 if (!rs->bytes_xfer_prev) {
667 rs->bytes_xfer_prev = ram_bytes_transferred();
670 if (!rs->time_last_bitmap_sync) {
671 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
674 trace_migration_bitmap_sync_start();
675 memory_global_dirty_log_sync();
677 qemu_mutex_lock(&rs->bitmap_mutex);
679 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
680 migration_bitmap_sync_range(rs, block, 0, block->used_length);
683 qemu_mutex_unlock(&rs->bitmap_mutex);
685 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
687 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
689 /* more than 1 second = 1000 millisecons */
690 if (end_time > rs->time_last_bitmap_sync + 1000) {
691 if (migrate_auto_converge()) {
692 /* The following detection logic can be refined later. For now:
693 Check to see if the dirtied bytes is 50% more than the approx.
694 amount of bytes that just got transferred since the last time we
695 were in this routine. If that happens twice, start or increase
697 bytes_xfer_now = ram_bytes_transferred();
699 if (rs->dirty_pages_rate &&
700 (rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
701 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
702 (rs->dirty_rate_high_cnt++ >= 2)) {
703 trace_migration_throttle();
704 rs->dirty_rate_high_cnt = 0;
705 mig_throttle_guest_down();
707 rs->bytes_xfer_prev = bytes_xfer_now;
710 if (migrate_use_xbzrle()) {
711 if (rs->iterations_prev != rs->iterations) {
712 rs->xbzrle_cache_miss_rate =
713 (double)(rs->xbzrle_cache_miss -
714 rs->xbzrle_cache_miss_prev) /
715 (rs->iterations - rs->iterations_prev);
717 rs->iterations_prev = rs->iterations;
718 rs->xbzrle_cache_miss_prev = rs->xbzrle_cache_miss;
720 rs->dirty_pages_rate = rs->num_dirty_pages_period * 1000
721 / (end_time - rs->time_last_bitmap_sync);
722 rs->time_last_bitmap_sync = end_time;
723 rs->num_dirty_pages_period = 0;
725 if (migrate_use_events()) {
726 qapi_event_send_migration_pass(rs->bitmap_sync_count, NULL);
731 * save_zero_page: send the zero page to the stream
733 * Returns the number of pages written.
735 * @rs: current RAM state
736 * @block: block that contains the page we want to send
737 * @offset: offset inside the block for the page
738 * @p: pointer to the page
740 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
745 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
747 rs->bytes_transferred +=
748 save_page_header(rs, block, offset | RAM_SAVE_FLAG_COMPRESS);
749 qemu_put_byte(rs->f, 0);
750 rs->bytes_transferred += 1;
757 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
759 if (!migrate_release_ram() || !migration_in_postcopy()) {
763 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
767 * ram_save_page: send the given page to the stream
769 * Returns the number of pages written.
771 * >=0 - Number of pages written - this might legally be 0
772 * if xbzrle noticed the page was the same.
774 * @rs: current RAM state
775 * @block: block that contains the page we want to send
776 * @offset: offset inside the block for the page
777 * @last_stage: if we are at the completion stage
779 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
783 ram_addr_t current_addr;
786 bool send_async = true;
787 RAMBlock *block = pss->block;
788 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
790 p = block->host + offset;
792 /* In doubt sent page as normal */
794 ret = ram_control_save_page(rs->f, block->offset,
795 offset, TARGET_PAGE_SIZE, &bytes_xmit);
797 rs->bytes_transferred += bytes_xmit;
803 current_addr = block->offset + offset;
805 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
806 if (ret != RAM_SAVE_CONTROL_DELAYED) {
807 if (bytes_xmit > 0) {
809 } else if (bytes_xmit == 0) {
814 pages = save_zero_page(rs, block, offset, p);
816 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
817 * page would be stale
819 xbzrle_cache_zero_page(rs, current_addr);
820 ram_release_pages(block->idstr, offset, pages);
821 } else if (!rs->ram_bulk_stage &&
822 !migration_in_postcopy() && migrate_use_xbzrle()) {
823 pages = save_xbzrle_page(rs, &p, current_addr, block,
826 /* Can't send this cached data async, since the cache page
827 * might get updated before it gets to the wire
834 /* XBZRLE overflow or normal page */
836 rs->bytes_transferred += save_page_header(rs, block,
837 offset | RAM_SAVE_FLAG_PAGE);
839 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE,
840 migrate_release_ram() &
841 migration_in_postcopy());
843 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE);
845 rs->bytes_transferred += TARGET_PAGE_SIZE;
850 XBZRLE_cache_unlock();
855 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block,
858 RAMState *rs = &ram_state;
859 int bytes_sent, blen;
860 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
862 bytes_sent = save_page_header(rs, block, offset |
863 RAM_SAVE_FLAG_COMPRESS_PAGE);
864 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE,
865 migrate_compress_level());
868 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
869 error_report("compressed data failed!");
872 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
878 static void flush_compressed_data(RAMState *rs)
880 int idx, len, thread_count;
882 if (!migrate_use_compression()) {
885 thread_count = migrate_compress_threads();
887 qemu_mutex_lock(&comp_done_lock);
888 for (idx = 0; idx < thread_count; idx++) {
889 while (!comp_param[idx].done) {
890 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
893 qemu_mutex_unlock(&comp_done_lock);
895 for (idx = 0; idx < thread_count; idx++) {
896 qemu_mutex_lock(&comp_param[idx].mutex);
897 if (!comp_param[idx].quit) {
898 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
899 rs->bytes_transferred += len;
901 qemu_mutex_unlock(&comp_param[idx].mutex);
905 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
908 param->block = block;
909 param->offset = offset;
912 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
915 int idx, thread_count, bytes_xmit = -1, pages = -1;
917 thread_count = migrate_compress_threads();
918 qemu_mutex_lock(&comp_done_lock);
920 for (idx = 0; idx < thread_count; idx++) {
921 if (comp_param[idx].done) {
922 comp_param[idx].done = false;
923 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
924 qemu_mutex_lock(&comp_param[idx].mutex);
925 set_compress_params(&comp_param[idx], block, offset);
926 qemu_cond_signal(&comp_param[idx].cond);
927 qemu_mutex_unlock(&comp_param[idx].mutex);
930 rs->bytes_transferred += bytes_xmit;
937 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
940 qemu_mutex_unlock(&comp_done_lock);
946 * ram_save_compressed_page: compress the given page and send it to the stream
948 * Returns the number of pages written.
950 * @rs: current RAM state
951 * @block: block that contains the page we want to send
952 * @offset: offset inside the block for the page
953 * @last_stage: if we are at the completion stage
955 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss,
959 uint64_t bytes_xmit = 0;
962 RAMBlock *block = pss->block;
963 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
965 p = block->host + offset;
967 ret = ram_control_save_page(rs->f, block->offset,
968 offset, TARGET_PAGE_SIZE, &bytes_xmit);
970 rs->bytes_transferred += bytes_xmit;
973 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
974 if (ret != RAM_SAVE_CONTROL_DELAYED) {
975 if (bytes_xmit > 0) {
977 } else if (bytes_xmit == 0) {
982 /* When starting the process of a new block, the first page of
983 * the block should be sent out before other pages in the same
984 * block, and all the pages in last block should have been sent
985 * out, keeping this order is important, because the 'cont' flag
986 * is used to avoid resending the block name.
988 if (block != rs->last_sent_block) {
989 flush_compressed_data(rs);
990 pages = save_zero_page(rs, block, offset, p);
992 /* Make sure the first page is sent out before other pages */
993 bytes_xmit = save_page_header(rs, block, offset |
994 RAM_SAVE_FLAG_COMPRESS_PAGE);
995 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE,
996 migrate_compress_level());
998 rs->bytes_transferred += bytes_xmit + blen;
1002 qemu_file_set_error(rs->f, blen);
1003 error_report("compressed data failed!");
1007 ram_release_pages(block->idstr, offset, pages);
1010 pages = save_zero_page(rs, block, offset, p);
1012 pages = compress_page_with_multi_thread(rs, block, offset);
1014 ram_release_pages(block->idstr, offset, pages);
1023 * find_dirty_block: find the next dirty page and update any state
1024 * associated with the search process.
1026 * Returns if a page is found
1028 * @rs: current RAM state
1029 * @pss: data about the state of the current dirty page scan
1030 * @again: set to false if the search has scanned the whole of RAM
1032 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1034 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1035 if (pss->complete_round && pss->block == rs->last_seen_block &&
1036 pss->page >= rs->last_page) {
1038 * We've been once around the RAM and haven't found anything.
1044 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1045 /* Didn't find anything in this RAM Block */
1047 pss->block = QLIST_NEXT_RCU(pss->block, next);
1049 /* Hit the end of the list */
1050 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1051 /* Flag that we've looped */
1052 pss->complete_round = true;
1053 rs->ram_bulk_stage = false;
1054 if (migrate_use_xbzrle()) {
1055 /* If xbzrle is on, stop using the data compression at this
1056 * point. In theory, xbzrle can do better than compression.
1058 flush_compressed_data(rs);
1061 /* Didn't find anything this time, but try again on the new block */
1065 /* Can go around again, but... */
1067 /* We've found something so probably don't need to */
1073 * unqueue_page: gets a page of the queue
1075 * Helper for 'get_queued_page' - gets a page off the queue
1077 * Returns the block of the page (or NULL if none available)
1079 * @rs: current RAM state
1080 * @offset: used to return the offset within the RAMBlock
1082 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1084 RAMBlock *block = NULL;
1086 qemu_mutex_lock(&rs->src_page_req_mutex);
1087 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1088 struct RAMSrcPageRequest *entry =
1089 QSIMPLEQ_FIRST(&rs->src_page_requests);
1091 *offset = entry->offset;
1093 if (entry->len > TARGET_PAGE_SIZE) {
1094 entry->len -= TARGET_PAGE_SIZE;
1095 entry->offset += TARGET_PAGE_SIZE;
1097 memory_region_unref(block->mr);
1098 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1102 qemu_mutex_unlock(&rs->src_page_req_mutex);
1108 * get_queued_page: unqueue a page from the postocpy requests
1110 * Skips pages that are already sent (!dirty)
1112 * Returns if a queued page is found
1114 * @rs: current RAM state
1115 * @pss: data about the state of the current dirty page scan
1117 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1124 block = unqueue_page(rs, &offset);
1126 * We're sending this page, and since it's postcopy nothing else
1127 * will dirty it, and we must make sure it doesn't get sent again
1128 * even if this queue request was received after the background
1129 * search already sent it.
1134 page = offset >> TARGET_PAGE_BITS;
1135 dirty = test_bit(page, block->bmap);
1137 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1138 page, test_bit(page, block->unsentmap));
1140 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1144 } while (block && !dirty);
1148 * As soon as we start servicing pages out of order, then we have
1149 * to kill the bulk stage, since the bulk stage assumes
1150 * in (migration_bitmap_find_and_reset_dirty) that every page is
1151 * dirty, that's no longer true.
1153 rs->ram_bulk_stage = false;
1156 * We want the background search to continue from the queued page
1157 * since the guest is likely to want other pages near to the page
1158 * it just requested.
1161 pss->page = offset >> TARGET_PAGE_BITS;
1168 * migration_page_queue_free: drop any remaining pages in the ram
1171 * It should be empty at the end anyway, but in error cases there may
1172 * be some left. in case that there is any page left, we drop it.
1175 void migration_page_queue_free(void)
1177 struct RAMSrcPageRequest *mspr, *next_mspr;
1178 RAMState *rs = &ram_state;
1179 /* This queue generally should be empty - but in the case of a failed
1180 * migration might have some droppings in.
1183 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1184 memory_region_unref(mspr->rb->mr);
1185 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1192 * ram_save_queue_pages: queue the page for transmission
1194 * A request from postcopy destination for example.
1196 * Returns zero on success or negative on error
1198 * @rbname: Name of the RAMBLock of the request. NULL means the
1199 * same that last one.
1200 * @start: starting address from the start of the RAMBlock
1201 * @len: length (in bytes) to send
1203 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1206 RAMState *rs = &ram_state;
1208 rs->postcopy_requests++;
1211 /* Reuse last RAMBlock */
1212 ramblock = rs->last_req_rb;
1216 * Shouldn't happen, we can't reuse the last RAMBlock if
1217 * it's the 1st request.
1219 error_report("ram_save_queue_pages no previous block");
1223 ramblock = qemu_ram_block_by_name(rbname);
1226 /* We shouldn't be asked for a non-existent RAMBlock */
1227 error_report("ram_save_queue_pages no block '%s'", rbname);
1230 rs->last_req_rb = ramblock;
1232 trace_ram_save_queue_pages(ramblock->idstr, start, len);
1233 if (start+len > ramblock->used_length) {
1234 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1235 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1236 __func__, start, len, ramblock->used_length);
1240 struct RAMSrcPageRequest *new_entry =
1241 g_malloc0(sizeof(struct RAMSrcPageRequest));
1242 new_entry->rb = ramblock;
1243 new_entry->offset = start;
1244 new_entry->len = len;
1246 memory_region_ref(ramblock->mr);
1247 qemu_mutex_lock(&rs->src_page_req_mutex);
1248 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1249 qemu_mutex_unlock(&rs->src_page_req_mutex);
1260 * ram_save_target_page: save one target page
1262 * Returns the number of pages written
1264 * @rs: current RAM state
1265 * @ms: current migration state
1266 * @pss: data about the page we want to send
1267 * @last_stage: if we are at the completion stage
1269 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
1274 /* Check the pages is dirty and if it is send it */
1275 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
1277 * If xbzrle is on, stop using the data compression after first
1278 * round of migration even if compression is enabled. In theory,
1279 * xbzrle can do better than compression.
1281 if (migrate_use_compression() &&
1282 (rs->ram_bulk_stage || !migrate_use_xbzrle())) {
1283 res = ram_save_compressed_page(rs, pss, last_stage);
1285 res = ram_save_page(rs, pss, last_stage);
1291 if (pss->block->unsentmap) {
1292 clear_bit(pss->page, pss->block->unsentmap);
1300 * ram_save_host_page: save a whole host page
1302 * Starting at *offset send pages up to the end of the current host
1303 * page. It's valid for the initial offset to point into the middle of
1304 * a host page in which case the remainder of the hostpage is sent.
1305 * Only dirty target pages are sent. Note that the host page size may
1306 * be a huge page for this block.
1308 * Returns the number of pages written or negative on error
1310 * @rs: current RAM state
1311 * @ms: current migration state
1312 * @pss: data about the page we want to send
1313 * @last_stage: if we are at the completion stage
1315 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
1318 int tmppages, pages = 0;
1319 size_t pagesize_bits =
1320 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
1323 tmppages = ram_save_target_page(rs, pss, last_stage);
1330 } while (pss->page & (pagesize_bits - 1));
1332 /* The offset we leave with is the last one we looked at */
1338 * ram_find_and_save_block: finds a dirty page and sends it to f
1340 * Called within an RCU critical section.
1342 * Returns the number of pages written where zero means no dirty pages
1344 * @rs: current RAM state
1345 * @last_stage: if we are at the completion stage
1347 * On systems where host-page-size > target-page-size it will send all the
1348 * pages in a host page that are dirty.
1351 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
1353 PageSearchStatus pss;
1357 /* No dirty page as there is zero RAM */
1358 if (!ram_bytes_total()) {
1362 pss.block = rs->last_seen_block;
1363 pss.page = rs->last_page;
1364 pss.complete_round = false;
1367 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
1372 found = get_queued_page(rs, &pss);
1375 /* priority queue empty, so just search for something dirty */
1376 found = find_dirty_block(rs, &pss, &again);
1380 pages = ram_save_host_page(rs, &pss, last_stage);
1382 } while (!pages && again);
1384 rs->last_seen_block = pss.block;
1385 rs->last_page = pss.page;
1390 void acct_update_position(QEMUFile *f, size_t size, bool zero)
1392 uint64_t pages = size / TARGET_PAGE_SIZE;
1393 RAMState *rs = &ram_state;
1396 rs->zero_pages += pages;
1398 rs->norm_pages += pages;
1399 rs->bytes_transferred += size;
1400 qemu_update_position(f, size);
1404 uint64_t ram_bytes_total(void)
1410 QLIST_FOREACH_RCU(block, &ram_list.blocks, next)
1411 total += block->used_length;
1416 void free_xbzrle_decoded_buf(void)
1418 g_free(xbzrle_decoded_buf);
1419 xbzrle_decoded_buf = NULL;
1422 static void ram_migration_cleanup(void *opaque)
1426 /* caller have hold iothread lock or is in a bh, so there is
1427 * no writing race against this migration_bitmap
1429 memory_global_dirty_log_stop();
1431 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1432 g_free(block->bmap);
1434 g_free(block->unsentmap);
1435 block->unsentmap = NULL;
1438 XBZRLE_cache_lock();
1440 cache_fini(XBZRLE.cache);
1441 g_free(XBZRLE.encoded_buf);
1442 g_free(XBZRLE.current_buf);
1443 g_free(ZERO_TARGET_PAGE);
1444 XBZRLE.cache = NULL;
1445 XBZRLE.encoded_buf = NULL;
1446 XBZRLE.current_buf = NULL;
1448 XBZRLE_cache_unlock();
1451 static void ram_state_reset(RAMState *rs)
1453 rs->last_seen_block = NULL;
1454 rs->last_sent_block = NULL;
1456 rs->last_version = ram_list.version;
1457 rs->ram_bulk_stage = true;
1460 #define MAX_WAIT 50 /* ms, half buffered_file limit */
1463 * 'expected' is the value you expect the bitmap mostly to be full
1464 * of; it won't bother printing lines that are all this value.
1465 * If 'todump' is null the migration bitmap is dumped.
1467 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
1468 unsigned long pages)
1471 int64_t linelen = 128;
1474 for (cur = 0; cur < pages; cur += linelen) {
1478 * Last line; catch the case where the line length
1479 * is longer than remaining ram
1481 if (cur + linelen > pages) {
1482 linelen = pages - cur;
1484 for (curb = 0; curb < linelen; curb++) {
1485 bool thisbit = test_bit(cur + curb, todump);
1486 linebuf[curb] = thisbit ? '1' : '.';
1487 found = found || (thisbit != expected);
1490 linebuf[curb] = '\0';
1491 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
1496 /* **** functions for postcopy ***** */
1498 void ram_postcopy_migrated_memory_release(MigrationState *ms)
1500 struct RAMBlock *block;
1502 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1503 unsigned long *bitmap = block->bmap;
1504 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
1505 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
1507 while (run_start < range) {
1508 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
1509 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
1510 (run_end - run_start) << TARGET_PAGE_BITS);
1511 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
1517 * postcopy_send_discard_bm_ram: discard a RAMBlock
1519 * Returns zero on success
1521 * Callback from postcopy_each_ram_send_discard for each RAMBlock
1522 * Note: At this point the 'unsentmap' is the processed bitmap combined
1523 * with the dirtymap; so a '1' means it's either dirty or unsent.
1525 * @ms: current migration state
1526 * @pds: state for postcopy
1527 * @start: RAMBlock starting page
1528 * @length: RAMBlock size
1530 static int postcopy_send_discard_bm_ram(MigrationState *ms,
1531 PostcopyDiscardState *pds,
1534 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
1535 unsigned long current;
1536 unsigned long *unsentmap = block->unsentmap;
1538 for (current = 0; current < end; ) {
1539 unsigned long one = find_next_bit(unsentmap, end, current);
1542 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
1543 unsigned long discard_length;
1546 discard_length = end - one;
1548 discard_length = zero - one;
1550 if (discard_length) {
1551 postcopy_discard_send_range(ms, pds, one, discard_length);
1553 current = one + discard_length;
1563 * postcopy_each_ram_send_discard: discard all RAMBlocks
1565 * Returns 0 for success or negative for error
1567 * Utility for the outgoing postcopy code.
1568 * Calls postcopy_send_discard_bm_ram for each RAMBlock
1569 * passing it bitmap indexes and name.
1570 * (qemu_ram_foreach_block ends up passing unscaled lengths
1571 * which would mean postcopy code would have to deal with target page)
1573 * @ms: current migration state
1575 static int postcopy_each_ram_send_discard(MigrationState *ms)
1577 struct RAMBlock *block;
1580 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1581 PostcopyDiscardState *pds =
1582 postcopy_discard_send_init(ms, block->idstr);
1585 * Postcopy sends chunks of bitmap over the wire, but it
1586 * just needs indexes at this point, avoids it having
1587 * target page specific code.
1589 ret = postcopy_send_discard_bm_ram(ms, pds, block);
1590 postcopy_discard_send_finish(ms, pds);
1600 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
1602 * Helper for postcopy_chunk_hostpages; it's called twice to
1603 * canonicalize the two bitmaps, that are similar, but one is
1606 * Postcopy requires that all target pages in a hostpage are dirty or
1607 * clean, not a mix. This function canonicalizes the bitmaps.
1609 * @ms: current migration state
1610 * @unsent_pass: if true we need to canonicalize partially unsent host pages
1611 * otherwise we need to canonicalize partially dirty host pages
1612 * @block: block that contains the page we want to canonicalize
1613 * @pds: state for postcopy
1615 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
1617 PostcopyDiscardState *pds)
1619 RAMState *rs = &ram_state;
1620 unsigned long *bitmap = block->bmap;
1621 unsigned long *unsentmap = block->unsentmap;
1622 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
1623 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1624 unsigned long run_start;
1626 if (block->page_size == TARGET_PAGE_SIZE) {
1627 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
1632 /* Find a sent page */
1633 run_start = find_next_zero_bit(unsentmap, pages, 0);
1635 /* Find a dirty page */
1636 run_start = find_next_bit(bitmap, pages, 0);
1639 while (run_start < pages) {
1640 bool do_fixup = false;
1641 unsigned long fixup_start_addr;
1642 unsigned long host_offset;
1645 * If the start of this run of pages is in the middle of a host
1646 * page, then we need to fixup this host page.
1648 host_offset = run_start % host_ratio;
1651 run_start -= host_offset;
1652 fixup_start_addr = run_start;
1653 /* For the next pass */
1654 run_start = run_start + host_ratio;
1656 /* Find the end of this run */
1657 unsigned long run_end;
1659 run_end = find_next_bit(unsentmap, pages, run_start + 1);
1661 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
1664 * If the end isn't at the start of a host page, then the
1665 * run doesn't finish at the end of a host page
1666 * and we need to discard.
1668 host_offset = run_end % host_ratio;
1671 fixup_start_addr = run_end - host_offset;
1673 * This host page has gone, the next loop iteration starts
1674 * from after the fixup
1676 run_start = fixup_start_addr + host_ratio;
1679 * No discards on this iteration, next loop starts from
1680 * next sent/dirty page
1682 run_start = run_end + 1;
1689 /* Tell the destination to discard this page */
1690 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
1691 /* For the unsent_pass we:
1692 * discard partially sent pages
1693 * For the !unsent_pass (dirty) we:
1694 * discard partially dirty pages that were sent
1695 * (any partially sent pages were already discarded
1696 * by the previous unsent_pass)
1698 postcopy_discard_send_range(ms, pds, fixup_start_addr,
1702 /* Clean up the bitmap */
1703 for (page = fixup_start_addr;
1704 page < fixup_start_addr + host_ratio; page++) {
1705 /* All pages in this host page are now not sent */
1706 set_bit(page, unsentmap);
1709 * Remark them as dirty, updating the count for any pages
1710 * that weren't previously dirty.
1712 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
1717 /* Find the next sent page for the next iteration */
1718 run_start = find_next_zero_bit(unsentmap, pages, run_start);
1720 /* Find the next dirty page for the next iteration */
1721 run_start = find_next_bit(bitmap, pages, run_start);
1727 * postcopy_chuck_hostpages: discrad any partially sent host page
1729 * Utility for the outgoing postcopy code.
1731 * Discard any partially sent host-page size chunks, mark any partially
1732 * dirty host-page size chunks as all dirty. In this case the host-page
1733 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
1735 * Returns zero on success
1737 * @ms: current migration state
1738 * @block: block we want to work with
1740 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
1742 PostcopyDiscardState *pds =
1743 postcopy_discard_send_init(ms, block->idstr);
1745 /* First pass: Discard all partially sent host pages */
1746 postcopy_chunk_hostpages_pass(ms, true, block, pds);
1748 * Second pass: Ensure that all partially dirty host pages are made
1751 postcopy_chunk_hostpages_pass(ms, false, block, pds);
1753 postcopy_discard_send_finish(ms, pds);
1758 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
1760 * Returns zero on success
1762 * Transmit the set of pages to be discarded after precopy to the target
1763 * these are pages that:
1764 * a) Have been previously transmitted but are now dirty again
1765 * b) Pages that have never been transmitted, this ensures that
1766 * any pages on the destination that have been mapped by background
1767 * tasks get discarded (transparent huge pages is the specific concern)
1768 * Hopefully this is pretty sparse
1770 * @ms: current migration state
1772 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
1774 RAMState *rs = &ram_state;
1780 /* This should be our last sync, the src is now paused */
1781 migration_bitmap_sync(rs);
1783 /* Easiest way to make sure we don't resume in the middle of a host-page */
1784 rs->last_seen_block = NULL;
1785 rs->last_sent_block = NULL;
1788 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1789 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
1790 unsigned long *bitmap = block->bmap;
1791 unsigned long *unsentmap = block->unsentmap;
1794 /* We don't have a safe way to resize the sentmap, so
1795 * if the bitmap was resized it will be NULL at this
1798 error_report("migration ram resized during precopy phase");
1802 /* Deal with TPS != HPS and huge pages */
1803 ret = postcopy_chunk_hostpages(ms, block);
1810 * Update the unsentmap to be unsentmap = unsentmap | dirty
1812 bitmap_or(unsentmap, unsentmap, bitmap, pages);
1813 #ifdef DEBUG_POSTCOPY
1814 ram_debug_dump_bitmap(unsentmap, true, pages);
1817 trace_ram_postcopy_send_discard_bitmap();
1819 ret = postcopy_each_ram_send_discard(ms);
1826 * ram_discard_range: discard dirtied pages at the beginning of postcopy
1828 * Returns zero on success
1830 * @rbname: name of the RAMBlock of the request. NULL means the
1831 * same that last one.
1832 * @start: RAMBlock starting page
1833 * @length: RAMBlock size
1835 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
1839 trace_ram_discard_range(rbname, start, length);
1842 RAMBlock *rb = qemu_ram_block_by_name(rbname);
1845 error_report("ram_discard_range: Failed to find block '%s'", rbname);
1849 ret = ram_block_discard_range(rb, start, length);
1857 static int ram_state_init(RAMState *rs)
1859 memset(rs, 0, sizeof(*rs));
1860 qemu_mutex_init(&rs->bitmap_mutex);
1861 qemu_mutex_init(&rs->src_page_req_mutex);
1862 QSIMPLEQ_INIT(&rs->src_page_requests);
1864 if (migrate_use_xbzrle()) {
1865 XBZRLE_cache_lock();
1866 ZERO_TARGET_PAGE = g_malloc0(TARGET_PAGE_SIZE);
1867 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
1870 if (!XBZRLE.cache) {
1871 XBZRLE_cache_unlock();
1872 error_report("Error creating cache");
1875 XBZRLE_cache_unlock();
1877 /* We prefer not to abort if there is no memory */
1878 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
1879 if (!XBZRLE.encoded_buf) {
1880 error_report("Error allocating encoded_buf");
1884 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
1885 if (!XBZRLE.current_buf) {
1886 error_report("Error allocating current_buf");
1887 g_free(XBZRLE.encoded_buf);
1888 XBZRLE.encoded_buf = NULL;
1893 /* For memory_global_dirty_log_start below. */
1894 qemu_mutex_lock_iothread();
1896 qemu_mutex_lock_ramlist();
1898 ram_state_reset(rs);
1900 /* Skip setting bitmap if there is no RAM */
1901 if (ram_bytes_total()) {
1904 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1905 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
1907 block->bmap = bitmap_new(pages);
1908 bitmap_set(block->bmap, 0, pages);
1909 if (migrate_postcopy_ram()) {
1910 block->unsentmap = bitmap_new(pages);
1911 bitmap_set(block->unsentmap, 0, pages);
1917 * Count the total number of pages used by ram blocks not including any
1918 * gaps due to alignment or unplugs.
1920 rs->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
1922 memory_global_dirty_log_start();
1923 migration_bitmap_sync(rs);
1924 qemu_mutex_unlock_ramlist();
1925 qemu_mutex_unlock_iothread();
1932 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
1933 * long-running RCU critical section. When rcu-reclaims in the code
1934 * start to become numerous it will be necessary to reduce the
1935 * granularity of these critical sections.
1939 * ram_save_setup: Setup RAM for migration
1941 * Returns zero to indicate success and negative for error
1943 * @f: QEMUFile where to send the data
1944 * @opaque: RAMState pointer
1946 static int ram_save_setup(QEMUFile *f, void *opaque)
1948 RAMState *rs = opaque;
1951 /* migration has already setup the bitmap, reuse it. */
1952 if (!migration_in_colo_state()) {
1953 if (ram_state_init(rs) < 0) {
1961 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
1963 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1964 qemu_put_byte(f, strlen(block->idstr));
1965 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
1966 qemu_put_be64(f, block->used_length);
1967 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
1968 qemu_put_be64(f, block->page_size);
1974 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
1975 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
1977 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
1983 * ram_save_iterate: iterative stage for migration
1985 * Returns zero to indicate success and negative for error
1987 * @f: QEMUFile where to send the data
1988 * @opaque: RAMState pointer
1990 static int ram_save_iterate(QEMUFile *f, void *opaque)
1992 RAMState *rs = opaque;
1999 if (ram_list.version != rs->last_version) {
2000 ram_state_reset(rs);
2003 /* Read version before ram_list.blocks */
2006 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2008 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2010 while ((ret = qemu_file_rate_limit(f)) == 0) {
2013 pages = ram_find_and_save_block(rs, false);
2014 /* no more pages to sent */
2021 /* we want to check in the 1st loop, just in case it was the 1st time
2022 and we had to sync the dirty bitmap.
2023 qemu_get_clock_ns() is a bit expensive, so we only check each some
2026 if ((i & 63) == 0) {
2027 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
2028 if (t1 > MAX_WAIT) {
2029 trace_ram_save_iterate_big_wait(t1, i);
2035 flush_compressed_data(rs);
2039 * Must occur before EOS (or any QEMUFile operation)
2040 * because of RDMA protocol.
2042 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
2044 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2045 rs->bytes_transferred += 8;
2047 ret = qemu_file_get_error(f);
2056 * ram_save_complete: function called to send the remaining amount of ram
2058 * Returns zero to indicate success
2060 * Called with iothread lock
2062 * @f: QEMUFile where to send the data
2063 * @opaque: RAMState pointer
2065 static int ram_save_complete(QEMUFile *f, void *opaque)
2067 RAMState *rs = opaque;
2071 if (!migration_in_postcopy()) {
2072 migration_bitmap_sync(rs);
2075 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
2077 /* try transferring iterative blocks of memory */
2079 /* flush all remaining blocks regardless of rate limiting */
2083 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
2084 /* no more blocks to sent */
2090 flush_compressed_data(rs);
2091 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
2095 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2100 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
2101 uint64_t *non_postcopiable_pending,
2102 uint64_t *postcopiable_pending)
2104 RAMState *rs = opaque;
2105 uint64_t remaining_size;
2107 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2109 if (!migration_in_postcopy() &&
2110 remaining_size < max_size) {
2111 qemu_mutex_lock_iothread();
2113 migration_bitmap_sync(rs);
2115 qemu_mutex_unlock_iothread();
2116 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
2119 /* We can do postcopy, and all the data is postcopiable */
2120 *postcopiable_pending += remaining_size;
2123 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
2125 unsigned int xh_len;
2127 uint8_t *loaded_data;
2129 if (!xbzrle_decoded_buf) {
2130 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2132 loaded_data = xbzrle_decoded_buf;
2134 /* extract RLE header */
2135 xh_flags = qemu_get_byte(f);
2136 xh_len = qemu_get_be16(f);
2138 if (xh_flags != ENCODING_FLAG_XBZRLE) {
2139 error_report("Failed to load XBZRLE page - wrong compression!");
2143 if (xh_len > TARGET_PAGE_SIZE) {
2144 error_report("Failed to load XBZRLE page - len overflow!");
2147 /* load data and decode */
2148 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
2151 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
2152 TARGET_PAGE_SIZE) == -1) {
2153 error_report("Failed to load XBZRLE page - decode error!");
2161 * ram_block_from_stream: read a RAMBlock id from the migration stream
2163 * Must be called from within a rcu critical section.
2165 * Returns a pointer from within the RCU-protected ram_list.
2167 * @f: QEMUFile where to read the data from
2168 * @flags: Page flags (mostly to see if it's a continuation of previous block)
2170 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
2172 static RAMBlock *block = NULL;
2176 if (flags & RAM_SAVE_FLAG_CONTINUE) {
2178 error_report("Ack, bad migration stream!");
2184 len = qemu_get_byte(f);
2185 qemu_get_buffer(f, (uint8_t *)id, len);
2188 block = qemu_ram_block_by_name(id);
2190 error_report("Can't find block %s", id);
2197 static inline void *host_from_ram_block_offset(RAMBlock *block,
2200 if (!offset_in_ramblock(block, offset)) {
2204 return block->host + offset;
2208 * ram_handle_compressed: handle the zero page case
2210 * If a page (or a whole RDMA chunk) has been
2211 * determined to be zero, then zap it.
2213 * @host: host address for the zero page
2214 * @ch: what the page is filled from. We only support zero
2215 * @size: size of the zero page
2217 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
2219 if (ch != 0 || !is_zero_range(host, size)) {
2220 memset(host, ch, size);
2224 static void *do_data_decompress(void *opaque)
2226 DecompressParam *param = opaque;
2227 unsigned long pagesize;
2231 qemu_mutex_lock(¶m->mutex);
2232 while (!param->quit) {
2237 qemu_mutex_unlock(¶m->mutex);
2239 pagesize = TARGET_PAGE_SIZE;
2240 /* uncompress() will return failed in some case, especially
2241 * when the page is dirted when doing the compression, it's
2242 * not a problem because the dirty page will be retransferred
2243 * and uncompress() won't break the data in other pages.
2245 uncompress((Bytef *)des, &pagesize,
2246 (const Bytef *)param->compbuf, len);
2248 qemu_mutex_lock(&decomp_done_lock);
2250 qemu_cond_signal(&decomp_done_cond);
2251 qemu_mutex_unlock(&decomp_done_lock);
2253 qemu_mutex_lock(¶m->mutex);
2255 qemu_cond_wait(¶m->cond, ¶m->mutex);
2258 qemu_mutex_unlock(¶m->mutex);
2263 static void wait_for_decompress_done(void)
2265 int idx, thread_count;
2267 if (!migrate_use_compression()) {
2271 thread_count = migrate_decompress_threads();
2272 qemu_mutex_lock(&decomp_done_lock);
2273 for (idx = 0; idx < thread_count; idx++) {
2274 while (!decomp_param[idx].done) {
2275 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2278 qemu_mutex_unlock(&decomp_done_lock);
2281 void migrate_decompress_threads_create(void)
2283 int i, thread_count;
2285 thread_count = migrate_decompress_threads();
2286 decompress_threads = g_new0(QemuThread, thread_count);
2287 decomp_param = g_new0(DecompressParam, thread_count);
2288 qemu_mutex_init(&decomp_done_lock);
2289 qemu_cond_init(&decomp_done_cond);
2290 for (i = 0; i < thread_count; i++) {
2291 qemu_mutex_init(&decomp_param[i].mutex);
2292 qemu_cond_init(&decomp_param[i].cond);
2293 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
2294 decomp_param[i].done = true;
2295 decomp_param[i].quit = false;
2296 qemu_thread_create(decompress_threads + i, "decompress",
2297 do_data_decompress, decomp_param + i,
2298 QEMU_THREAD_JOINABLE);
2302 void migrate_decompress_threads_join(void)
2304 int i, thread_count;
2306 thread_count = migrate_decompress_threads();
2307 for (i = 0; i < thread_count; i++) {
2308 qemu_mutex_lock(&decomp_param[i].mutex);
2309 decomp_param[i].quit = true;
2310 qemu_cond_signal(&decomp_param[i].cond);
2311 qemu_mutex_unlock(&decomp_param[i].mutex);
2313 for (i = 0; i < thread_count; i++) {
2314 qemu_thread_join(decompress_threads + i);
2315 qemu_mutex_destroy(&decomp_param[i].mutex);
2316 qemu_cond_destroy(&decomp_param[i].cond);
2317 g_free(decomp_param[i].compbuf);
2319 g_free(decompress_threads);
2320 g_free(decomp_param);
2321 decompress_threads = NULL;
2322 decomp_param = NULL;
2325 static void decompress_data_with_multi_threads(QEMUFile *f,
2326 void *host, int len)
2328 int idx, thread_count;
2330 thread_count = migrate_decompress_threads();
2331 qemu_mutex_lock(&decomp_done_lock);
2333 for (idx = 0; idx < thread_count; idx++) {
2334 if (decomp_param[idx].done) {
2335 decomp_param[idx].done = false;
2336 qemu_mutex_lock(&decomp_param[idx].mutex);
2337 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
2338 decomp_param[idx].des = host;
2339 decomp_param[idx].len = len;
2340 qemu_cond_signal(&decomp_param[idx].cond);
2341 qemu_mutex_unlock(&decomp_param[idx].mutex);
2345 if (idx < thread_count) {
2348 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
2351 qemu_mutex_unlock(&decomp_done_lock);
2355 * ram_postcopy_incoming_init: allocate postcopy data structures
2357 * Returns 0 for success and negative if there was one error
2359 * @mis: current migration incoming state
2361 * Allocate data structures etc needed by incoming migration with
2362 * postcopy-ram. postcopy-ram's similarly names
2363 * postcopy_ram_incoming_init does the work.
2365 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
2367 unsigned long ram_pages = last_ram_page();
2369 return postcopy_ram_incoming_init(mis, ram_pages);
2373 * ram_load_postcopy: load a page in postcopy case
2375 * Returns 0 for success or -errno in case of error
2377 * Called in postcopy mode by ram_load().
2378 * rcu_read_lock is taken prior to this being called.
2380 * @f: QEMUFile where to send the data
2382 static int ram_load_postcopy(QEMUFile *f)
2384 int flags = 0, ret = 0;
2385 bool place_needed = false;
2386 bool matching_page_sizes = false;
2387 MigrationIncomingState *mis = migration_incoming_get_current();
2388 /* Temporary page that is later 'placed' */
2389 void *postcopy_host_page = postcopy_get_tmp_page(mis);
2390 void *last_host = NULL;
2391 bool all_zero = false;
2393 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2396 void *page_buffer = NULL;
2397 void *place_source = NULL;
2398 RAMBlock *block = NULL;
2401 addr = qemu_get_be64(f);
2402 flags = addr & ~TARGET_PAGE_MASK;
2403 addr &= TARGET_PAGE_MASK;
2405 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
2406 place_needed = false;
2407 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) {
2408 block = ram_block_from_stream(f, flags);
2410 host = host_from_ram_block_offset(block, addr);
2412 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2416 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE;
2418 * Postcopy requires that we place whole host pages atomically;
2419 * these may be huge pages for RAMBlocks that are backed by
2421 * To make it atomic, the data is read into a temporary page
2422 * that's moved into place later.
2423 * The migration protocol uses, possibly smaller, target-pages
2424 * however the source ensures it always sends all the components
2425 * of a host page in order.
2427 page_buffer = postcopy_host_page +
2428 ((uintptr_t)host & (block->page_size - 1));
2429 /* If all TP are zero then we can optimise the place */
2430 if (!((uintptr_t)host & (block->page_size - 1))) {
2433 /* not the 1st TP within the HP */
2434 if (host != (last_host + TARGET_PAGE_SIZE)) {
2435 error_report("Non-sequential target page %p/%p",
2444 * If it's the last part of a host page then we place the host
2447 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
2448 (block->page_size - 1)) == 0;
2449 place_source = postcopy_host_page;
2453 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2454 case RAM_SAVE_FLAG_COMPRESS:
2455 ch = qemu_get_byte(f);
2456 memset(page_buffer, ch, TARGET_PAGE_SIZE);
2462 case RAM_SAVE_FLAG_PAGE:
2464 if (!place_needed || !matching_page_sizes) {
2465 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
2467 /* Avoids the qemu_file copy during postcopy, which is
2468 * going to do a copy later; can only do it when we
2469 * do this read in one go (matching page sizes)
2471 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
2475 case RAM_SAVE_FLAG_EOS:
2479 error_report("Unknown combination of migration flags: %#x"
2480 " (postcopy mode)", flags);
2485 /* This gets called at the last target page in the host page */
2486 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
2489 ret = postcopy_place_page_zero(mis, place_dest,
2492 ret = postcopy_place_page(mis, place_dest,
2493 place_source, block->page_size);
2497 ret = qemu_file_get_error(f);
2504 static int ram_load(QEMUFile *f, void *opaque, int version_id)
2506 int flags = 0, ret = 0;
2507 static uint64_t seq_iter;
2510 * If system is running in postcopy mode, page inserts to host memory must
2513 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING;
2514 /* ADVISE is earlier, it shows the source has the postcopy capability on */
2515 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE;
2519 if (version_id != 4) {
2523 /* This RCU critical section can be very long running.
2524 * When RCU reclaims in the code start to become numerous,
2525 * it will be necessary to reduce the granularity of this
2530 if (postcopy_running) {
2531 ret = ram_load_postcopy(f);
2534 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
2535 ram_addr_t addr, total_ram_bytes;
2539 addr = qemu_get_be64(f);
2540 flags = addr & ~TARGET_PAGE_MASK;
2541 addr &= TARGET_PAGE_MASK;
2543 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE |
2544 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
2545 RAMBlock *block = ram_block_from_stream(f, flags);
2547 host = host_from_ram_block_offset(block, addr);
2549 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
2555 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
2556 case RAM_SAVE_FLAG_MEM_SIZE:
2557 /* Synchronize RAM block list */
2558 total_ram_bytes = addr;
2559 while (!ret && total_ram_bytes) {
2564 len = qemu_get_byte(f);
2565 qemu_get_buffer(f, (uint8_t *)id, len);
2567 length = qemu_get_be64(f);
2569 block = qemu_ram_block_by_name(id);
2571 if (length != block->used_length) {
2572 Error *local_err = NULL;
2574 ret = qemu_ram_resize(block, length,
2577 error_report_err(local_err);
2580 /* For postcopy we need to check hugepage sizes match */
2581 if (postcopy_advised &&
2582 block->page_size != qemu_host_page_size) {
2583 uint64_t remote_page_size = qemu_get_be64(f);
2584 if (remote_page_size != block->page_size) {
2585 error_report("Mismatched RAM page size %s "
2586 "(local) %zd != %" PRId64,
2587 id, block->page_size,
2592 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
2595 error_report("Unknown ramblock \"%s\", cannot "
2596 "accept migration", id);
2600 total_ram_bytes -= length;
2604 case RAM_SAVE_FLAG_COMPRESS:
2605 ch = qemu_get_byte(f);
2606 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
2609 case RAM_SAVE_FLAG_PAGE:
2610 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
2613 case RAM_SAVE_FLAG_COMPRESS_PAGE:
2614 len = qemu_get_be32(f);
2615 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
2616 error_report("Invalid compressed data length: %d", len);
2620 decompress_data_with_multi_threads(f, host, len);
2623 case RAM_SAVE_FLAG_XBZRLE:
2624 if (load_xbzrle(f, addr, host) < 0) {
2625 error_report("Failed to decompress XBZRLE page at "
2626 RAM_ADDR_FMT, addr);
2631 case RAM_SAVE_FLAG_EOS:
2635 if (flags & RAM_SAVE_FLAG_HOOK) {
2636 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
2638 error_report("Unknown combination of migration flags: %#x",
2644 ret = qemu_file_get_error(f);
2648 wait_for_decompress_done();
2650 trace_ram_load_complete(ret, seq_iter);
2654 static SaveVMHandlers savevm_ram_handlers = {
2655 .save_live_setup = ram_save_setup,
2656 .save_live_iterate = ram_save_iterate,
2657 .save_live_complete_postcopy = ram_save_complete,
2658 .save_live_complete_precopy = ram_save_complete,
2659 .save_live_pending = ram_save_pending,
2660 .load_state = ram_load,
2661 .cleanup = ram_migration_cleanup,
2664 void ram_mig_init(void)
2666 qemu_mutex_init(&XBZRLE.lock);
2667 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);