2 * i386 emulator main execution loop
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
51 /* exit the current TB from a signal handler. The host registers are
52 restored in a state compatible with the CPU emulator
54 void cpu_resume_from_signal(CPUState *env1, void *puc)
56 #if !defined(CONFIG_SOFTMMU)
57 struct ucontext *uc = puc;
62 /* XXX: restore cpu registers saved in host registers */
64 #if !defined(CONFIG_SOFTMMU)
66 /* XXX: use siglongjmp ? */
67 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
70 longjmp(env->jmp_env, 1);
73 /* main execution loop */
75 int cpu_exec(CPUState *env1)
77 int saved_T0, saved_T1, saved_T2;
104 int saved_i7, tmp_T0;
106 int code_gen_size, ret, interrupt_request;
107 void (*gen_func)(void);
108 TranslationBlock *tb, **ptb;
109 target_ulong cs_base, pc;
113 /* first we save global registers */
120 /* we also save i7 because longjmp may not restore it */
121 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
124 #if defined(TARGET_I386)
151 /* put eflags in CPU temporary format */
152 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
153 DF = 1 - (2 * ((env->eflags >> 10) & 1));
154 CC_OP = CC_OP_EFLAGS;
155 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
156 #elif defined(TARGET_ARM)
160 env->CF = (psr >> 29) & 1;
161 env->NZF = (psr & 0xc0000000) ^ 0x40000000;
162 env->VF = (psr << 3) & 0x80000000;
163 env->QF = (psr >> 27) & 1;
164 env->cpsr = psr & ~CACHED_CPSR_BITS;
166 #elif defined(TARGET_SPARC)
167 #elif defined(TARGET_PPC)
169 #error unsupported target CPU
171 env->exception_index = -1;
173 /* prepare setjmp context for exception handling */
175 if (setjmp(env->jmp_env) == 0) {
176 env->current_tb = NULL;
177 /* if an exception is pending, we execute it here */
178 if (env->exception_index >= 0) {
179 if (env->exception_index >= EXCP_INTERRUPT) {
180 /* exit request from the cpu execution loop */
181 ret = env->exception_index;
183 } else if (env->user_mode_only) {
184 /* if user mode only, we simulate a fake exception
185 which will be hanlded outside the cpu execution
187 #if defined(TARGET_I386)
188 do_interrupt_user(env->exception_index,
189 env->exception_is_int,
191 env->exception_next_eip);
193 ret = env->exception_index;
196 #if defined(TARGET_I386)
197 /* simulate a real cpu exception. On i386, it can
198 trigger new exceptions, but we do not handle
199 double or triple faults yet. */
200 do_interrupt(env->exception_index,
201 env->exception_is_int,
203 env->exception_next_eip, 0);
204 #elif defined(TARGET_PPC)
206 #elif defined(TARGET_SPARC)
207 do_interrupt(env->exception_index);
210 env->exception_index = -1;
213 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
215 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
216 ret = kqemu_cpu_exec(env);
217 /* put eflags in CPU temporary format */
218 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
219 DF = 1 - (2 * ((env->eflags >> 10) & 1));
220 CC_OP = CC_OP_EFLAGS;
221 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
224 longjmp(env->jmp_env, 1);
225 } else if (ret == 2) {
226 /* softmmu execution needed */
228 if (env->interrupt_request != 0) {
229 /* hardware interrupt will be executed just after */
231 /* otherwise, we restart */
232 longjmp(env->jmp_env, 1);
238 T0 = 0; /* force lookup of first TB */
241 /* g1 can be modified by some libc? functions */
244 interrupt_request = env->interrupt_request;
245 if (__builtin_expect(interrupt_request, 0)) {
246 #if defined(TARGET_I386)
247 /* if hardware interrupt pending, we execute it */
248 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
249 (env->eflags & IF_MASK) &&
250 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
252 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
253 intno = cpu_get_pic_interrupt(env);
254 if (loglevel & CPU_LOG_TB_IN_ASM) {
255 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
257 do_interrupt(intno, 0, 0, 0, 1);
258 /* ensure that no TB jump will be modified as
259 the program flow was changed */
266 #elif defined(TARGET_PPC)
268 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
273 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
275 env->exception_index = EXCP_EXTERNAL;
278 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
279 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
281 env->exception_index = EXCP_DECR;
284 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
287 #elif defined(TARGET_SPARC)
288 if (interrupt_request & CPU_INTERRUPT_HARD) {
289 do_interrupt(env->interrupt_index);
290 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
291 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
292 //do_interrupt(0, 0, 0, 0, 0);
293 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
296 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
297 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
298 /* ensure that no TB jump will be modified as
299 the program flow was changed */
306 if (interrupt_request & CPU_INTERRUPT_EXIT) {
307 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
308 env->exception_index = EXCP_INTERRUPT;
313 if ((loglevel & CPU_LOG_EXEC)) {
314 #if defined(TARGET_I386)
315 /* restore flags in standard format */
316 env->regs[R_EAX] = EAX;
317 env->regs[R_EBX] = EBX;
318 env->regs[R_ECX] = ECX;
319 env->regs[R_EDX] = EDX;
320 env->regs[R_ESI] = ESI;
321 env->regs[R_EDI] = EDI;
322 env->regs[R_EBP] = EBP;
323 env->regs[R_ESP] = ESP;
324 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
325 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
326 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327 #elif defined(TARGET_ARM)
328 env->cpsr = compute_cpsr();
329 cpu_dump_state(env, logfile, fprintf, 0);
330 env->cpsr &= ~CACHED_CPSR_BITS;
331 #elif defined(TARGET_SPARC)
332 cpu_dump_state (env, logfile, fprintf, 0);
333 #elif defined(TARGET_PPC)
334 cpu_dump_state(env, logfile, fprintf, 0);
336 #error unsupported target CPU
340 /* we record a subset of the CPU state. It will
341 always be the same before a given translated block
343 #if defined(TARGET_I386)
345 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
346 cs_base = env->segs[R_CS].base;
347 pc = cs_base + env->eip;
348 #elif defined(TARGET_ARM)
349 flags = env->thumb | (env->vfp.vec_len << 1)
350 | (env->vfp.vec_stride << 4);
353 #elif defined(TARGET_SPARC)
357 #elif defined(TARGET_PPC)
358 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) | (msr_se << MSR_SE);
362 #error unsupported CPU
364 tb = tb_find(&ptb, pc, cs_base,
367 TranslationBlock **ptb1;
369 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
374 tb_invalidated_flag = 0;
376 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
378 /* find translated block using physical mappings */
379 phys_pc = get_phys_addr_code(env, pc);
380 phys_page1 = phys_pc & TARGET_PAGE_MASK;
382 h = tb_phys_hash_func(phys_pc);
383 ptb1 = &tb_phys_hash[h];
389 tb->page_addr[0] == phys_page1 &&
390 tb->cs_base == cs_base &&
391 tb->flags == flags) {
392 /* check next page if needed */
393 if (tb->page_addr[1] != -1) {
394 virt_page2 = (pc & TARGET_PAGE_MASK) +
396 phys_page2 = get_phys_addr_code(env, virt_page2);
397 if (tb->page_addr[1] == phys_page2)
403 ptb1 = &tb->phys_hash_next;
406 /* if no translated code available, then translate it now */
409 /* flush must be done */
411 /* cannot fail at this point */
413 /* don't forget to invalidate previous TB info */
414 ptb = &tb_hash[tb_hash_func(pc)];
417 tc_ptr = code_gen_ptr;
419 tb->cs_base = cs_base;
421 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
422 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
424 /* check next page if needed */
425 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
427 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
428 phys_page2 = get_phys_addr_code(env, virt_page2);
430 tb_link_phys(tb, phys_pc, phys_page2);
433 if (tb_invalidated_flag) {
434 /* as some TB could have been invalidated because
435 of memory exceptions while generating the code, we
436 must recompute the hash index here */
437 ptb = &tb_hash[tb_hash_func(pc)];
439 ptb = &(*ptb)->hash_next;
442 /* we add the TB in the virtual pc hash table */
444 tb->hash_next = NULL;
446 spin_unlock(&tb_lock);
449 if ((loglevel & CPU_LOG_EXEC)) {
450 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
451 (long)tb->tc_ptr, tb->pc,
452 lookup_symbol(tb->pc));
458 /* see if we can patch the calling TB. */
461 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
462 && (tb->cflags & CF_CODE_COPY) ==
463 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
467 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
468 #if defined(USE_CODE_COPY)
469 /* propagates the FP use info */
470 ((TranslationBlock *)(T0 & ~3))->cflags |=
471 (tb->cflags & CF_FP_USED);
473 spin_unlock(&tb_lock);
477 env->current_tb = tb;
478 /* execute the generated code */
479 gen_func = (void *)tc_ptr;
480 #if defined(__sparc__)
481 __asm__ __volatile__("call %0\n\t"
485 : "i0", "i1", "i2", "i3", "i4", "i5");
486 #elif defined(__arm__)
487 asm volatile ("mov pc, %0\n\t"
488 ".global exec_loop\n\t"
492 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
493 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
495 if (!(tb->cflags & CF_CODE_COPY)) {
496 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
497 save_native_fp_state(env);
501 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
502 restore_native_fp_state(env);
504 /* we work with native eflags */
505 CC_SRC = cc_table[CC_OP].compute_all();
506 CC_OP = CC_OP_EFLAGS;
507 asm(".globl exec_loop\n"
512 " fs movl %11, %%eax\n"
513 " andl $0x400, %%eax\n"
514 " fs orl %8, %%eax\n"
517 " fs movl %%esp, %12\n"
518 " fs movl %0, %%eax\n"
519 " fs movl %1, %%ecx\n"
520 " fs movl %2, %%edx\n"
521 " fs movl %3, %%ebx\n"
522 " fs movl %4, %%esp\n"
523 " fs movl %5, %%ebp\n"
524 " fs movl %6, %%esi\n"
525 " fs movl %7, %%edi\n"
528 " fs movl %%esp, %4\n"
529 " fs movl %12, %%esp\n"
530 " fs movl %%eax, %0\n"
531 " fs movl %%ecx, %1\n"
532 " fs movl %%edx, %2\n"
533 " fs movl %%ebx, %3\n"
534 " fs movl %%ebp, %5\n"
535 " fs movl %%esi, %6\n"
536 " fs movl %%edi, %7\n"
539 " movl %%eax, %%ecx\n"
540 " andl $0x400, %%ecx\n"
542 " andl $0x8d5, %%eax\n"
543 " fs movl %%eax, %8\n"
545 " subl %%ecx, %%eax\n"
546 " fs movl %%eax, %11\n"
547 " fs movl %9, %%ebx\n" /* get T0 value */
550 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
551 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
552 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
553 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
554 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
555 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
556 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
557 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
558 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
559 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
561 "m" (*(uint8_t *)offsetof(CPUState, df)),
562 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
570 env->current_tb = NULL;
571 /* reset soft MMU for next block (it can currently
572 only be set by a memory fault) */
573 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
574 if (env->hflags & HF_SOFTMMU_MASK) {
575 env->hflags &= ~HF_SOFTMMU_MASK;
576 /* do not allow linking to another block */
587 #if defined(TARGET_I386)
588 #if defined(USE_CODE_COPY)
589 if (env->native_fp_regs) {
590 save_native_fp_state(env);
593 /* restore flags in standard format */
594 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
596 /* restore global registers */
621 #elif defined(TARGET_ARM)
622 env->cpsr = compute_cpsr();
623 /* XXX: Save/restore host fpu exception state?. */
624 #elif defined(TARGET_SPARC)
625 #elif defined(TARGET_PPC)
627 #error unsupported target CPU
630 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
639 /* must only be called from the generated code as an exception can be
641 void tb_invalidate_page_range(target_ulong start, target_ulong end)
643 /* XXX: cannot enable it yet because it yields to MMU exception
644 where NIP != read address on PowerPC */
646 target_ulong phys_addr;
647 phys_addr = get_phys_addr_code(env, start);
648 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
652 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
654 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
656 CPUX86State *saved_env;
660 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
662 cpu_x86_load_seg_cache(env, seg_reg, selector,
663 (selector << 4), 0xffff, 0);
665 load_seg(seg_reg, selector);
670 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
672 CPUX86State *saved_env;
677 helper_fsave((target_ulong)ptr, data32);
682 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
684 CPUX86State *saved_env;
689 helper_frstor((target_ulong)ptr, data32);
694 #endif /* TARGET_I386 */
696 #if !defined(CONFIG_SOFTMMU)
698 #if defined(TARGET_I386)
700 /* 'pc' is the host PC at which the exception was raised. 'address' is
701 the effective address of the memory exception. 'is_write' is 1 if a
702 write caused the exception and otherwise 0'. 'old_set' is the
703 signal set which should be restored */
704 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
705 int is_write, sigset_t *old_set,
708 TranslationBlock *tb;
712 env = cpu_single_env; /* XXX: find a correct solution for multithread */
713 #if defined(DEBUG_SIGNAL)
714 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
715 pc, address, is_write, *(unsigned long *)old_set);
717 /* XXX: locking issue */
718 if (is_write && page_unprotect(address, pc, puc)) {
722 /* see if it is an MMU fault */
723 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
724 ((env->hflags & HF_CPL_MASK) == 3), 0);
726 return 0; /* not an MMU fault */
728 return 1; /* the MMU fault was handled without causing real CPU fault */
729 /* now we have a real cpu fault */
732 /* the PC is inside the translated code. It means that we have
733 a virtual CPU fault */
734 cpu_restore_state(tb, env, pc, puc);
738 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
739 env->eip, env->cr[2], env->error_code);
741 /* we restore the process signal mask as the sigreturn should
742 do it (XXX: use sigsetjmp) */
743 sigprocmask(SIG_SETMASK, old_set, NULL);
744 raise_exception_err(EXCP0E_PAGE, env->error_code);
746 /* activate soft MMU for this block */
747 env->hflags |= HF_SOFTMMU_MASK;
748 cpu_resume_from_signal(env, puc);
750 /* never comes here */
754 #elif defined(TARGET_ARM)
755 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
756 int is_write, sigset_t *old_set,
759 TranslationBlock *tb;
763 env = cpu_single_env; /* XXX: find a correct solution for multithread */
764 #if defined(DEBUG_SIGNAL)
765 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
766 pc, address, is_write, *(unsigned long *)old_set);
768 /* XXX: locking issue */
769 if (is_write && page_unprotect(address, pc, puc)) {
772 /* see if it is an MMU fault */
773 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
775 return 0; /* not an MMU fault */
777 return 1; /* the MMU fault was handled without causing real CPU fault */
778 /* now we have a real cpu fault */
781 /* the PC is inside the translated code. It means that we have
782 a virtual CPU fault */
783 cpu_restore_state(tb, env, pc, puc);
785 /* we restore the process signal mask as the sigreturn should
786 do it (XXX: use sigsetjmp) */
787 sigprocmask(SIG_SETMASK, old_set, NULL);
790 #elif defined(TARGET_SPARC)
791 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
792 int is_write, sigset_t *old_set,
795 TranslationBlock *tb;
799 env = cpu_single_env; /* XXX: find a correct solution for multithread */
800 #if defined(DEBUG_SIGNAL)
801 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
802 pc, address, is_write, *(unsigned long *)old_set);
804 /* XXX: locking issue */
805 if (is_write && page_unprotect(address, pc, puc)) {
808 /* see if it is an MMU fault */
809 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
811 return 0; /* not an MMU fault */
813 return 1; /* the MMU fault was handled without causing real CPU fault */
814 /* now we have a real cpu fault */
817 /* the PC is inside the translated code. It means that we have
818 a virtual CPU fault */
819 cpu_restore_state(tb, env, pc, puc);
821 /* we restore the process signal mask as the sigreturn should
822 do it (XXX: use sigsetjmp) */
823 sigprocmask(SIG_SETMASK, old_set, NULL);
826 #elif defined (TARGET_PPC)
827 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
828 int is_write, sigset_t *old_set,
831 TranslationBlock *tb;
835 env = cpu_single_env; /* XXX: find a correct solution for multithread */
836 #if defined(DEBUG_SIGNAL)
837 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
838 pc, address, is_write, *(unsigned long *)old_set);
840 /* XXX: locking issue */
841 if (is_write && page_unprotect(address, pc, puc)) {
845 /* see if it is an MMU fault */
846 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
848 return 0; /* not an MMU fault */
850 return 1; /* the MMU fault was handled without causing real CPU fault */
852 /* now we have a real cpu fault */
855 /* the PC is inside the translated code. It means that we have
856 a virtual CPU fault */
857 cpu_restore_state(tb, env, pc, puc);
861 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
862 env->nip, env->error_code, tb);
864 /* we restore the process signal mask as the sigreturn should
865 do it (XXX: use sigsetjmp) */
866 sigprocmask(SIG_SETMASK, old_set, NULL);
867 do_raise_exception_err(env->exception_index, env->error_code);
869 /* activate soft MMU for this block */
870 cpu_resume_from_signal(env, puc);
872 /* never comes here */
876 #error unsupported target CPU
879 #if defined(__i386__)
881 #if defined(USE_CODE_COPY)
882 static void cpu_send_trap(unsigned long pc, int trap,
885 TranslationBlock *tb;
888 env = cpu_single_env; /* XXX: find a correct solution for multithread */
889 /* now we have a real cpu fault */
892 /* the PC is inside the translated code. It means that we have
893 a virtual CPU fault */
894 cpu_restore_state(tb, env, pc, uc);
896 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
897 raise_exception_err(trap, env->error_code);
901 int cpu_signal_handler(int host_signum, struct siginfo *info,
904 struct ucontext *uc = puc;
912 #define REG_TRAPNO TRAPNO
914 pc = uc->uc_mcontext.gregs[REG_EIP];
915 trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
916 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
917 if (trapno == 0x00 || trapno == 0x05) {
918 /* send division by zero or bound exception */
919 cpu_send_trap(pc, trapno, uc);
923 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
925 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
926 &uc->uc_sigmask, puc);
929 #elif defined(__x86_64__)
931 int cpu_signal_handler(int host_signum, struct siginfo *info,
934 struct ucontext *uc = puc;
937 pc = uc->uc_mcontext.gregs[REG_RIP];
938 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
939 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
940 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
941 &uc->uc_sigmask, puc);
944 #elif defined(__powerpc__)
946 /***********************************************************************
947 * signal context platform-specific definitions
951 /* All Registers access - only for local access */
952 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
953 /* Gpr Registers access */
954 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
955 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
956 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
957 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
958 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
959 # define LR_sig(context) REG_sig(link, context) /* Link register */
960 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
961 /* Float Registers access */
962 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
963 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
964 /* Exception Registers access */
965 # define DAR_sig(context) REG_sig(dar, context)
966 # define DSISR_sig(context) REG_sig(dsisr, context)
967 # define TRAP_sig(context) REG_sig(trap, context)
971 # include <sys/ucontext.h>
972 typedef struct ucontext SIGCONTEXT;
973 /* All Registers access - only for local access */
974 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
975 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
976 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
977 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
978 /* Gpr Registers access */
979 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
980 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
981 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
982 # define CTR_sig(context) REG_sig(ctr, context)
983 # define XER_sig(context) REG_sig(xer, context) /* Link register */
984 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
985 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
986 /* Float Registers access */
987 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
988 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
989 /* Exception Registers access */
990 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
991 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
992 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
993 #endif /* __APPLE__ */
995 int cpu_signal_handler(int host_signum, struct siginfo *info,
998 struct ucontext *uc = puc;
1006 if (DSISR_sig(uc) & 0x00800000)
1009 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1012 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1013 is_write, &uc->uc_sigmask, puc);
1016 #elif defined(__alpha__)
1018 int cpu_signal_handler(int host_signum, struct siginfo *info,
1021 struct ucontext *uc = puc;
1022 uint32_t *pc = uc->uc_mcontext.sc_pc;
1023 uint32_t insn = *pc;
1026 /* XXX: need kernel patch to get write flag faster */
1027 switch (insn >> 26) {
1042 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1043 is_write, &uc->uc_sigmask, puc);
1045 #elif defined(__sparc__)
1047 int cpu_signal_handler(int host_signum, struct siginfo *info,
1050 uint32_t *regs = (uint32_t *)(info + 1);
1051 void *sigmask = (regs + 20);
1056 /* XXX: is there a standard glibc define ? */
1058 /* XXX: need kernel patch to get write flag faster */
1060 insn = *(uint32_t *)pc;
1061 if ((insn >> 30) == 3) {
1062 switch((insn >> 19) & 0x3f) {
1074 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1075 is_write, sigmask, NULL);
1078 #elif defined(__arm__)
1080 int cpu_signal_handler(int host_signum, struct siginfo *info,
1083 struct ucontext *uc = puc;
1087 pc = uc->uc_mcontext.gregs[R15];
1088 /* XXX: compute is_write */
1090 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1095 #elif defined(__mc68000)
1097 int cpu_signal_handler(int host_signum, struct siginfo *info,
1100 struct ucontext *uc = puc;
1104 pc = uc->uc_mcontext.gregs[16];
1105 /* XXX: compute is_write */
1107 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1109 &uc->uc_sigmask, puc);
1114 #error host CPU specific signal handler needed
1118 #endif /* !defined(CONFIG_SOFTMMU) */